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Abstract In this paper, we develop the mathematical

structure of the Wright–Fisher model for evolution of the

relative frequencies of two alleles at a diploid locus under

random genetic drift in a population of fixed size in its

simplest form, that is, without mutation or selection. We

establish a new concept of a global solution for the diffu-

sion approximation (Fokker–Planck equation), prove its

existence and uniqueness and then show how one can

easily derive all the essential properties of this random

genetic drift process from our solution. Thus, our solution

turns out to be superior to the local solution constructed by

Kimura.

Keywords Random genetic drift �Wright–Fisher model �
Fokker–Planck equation

Introduction

In population genetics, one considers the effects of

recombination, selection, mutation, and perhaps others like

migration on the distribution of alleles in a population, see

e.g. (Ewens 2004; Bürger 2000; Rice 2004) as mathemat-

ical textbook references. The most basic and at the same

time important model is the Wright–Fisher model for

random genetic drift [developed implicitly by Fisher

(1922) and explicitly by Wright (1931)]. In its simplest

version—the one to be treated in the present paper—it is

concerned with the evolution of the relative frequencies of

two alleles at a single diploid locus in a finite population of

fixed size with non-overlapping generations under the sole

force of random genetic drift, without any other influences

like mutations or selection. The model can be general-

ised—and so can our approach—to multiple alleles, several

loci, with mutations, selections, spatial population struc-

tures, etc, see the above references. To find an exact

solution (for the approximating diffusion process for the

probability densities of the allele frequencies described by

a Fokker–Planck equation) from which the properties of

the resulting stochastic process can be deduced, however,

is difficult. For the basic two-allele case, this was first

achieved in the important work of Kimura (1955), and he

then went on to treat the case of several alleles (Kimura

1955, 1956). His solution, however, is local in the sense

that it does not naturally incorporate the transitions

resulting from the irreversible loss of one or several of the

alleles initially present in the population. Consequently, the

resulting probability distribution does not integrate to 1,

and it is difficult to read off the quantitative properties of

the process from his solution.

In the present paper, we introduce and describe a new

global approach. This approach is mathematically more
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transparent than Kimura’s scheme. We prove the existence

of a unique such global solution (see Theorem 3.7), and we

can deduce all desired quantities of the underlying sto-

chastic process from our solution. The purpose of the

present paper thus is to display the method in the simplest

case, that of two alleles at a single locus, so that the

structure becomes clear. The case of multiple alleles is

presented in our companion paper (Tran et al. 2000) on the

basis of the first author’s thesis, and further generalisations

will be systematically developed elsewhere within the

mathematical framework of information geometry (Amari

and Nagaoka 2000) and more specifically (Ay and Jost

2000; Jost 2000) on the basis of the second author’s thesis.

The Wright–Fisher model

We consider a diploid population of size N. At a given

locus, there could be either one of the two alleles A1,A2.

Thus, an individual can be a homozygote of type A1A1 or

A2A2 or a heterozygote of type A1A2 or A2A1—but we

consider the latter two as the same—at the locus in ques-

tion. The population reproduces in discrete time steps, and

each individual in generation n ? 1 inherits one allele from

each of its parents. When a parent is a heterozygote, each

allele is chosen with probability 1/2. Here, for each indi-

vidual in generation t ? 1, randomly two parents in gen-

eration n are chosen. Thus, the alleles in generation n ? 1

are chosen by random sampling with replacement from the

ones in generation n. The quantity of interest is the number

Yn of alleles A1 in the population at time n. This number

then varies between 0 and 2N. The transition probability

then is

PðYnþ1 ¼ jjYn ¼ iÞ ¼ 2N

j

� �
i

2N

� �j

1� i

2N

� �2N�j

for i; j ¼ 0; . . .; 2N: ð1Þ

whenever Yn takes the value 0 or 2N, that is, if either the

allele A1 or A2 will disappear, it will stay there for all future

times. Eventually, this will happen almost surely.

This is the basic model. One can then derive expressions

for the expected time for the allele A1 to become either

fixed, that is, Yn = 2N, or become extinct, Yn = 0, given its

initial number Y0.

An important idea, first applied in Wright (1945), then is

to rescale time and population size via

t ¼ n

2N
; Xt ¼

Yt

2N
; ð2Þ

and then consider the limit N !1: The rescaling of (2)

yields a discrete Markov chain Xt valued in f0; 1
2N ; . . .; 1g

with t = 1 now corresponding to 2N generations. One

readily verifies that the expectation values for the variation

across generations satisfy

X0 ¼ p ¼ i0
2N

;

EðdXtÞ ¼ 0;

EðdXtÞ2 ¼ Xtð1� XtÞdt;

EðdXtÞk ¼ oðdtÞ for k� 3:

ð3Þ

A basic idea of our approach is to consider the kth

moment mk(t) of the distribution about zero at the (2Nt)th

generation, i.e.

mkðtÞ ¼ EðXtÞk ð4Þ

We have

mkðt þ 1Þ ¼ EðXt þ dXtÞk ð5Þ

Expanding the right hand side and noting (3) we obtain the

following recursion formula

mkðtþ 1Þ ¼ 1� kðk� 1Þ
2

� �
mkðtÞþ

kðk� 1Þ
2

mk�1ðtÞ ð6Þ

when we assume that the population number N is so large

that we can neglect all terms of order at least 1
N2 : Under this

assumption, the moments change very slowly per

generation and we can replace the above system (6) by

the system of differential equations

_mkðtÞ ¼ �
kðk � 1Þ

2
mkðtÞ þ

kðk � 1Þ
2

mk�1ðtÞ; ð7Þ

where the dot denotes a derivative w.r.t. the variable t.

These formulae now guide us in finding a continuous

process that well approximates the above discrete process.

We seek a continuous Markov process {Xt}t C 0 valued in

[0,1] with the same conditions as (3) and (7). The condi-

tions (3) imply (see for example Ewens 2004, p. 137, for a

derivation) that the probability density function u(x, t) of

this continuous process is a solution of the Fokker–Planck

(Kolmogorov forward) equation

utðx; tÞ ¼ 1
2

o2

ox2 xð1� xÞuðx; tÞð Þ in ð0; 1Þ � ð0;1Þ;
uðx; 0Þ ¼ dpðxÞ in ð0; 1Þ

�
ð8Þ

where we now use the notation ut :¼ o
ot uðx; tÞ for the partial

derivative w.r.t. the time variable t. The coefficient x(1 - x)

in (8) comes from (3) and dp denotes the Dirac delta function

at p. For the definition of this delta function, we use the

product

ðf ; gÞ :¼
Z1

0

f ðxÞgðxÞ dx

Theory Biosci.

123



for square integrable functions f ; g : ½0; 1� ! R on the unit

interval (this will be described in more detail in ‘‘Existence

and uniqueness of solutions’’), and we then put

ðdp;/Þ :¼ /ðpÞ

whenever / : ½0; 1� ! R is a continuous function.1

Let us also explain the interpretation of (8) for those not

sufficiently versed in this mathematical formalism. The

initial condition u(x,0) = dp(x) then simply says that at

time 0, the relative frequency of allele A1 is precisely

p, without any uncertainty (this assumption is not essential,

however, and the scheme works also for more general

initial condition involving uncertainty about the initial

distribution of the alleles). Subsequently, this allele fre-

quence evolves stochastically, according to the equation

utðx; tÞ ¼ 1
2

o2

ox2 xð1� xÞuðx; tÞð Þ; and therefore, for t [ 0, we

no longer know the precise value of this relative frequency,

but only its probability density given by u(x, t). That is, for

every x, the probability density that the allele frequency at

time t has the value x is given by u(x, t).

In the continuum limit, the kth moment becomesR 1

0
uðx; tÞxk dx; and the condition (7) then implies

ðut; x
kÞ ¼

Z1

0

o

ot
uðx; tÞxk dx

¼ d

dt

Z1

0

uðx; tÞxk dx

¼ u;� kðk � 1Þ
2

xk þ kðk � 1Þ
2

xk�1

� �

¼ u;
1

2
xð1� xÞ o2

ox2
ðxkÞ

� �
; 8k� 0:

Since the polynomials are dense in the space of (square

integrable) functions, this yields

ðut;/Þ ¼ u;
1

2
xð1� xÞ o2

ox2
/

� �
ð9Þ

for all square integrable functions / : ½0; 1� ! R that are

twice differentiable in the open interval (0,1).

This leads to our concept of a solution of the Fokker–

Planck equation in

Definition 2.1 We call u 2 H a solution of the Fokker–

Planck equation associated with the Wright–Fisher model if

ut ¼ Lu in ð0; 1Þ � ð0;1Þ; ð10Þ
uðx; 0Þ ¼ dpðxÞ in ð0; 1Þ; ð11Þ

ðut;/Þ ¼ ðu; L�/Þ; 8/ 2 H0; ð12Þ

for all square integrable functions / : ½0; 1� ! R that are

twice differentiable in the open interval (0, 1), with the

differential operator

LuðxÞ :¼ 1

2

o2

ox2
xð1� xÞuðxÞð Þ ð13Þ

and its formal adjoint

L�/ðxÞ ¼ 1

2
xð1� xÞ o2

ox2
/ðxÞ: ð14Þ

This solution concept will allow us to prove the

existence of a unique solution from which we can then

derive all features of interest of the Wright–Fisher process.

We should point out that (12) is not just the integration by

parts of (10), but also includes the boundary behaviour (of

course, this may not be overt, but the mathematical trick

here is to represent this boundary behaviour in an implicit

form best suited for formal manipulation). It, thus, reflects

transitions from the presence of both alleles to the

irreversible loss of one of them. This is the crucial

difference to Kimura’s (1955) solution concept and the key

for the properties of our solution.

Existence and uniqueness of solutions

We shall now apply a familiar mathematical scheme for the

construction of a solution of a differential equation, an

expansion in terms of eigenfunctions of the differential

operator involved. For our problem, as formalised in Def-

inition 2.1, these eigenfunctions can be constructed from a

classical family of polynomials, the Gegenbauer polyno-

mials, which we shall now introduce.

Preliminaries

For the sequel, we shall need some more notation. We need

the function spaces

H0 :¼ C1½0; 1�;

H : ¼
(

f : ½0; 1� ! ½0;1� measurable with

Z
½0;1�

f ðxÞgðxÞ dx\1; 8g 2 H0

)
;

1 Here is a remark for readers not familiar with this mathematical

construction: This is a formal definition, as dp defined in this manner

is not a function itself, but rather operates on continuous functions by

assigning to them their value at the particular point p. Thus, while the

product (f, g) had been first defined for square integrable functions

f, g, we now apply it to the pair (dp, /) where dp is a more general

object and in turn / is a more restricted function (continuous instead

of simply square integrable).
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with the scalar product

ðf ; gÞ :¼
Z
½0;1�

f ðxÞgðxÞ dx; 8f 2 H; g 2 H0:

To construct solutions in terms of expansions, we shall

need a special case of the Gegenbauer polynomials [named

after Leopold Gegenbauer (1849–1903)].2 The polynomials

Ym(z) we need are defined in terms of their generating

function

1

ð1� 2zt þ t2Þ
3
2

¼
X
m� 0

YmðzÞtm:

Lemma 3.1 (Suetin 2001)

• The Gegenbauer polynomials satisfy the recurrence

relation

Y0ðzÞ ¼ 1

Y1ðzÞ ¼ 3z

YnðzÞ ¼
1

n
2zðnþ 1

2
ÞYn�1ðzÞ � ðnþ 1ÞYn�2ðzÞ

� �
:

• The Gegenbauer polynomials solve the differential

equation

ð1� z2Þy00 � 4zy0 þ nðnþ 3Þy ¼ 0: ð15Þ

Lemma 3.2 [Abramowitz (1965), p. 774] The polynomials

Ym are orthogonal polynomials on the interval [-1,1] with

respect to the weight function (1 - z2):

Z1

�1

ð1� z2ÞYmðzÞYnðzÞ dz ¼ 0 for m 6¼ n: ð16Þ

Auxiliaries

Lemma 3.3 For all m C 0 we have

LXm ¼ �kmXm; in H0

with

km :¼ ðmþ 1Þðmþ 2Þ
2

:

Proof Putting z = 1 - 2x implies that

YmðzÞ :¼ XmðxÞ

is a Gegenbauer polynomial and therefore solves (15),

ð1� z2Þ o2

oz2
YmðzÞ � 4z

o

oz
YmðzÞ þ mðmþ 3ÞYmðzÞ ¼ 0:

This is equivalent to

xð1� xÞ o2

ox2
XmðxÞ � 2ð1� 2xÞ o

ox
XmðxÞ

þ mðmþ 3ÞXmðxÞ ¼ 0;() o2

ox2
ðxð1� xÞ

� XmðxÞÞ ¼ �ðmþ 1Þðmþ 2ÞXm;

() LXm ¼ �kmXm:

This completes the proof. h

In the sequel, we shall use the abbreviation

wðxÞ :¼ xð1� xÞ:

Lemma 3.4 If X is an eigenvector of L corresponding to

the eigenvalue k then wX is an eigenvector of L*

corresponding to the eigenvalue k.

Proof Assume that X is an eigenvector of L for the

eigenvalue k, i.e.

1

2

o2

ox2
ðwXÞ ¼ �kX:

Multiplying both sides by w yields

L�ðwXÞ ¼ 1

2
w

o2

ox2
ðwXÞ ¼ �kðwXÞ:

This completes the proof. h

Lemma 3.5 The spectrum of the operator L is

SpecðLÞ ¼
[

m� 0

km ¼
ðmþ 1Þðmþ 2Þ

2

� �
:¼ K;

and the eigenvector of L corresponding to km is the

Gegenbauer polynomial Xm(x) (up to a constant).

Proof From Lemma 3.3 we have L(Xm) = - kmXm in H0.

So, K � SpecðLÞ: Conversely, we shall prove that k 62 K is

not an eigenvalue of L. In fact, assume that there is some

X 2 H0 with LX ¼ �kX 2 H0: Because {Xm}m C 0 is a

basis of H0, we can represent X by X ¼
P1

m¼0 dmXm: Then

X1
m¼0

dmð�kmXmÞ ¼
X1
m¼0

dmLðXmÞ ¼ L
X1
m¼0

dmXm

 !

¼ �k
X1
m¼0

dmXm:

For any n C 0, we can multiply this relation by wXn and

then integrate on [0,1]. From the orthogonality (16) with

respect to the weight function w, we obtain

dnknðXn;wXnÞ ¼ dnkðXn;wXnÞ:

Because (Xn,wXn)= 0 and k= kn, then dn = 0, V n C 0.

Therefore, X = 0, i.e. k is not an eigenvalue of L. Thus

SpecðLÞ ¼ K:

2 The Gegenbauer polynomials generalise other important classes of

polynomials, like the Legendre and the Chebyshev polynomials, and

they constitute in turn special cases of the Jacobi polynomials.
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Similarly, if X is an eigenvector of L for the eigenvalue

km, we will prove that X = cXm. In fact, representing X ¼P1
n¼0 dnXn; it follows that

X1
n¼0

dnð�knXnÞ ¼
X1
n¼0

dnLðXnÞ ¼ L
X1
n¼0

dnXn

 !

¼ �km

X1
n¼0

dnXn:

For any k C 0, we multiply this relation by wXk and then

integrate on [0,1] to obtain

dkkkðXk;wXkÞ ¼ dkkmðXk;wXkÞ:

Because (Xk,wXk) = 0 and km = kk for all k = m, then

dk = 0, Vk = m. Hence X = dmXm. This completes the

proof.

h

Construction of the solution

In this subsection, we construct the solution and prove its

uniqueness. We shall firstly find the general solution of the

Fokker–Planck equation (10) by the separation of variables

method. Then we shall construct a solution depending on

parameters. We shall use (11, 12) to determine the

parameters. Finally, we shall verify the solution.

Step 1 Assume that u0(x,t) = X(x)T(t) is a solution of the

Fokker Planck equation (10). Then we have

Tt

T
¼ LX

X
¼ �k

which implies that k is a constant which is independent of

t, x. From Lemma 3.5, we obtain the general solution of the

equation (10) as

u0ðx; tÞ ¼
X
m� 0

cmXmðxÞe�kmt:

Remark 3.6 u0 is the same as Kimura’s solution (see for

example Kimura 1955a,b).

Step 2 The general solution u 2 H of (10) then is

uðx; tÞ ¼
X
m� 0

cmðXmðxÞ þ am;0d0ðxÞ þ am;1d1ðxÞÞe�kmt

þ b0d0ðxÞ þ b1d1ðxÞ
ð17Þ

where d0 and d1 are the Dirac delta functionals at 0 and 1.

Step 3 Checking condition (12) with / = 1, / = x, /
= wXn yields

ðut; 1Þ ¼ ðu; L�ð1ÞÞ ¼ 0;

ðut; xÞ ¼ ðu; L�ðxÞÞ ¼ 0;

ðut;wXnÞ ¼ ðu; L�ðwXnÞÞ ¼ �knðu;wXnÞ:

With condition (11), we then obtain

1 ¼ ðuð�; 0Þ; 1Þ ¼ ðuð�;1Þ; 1Þ ¼ b0 þ b1;

p ¼ ðuð�; 0Þ; xÞ ¼ ðuð�;1Þ; xÞ ¼ b1;

1 ¼ ðuð�; 0Þ; 1Þ ¼ ðu; 1Þ ¼
X
m� 0

cm

�
Z
½0;1�

XmðxÞ dxþ am;0 þ am;1

0
B@

1
CAe�kmt þ b0 þ b1;

p ¼ ðuð�; 0Þ; xÞ ¼ ðu; xÞ ¼
X
m� 0

cm

�
Z
½0;1�

xXmðxÞ dxþ am;1

0
B@

1
CAe�kmt þ b1;

and

ðu;wXnÞ ¼ ðuð�; 0Þ;wXnÞe�knt ¼ wðpÞXnðpÞe�knt:

() cnðXn;wXnÞe�knt ¼ wðpÞXnðpÞe�knt: ð18Þ

Therefore we have all parameters

b1 ¼ p; b0 ¼ 1� p

am;1 ¼ �
Z
½0;1�

xXmðxÞ dx; am;0 ¼ �
Z
½0;1�

ð1� xÞXmðxÞ dx

cn ¼
wðpÞXnðpÞ
ðXn;wXnÞ

: ð19Þ

It follows that the solution should be

uðx; tÞ ¼
X
m� 0

cmXmðxÞe�kmt

þ 1� pþ
X
m� 0

cmam;0e�kmt

( )
d0ðxÞ

þ pþ
X
m� 0

cmam;1e�kmt

( )
d1ðxÞ ð20Þ

where Xm(x) is a Gegenbauer polynomial,

km ¼
ðmþ 1Þðmþ 2Þ

2
;

am;0 ¼ �
Z
X1

ð1� xÞXmðxÞ dx ¼ � 1

2
;

am;1 ¼ �
Z
X1

xXmðxÞ dx ¼ ð�1Þmþ1 1

2
;

cm ¼
wðpÞXmðpÞ
ðXm;wXmÞ

¼ 8wðpÞXmðpÞðmþ 3=2Þ
ðmþ 1Þðmþ 2Þ : ð21Þ

Step 4 We will prove the constructed solution u satisfies

conditions (10, 11, 12). In fact, because in (0, 1), u = u0, it
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is clear that u satisfies the Fokker Planck equation (10).

Moreover, from the representation (20), we have

ðu; 1Þ ¼
X1
m¼0

cm

Z
½0;1�

XmðxÞ dxþ am;0 þ am;1

0
B@

1
CAe�kmt

þ 1� pþ p ¼ 1;

ðu; xÞ ¼
X1
m¼0

cm

Z
½0;1�

xXmðxÞ dxþ am;1

0
B@

1
CAe�kmt

þ p ¼ p;

ðu;wXnÞ ¼ cnðXn;wXnÞe�knt ¼ wðpÞXnðpÞe�knt: ð22Þ

Thus,

ðuð�; 0Þ; 1Þ ¼ 1 ¼ ðdp; 1Þ
ðuð�; 0Þ; xÞ ¼ p ¼ ðdp; xÞ

ðuð�; 0Þ;wXnÞ ¼ wðpÞXnðpÞ ¼ ðdp;wXnÞ:
ð23Þ

Because {1, x, {wXn}n C 0} is also a basis of H0, it follows

that

ðuð�; 0Þ;/Þ ¼ ðdp;/Þ; 8/ 2 H0;

i.e. uð�; 0Þ ¼ dp 2 H; i.e. u satisfies the condition (11).

Finally, from (22) we have

ðut; 1Þ ¼ 0 ¼ ðu; L�ð1ÞÞ
ðut; xÞ ¼ 0 ¼ ðu; L�ðxÞÞ
ðut;wXnÞ ¼ wðpÞXnðpÞð�knÞe�knt

¼ �knðu;wXnÞ ¼ ðu; L�ðwXnÞÞ: ð24Þ

Because L* is linear and {1, x, {wXn}n C 0} is also a basis

of H0, it follows that

ðut;/Þ ¼ ðu; L�ð/ÞÞ; 8/ 2 H0;

i.e. u satisfies the condition (12).

Therefore, u is a solution of the Fokker–Planck equation

associated with the Wright–Fisher model, indeed.

We can easily see that this solution is unique. In fact,

assume that u1,u2 are two solutions of the Fokker–Planck

equation associated with Wright–Fisher model. Then

u = u1 - u2 satisfies

ut ¼ Lu in ð0; 1Þ � ð0;1Þ;
uðx; 0Þ ¼ 0 in ð0; 1Þ;
ðut;/Þ ¼ ðu; L�/Þ; 8/ 2 H0:

Therefore

ðut; 1Þ ¼ ðu; L�ð1ÞÞ ¼ 0;

ðut; xÞ ¼ ðu; L�ðxÞÞ ¼ 0;

ðut;wXnÞ ¼ ðu; L�ðwXnÞÞ ¼ �knðu;wXnÞ:

Therefore

ðu; 1Þ ¼ ðuð�; 0Þ; 1Þ ¼ 0;

ðu; xÞ ¼ ðuð�; 0Þ; xÞ ¼ 0;

ðu;wXnÞ ¼ ðuð�; 0Þ;wXnÞe�knt ¼ 0:

Because {1, x, {wXn}n C 0} is also a basis of H0, it follows

that u ¼ 0 2 H:

Altogether, we obtain our main result.

Theorem 3.7. The Fokker–Planck equation associated

with Wright–Fisher model possesses a unique solution.

This new solution continuously deforms the initial state

dp(x) (the allele A1 has relative frequency p) to

pd1(x) ? (1 - p)d0(x) (allele A1 is fixed with probability

p and A2 is fixed with probability 1 - p) as time proceeds

from 0 to1: In fact, the sequence {um(x,t)}m C 0 satisfying

umðx; tÞ ¼
Xm

i¼0

ciXiðxÞe�kit

þ 1� pþ
Xm

i¼0

ci �
1

2

� �
e�ki t

( )
mffiffiffiffiffiffi
2p
p e�x2m2=2

þ pþ
Xm

i¼0

ci
ð�1Þiþ1

2

 !
e�kit

( )
mffiffiffiffiffiffi
2p
p e�ð1�xÞ2m2=2

ð25Þ

tends to u for m!1: Therefore, we can visualise the

asymptotic behaviour with the help of Mathematica (Fig. 1).

This behaviour coincides with the discrete one

(Figs. 2, 3):
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Applications

Our global solution readily yields the quantities of interest

of the evolution of the process (Xt)t C 0 such as the

expectation and the second moment of the absorption time,

mth moments, fixation probabilities, the probability of

coexistence, or the probability of heterogeneity.

Absorption time

Let V0 : = {0,1} be the domain representing a population

of 1 allele. Here, 0 corresponds to the loss of A1, that is, the

fixation of A2, and 1 corresponds to the opposite situation.

Either of these irreverible events is called an absorption.

We denote by T1
2 ðpÞ ¼ infft [ 0 : Xt 2 V0jX0 ¼ pg the

first time when the population has only 1 allele left, that is,

when absorption occurs. T2
1(p) is a continuous random

variable valued in ½0;1Þ with probability density function

denoted by /(t, p). V0 is invariant (absorption set) under

the process Xt, i.e. if Xs 2 V0 then Xt 2 V0 for all t C s. We

have

PðT1
2 ðpÞ	 tÞ ¼ PðXt 2 V0jX0 ¼ pÞ

It follows that

/ðt; pÞ ¼
Z
V0

o

ot
uðx; p; tÞ dx:

Therefore the expectation of the absorption time for having

only one allele is

EðT1
2 ðpÞÞ ¼

Z1

0

t/ðt; pÞ dt

¼
Z
V0

Z1

0

t
o

ot
uðx; tÞ dt

0
@

1
A dx

¼
X1
m¼0

X
V0

ð�kmÞcmðXmðxÞ þ am;0de0
ðxÞ

þ am;1de1
ðxÞÞ

Z1

0

te�kmt dt

0
@

1
A dx

¼ �
X1
m¼0

1

km
cmðam;0 þ am;1Þ

¼
X1
m¼0

1

k2m
c2m

¼
X1
m¼0

16pð1� pÞð2mþ 3=2Þ=ð2mþ 1Þ2

�ð2mþ 2Þ2X2mðpÞ:

and its second moment is

EðT1
2 ðpÞÞ

2 ¼
Z1

0

t2/ðt; pÞ dt

¼
Z
V0

Z1

0

t2 o

ot
uðx; p; tÞ dt dx

¼
X1
m¼0

Z
V0

ð�kmÞcmðXmðxÞ þ am;0de0
ðxÞ

þ am;1de1
ðxÞÞ

Z1

0

t2e�kmt dt dx

¼ �
X1
m¼0

2

k2
m

cmðam;0 þ am;1Þ

¼
X1
m¼0

2

k2
2m

c2m

¼
X1
m¼0

64pð1� pÞð2mþ 3=2Þ=ð2mþ 1Þ3

� ð2mþ 2Þ3X2mðpÞ: ð26Þ

Remark 4.1 EðT1
2 ðpÞÞ ¼ �2fp lnðpÞ þ ð1� pÞ lnð1� pÞg

is the unique solution of the one-dimensional boundary

value problem

Lv ¼ �1; in (0,1)

vð0Þ ¼ vð1Þ ¼ 0:

�

0.0

0.5

1.0 0

5

10

15

200.0

0.2

0.4

0.6

Fig. 1 Behaviour of the new solution from dp to pd1 ? (1 - p)d0 in

time with p = 0.4
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Fig. 3 Behaviour of the discrete solution in time k ¼ 0; 1; . . .; 18 and k = 30 with p = 0.25
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Fig. 2 Behaviour of the discrete solution in time k ¼ 0; 1; . . .; 18 and k = 32 with p = 0.5

Theory Biosci.

123



We easily check that this agrees with our formula above by

using Mathematica (Fig. 4):

nth moments

By induction, it is easy to prove thatZ
½0;1�

xnXm�1ðxÞ dx ¼ ð�1Þm 1

2

ðn� 1Þ. . .ðn� mÞ
ðnþ 1Þ. . .ðnþ mÞ � 1

� �
:

Therefore, the nth moment is

mnðtÞ ¼ ðu; xnÞ

¼
X1
m¼0

cm

Z
½0;1�

xnXmðxÞ dx

0
B@

1
CAe�kmt

þ pþ
X1
m¼0

cmam;1e�kmt

 !

¼ pþ
X1
i¼1

ci�1

Z
½0;1�

xnXi�1ðxÞ dxþ ai�1;1

0
B@

1
CAe�ki�1t

¼ pþ
X1
i¼1

2ð2iþ 1Þ
iðiþ 1Þ pð1� pÞð�1Þi

� Xi�1ðpÞ
ðn� 1Þ. . .ðn� iÞ
ðnþ 1Þ. . .ðnþ iÞ e

�iðiþ1Þ
2

t:

This nth moment coincides with Kimura’s (1955) one.

Fixation probabilities and probability of coexistence

of 2 alleles

The fixation probability for A2 (loss of A1) is

PðXt¼0jX0¼pÞ¼
Z
f0g

uðx;tÞdx

¼1�pþ
X1
m¼0

cmam;0e�kmt

¼1�p�1

2

X1
m¼0

8wðpÞXmðpÞðmþ3=2Þ
ðmþ1Þðmþ2Þ e�kmt:

Analogously, the fixation probability of A1 is

PðXt ¼ 1jX0 ¼ pÞ ¼
Z
f1g

uðx; tÞ dx

¼ pþ
X1
m¼0

cmam;1e�kmt

¼ p� 1

2

X1
m¼0

ð�1Þm

� 8wðpÞXmðpÞðmþ 3=2Þ
ðmþ 1Þðmþ 2Þ e�kmt:

The probability of coexistence of the 2 alleles A1, A2

therefore is

PðXt 2 ð0; 1ÞjX0 ¼ pÞ ¼
Z
ð0;1Þ

uðx; tÞ dx

¼
X1
m¼0

cm

Z
ð0;1Þ

XmðxÞ dxe�kmt

¼
X1
m¼0

c2me�k2mt

¼
X1
m¼0

8wðpÞX2mðpÞð2mþ 3=2Þ
ð2mþ 1Þð2mþ 2Þ e�k2mt:

These three probabilities sum to 1, as they should.

We consider their behaviour for p = 0.3 and p = 0.5

(Figs. 5, 6):
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Fig. 4 Comparison results of expectation of the absorption time
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Fig. 5 p = 0.3
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Remark 4.2

(i) PðXt 2 ½0; 1�jX0 ¼ pÞ ¼ PðXt ¼ 0jX0 ¼ pÞ
þPðXt ¼ 1jX0 ¼ pÞ þ PðXt 2 ð0; 1ÞjX0 ¼ pÞ ¼ 1;

(ii) PðXt ¼ 0jX0 ¼ pÞ and PðXt ¼ 1jX0 ¼ pÞ increase

quickly in t 2 ð0; 5Þ(10N generations) from 0 and

then tend slowly to 1 - p and p, respectively;

(iii) When p = 0.5, the situation is symmetric between

the two alleles, that is, PðXt ¼ 0jX0 ¼ 0:5Þ ¼
PðXt ¼ 1jX0 ¼ 0:5Þ:

Heterogeneity

The probability of heterogeneity is

Ht ¼
Z
½0;1�

2xð1� xÞuðx; tÞ dx

¼ 2ðu;wX0Þ
¼ 2ðc0X0;wX0Þe�k0t

¼ 2wðpÞX0ðpÞe�t

¼ H0e�t:

Of course, this goes to 0 for t!1; as it should.

Conclusion

We have constructed a unique global solution of the Fokker–

Planck equation associated with the Wright–Fisher model.

This solution leads to explicit formulae for the absorption

time, fixation probabilities, the probability of coexistence,

nth moments, heterogeneity, and other quantities.

Open Access This article is distributed under the terms of the
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