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Abstract

We consider a class of probabilistic cellular automata undergoing a phase
transition with an absorbing-state. Denoting by U(s) the neighbourhood
of the site s, the transition probability is T (ηs = 1|ηU(s)) = 0 if ηU(s) =
0 or p otherwise, ∀s ∈ Z. For any U there exists a non-trivial critical
probability pc(U) which separates a phase with an absorbing-state from a
fluctuating phase. We study how the neighbourhood affects the value of
pc(U) and we provide lower bounds for pc(U). Furthermore, using techniques
of dynamic renormalization, we prove that the expected convergence time of
the processes on a finite space with periodic boundaries grows exponentially
(resp. logarithmically) with the system size if p > pc (resp. p < pc). This
appears as an open problem in [4, 5, 6].

1 Introduction

Probabilistic cellular automata (PCA) are discrete-time Markov processes
modelling the time evolution of a multicomponent system. Their main fea-
ture is the synchronous update of the states of the components, which take
values in a finite set and interact with their neighbours according to a given
probabilistic interaction rule.

PCA are favourable models to study non-equilibrium phenomena. In fact
on the one hand their definition is simple, as space of configurations is dis-
crete and interactions are local. On the other hand, despite this simplicity,
they exhibit a variety of complex behaviours. In particular the interest con-
centrates on the study of phase transition in the context of non-equilibrium
statistical physics. A phase transition occurs when, after turning a free pa-
rameter above or below a certain critical threshold, the process at infinite
time preserves part of the information on its initial condition (non-ergodic
behaviour). Namely the probability measure at infinite time depends on the

1



initial state of the dynamics. On the contrary if the process is ergodic, it
admits a unique, attracting invariant measure.

In the last 50 years PCA have been object of intense analytical and
numerical investigations ( e.g. [5, 6, 12, 13] ). However, as far as we know,
many questions involving e.g. the rate of convergence to equilibrium or the
characterization of the invariant measures still remain open, even for the
simplest models (see e.g. [4, 5] for a survey).

In the present paper we consider a well known class of PCA, called
Stavskaya’s (see e.g. [1, 2, 3, 4, 5, 6, 15, 16].) Usually this name refers to a
specific model where units are located on a 1-dimensional lattice and each
of them interacts only with itself and with its right-adjacent neighbour. In
this article we refer to the class of models with the same interaction rule,
but we keep general the choice of the neighbourhood. This class of PCA is
also known as Percolation PCA [4, 5].

The reason to consider the Stavskaya’s processes is that their simplic-
ity, combined with the presence of a phase transition, make them an inter-
esting test case for attempts to characterize transient behaviour and sta-
tionary measures for spatially extended stochastic dynamics. In particular
Stavskaya’s PCA are a prominent model for studying absorbing-state phase
transitions ([17]), i.e. there exists a phase characterized by almost sure
convergence into an “absorbing state” (a realization where the process re-
mains for ever whenever reached) and a fluctuating phase, where the process
remains active at all times.

In the present paper we discuss two distinct aspects of the Stavskaya’s
process. In section 3 we consider Stavskaya’s processes with distinct (trans-
lation invariant) neighbourhoods U and we study how the neighbourhood
affects the critical probability. We provide a lower bound for the critical
probabilities pc(U). Our result is stated in Theorem 2.1. With our estima-
tions we improve the previous lower bound [18] showing that pc(U) > 1/2
strictly in case of neighbourhood U(0) = {−1, 0, 1}. Furthermore we provide
new bounds in case of neighbourhoods not considered before (as far as we
know). Estimations are obtained using the random walk method, [5, Chap-
ter 6], which is based on the analysis of the temporal evolution of “absorbed
sets” (sets of adjacent sites all in state “zero”) . If these sets are in average
expanding, the process is ergodic. In particular our estimations take into
account a certain aspect of the dynamics, i.e. absorbed sets can dynamically
merge one with the other. This ends up in an improvement of the bound.
The comparison with numerical estimations from our supplementary infor-
mation paper [19] shows that our bounds are sharp.

In section 4 we consider the Stavskaya’s processes on a finite 1D lattice
with periodic boundaries and we study the time of convergence of the process
into the absorbing-state. Our second main result is stated in Theorem 2.2.
We show that at pc there exists a transition from a fast to a slow convergence
regime. In particular we prove that the expected convergence time of the
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model grows exponentially (resp. logarithmically) with the size of the system
if p > pc(U) (resp. p < pc(U)). This appears as an open problem in the
surveys [4, 5] and in [6]. If compared with [5], where the fast (resp. slow)
convergence behaviour is proved for p small enough (resp. close enough to 1),
our result provides a sharp estimation. The slow convergence regime can be
interpreted as a metastable behaviour of the model, as the process spends
an extraordinary long time into a non-stable state before falling into the
absorbing-state. Similar studies on the metastable behaviour of PCA models
have been presented recently also in [8, 9, 10], although the methods used
there do not apply to our case, as the Stavskaya’s processes are not reversible
and do not have a naturally associated potential. Numerical estimations of
pc(U) (e.g. [20, 21, 22]) are obtained assuming that the metastable regime
(the actual regime observed in numerical simulations, as there is no way to
really simulate “infinite space” in computers) is observed only for all values
of p at which the infinite process is in the fluctuating phase. If maybe obvious
from the point of view of the physical intuition, the Theorem 2.2 provides a
justification of this assumption from a rigorous mathematical point of view.

The proof of our result relies almost entirely on the correspondence be-
tween Stavskaya’s process and Oriented Percolation in dimension 2, as de-
scribed in [5, 7]. In particular the probability that the Stavskaya’s process
on finite space of size 2n has not fallen into the absorbing state until time t is
equal to the probability that an open oriented percolation path connects the
top of a 2n× t box to the bottom. In particular the proof of the fast conver-
gence regime for p < pc follows directly from percolation estimations from
[23]. The proof of the slow convergence regime for p > pc is more technical
and it is based on (1) the generalization of the dynamic-block argument
provided by [23] to the case of non symmetric neighbourhood with more
than two elements and (2) the estimation of the probability of a certain
event that involves the dual lattice construction.

We end this introductory section presenting the structure of the paper.
In section 2 we define the model and we present our main results, Theorem
2.1 and Theorem 2.2. In section 3 we prove Theorem 2.1, introducing the
random walk method from [5][Chapter 6]. In section 4 we prove Theorem
2.2. The section is divided into three subsections. In Subsection 4.1 we
describe the correspondence between Stavskaya’s process and Oriented Per-
colation in two dimension, following [5, 7]. In Subsection 4.2 we present
several percolation estimations from [23] used in the proof of the theorem.
In Subsection 4.3 we prove Theorem 2.2.

2 Definition and Results

Probabilistic Cellular Automata (PCA) are discrete-time Markov chains on
a product space, Σ = XS whose transition probability is a product measure.
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In this paper we consider both the case of infinite space, S = Z, and of finite
space, S = Sn, Sn = {−n,−n+ 1, . . . n− 2, n− 1}.

We consider the case of boolean variables, X = {0, 1}. Realizations of
the system are denoted by η ∈ Σ. For any s ∈ S and any K ⊂ S, we denote
by ηts the s-th component of the vector ηt and by ηtK the set components
corresponding to the sites of K.

We introduce now a neighbourhood function on S. We first define the
neighbourhood of the origin,

U(0) = {s1, s2, . . . su}, (1)

, where s1, s2 . . . su are some elements of S and u is finite. We will always
assume s1 < s2 < . . . su. Then, assuming translation invariance, we define
the neighbourhood of a site s ∈ S as U(s) = U(0)+s and the neighbourhood
of a set K ⊂ S as U(K) =

⋃
s∈K U(s).

In case of finite space we assume periodic boundaries, i.e. ηs = ηs+2kn

for all k ∈ Z. This means that the neighbourhood of a site s can also be
rewritten as,

U(s) = {|s+ s1 + n|2n − n, |s+ s2 + n|2n − n, . . . , |s+ su + n|2n − n}. (2)

In PCA the states of the process are synchronously updated at every site
according to a certain transition probability. For the Stavskaya’s process the
transition probability is ∀s ∈ S,

Ts( η
′
s = 1 | ηU(s) ) =

{
0 if ηU(s) = 0

p otherwise
, (3)

where p ∈ [0, 1] is a free parameter. 1 Note that by definition the transition
probability is translation invariant.

The temporal evolution of the PCA can be represented by introducing
a linear operator P which acts on the space of probability measures M(Σ).
For any µ ∈ M(Σ), we denote by µP the measure obtained applying P to µ.
Denoting by η′K the cylinder set η′K = {η ∈ Σ : ηK = η′K }, with K ⊂ S,
the measure µP is defined as,

µP( η′K ) =
∑

ηU(K)∈{0,1}U(K)

µ(ηU(K))
∏
s∈K

Ts( η
′
s | ηU(s) ). (4)

Observe that if µ is a Dirac measure then µP is a product measure. This is
the main feature of PCA.

In order to characterize the time evolution of PCA it is useful to intro-
duce the set of space-time realizations, Σ̃ = {0, 1}V , where V = S×N is the

1We use a different notation from [4, 5, 6]: here p corresponds to 1− ε and zeroes and
ones are inverted.
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Figure 1: Representation of the graph GU with neighbourhood U(0) =
{−1, 0, 1}. In this figure only edges between vertices belonging to the evo-
lution cone of (0, t) have been drawn.

space-time set. The elements of Σ̃ are the realizations of the process at all
times, η̃ = (ηt)

∞
t=0 ∈ Σ̃. We introduce then a directed graph GU = (V, ~EU ),

whose edges connect any vertex (s, t) ∈ V to the vertices (k, t − 1) ∈ V ,
where k ∈ U(s), and are oriented. The vertices reachable from (s, t) ∈ V
through a path on GU constitute the evolution cone of (0, t).

We now introduce some definitions that will be used along the whole
article. First for any t ∈ N we define the set St = {(s, t) ∈ V, s ∈ S}, which
is a copy of S.

Definition 1 (Evolution Measure). Consider the Stavskaya’s process (4)
with S = Z (respectively S = Sn and periodic boundaries). For every µ ∈
M(Ω), we define the evolution measure µ̃ (respectively µ̃(n)) as the joint
probability distribution of measures µPt at all times 0, 1, 2, . . ..

For example, we denote by δ̃
(n)
1 the evolution measure of the Stavskaya’s

process on finite space, starting with initial probability measure “all ones”
almost surely.

Definition 2 (Expectation on the evolution space). Consider the Stavskaya’s
process (4) with S = Z (respectively S = Sn and periodic boundaries). We

denote by Eµ̃( · ) (respectively E(n)
µ̃ ( · ) ) the expectation with respect to the

evolution measure µ̃ (respectively µ̃(n)).

Monotonicity It is immediate from the definition that the Dirac measure
δ0, where 0 = (0, 0, 0, . . .), is stationary, i.e. δ0 = δ0P. Furthermore the
operator P of this stochastic process is monotone. Monotonicity of P means
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that it preserves partial order among elements of M(Σ). We first introduce
partial order “ ≺ ” in Σ defining for any two configurations η, η′ ∈ Σ,
η ≺ η′ ⇔ ∀s ∈ S ηs ≤ η′s. Then we introduce the functions ϕ : Σ 7−→ R
dependent only on a finite number of sites. We call ϕ monotone iff for any
η, η′ ∈ Σ, η ≺ η′ ⇒ ϕ(η) ≤ ϕ(η′). Then we introduce partial order in
M(Σ) defining µ ≺ µ′ ⇔ for any monotone function ϕ ,

∫
ϕdµ ≤

∫
ϕdµ′.

An operator P : M(Σ) 7−→ M(Σ) is called monotone if for any pair of
measures µ, µ′ ∈ M(Σ), µ ≺ µ′ ⇒ µP ≺ µ′P. For the transition operator of
the Stavskaya’s process this property is a consequence of the fact that the
transition probability (3) preserves order locally, i.e. for any s ∈ S,

η1U(s) ≺ η2U(s) ⇒ Tp(ηs = 1 | η1U(s)) ≤ Tp(ηs = 1 | η2U(s)),

(see for example [5, page 28] for a proof). Monotonicity of P implies that
the probability measure,

νp := lim
t→∞

δ1 Pt, (5)

is well defined.

Definition 3 (Critical Probability). Consider the Stavskaya’s process on Z
with finite neighbourhood U(0) ⊂ Z. We define the critical probability as,

pc(U) = sup
p
{νp = δ0}. (6)

By definition, for any p < pc the process is ergodic, i.e. there exists a
unique invariant measure on which the process converges. By monotonicity
this holds for any initial probability measure. Alternatively, for any p > pc,
the process is not ergodic. In fact in this case δ0 and νp 6= δ0 are two different
invariant measures and any convex combination of them is still an invariant
measure. Using the counting path method and the Peierls argument it is
possible to show that for any neighbourhood U s.t. |U(0)| ≥ 2, pc(U) ∈ (0, 1)
[5, 7].

Our first result involves the estimation of pc and it is stated in the fol-
lowing theorem.

Theorem 2.1. Consider the Stavskaya’s process on Z with neighbourhood
U(0) = {s1, s2, s3, . . . , su}, where s1, s2 . . . su are some arbitrary integers.
Then, pc(U) ≥ p2, where,

p2 = p1 · [ 1 + (1− p2)
(su−s1) 3 − 2 p2

2 − p2
], (7)

and,

p1 =
2

2 + su − su
. (8)
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The proof of the theorem is presented in Section 3. From equation (7)
it follows that p2 > p1. Our analytical lower bound can be compared with
numerical estimation from our supplementary information article [19] in the
following tables.

U(0) p1 p2 Num. Est.

{−1, 0} 2/3 0.672 0.705

{−1, 0, 1} 1/2 0.505 0.538

{−1, 0, 1, 2} 2/5 0.404 0.430

{−1, 0, 1, 2, 3} 1/3 0.338 0.339

As we can see from the following table, where neighbourhoods with 3 ele-
ments and different radius su−s1 are considered, bounds are not so sharp in
case the neighbourhood does not contain some site between the two extremal
ones, s1 and su.

U(0) p1 p2 Num. Est.

{−1, 0, 1} 1/2 0.505 0.538

{−1, 0, 2} 2/5 0.404 0.489

{−1, 0, 3} 1/3 0.338 0.469

Our main result involves the time of convergence into the absorbing state
of the Stavskaya’s process with finite space Sn and periodic boundaries, as
defined at the beginning of this section. The result is stated in Theorem 2.2.

Naturally when S is finite there is no phase transition. This simply
follows from the fact that for any configuration ηt ∈ Σ at time t, the prob-
ability that ηt+1 = δ0 is bounded from below by the constant (1− p)|S|.
This implies that there exists almost surely a finite time τ ∈ N such that
ηt = “all zeroes” for all t ≥ τ .

In order to estimate the time of convergence into the absorbing state we
define the absorbing-time.

Definition 4. Denote [[a, b]] = [a, b]
⋂

Z. For all k ∈ N, we call the absorb-
ing time of the interval [[−k, k − 1]] the random variable τk : Σ̃ → N,

τk(η̃) = min{t ∈ N0 s.t. η̃ts = 0 ∀s ∈ [[−k, k − 1]]}. (9)

It represents the first time the line [[−k, k− 1]] contains all zeroes in the
course of the evolution of the process. In case S = Sn, this random variable
is well defined only if k ≤ n.

Theorem 2.2. Consider the Stavskaya’s process with space Sn, periodic
boundaries and neighbourhood U(0) = {s1, s2, . . . su}, where s1, s2, . . . su
are some integers in Sn. There exist n0 ∈ N and some positive constants
K1,K2, c1, c2 (dependent on p) such that for all n > n0,
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a) ∀p < pc, E(n)

δ̃1
[τn] ≤ K1 log(c1 n),

b) ∀p > pc, E(n)

δ̃1
[τn] ≥ K2 exp(c2 n) .

The proof of the theorem is presented in Section 4..

3 Critical Probabilities

In this section we prove Theorem 2.1, which provides a lower bound for
pc as a function of the neighbourhood of the model. Theorem 2.1 follows
from the random walk method, summarized in Theorem 3.1 and developed
in [5][Chapter 6] and from our combinatorial and probabilistic arguments.
Also the following statement is needed for the proof of the Theorem 2.1.

Proposition 1. Consider two Stavskaya’s processes in Z with neighbour-
hoods respectively U(0) and U ′(0), both finite subsets of Z, such that U(0) ⊂
U ′(0). Then pc(U(0)) ≥ pc(U ′(0)).

The proof of this proposition is a simple consequence of Proposition 2,
presented and proved in Section 4.1, and of the fact that the evolution cone
(defined at the beginning of Section 2) for the model with neighbourhood
U(0) is a subset of the evolution cone for the model with neighbourhood
U ′(0).

Now we start with the introduction of definitions and notations that
allow to present Theorem 3.1. We define the Dirac measure δρL , where

L ∈ N and ρL ∈ Σ is a configuration such that ρLs = 0 if −L ≤ s ≤ L and
ρLs = 1 otherwise. We say that this configuration contains a massif of zeroes
of size 2L+ 1 (see Figure 2). We observe that if the initial configuration is
δρL , then any space-time realization at time 1 has a massif of zeroes of size
at least 2L+1− (su− s1). This follows from (3). Analogously at time t any
space-time realization has a massif of zeroes of size at least 2L+1−t(su−s1)
if t ≤ (2L+1)/(su − s1). The actual size of the massif at time t depends on
the specific space-time realization. Thus we introduce the random variables
ξt+ and ξt−,

ξt+, ξ
t
− : Σ̃ → Z,

for any t ∈ Z+. ξt+ (resp. ξt−) returns the site of the rightmost (resp.
leftmost) 0 belonging to the massif at time t ∈ N0. See also Figure 2 for an
example. In case the massif disappears at time t∗, their value is defined to
be 0 for all t ≥ t∗. The following theorem provides a method to estimate
analytically pc from below.

Theorem 3.1. For all p ∈ [0, 1] such that there exists a positive integer τ
such that,

Eδ̃
ρL
[ξτ+ − ξτ−] > 2L, (10)

for some L ≥ (τ(su − s1)− 1)/2, the operator P is ergodic.
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The proof of the theorem can be found in [5][Chapter 6]. The proof is
based on the following heuristic arguments: if (10) holds, then by the law
of large numbers there is a non-zero probability that the massif of zeroes of
the configuration ρL grows with time with linear speed. Secondly, starting
from a configuration δ1 at time 0, an infinite number of massifs of zeroes of
size at least L is present already at time 1 a.s. The two previous facts imply
that with probability 1 at least one of the massifs of zeroes present at time
1 will be growing linearly with time. This means that the spatial realization
at infinite time is “all zeroes” a.s. Thus values of p satisfying (10) for some
integer τ are sub-critical. A lower bound for pc follows.

Proof of Theorem 2.1 Referring to the statement of Theorem 3.1, we
use combinatorial and probabilistic arguments to provide a τ = 2 estimation
that holds for all neighbourhoods.

We consider neighbourhoods of type U(0) = {s1, s1 + 1, . . . , su − 1, su},
(i.e. containing all sites between s1 and su) for some arbitrary finite integer u
and we provide for those a lower bound that depends on the difference su−s1.
From Proposition 1, this lower bound holds also for all neighbourhoods
contained into U(0).

We start with the proof of the τ = 1 estimation. We denote with [[a, b]]
the set of integers in [a, b]. We need to compute Eδ̃

ρL
[ξ1+] , Eδ̃

ρL
[ξ1−],

Eδ̃
ρL
[ξ1+] =

∞∑
k=1

δ̃ρL(ξ
1
+ − L+ su ≥ k)− su + L,

Eδ̃
ρL
[ξ1−] = −

∞∑
k=1

δ̃ρL(ξ
1
− + L+ s1 ≤ −k)− s1 − L.

(11)

For any k ∈ N0, δ̃ρL({ξ1+ − L + su ≥ k}) equals the probability that the

set [[L − su + 1, L − su + k]] contains all zeroes, i.e. (1− p)k (see Figure
2a). Analogously for any k ∈ N0, δ̃ρL({ξ1− + L + s1 ≤ −k}) = (1− p)k.
Computing the expectation, condition (10) is satisfied for all p ≥ p1, where
p1 is defined in (8).

Now we try to solve (10) with τ = 2. We need to estimate,

δ̃ρL({ξ2+ − L+ 2su ≥ j}),
δ̃ρL({ξ2− + L+ 2s1 ≤ −j}).

(12)

We will show how to estimate the former and then we use the same approx-
imation for the latter. Using (4), (12) equals the sum over all realizations
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(a) For any k ∈ N0, ξ
1
+ − L + su ≥ k if the k sites over the

horizontal line are in state 0. Because of (3), one should see

that this occurs with probability (1− p)
k
.

(b) The outcome of the site (L − 2su + 1, 2) (red zero in the
figure) is zero with probability 1 if the site signed with “−”
has outcome zero, otherwise it is one with probability p and
zero with probability 1− p.

(c) The distribution of the outcomes of the sites (L−2su+1, 2)
and (L − 2su + 2, 2) (red zero in the figure) depends on the
outcomes of the sites signed with “−”, as specified in the text.

Figure 2: In all figures we assume U(0) = {−1, 0, 1, 2} and initial configu-
ration ρL, L = 5. Observe that all space-time realizations must have zeroes
in the regions coloured by green on the lines y = 1, 2.
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of S1 of the products of the transition probabilities (3). Namely,

δ̃ρL({ξ2+ − L+ 2su ≥ j}) =∑
η1∈{0,1}S1

δ̃ρLPp({η1})
∏

s∈[[L−2su,L−2su+j]]

T (η2s = 0|η1U(s)). (13)

As the outcomes of the variables η2s , s ∈ [[L− 2su + 1, L− 2su + j]] depend
only on the outcomes of the variables η1s , s ∈ [[L− 2su + s1 +1, L+ s1 + j]],
and as η1s = 1 for any s ∈ [[−L− s1, L− su]], the previous sum reduces to a
sum over the realizations of the set [[L− 2su + 1, j]]. See Figure 3.

Computing the exact value of (13) for any j is a difficult combinatorial
problem, as for each of the 2j possible configurations one should determine
the corresponding product of transition probabilities. The cases j = 1, 2 are
easily solvable exactly. Looking at Figure 2b and using (3),

δ̃ρL({ξ2+ − L+ 2su ≥ 1}) = δ̃ρL({η2L−2su+1 = 0}) =
δ̃ρL({η1L−su+1 = 0}) 1 + δ̃ρL({η1L−su+1 = 1}) (1− p) = 1− p2.

(14)

Looking at Figure 2c and using (3),

δ̃ρL({ξ2+ − L+ 2su ≥ 2}) = δ̃ρL({η2L−2su+1 = η2L−2su+2 = 0}) =
δ̃ρL({η1L−su+1 = 0, η1L−su+2 = 0}) 1 +

δ̃ρL({η1L−su+1 = 0, η1L−su+2 = 1}) (1− p) +

δ̃ρL({η1L−su+1 = 1, η1L−su+2 = 0}) (1− p)2 +

δ̃ρL({η1L−su+1 = 1, η1L−su+2 = 1}) (1− p)2 =

(1− p)2 + p(1− p)2 + p(1− p)3 + p2(1− p)2.

(15)

In case of j > 2 we provide the lower bound (20). In order to consider
the contribution from several different realizations of the sum (13), we first
fix a value of the index k ∈ [[0, j − 1]], later we sum over k. We start
considering the configurations ηa,k ∈ {0, 1}S1

, which are those such that

ηa,ks = 0 for all s ∈ [[L− su + 1, L− su + k]], ηa,kL−su+k+1 = 1, ηa,ks = 0 for all
s ∈ [[L− su+k+2, L− su+ j]]. See also Figure 3a. All these configurations
give a contribution,

p(1− p)j−1(1− p)su−s1 , (16)

if 0 ≤ k ≤ j − 1− r or a contribution,

p(1− p)j−1(1− p)j−k, (17)

if j−r ≤ k ≤ j−1. In both expressions, the first two factors (i.e. p(1−p)j )
represent the probability to observe one of such configurations at time 1 and
the last factor equals the transition probability to a state {ξ2++L−2su ≥ j}.
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Then we consider configurations of type ηb,k ∈ {0, 1}S
1

, which are those

such that ηb,ks = 0 for all s ∈ [[L − su + 1, L − su + k]], ηb,kL−su+k+1 = 1
and such that set [[L − su + k + 2, L − su + j]] does not contain all zeroes
(on the contrary of ηa,k). Those are represented in Figure 3b. They give a
contribution

(1− p)kp(1− (1− p)j−k−1)(1− p)j−k, (18)

to the sum (13). The first three factors equal the probability that one of these
configurations appears at time 1, the last factor (i. e. (1−p)j−k) is obtained
considering T (η2s = 0 | ηU(s)) = 1 for all s ∈ [[L− 2su + 1, L− 2su + k]] and
minimizing T (η2s = 0 | ηU(s)) ≥ (1−p) for all s ∈ [[L−2su+1+k, L−2su+j]].

We note also that for all k ∈ [[0, j − u − 1]], the set of configurations ηb,k,
ηa,k are disjoint. This means that, in order to estimate (13), we can sum
over k without counting more times the same configurations.

Third, we have a contribution (1− p)j from the configuration ηc, repre-
sented in Figure 3c, not considered yet, as k doesn’t take the value k = j.
This is the realization ηcs = 0 for all s ∈ [[L − su + 1, L − su + j]]. In this
case all transition probabilities T (η2s = 0 | ηU(s)) take value 1.

At last we sum over all the remaining configurations, which give a con-
tribution,

[1−
j−1∑
k=0

p(1− p)k − (1− p)j ](1− p)j , (19)

for all k. The factor inside the square bracket represents the probability
that one of these configurations appears at time 1. This equals one minus
the probability that one of the configurations ηa, ηb or ηc occurs. The factor
(1 − p)j that multiplies the square bracket is obtained using the bound,
T (η2s = 0 | ηU(s)) ≥ (1− p) for all s ∈ [[L− 2su + 1, L− 2su + j]].

All previous terms together give the lower bound,

δ̃ρL({ξ2+ − L+ 2su ≥ j}) ≥
p(1− p)j +

(1− p)j1j≥su−s1 [(j − u)p(1− p)j−1+su−s1 − (1− p)2j(1− (1− p)su−s1−j)].

(20)

Thus with the previous approximation a lower bound for the expectation
follows,

Eδ̃
ρL
[ξ2+]− L ≥ 2(1− p)

p
− 2su +

(1− p)2(s1−s1)

p

3− 2p

p
, (21)

where the last term is a correction of the estimation of order τ = 1. Without
the contribution from the “blue” massif of zeroes of Figure 3a, that term
would not be present and there wouldn’t be an improvement of the estima-
tion of order τ = 1. In this sense our τ = 2 estimation takes into account

12



(a) Representation of a realization ηa,k, defined in the text, at time 1. The condi-
tions ξ1+ − L+ 2su ≥ j is satisfied.

(b) Representation of a realizations ηb,k, defined in the text, at time 1. In order
the realization to be of type ηb,k, the set of sites signed with the symbols “−” can
be everything except “all zeroes”. The condition ξ1+ − L+ 2su ≥ j.

(c) Representation of the realization ηs = 0 for all s ∈ [[L− 2su + 1, L− 2su + j]],
as considered in the text.

Figure 3: In all figures the neighbourhood is assumed to be U(0) =
{−1, 0, 1, 2}. This means that sites coloured by green on the lines y = 1
and y = 2 have outcome 0 with probability one.

13



the fact that massifs of zeroes can dynamically merge one with the other
one. Using the same approximation for ξ2−, (7) follows.

4 Time of convergence of the finite process

In this section we prove Theorem 2.2. In Section 4.1 we describe the connec-
tion between Stavskaya’s process and Oriented Percolation, following [5, 7].
In Section 4.2 we list some percolation estimates from [23]. In Section 4.3
we finally prove the Theorem.

4.1 Connections between Stavskaya’s process and oriented
percolation

Consider Stavskaya’s process in Z and define Θ(p) = νp(η0 = 1), omitting
the dependence on the neighbourhood. By definition of pc, for any p > pc
the probability Θ(p) is positive and for any p < pc it is zero. As pointed
out in [7], we can interpret Θ(p) as a percolation probability for the infinite
graph GU = (V, ~EU ), where percolation is Bernoulli, site and oriented. We
follow [5, 7].

We observe that the evolution measure µ̃ on the evolution space Σ̃ is rep-
resentable as induced by the Bernoulli product measure Pp on the auxiliary

space Ω = {0, 1}Z×N by the mappings ηts : Ω 7→ {0, 1},

ηts = min{ωs,t, max
k∈U(s)

{ηt−1
k }}, s ∈ Z, t ∈ Z+, (22)

where (ωs,t)s∈S,t∈N are elements of Ω. This mapping defines any ηTK , K ⊂ V ,

T ∈ Z+ as a function of a finite set of variables ωs,t, η0s . The following
proposition points out a connection between the values of the variables ηts
and certain percolation events on the graph GU .

Proposition 2. The function ηts : Ω 7→ {0, 1} is such that ηts = 1 iff there
exists a sequence {s0, s1, s2, . . . st} ⊂ Z satisfying the three following proper-
ties,

1. st = s and si−1 ∈ U(si) for any i ∈ {1, 2, . . . t},

2. ωi,si = 1 for any i ∈ {1, 2, . . . t},

3. η0s0 = 1.

Proof. The proof of Proposition 2 is by induction. Assume ηts = 1 and
assume that properties 1, 2, 3 hold for a sequence of sites st−k, st−k+1, . . . st.
From (22) it follows that ηt−k

st−k
= 1 ⇔ ωst−k,t−k = 1 and ∃ st−k−1 ∈ U(st−k)

s.t. ηt−k−1
st−k−1

= 1. This implies that there exists an element st−k−1 ∈ S
such that properties 1, 2, 3 hold for the sequence st−k−1, st−k, . . . st. By
induction the proposition is proved.

14



We end this section introducing some more definitions that will be used
in the following sections.

Definition 5 (Open sites and paths). If ωs,t = 1 we call the site (s, t) ∈ V
open. Analogously if all the variables ωs,t along a path of the graph GU are
equal to one, we call the path “open”. We denote the event {“the site (s, t)
is connected to S0 by an open path in GU”} by,

{(s, t) GU−→ S0},

reminding that S0 is the set of vertices on the line y = 0.

See Figure 1 for an example. Note that, choosing as initial probabil-
ity measure δ1 and using Proposition 2, it follows that δ1Pt(ηs = 1) =

Pp({(s, t)
GU−→ S0}, ) for any s ∈ S. Calling C the limit event limt→∞{(s, t) GU−→

S0}, it follows that Θ(p) = Pp(C). Thus the stochastic process is ergodic iff
the probability that (0,∞) belongs to an infinite open path in GU is zero
(subcritical percolation), otherwise it is not ergodic (supercritical percola-
tion).

Let s ∈ [[−n, n+ 1]], t ∈ N and define the following event.

Definition 6. We say that the event,

{(s, t) GU (n)−→ S0},

occurs if the two following properties hold,

1. an open path in GU connects the vertex (s, t) to the bottom of the box
2n× t,

2. the path never crosses the boundary of such box (e.g. see the path b in
Figure 4) or it reaches one side of the box and re-appears at the same
heigh on the other side (e.g. see the path a ◦ c in Figure 4).

Remind that τk can be intended also as a function τk : Ω → N, as, from
(22), (ηts)s∈S,t∈N is a mapping from Ω to Σ̃. The following proposition follows
directly from Proposition 2 and it connects the occurrence of {τn > t} for
the Stavskaya’s process in finite space and periodic boundaries starting from
δ1 with the occurrence of the percolation event defined above.

Proposition 3. Consider Stavskaya’s process with space S = Sn, periodic
boundaries and neighbourhood U(0) = {s1, s2, . . . , su}, where s1, s2, . . . , su
are some integers in Sn. Then,

δ̃
(n)
1 (τn > t) = Pp( ∃s ∈ [[−n, n− 1]] s.t. (s, t)

GU (n)−→ S0 ). (23)

Observe that in the previous statement the left-side probability measure
is defined in the probability space of Σ̃ = {0, 1}Sn , while the right-side prob-
ability measure is defined in the probability space of Ω = {0, 1}Z, although
the event depends only on the variables contained in the box 2n× t.
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a
b

c

n-n

t

0

Figure 4: If S = Sn and boundaries are periodic, the event {τn > t} occurs
if at least one open path joins the top to the bottom of the box without
ever going out from the box or going out from one of its vertical sides and
re-appearing at the same heigh on the other side (e.g. see the path a ◦ c).

4.2 Percolation estimates

We list now some properties involving the cluster of vertices connected to
(0, t) by an open path in GU . These percolation estimates come from [23],
where the model with neighbourhood U(0) = {−1, 1} has been considered.
We first present the estimations and then we show that they hold also for
the more general case considered in the present paper.

We begin with some definitions. For every t,m ∈ N we define the sets,

ξm,t = {x ∈ St−m : (0, t)
GU−→ (x, t−m)},

ξ
m,t

= {x ∈ St−m : ∃ z ≤ 0 s.t. (z, t)
GU−→ (x, t−m)},

χm,t = {x ∈ St−m : ∃ z ≥ 0 s.t. (z, t)
GU−→ (x, t−m)}.

(24)

Note that ξm,t ⊂ {s1m, s1m+ 1, s1m+ 2, . . . , sum}. We define then the
variables,

rm,t = sup{ξtm},
`m,t = inf{ξtm},

rm,t = sup{ξtm},

`
m,t

= inf{χt
m},

(25)

and we set rm,t = −∞, `m,t = ∞ if ξm,t = ∅. We observe that for every

t, m, the probability that ξ
m,t

= ∅ is zero, as there are infinite vertices
on the line y = t, x ≥ 0 and each of them has a non-zero probability to
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be connected to S0 in GU . The same holds for the event χm,t = ∅. By
definition,

rm ≤ rm,

`m ≥ `
m
.

(26)

As the distributions of rm,t, `m,t, rm,t, `
m,t

, ξm,t, ξ
m,t

and χm,t depend only
on the difference t−m, in the following we omit the dependence on t, that
will be some positive integer. Furthermore we consider the space GU as
before, but with vertices V = Z2 instead of Z × N, allowing in this way
(0, t) to be connected to an infinite open cluster. In this way we recover the
notation of [23], with the difference that in this article paths are oriented
from up to down. Under the same assumption and omitting the dependence
on t in the notation we introduce the following quantity,

rm,n = sup{x− rm : x ∈ St−n and ∃z ∈ St−m s.t.

z ≤ rm and (z, t−m)
GU−→ (x, t− n)},

(27)

where n ≥ m.
It is easy to see that,

rm + rm,n ≥ rn. (28)

To prove (28) one should observe that rm + rm,n is the rightmost point on
the line y = t−n which can be reached from any of the points (x, t−m) with
x ≤ rm, while rn is the rightmost point on the line y = t− n which can be
reached from any of the points (x, t−m) with x ≤ rm and with the restriction
that there exists an open path in GU from (z, t) to (x, t−m) for some z ≤ 0.
As explained in [23][pag. 1004], where the case of symmetric neighbourhood
with two elements and edges percolation has been considered, (28) implies
that there exists a constant α ∈ [−∞, 1] such that,

rm/m → α a.s. (29)

From this result the following proposition follows (see [23][pag. 1004]).

Proposition 4. For all p > pc there exist constants α, β (dependent on
p) such that, conditioning on the existence of an infinite open path which
includes the vertex (0, t),

lim
m→∞

rm/m = α almost surely, (30)

lim
m→∞

`m/m = β almost surely, (31)

Referring to the symmetric case, as considered in [23], one concludes that
β = −α. Furthermore, conditioning on the existence of an infinite open path
which includes (0, t), one has that rm ≥ `m for all m. This means that if
α < 0, then necessarily p < pc. In the other direction, as proved in [23,
pages 1005 and 1006] the following proposition holds.
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Proposition 5. For all p > pc, α > 0.

The following property has also been proved in [23, page 1017] and later
generalized in [27] to both oriented and non-oriented models, edges and sites
percolation and dimensions higher than 2.

Proposition 6. There exists a constant h > 0 (dependent on p) such that
for any p < pc,

Pp((0, t)
GU−→ S0) ≤ exp(−ht). (32)

The three main differences between the case considered in this article
and the model studied in [23] are that (1) our model corresponds to site
percolation, while the model considered in [23] corresponds to edges perco-
lation, (2) we consider also the case of neighbourhood with more than 2
elements, (3) in our case the neighbourhood is not necessarily symmetric.
These differences do not play any role in the proof of (28). Thus Proposition
4 holds also for the case considered in the present article, with the differ-
ence that without symmetry not necessarily β = −α. For what concerns
Proposition 5, observe that if (0, t) belongs to an infinite open cluster, then
rm ≥ `m. This means that in the γ = α−β < 0 implies that p < pc. Follow-
ing the same steps of the proof of proposition 5 and replacing α with γ/2,
one should see that in the case of neighbourhood considered in the present
article, for all p > pc, γ > 0. We end this section recalling a property proved
in [28].

Proposition 7. Consider Stavskaya’s process with any neighbourhood.

Pp((0, t)
GU (n)−→ S0) ≤ Pp((0, t)

GU−→ S0). (33)

4.3 Proof of Theorem 2.2

Recall the definitions given just before the statement of the theorem. The

main goal is to estimate from below and from above the probability δ̃
(n)
1 {τn >

t}, which gives the expectation,

E(n)

δ̃1
[τn] =

∞∑
t=0

δ̃
(n)
1 (τn > t), (34)
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Proof of part (a). The proof of the statement (a) follows directly from
the propositions considered above. Considering (34) it follows that,

E(n)

δ̃1
[ τn ] =

∞∑
t=1

Pp(

n−1⋃
s=−n

{(s, t) GU (n)−→ S0})

≤
∞∑
t=1

min{1, 2nP((0, t) GU (n)−→ S0)}

≤
∞∑
t=1

min{1, 2n exp(−ht)}

≤ log(2n)

h
+K,

(35)

where K is some positive constant. In first equality we used Proposition 3,
in the second-last inequality we used (32) and (33).

Proof of part (b). The statement (b) of the theorem follows from Propo-
sition 8 and from some further estimations based on path constructions. For
every a ∈ R we define the event, Dn,t,a := {∃x ∈ [[−n, n − 1]], such that
(x, t) is connected to S0 by an open path in GU which never goes out from
the lines y = ±n− a(x− t), x ∈ R }. See also Figure 5 - up. Observe that,

P(Dn,t,a) ≤ δ̃1(τn > t). (36)

This is because for the latter event the restriction that the path must be
contained inside the region delimited by the two lines is not required, having
assumed periodic boundaries condition. Consider now the following change
of coordinates, {

x′ = x− b(t− y)

y′ = y
, (37)

under which the graph GU is transformed into the new graph T t
b GU . We

denote by T t
b Dn,t,a the event Dn,t,a, defined for the graph T t

b GU , (i. e.
replace GU with T t

b GU in the definition of the event above). From now on
we will use the same notation for all events. This means that if a certain
event E is defined for the graph GU , then the event T t

b E is defined for the
transformed graph T t

bGU . The following equation holds,

Pp(T
t
b Dn,t,a) = Pp(Dn,t,a−b), (38)

as the change of coordinates preserves connection between vertices. See also
Figure 5. Now we introduce the event Hn,

Hn = {∃ y , y′ : y ∈ [[4n, 6n]], y′ ∈ [[0, 2n]] :

(−n, y)
GU−→ (n, y′)},

(39)
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x'0

Figure 5: Up: Representation of GU in case of neighbourhood U(0) =
{−1, 2}. For graphical reasons only edges belonging to the evolution cone
of (0, t) have been drawn. The event Dn,t,a, defined in the text, occurs if
an open path joins the top of the red parallelogram to the bottom without
crossing its sides. In the figure a = s1+su

2 . Down: the same graph of the
figure above, transformed via (37) with parameter b = a.
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which is represented in Figure 6-right. The following proposition is about
this event.

Proposition 8. There exist positive constants A, b (dependent on p) such
that for any p > pc, for any t ∈ N and for n large enough,

Pp(T
t
α+β
2

Hn) ≥ 1−A exp(−b n). (40)

We show first that it implies statement (b) of the theorem and later we
prove the proposition. Define then the new event Fn,t, which is represented
in Figure 6. Fn,t occurs iff (a) and (b) hold:

(a) for every odd j ∈ [[0, t
2n ]] there is a vertex (−n, y), with y ∈ [[2nj, 2n(j+

1)]], connected to (n, y′) by an open path in GU , with y′ ∈ [[2n(j −
2), 2n(j − 1)]],

(b) for any even j ∈ [[0, t
2n ]] there is a vertex (n, y), with y ∈ [[2nj, 2n(j+

1)]], connected by an open path in GU to (−n, y′), with y′ ∈ [[2n(j −
2), 2n(j − 1)]].

Note first that,
Pp(T

t
α+β
2

Fn,t) ≤ Pp(T
t
α+β
2

Dn,t,0), (41)

because if Fn,t occurs, then the top of the box 2n × t is connected to the
bottom by a path that never goes out from the box (compare figures 6-left
and 6-middle). Secondly, we observe that the event T t

α+β
2

Fn,t equals the

intersection of b t
nc events of type T t

α+β
2

Hn, represented in Figure 6-right.

Being the event Hn increasing, the FKG inequality is applicable, i.e.

Pp(T
t
α+β
2

Hn)
b t
n
c ≤ Pp(T

t
α+β
2

Fn,t) (42)

Then using (40) finally we get,

Pp(T
t
α+β
2

Fn,t) ≥ (1−An exp(−nb))
t
n (43)

Then, from (34) and for n large enough,

E(n)[τn] ≥
∞∑
t=1

Pp(T
t
α+β
2

Dn,t,0)

≥
∞∑
t=1

Pp(T
t
α+β
2

Fn,t))

≥
∞∑
t=1

(1−A exp(−bn))
t
n

≥ j(1− Ae−bnj

n
),

(44)
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n-n 0

2n

4n

6n

8n

t

4n

6n

t

2n

0 n-n

t+2n

8n

n-n 0

2n

4n

6n

Figure 6: Left : representation of the event Dn,t,0: the top of the rectangle
2n× t is connected to the bottom by a path that never crosses the vertical
sides. Center : representation of the event Fn,t, defined in the text. Right :
representation of the event Hn, defined in the text. In all figures the details
of the structure of the graph have been omitted.
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where j is an arbitrary integer. In the previous expression we have used
Proposition 3, (36) and (38) for the first inequality, (41) for the second

inequality and (43) for the third one. Choosing finally j = bnebn2A c, the part
(b) of the theorem follows.

Proof of Proposition 8 We consider two graphs, T t
α+β
2

GU = (V 1, ~E1
U )

and T t
s1+su

2

GU = (V 2, ~E2
U ), reminding that s1 and su are respectively the

min and the max of U(0), recalling that the definitions of α and β are given
in Section 4.2 and that the definitions of the transformation T t is given in
(37). Observe that vertices of both graphs could take non integer positions.
The proof is divided into two parts. In the first part we generalize the
dynamic block argument presented in [23] to the more general case of non-
symmetric neighbourhood and more than 2 neighbours. This is the most
technical part of the article. The method consists in introducing a coupling
between realizations in T t

s1+su
2

GU and those in T t
α+β
2

GU . We show that if

the probability of the event Hn in T t
s1+su

2

GU satisfies (40) for p large enough

in a certain dependent oriented percolation model, then for all p > pc, the
probability of HLn in T t

s1+su
2

GU cannot be smaller for a rescaling parameter

L large enough. In the second part we define a sub-graph of T t
s1+su

2

GU ,

that we call L, and we use the Peierls argument for dependent oriented
percolation model in this graph to show that Hn occurs with probability
satisfying (40) for p large enough. As L is a sub-graph of T t

s1+su
2

GU , the

same event must occur with non smaller probability also in T t
s1+su

2

GU .

Part 1: Dynamic blocks construction We divide T t
α+β
2

GU into

macro-regions Rx,y centred around the point Cx,y, where (x, y) ∈ V 2 and

Cx,y = (x
γ

su − s1
(1− δ), yL),

Rx,y = Cx,y + [(−1− δ)
γ

2
L, (1 + δ)

γ

2
L]× [0,−(1 + δ)L].

We recall that γ = α − β > 0 for all p > pc, as pointed out in the previ-
ous section. δ and L are parameters to be properly chosen. In order the
argument to work rigorously, (1 − δ)γL and L should be even integers. To
not complicate things, as in [23] here we ignore these details. Each vertex
(x, y) ∈ V 2 is associated to a random variable ϕx,y which takes value 1 if a

certain event Bx,y occurs in the region Rx,y of (V 1, ~E1
U ) or 0 otherwise. In

order to define such event we introduce the following points in space (see
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also Figure 7),

u = (
δγL

2
, 0),

v = (
3δγL

4
, 0),

−u = (−δγL

2
, 0),

−v = (−3δγL

4
, 0),

uRs = (
δγL

2
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
, −L(1 + δ)),

vRs = (
3δγL

4
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
, −L(1 + δ)),

uLs = (−δγL

2
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
, −L(1 + δ)),

vLs = (−3δγL

4
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
, −L(1 + δ)),

uUs = (−δγL

2
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
+

γ

2
(1 + δ)L , 0),

vUs = (−3δγL

4
+ (s− s1 + su

2
) · (1− δ)γL

su − s1
+

γ

2
(1 + δ)L , 0),

(45)

for any s ∈ U(0). As one can see in the example from Figure 7, where the box
R0,t is represented, these points identify some target zones (red horizontal
segments in the figure) on the right and on the left side of C0,t and of the
points Cs,t−1 for s ∈ T t

s1+su
2

U(0). Consider now the parallelograms obtained

connecting the following quadruplets of points, (see also Figure 7),

PR = (−v, −u, uRsu , v
R
su),

PL = (u, v, uLs1 , v
L
s1)

Ps = (uLs , v
L
s , u

U
s , v

U
s ),

(46)

for all s in U(0) different from s1 and su. Define the translated parallelo-
grams PR(x, y) = PR +Cx,y, PL(x, y) = PR +Cx,y, Ps(x, y) = Ps +Cx,y for
all s in U(0) different from s1 and su. The event Bx,y occurs if the top of the
parallelograms PR(x, y), PL(x, y) and of Ps(x, y), for all s ∈ U(0) which is
not s1 or su, is connected to the bottom by an open path in T t

α+β
2

GU which

remains always inside the parallelogram. This construction is such that the
following properties are satisfied,

1. the random variables ϕx,y are su − s1-dependent. With this we mean
that ϕx,y and ϕx′,y′ , with (x, y), (x′, y′) ∈ V 2, are independent if |x−
x′| > su − s1 or |y − y′| > 1.
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2. Denote by z1 . . . zm the vertices of a path in T t
s1+su

2

GU and assume

that the path is open, i.e. ϕzi = 1 for all i ∈ {1, 2, . . .m}. Then
there exists an open path in T t

α+β
2

GU that connects a vertex in Cz1 +

[−v, v] to a vertex in Czm + [−v, v] and which remains always inside
the parallelograms that connect Czi + [−v, v] to Czi+1 + [−v, v], for all
i ∈ {1, 2, . . .m}.

3. if δ, ε > 0 and p > pc, we can pick L large enough so that for any
(x, y) ∈ V 2, Pp(ϕx,y = 1) > 1− ε.

Property 1 follows by the fact that if Rx,y and Rx′,y′ have empty intersection,
then the variables ϕx,y and ϕx′,y′ are independent. Property 2 follows by
construction. Looking also at Figure 7-down, one can see that if the event
B0,t and the event Bs1,t−1 occur, then there is a path connecting at least
one vertex of the interval C0,t + [−v, v] to at least one vertex of the inter-
vals Cs′1+s′1,t

+ [−v, v], Cs′1+s′2,t
+ [−v, v], Cs′1+s′3,t

+ [−v, v] Cs′1+s′4,t
+ [−v, v],

where s′i are the elements of T t
su+s1

2

U(0). By induction, property 2 follows.

Property 3 follows by Proposition 4, which is a sort of law of large numbers
for rn, `n. In fact for the transformed graph T t

α+β
2

GU , rn/n
n−→∞−→ γ/2 a.s.

and `n/n
n−→∞−→ −γ/2 a. s. These parallelograms are constructed in such a

way that the slopes of the vertical sides is 2/γ and the length of their sides
(both horizontal and diagonal) is proportional to L. Thus, heuristically, as
in order to go out from the parallelogram a path should keep a slope different
from 2/γ, by the law of large number the probability of this to happen will
go to 0 as L goes to infinity. Thus the probability that there is an infinite
open path which starts from the top of the parallelogram and which never
goes out from it goes to 1 as L goes to infinity. For the proof we refer to [23,
pages 1025-1026], observing that one should replace α there with our γ/2.

Part 2: Peierls argument Now we use the Peierls argument for the
(su − s1)-dependent oriented percolation model to prove that there exists
p1 > pc and positive constants A′, b′ (dependent on p) such that for all
p > p1,

Pp(T
t
s1+su

2

Hn) ≥ 1−A′ne−b′n. (47)

Then the third property of the dynamic-blocks construction implies that for
all p > pc,

Pp(T
t
α+β
2

HLn) ≥ 1−A′ne−b′n. (48)

Defining new constants A = A′/L and b = b′L, the statement of Proposition
8 follows. Thus it just remains to prove (47). Then we define a new graph
L, which is a sub-graph of T s1+su

2

GU , whose vertices (x, y) are,

V ′ = {(x, y) : x = (su − s1)z − (y − t)
su − s1

2
, z ∈ Z, y ∈ Z}, (49)
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C-1/2,t-1C-3/2,t-1 C3/2,t-1C1/2,t-1

C1/2,tC-1/2,t

uR-1 vR-1uL-1 vL-1 uR2 vR2uL2 vL2uR-2 vR-2uL-2 vL-2

u v-u-v uL-1 vL-1

C0,t

y

x

C-1/2,t-1C-3/2,t-1 C3/2,t-1

C1/2,tC-1/2,t

C-5/2,t-2 C-3/2,t-2 C-1/2,t-2 C5/2,t-2

C1/2,t-1

C0,t-2 C3/2,t-2C1/2,t-2

Figure 7: Up: The rectangle in the figure represents the region R0,t of the
graph T t

su+s1
2

GU . Target zones and paths are represented by red. The event

B0,t occurs if an open path joins the top to the bottom of the parallelograms
in the figure, as explained in the text. Down: In the figure, the events B0,t

and B−1/2,t−1 occur.
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n-n 0 x

y

t

Figure 8: On the left we represented the graph T t
s1+su

2

GU , with U(0) =

{−2, 1, 0}. Note that only edges connecting vertices belonging to V ′, defined
in the text, have been represented. Right : representation of L, defined in
the text.

and whose edges connect vertices (x, y) to (x± s1+su
2 , y−1). The new graph

is represented in Figure 8. As L is a sub-graph of T s1+su
2

GU , the following

inequality holds,
Pp(HL

n ) ≤ Pp(T
t
s1+su

2

Hn). (50)

In the previous expression, the superscript L denotes that the event Hn,
defined in (39), occurs on the graph L. Call then LD the dual graph of L. Its
vertices are denoted by (x∗, y∗) and they are located at (x, y)+( su−s1

2 ,+1/2),
where (x, y) are the vertices of L. Our construction is similar to the one
presented in [5][Chapter 8] and in [7], where the case of neighbourhood
U(0) = {0, 1} is considered. In Figure 9-right, vertices (x∗, y∗) correspond
to the intersection of the blue lines. Edges of LD are oriented and they are
of three different types:

1. they connect points (x∗, y∗) to points (x∗ + su − s1 , y
∗)

2. they connect points (x∗, y∗) to points (x∗ − su−s1
2 , y∗ − 1)

3. they connect points (x∗, y∗) to points (x∗ − su−s1
2 , y∗ + 1)

As in [5][Chapter 8], we declare every horizontal edge of the dual graph
“open” if the site above in the original lattice is “closed” and vice versa. A
path in the dual lattice is composed of horizontal, up-left or down-left edges
and it is considered “open” if all its horizontal edges are open. The state
“open” or “closed” for diagonal connections is not defined. The following is
true: referring to Figure 9, there is an open path in L connecting the top
to the bottom of the box and never crossing its vertical sides iff there is no
“open” path in the dual lattice which connects the segment AD to AB or
to BC.
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n-n 0 x

y

4n

6n

2n

A

E

F

C

Figure 9: Left : representation of the event Hn in L. In both figures the
x-axes has been rescaled by su − s1. The event occurs if the side AE is
connected to the side FC by an open path in L. Points represent sites and
arrows the edges of a path joining AE to FC. Right : representation of Hn

(the complementary of Hn) in the dual graph. Hn does not occur iff the
side AD is connected to the segments AB or BC by an open path in the
dual lattice (as for instance the one represented with the black arrows).
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Consider then a vertex (−n, y), y ∈ [[0, 4n]]. Call Ny,h the number
of paths connecting this point to one of the sides AB, BC and having h
horizontal steps. Call dl the number of down-left steps, ul the number of
up-left steps of one of these paths. As the last edge of the path cannot be
on the left of the first edge, 2h − ul − dl ≥ 0. This implies that the sum
h+ ul + dl is bounded from above by 3h. Furthermore the total number of
possible paths having h horizontal steps cannot be larger than 33h, as there
are only 3 different types of steps. Thus Ny,h ≤ 33h for every y. A rough

upper bound for Pp(HL
n ), where HL

n is the complementary of HL
n , follows,

Pp(HL
n ) ≤

6n∑
y=0

∞∑
h=2n

Ny,h (1− p)h/2 ≤ A′n exp(−b′n), (51)

where in the first one we used the fact that the probability of the union
of events “the path is open” is less of the sum of the probabilities of the
same events and the second inequality is true if p > 1 − 1

3

6
, with A′, b′

positive constants, as the sum converges. In the previous expression we have
multiplied the factor 1− p only over h/2 horizontal edges, as percolation is
(su − s1)-dependent. This means that, following a path and starting from
the first edge, we ignore the state of every second edge. This completes the
proof of the proposition.
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