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A GENERAL SOLUTION OF THE WRIGHT-FISHER MODEL OF

RANDOM GENETIC DRIFT

TAT DAT TRAN, JULIAN HOFRICHTER, JÜRGEN JOST

Abstract. We introduce a general solution concept for the Fokker-Planck
(Kolmogorov) equation representing the diffusion limit of the Wright-Fisher

model of random genetic drift for an arbitrary number of alleles at a single

locus. This solution will continue beyond the transitions from the loss of
alleles, that is, it will naturally extend to the boundary strata of the probability

simplex on which the diffusion is defined. This also takes care of the degeneracy

of the diffusion operator at the boundary. We shall then show the existence and
uniqueness of a solution. From this solution, we can readily deduce information

about the evolution of a Wright-Fisher population.

1. Introduction

The random genetic drift model developed implicitly by Fisher in [11] and explic-
itly by Wright in [23], and henceforth called the Wright-Fisher model, is one of the
most popular stochastic models in population genetics ([9, 2]). In its simplest form,
it is concerned with the evolution of the probabilities between non-overlapping gen-
erations in a population of fixed size of two alleles at a single diploid locus that
are obtained from random sampling in the parental generation, without additional
biological mechanisms like mutation, selection, or a spatial population structure.
Generalizations to multiple alleles, several loci, inclusion of mutations and selection
etc. then constituted an important part of mathematical population genetics. It is
our aim to develop a general mathematical perspective on the Wright-Fisher model
and its generalizations. In the present paper, we treat the case of multiple alleles
at a single site. In a companion paper [22], we have discussed the simplest case of
2 alleles in more detail. Generalizations will be addressed in subsequent papers.

Let us first describe the basic mathematical contributions of Wright and Kimura.
In 1945, Wright approximated the discrete process by a diffusion process that is con-
tinuous in space and time (continuous process, for short) and that can be described
by a Fokker-Planck equation. In 1955, by solving this Fokker-Planck equation de-
rived from the Wright-Fisher model, Kimura obtained an exact solution for the
Wright-Fisher model in the case of 2 alleles (see [15]). Kimura ([16]) also developed
an approximation for the solution of the Wright-Fisher model in the multi-allele

Date: November 18, 2013.
Key words and phrases. Random genetic drift, Fokker-Planck equation, Wright-Fisher model,

several alleles.
The research leading to these results has received funding from the European Research Coun-

cil under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant

agreement no. 267087. The first and the second author have also been supported by the IMPRS
“Mathematics in the Sciences”, and the material presented in this paper is largely based on the

first author’s thesis.

1



2 TAT DAT TRAN, JULIAN HOFRICHTER, JÜRGEN JOST

case, and in 1956, he obtained ([17]) an exact solution of this model for 3 alleles and
concluded that this can be generalized to arbitrarily many alleles. This yields more
information about the Wright-Fisher model as well as the corresponding continu-
ous process. Kimura’s solution, however, is not entirely satisfactory. For one thing,
it depends on very clever algebraic manipulations so that the general mathemati-
cal structure is not very transparent, and this makes generalizations very difficult.
Also, Kimura’s approach is local in the sense that it does not naturally incorporate
the transitions resulting from the (irreversible) loss of one or more alleles in the
population. Therefore, for instance the integral of his probability density function
on its defined domain is not equal to 1.

As mentioned, while the original model of Wright and Fisher works with a fi-
nite population in discrete time, many mathematical insights into its behavior are
derived from its diffusion approximation. After the original work of Wright and
Kimura just described, a more systematic approach was developed within the the-
ory of strongly-continuous semigroups and Markov processes. In this framework,
the diffusion approximation for the multi-allele Wright-Fisher model was derived
by Ethier and Nagylaki [6, 7], and a proof of convergence of the Markov chain to
the diffusion process can be found in [5]. (In this paper, we are not concerned with
deriving the diffusion approximation, but actually, this can be derived in a rather
direct manner without having to appeal to the general theory, as we shall show
elsewhere.) One may then derive existence and uniqueness results for solutions
of the Fokker-Planck equation from the theory of strongly continuous semigroups
[5, 6, 14]. As the diffusion operator of the diffusion approximation becomes de-
generate at the boundary, the analysis at the boundary becomes difficult, and this
issue is not addressed by the aforementioned results. Recent work of Epstein and
Mazzeo [3, 4], however, treats the boundary regularity with general PDE methods.

The full structure of the Wright-Fisher model and its diffusion approximation,
however, is only revealed when one can connect the dynamics before and after
the loss of an allele, or in analytic terms, if one can extend the process from the
interior of the probability simplex to all its boundary strata. In particular, this is
needed to preserve the normalization of the probability distribution. Therefore, in
this paper, we develop the definition of a general solution that naturally includes
the transitions resulting from the disappearance of alleles and derive the formalism
for its solution. Since this formalism is rather explicit, it will allow us to derive
and generalize the known explicit formulas for the quantities associated with the
Wright-Fisher diffusion model like expected waiting times for the loss of one or
several alleles in a systematic manner. The key for our approach are evolution
equations for the moments of the probability density and the duality between the
forward and backward Kolmogorov equations. We show that there exists a unique
global solution of the Fokker-Planck equation. Since, as explained, our concept of a
solution is different from (and, as we believe, better adapted to the structure of the
Wright-Fisher model than) those treated in the literature, insofar as it extends to
the boundary, these results do not follow from the general results of the literature
mentioned above.

In the present paper, we only treat genetic drift in the absence of mutation,
selection, and recombination. Extensions that can be obtained on the basis of the
formalism presented here, in particular to general recombination schemes, will be
presented in subsequent publications.
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2. The global solution of the Wright-Fisher model

In this section, we shall first establish some notation, and then prove some propo-
sitions as well as the main theorem of this paper.

2.1. Notations. ∆n := {(x1, x2, . . . , xn+1) : xi ≥ 0,
∑n+1
i=1 x

i = 1} is the standard
n−simplex in Rn+1 representing the probabilities or relative frequencies of alleles
A1, . . . , An+1 in our population. Often, however, it is advantageous to work in Rn
instead of Rn+1, and with e0 := (0, . . . , 0) ∈ Rn, ek := (0, . . . , 1︸︷︷︸

kth

, . . . , 0) ∈ Rn, we

therefore define

Ωn := intco {e0, . . . , en} :=

{
n∑
k=0

xkek, (x, x0) =

(
x1, . . . , xn, 1−

n∑
k=1

xk

)
∈ int∆n

}
.

Moreover, we shall need the subsimplices corresponding to subsets of alleles, using
the following notations

Ik := {{i0, . . . , ik} , 0 ≤ i0 < . . . < ik ≤ n} , k ∈ {1, . . . , n},
V0 := {e0, . . . , en} ,

the domain representing a population of one allele,

V
(i0,...,ik)
k := intco {ei0 , . . . , eik} , k ∈ {1, . . . , n},

the domain representing a population of alleles {Ai0 , . . . , Aik},
Vk :=

{
intco {ei0 , . . . , eik} for some i0 < . . . < ik ∈ 0, n

}
, k ∈ {1, . . . , n},

=
⊔

(i0,...,ik)∈Ik

V
(i0,...,ik)
k ,

the domain representing a population of (k + 1) alleles,

V k :=
⋃

(i0,...,ik)∈Ik

V
(i0,··· ,ik)
k , k ∈ {1, . . . , n},

=

k⊔
i=0

Vi,

the domain representing a population of at most (k + 1) alleles.

We shall also need some function spaces:

H
(i0,...,ik)
k := C∞

(
V

(i0,...,ik)
k

)
,

Hk := C∞(V k), k ∈ {1, . . . , n},
H :=

{
f : V n → [0,∞] measurable such that [f, g]n <∞,∀g ∈ Hn

}
,

where [f, g]n :=

∫
V n

f(x)g(x)dµ(x) =

n∑
k=0

∫
Vk

f(x)g(x)dµk(x),

=

n∑
k=0

∑
(i0,...,ik)∈Ik

∫
V

(i0,...,ik)

k

f(x)g(x)dµ
(i0,...,ik)
k (x),

with µ
(i0,...,ik)
k a probability measure on V

(i0,...,ik)
k .
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We can now define the differential operators for our Fokker-Planck equation:

L
(i0,...,ik)
k :H

(i0,...,ik)
k → H

(i0,...,ik)
k , L

(i0,...,ik)
k f(x) =

1

2

∑
i,j∈{i1,...,ik}

∂2(aij(x)f(x))

∂xi∂xj
,

(L
(i0,...,ik)
k )∗ :H

(i0,...,ik)
k → H

(i0,...,ik)
k , (L

(i0,...,ik)
k )∗g(x) =

1

2

∑
i,j∈{i1,...,ik}

aij(x)
∂2g(x)

∂xi∂xj
,

Lk :Hk → Hk, (Lk)|H(i0,...,ik)

k

= L
(i0,...,ik)
k ,

L∗k :Hk → Hk, (L∗k)|H(i0,...,ik)

k

= (L
(i0,...,ik)
k )∗,

where the coefficients are defined by

aij(x) := xi(δij − xj), i, j ∈ {1, . . . , n}.

Finally, we shall need

w
(i0,...,ik)
k (x) :=

∏
i∈I(i0,...,ik)

k

xi, k ∈ {1, . . . , n}.

Proposition 2.1. For each 1 ≤ k ≤ n, m ≥ 0, |α| = α1 + · · · + αk = m, the

polynomial of degree m in k variables x = (xi1 , . . . , xik) in V
(i0,...,ik)
k

(2.1) X(k)
m,α(x) = xα +

∑
|β|<m

a
(k)
m,βx

β ,

where the a
(k)
m,β are inductively defined by

a
(k)
m,β = −

k∑
i=1

(βi + 2)(βi + 1)a
(k)
m,β+ei

(m− |β|)(m+ β + 2k + 1)
, ∀|β| < m,

is the eigenvector of L
(i0,...,ik)
k corresponding to the eigenvalue λ

(k)
m = (m+k)(m+k+1)

2 .
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Proof. We have

L
(i0,...,ik)
k X(k)

m,α(x) =
1

2

∑
i∈{i1,...,ik}

∂2

(∂xi)2

[
xi(1− xi)

(
xα +

∑
|β|<m

a
(k)
m,βx

β
)]

−
∑

i 6=j∈{i1,...,ik}

∂2

∂xi∂xj

[
xixj

(
xα +

∑
|β|<m

a
(k)
m,βx

β
)]

=
1

2

∑
i∈{i1,...,ik}

∂2

(∂xi)2

[
xα+ei − xα+2ei +

∑
|β|<m

a
(k)
m,βx

β+ei

−
∑
|β|<m

a
(k)
m,βx

β+2ei

]

−
∑

i6=j∈{i1,...,ik}

∂2

∂xi∂xj

[
xα+ei+ej +

∑
|β|<m

a
(k)
m,βx

β+ei+ej

]

=
1

2

∑
i

[
(αi + 1)αixα−ei − (αi + 2)(αi + 1)xα

+
∑
|β|<m

a
(k)
m,β(βi + 1)βixβ−ei −

∑
|β|<m

a
(k)
m,β(βi + 2)(βi + 1)xβ

]

−
∑
i6=j

[
(αi + 1)(αj + 1)xα +

∑
|β|<m

a
(k)
m,β(βi + 1)(βj + 1)xβ

]

=

[
− 1

2

∑
i

(αi + 2)(αi + 1)−
∑
i6=j

(αi + 1)(αj + 1)

]
xα

+ terms of lower degree

=

[
− 1

2

(∑
i

αi + k
)(∑

i

αi + k + 1
)]
xα + terms of lower degree

= − (m+ k)(m+ k + 1)

2
xα + terms of lower degree.

By equalizing coefficients we obtain

λ(k)m =
(m+ k)(m+ k + 1)

2

and

a
(k)
m,β = −

k∑
i=1

(βi + 2)(βi + 1)a
(k)
m,β+ei

(m− |β|)(m+ β + 2k + 1)
, ∀|β| < m.

This completes the proof. �

Remark 2.2. • When k = 1, X
(1)
m,m(x1) is the mth−Gegenbauer polynomial

(up to a constant). Thus, the polynomials X
(k)
m,α(x) can be understood as

a generalization of the Gegenbauer polynomials to higher dimensions.
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• Because of this representation of eigenvectors, we can easily see thatX
(n)
m,α(x)

is a basis of C2(Vn).

Proposition 2.3. If X ∈ C2
(
V

(i0,...,ik)
k

)
is an eigenvector of L

(i0,...,ik)
k correspond-

ing to λ then w
(i0,...,ik)
k X is an eigenvector of

(
L
(i0,...,ik)
k

)∗
corresponding to λ.
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Proof. If X ∈ C2
(
V

(i0,...,ik)
k

)
is an eigenvector of L

(i0,...,ik)
k corresponding to λ, it

follows that

−λ(w
(i0,...,ik)
k (x)X) =

1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂2

∂xi∂xj
(
xi(δij − xj)X

)
=

1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2X

∂xi∂xj

+
1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂
(
xi(δij − xj)

)
∂xi

∂X

∂xj

+
1

2
w

(i0,...,ik)
k (x)

k∑
i,j=1

∂
(
xi(δij − xj)

)
∂xj

∂X

∂xi

+
1

2
w

(i0,...,ik)
k (x)

∑
i,j∈{i1,...,ik}

∂2
(
xi(δij − xj)

)
∂xi∂xj

X

=
1

2

k∑
i,j=1

(
xi(δij − xj)

)(
w

(i0,...,ik)
k (x)

∂2X

∂xi∂xj

)
+

1

2

∑
j∈{i1,...,ik}

w
(i0,...,ik)
k (x)

(
1− (k − 1)xj

) ∂X
∂xj

+
1

2

∑
i∈{i1,...,ik}

w
(i0,...,ik)
k (x)

(
1− (k − 1)xi

) ∂X
∂xi

− k(k + 1)

2
w

(i0,...,ik)
k (x)X

=
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

)(
w

(i0,...,ik)
k (x)

∂2X

∂xi∂xj

)

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂w(i0,...,ik)
k (x)

∂xi
∂X

∂xj

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂w(i0,...,ik)
k (x)

∂xj
∂X

∂xi

+
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2w(i0,...,ik)
k (x)

∂xi∂xj
X

=
1

2

∑
i,j∈{i1,...,ik}

(
xi(δij − xj)

) ∂2(w
(i0,...,ik)
k X)(x)

∂xi∂xj

=
(
L
(i0,...,ik)
k

)∗(
w

(i0,...,ik)
k (x)X

)
.

This completes the proof. �
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Proposition 2.4. Let ν be the exterior unit normal vector of the domain V
(i0,...,ik)
k .

Then we have

(2.2)
∑

j∈{i1,...,ik}

aijν
j = 0 on ∂V

(i0,...,ik)
k , ∀i ∈ {i1, . . . , ik}.

Proof. In fact, on the surface (xs = 0), for some s ∈ {i1, . . . , ik} we have ν = −es,
and hence

∑
j∈{i1,...,ik}

aijν
j = ais = xs(δsi − xi) = 0. On the surface (xi0 = 0) we

have ν = 1√
k

(ei1 +. . .+eik), hence
∑

j∈{i1,...,ik}
aijν

j = 1√
k

∑
j∈{i1,...,ik}

aij = 1√
k
xixi0 =

0. This completes the proof. �

Proposition 2.5. L
(i0,...,ik)
k and (L

(i0,...,ik)
k )∗ are weighted adjoints in H

(i0,...,ik)
k ,

i.e.

(L
(i0,...,ik)
k X,w

(i0,...,ik)
k Y ) = (X, (L

(i0,...,ik)
k )∗(w

(i0,...,ik)
k Y )), ∀X,Y ∈ H(i0,...,ik)

k .

Proof. We put F
(k)
i (x) :=

∑
j∈{i1,...,ik}

∂(aij(x)X(x))
∂xj . Because of w

(i0,...,ik)
k Y ∈ C∞0 (V

(i0,...,ik)

k ),

the second Green formula, and Proposition 2.4, we have

(L
(i0,...,ik)
k X,w

(i0,...,ik)
k Y ) =

1

2

∑
i,j∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂2(aij(x)X(x))

∂xi∂xj
w

(i0,...,ik)
k (x)Y (x)dx

=
1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂F
(k)
i (x)

∂xi
w

(i0,...,ik)
k (x)Y (x)dx

=
1

2

∑
i∈{i1,...,ik}

∫
∂V

(i0,...,ik)

k

F
(k)
i (x)νiw

(i0,...,ik)
k (x)Y (x)do(x)

− 1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

F
(k)
i (x)

∂(w
(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i∈{i1,...,ik}

∫
V

(i0,...,ik)

k

F
(k)
i (x)

∂(w
(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i,j∈{i1,...,ik}

∫
V

(i0,...,ik)

k

∂(aij(x)X(x))

∂xj
∂(w

(i0,...,ik)
k (x)Y (x))

∂xi
dx

=− 1

2

∑
i,j∈{i1,...,ik}

∫
∂V

(i0,...,ik)

k

aij(x)νjX(x)
∂(w

(i0,...,ik)
k (x)Y (x))

∂xi
do(x)

+
(
X,L∗k(w

(i0,...,ik)
k Y )

)
= (X,L∗k(wkY )) .

�
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Proposition 2.6. In V
(i0,...,ik)

k ,
{
X

(k)
m,α

}
m≥0,|α|=m

is a basis of H
(i0,...,ik)
k which

is orthogonal with respect to the weights w
(i0,...,ik)
k , i.e.,(

X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
= 0, ∀j 6= m, |α| = m, |β| = j.

Proof.
{
X

(k)
m,α

}
m≥0,|α|=m

is a basis of H
(i0,...,ik)
k because {xα}α is a basis of this

space. To prove the orthogonality we apply the Propositions 2.1, 2.3, 2.7 as follows

−λ(k)m

(
X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
=
(
L
(i0,...,ik)
k X(k)

m,α, w
(i0,...,ik)
k X

(k)
j,β

)
=
(
X(k)
m,α, (L

(i0,...,ik)
k )∗(w

(i0,...,ik)
k X

(k)
j,β )

)
=− λ(k)j

(
X(k)
m,α, w

(i0,...,ik)
k X

(k)
j,β

)
Because λ

(k)
m 6= λ

(k)
j , this finishes the proof. �

Proposition 2.7. (i) The spectrum of the operator L
(i0,...,ik)
k is

Spec(L
(i0,...,ik)
k ) =

⋃
m≥0

{
λ(k)m =

(m+ k)(m+ k + 1)

2

}
=: Λk

and the eigenvectors of L
(i0,...,ik)
k corresponding to λ

(k)
m are of the form

X =
∑
|α|=m

d(k)m,αX
(k)
m,α,

i.e., the eigenspace corresponding to λ
(k)
m are of dimension

(
k+m−1
k−1

)
;

(ii) The spectrum of the operator Lk is the same.

Proof. (i) Proposition 2.1 implies that Λk ⊆ Spec(L
(i0,...,ik)
k ). Conversely, for

λ /∈ Λk, we will prove that λ is not an eigenvalue of L
(i0,...,ik)
k . In fact,

assume that X ∈ H
(i0,...,ik)
k such that L

(i0,...,ik)
k X = −λX in H

(i0,...,ik)
k .

Because
{
X

(k)
m,α

}
m,α

is an orthogonal basis of H
(i0,...,ik)
k with respect to the

weights w
(i0,...,ik)
k (Proposition 2.4), we can representX byX =

∞∑
m=0

∑
|α|=m

d
(k)
m,αX

(k)
m,α.

It follows that

∞∑
m=0

∑
|α|=m

d(k)m,α(−λ(k)m )X(n)
m,α =

∞∑
m=0

∑
|α|=m

d(k)m,αL
(i0,...,ik)
k X(k)

m,α

=L
(i0,...,ik)
k X

=− λ
∞∑
m=0

∑
|α|=m

d(k)m,αX
(k)
m,α.
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For any j ≥ 0, |β| = j, multiplying by wkX
(k)
j,β and then integrating on V n

we have∑
|α|=j

d
(k)
j,αλ

(k)
j

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
=
∑
|α|=j

d
(k)
j,αλ

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
,∀j ≥ 0, |β| = j,

⇒
(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α

(d
(k)
j,αλ

(k)
j )α =

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α

(d
(k)
j,αλ)α,∀j ≥ 0, |β| = j,

⇒d(k)j,αλ
(k)
j = d

(k)
j,αλ, ∀j ≥ 0, |β| = j, because det

(
X

(k)
j,α , w

(i0,...,ik)
k X

(k)
j,β

)
β,α
6= 0

⇒d(k)j,α = 0, ∀j ≥ 0, |α| = j, because λ 6= λ
(k)
j .

It follows that X = 0 in H
(i0,...,ik)
k . Therefore

Spec(L
(i0,...,ik)
k ) =

⋃
m≥0

{
λ(k)m =

(m+ k)(m+ k + 1)

2

}
= Λk.

Moreover, assume that X ∈ H(i0,...,ik)
k is an eigenvector of L

(i0,...,ik)
k corre-

sponding to λ
(k)
j , i.e., L

(i0,...,ik)
k X = −λjX. We represent X by

X =

∞∑
m=0

∑
|α|=m

d(k)m,αX
(k)
m,α.

It follows that
∞∑
m=0

∑
|α|=m

d(k)m,α(−λ(k)m )X(k)
m,α =

∞∑
m=0

∑
|α|=m

d(k)m,αL
(i0,...,ik)
k X(k)

m,α

=L
(i0,...,ik)
k X

=− λ(k)j

∞∑
m=0

∑
|α|=m

d(k)m,αX
(k)
m,α.

For any i 6= j, |β| = i, multiplying by wkX
(k)
i,β and then integrating on V n

we have∑
|α|=i

d
(k)
i,αλ

(k)
i

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
=
∑
|α|=i

d
(k)
i,αλ

(k)
j

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
,∀i 6= j, |β| = i,

⇒
(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α

(d
(k)
i,αλ

(k)
i )α =

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α

(d
(k)
i,αλ

(k)
j )α,∀i 6= j, |β| = i,

⇒d(k)i,αλ
(k)
i = d

(k)
i,αλ

(k)
j , ∀i 6= j, |β| = i, because det

(
X

(k)
i,α , w

(i0,...,ik)
k X

(k)
i,β

)
β,α
6= 0

⇒d(k)i,α = 0, ∀i 6= j, |α| = i, because λ
(k)
i 6= λ

(k)
j .

It follows that

X =
∑
|α|=j

d
(k)
j,αX

(k)
j,α .

This completes the proof.
(ii) is obvious.

�
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2.2. Definition of the solution. We shall now formally derive the Fokker-Planck
equation as the diffusion limit of the Wright-Fisher model and introduce our solution
concept for this equation. We consider a diploid population of fixed size N with
n+1 possible alleles A1, . . . , An+1, at a given locus. Suppose that the individuals in
the population are monoecious, that there are no selective differences between these
alleles and no mutations. There are 2N alleles in the population in any generation,
so it is sufficient to focus on the number Ym = (Y 1

m, . . . , Y
n
m) of alleles A1, . . . , An

at generation time m. Assume that Y0 = i0 = (i10, . . . , i
n
0 ) and according to the

Wright-Fisher model, the alleles in generation m+ 1 are derived by sampling with
replacement from the alleles of generation m. Thus, the transition probability is

P(Ym+1 = j|Ym = i) =
(2N)!

(j0)!(j1)! . . . (jn)!

n∏
k=0

(
ik

2N

)jk
,

where

i, j ∈ S(2N)
n =

{
i = (i1, . . . , in) : ik ∈ {0, 1, . . . , 2N},

n∑
k=1

ik ≤ 2N

}
and

i0 = 2N − |i| = 2N − i1 − . . .− in; j0 = 2N − |j| = 2N − j1 − . . .− jn.
After rescaling

t =
m

2N
, Xt =

Yt
2N

,

we have a discrete Markov chain Xt valued in
{

0, 1
2N , . . . , 1

}n
with t = 1 now

corresponding to 2N generations. It is easy to see that

X0 =p =
i0

2N
,

E(δXi
t) =0,

E(δXi
t .δX

j
t ) =(Xi

t)(δij −X
j
t ),

E(δXt)
α =(δt) for |α| ≥ 3.

(2.3)

We now denote by mα(t) the αth−moment of the distribution about zero at the tth

generation, i.e.,

mα(t) = E(Xt)
α

Then

mα(t+ 1) = E(Xt + δXt)
α

Expanding the right hand side and noting (2.3) we obtain the following recursion
formula, under the assumption that the population number N is sufficiently large
to neglect terms of order 1

N2 and higher,

(2.4) mα(t+ 1) =

{
1− |α|(|α| − 1)

2

}
mα(t) +

n∑
i=1

αi(αi − 1)

2
mα−ei(t)

Under this assumption, the moments change very slowly per generation and we can
replace this system of difference equations by a system of differential equations:

(2.5) ṁα(t) = −|α|(|α| − 1)

2
mα(t) +

n∑
i=1

αi(αi − 1)

2
mα−ei(t).
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With the aim to find a continuous process which is approximates the above
discrete process, we should look for a continuous Markov process {Xt}t≥0 valued

in [0, 1]n with the same conditions as (2.3) and (2.5). Denoting by u(x, t) the
probability density function of this continuous process, the condition (2.3) implies
(see for example [9], p. 137, or for a more rigorous analysis [6, 7, 8]) that u is a
solution of the Fokker-Planck (Kolmogorov forward) equation

(2.6)

{
ut = Lnu in Vn × (0,∞),

u(x, 0) = δp(x) in Vn;

and the condition (2.5) implies

[ut, x
α]n =

[
u,−|α|(|α| − 1)

2
xα +

n∑
i=1

αi(αi − 1)

2
xα−ei

]
n

= [u, L∗(xα)]n,∀α,

and hence, since the polynomials are dense in Hn w.r.t. the product [., .]n,

(2.7) [ut, φ]n = [u, L∗nφ]n,∀φ ∈ Hn.

This leads us to the following definition of a solution.

Definition 2.8. We call u ∈ H a solution of the Fokker-Planck equation associated
with the Wright-Fisher model if

ut = Lnu in Vn × (0,∞),(2.8)

u(x, 0) = δp(x) in Vn;(2.9)

[ut, φ]n = [u, L∗nφ]n, ∀φ ∈ Hn.(2.10)

We point out that the last of these equations implicitly contains the boundary
behavior that we wish to impose upon our solution. This will become clear from
our construction in the next section.

2.3. The global solution. In this subsection, we shall construct the solution and
prove the existence as well as the uniqueness of the solution. The process of finding
the solution is as follows: We firstly find the general solution of the Fokker-Planck
equation (3.4) by the separation of variables method. Then we construct a solution
depending on certain parameters. We then use the conditions of (2.9, 2.10) to
determine the parameters. Finally, we check the solution.

Step 1: Consider on Vn, assume that un(x, t) = X(x)T (t) is a solution of the
Fokker-Planck equation (3.4). Then we have

Tt
T

=
LnX

X
= −λ

Clearly λ is a constant which is independent on T,X. From the Proposition (2.7)
we obtain the local solution of the equation (3.4) of the form

un(x, t) =

∞∑
m=0

∑
|α|=m

c(n)m,αX
(n)
m,α(x)e−λ

(n)
m t,

where

λ(n)m =
(n+m)(n+m+ 1)

2
is the eigenvalue of Ln and

X(n)
m,α(x), |α| = m
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are the corresponding eigenvectors of Ln.
For m ≥ 0, |β| = m, we conclude from Proposition (2.3) that

L∗n

(
wnX

(n)
m,β

)
= −λ(n)m wnX

(n)
m,β .

It follows that

[ut, wnX
(n)
m,β ]n =

[
u, L∗n

(
wnX

(n)
m,β

)]
n

(the moment condition)

= −λ(n)m

[
u,wnX

(n)
m,β

]
n
.

Therefore

[u,wnX
(n)
m,β ]n = [u(·, 0), wnX

(n)
m,β ]ne

−λ(n)
m t

= wn(p)X
(n)
m,β(p)e−λ

(n)
m t.

Thus,

wn(p)X
(n)
m,β(p)e−λ

(n)
m t = [u,wnX

(n)
m,β ]n

= (un, wnX
(n)
m,β)n (because wn vanishes on boundary)

=
∑
|α|=m

c(n)m,α(X(n)
m,α, wnX

(n)
m,β)ne

−λ(n)
m t.

It follows that(
c(n)m,α

)
α

=

[(
(X(n)

m,α, wnX
(n)
m,β)n

)
α,β

]−1(
wn(p)X

(n)
m,β(p)

)
β

.

Step 2: The solution u ∈ H satisfying (3.4) will be found in the following form

u(x, t) =

n∑
k=1

uk(x, t)χVk
(x) +

n∑
i=0

ui0(x, t)δei(x).(2.11)

We use the condition (2.10) to obtain gradually values of uk, k = n − 1, . . . , 0.

In fact, assume that we want to calculate u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t).

We note that, if we choose

φ(x) = x1 · · ·xnX(n−1)
k,β (x1, . . . , xn−1), |β| = k.

then φ(x) vanishes on faces of dimension at most n − 1 except the face V 0,...,n−1
n−1 .

Therefore, the expectation of φ will be

[u, φ]n = (un, φ)n + (u
(0,...,n−1)
n−1 , φ)n−1.

The left hand side can be calculated easily by the condition (2.10)

(2.12) [ut, φ]n = [u, L∗n(φ)]n = −λ(n−1)k [u, φ]n.

It follows that

[u, φ]n = φ(p)e−λ
(n−1)
k t.

The first part of the right hand side is known as

(un, φ)n =
∑
m,α

c(n)m,α

(∫
Vn

X(n)
m,α(x)φ(x)dx

)
e−λ

(n)
m t.
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Therefore we can expand u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t) as follows

u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t) =

∑
m≥0

c(n−1)m (x)e−λ
(n−1)
m t

=
∑
m≥0

∑
l≥0

∑
|α|=l

c
(n−1)
m,l,αX

(n−1)
l,α (x1, . . . , xn−1)e−λ

(n−1)
m t.

Put this formula into Equation (2.12) we will obtain all the coefficients c
(n−1)
m,l,α .

It means that we will obtain u
(0,...,n−1)
n−1 (x1, · · · , xn−1, 0, t). Similarly we will obtain

un−1. And finally we will obtain all uk, k = n− 1, . . . , 0. It means we obtain the
global solution in form

u(x, t) =

n∑
k=1

ukχVk
(x) +

n∑
i=0

ui0(x, t)δei(x).

=

n∑
k=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,αX

(k)
l,α (x)e−λ

(k)
m tχVk

(x) +

n∑
i=0

ui0(x, t)δei(x).

(2.13)

It is not difficult to show that u is a solution of the Fokker-Planck equation associ-
ated with WF model.

Step 3: We can easily see that this solution is unique. In fact, assume that u1, u2
are two solutions of the Fokker- Planck equation associated with WF model. Then
u = u1 − u2 will satisfy

ut = Lnu in Vn × (0,∞),

u(x, 0) = 0 in V n;

[ut, φ]n = [u, L∗φ]n, ∀φ ∈ Hn.

It follows that

[ut, 1]n = [u, L∗n(1)]n = 0,

[ut, x
i]n = [u, L∗n(xi)]n = 0,

[ut, w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n = [u, L∗n(w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

)]n

= [u, L∗k(w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

)]n

= −λ(k)j [u,w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n.

Therefore

[u, 1]n = [u(·, 0), 1]n = 0,

[u, xi]n = [u(·, 0), xi]n = 0,

[u,w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]n = [u(·, 0), w
(i0,...,ik)
k X

(k)
j,αχV (i0,...,ik)

k

]ne
−λ(k)

j t = 0.

Since
{

1,
{
xi
}
i
, {w(i0,...,ik)

k X
(k)
j,αχVk

(i0,...,ik)}1≤k≤n,(i0,...,ik)∈Ik,j≥0,|α|=j
}

is also a ba-

sis of Hn it follows that u = 0 ∈ H.
In conclusion, we have established
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Theorem 2.9. The Fokker Planck equation associated with the Wright-Fisher
model with (n+ 1)−alleles possesses the unique solution

u(x, t) =

n∑
k=1

ukχVk
(x) +

n∑
i=0

ui0(x, t)δei(x).

=

n∑
k=1

∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,αX

(k)
l,α (x)e−λ

(k)
m tχVk

(x) +

n∑
i=0

ui0(x, t)δei(x).

(2.14)

Example 2.10. To illustrate this process, we consider the case of three alleles.
We will construct the global solution for the problem

∂u
∂t = L2u, in V2 × (0,∞),

u(x, 0) = δp(x), x ∈ V2,
[ut, φ]2 = [u, L∗2φ]2, for all φ ∈ H2,

where the global solution of the form

u = u2χV2
+ u0,11 χV 0,1

1
+ u0,21 χV 0,2

1
+ u0,01 χV 0,0

1
+ u10χV 1

0
+ u20χV 2

0
+ u00χV 0

0
.

and the product is

[u, φ]2 =

∫
V2

u2φ|V2
dx +

∫ 1

0

u0,11 (x1, 0, t)φ(x1, 0)dx1 +

∫ 1

0

u0,21 (0, x2, t)φ(0, x2)dx2

+
1√
2

∫ 1

0

u1,21 (x1, 1− x1, t)φ(x1, 1− x1)dx1

+ u10(1, 0, t)φ(1, 0) + u20(0, 1, t)φ(0, 1) + u00(0, 0, t)φ(0, 0).

Step 1: We find out the local solution u2 as follows

u2(x, t) =
∑
m≥0

∑
α1+α2=m

c
(2)
m,α1,α2X

(2)
m,α1,α2(x)e−λ

(2)
m t.

To define coefficients c
(2)
m,α1,α2 we use the initial condition and the orthogonality of

eigenvectors X
(2)
m,α1,α2

w2(p)X
(2)
m,β1,β2(p) =

[
u(0), w2X

(2)
m,β1,β2

]
2

=
(
u2(0), w2X

(2)
m,β1,β2

)
2

because w2 vanishes on the boundary

=
∑

α1+α2=m

c
(2)
m,α1,α2

(
X

(2)
m,α1,α2 , w2X

(2)
m,β1,β2

)
for all β1 + β2 = m.

Because the matrix (
X

(2)
m,α1,α2 , w2X

(2)
m,β1,β2

)
(α1,α2),(β1,β2)

is positive definite then we have unique values of c
(2)
m,α1,α2 . It follows that we have

a unique local solution u2.
Step 2: We will use the moment condition to define all other coefficients of the

global solution.
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Firstly, we define the coefficients of u1,21 as follows

u1,21 (x1, 1− x1, t) =
∑
m≥0

cm(x1)e−λ
(1)
m t(2.15)

=
∑
m,l≥0

cm,lX
(1)
l (x1)e−λ

(1)
m t.(2.16)

We note that

L∗2

(
x1x2X

(1)
k (x1)

)
= −λ(1)k x1x2X

(1)
k (x1).

Therefore[
ut, x

1x2X
(1)
k (x1)

]
2

=
[
u, L∗2

(
x1x2X

(1)
k (x1)

)]
2

= −λ(1)k [u, x1x2X
(1)
k (x1)]2.

It follows that [
u, x1x2X

(1)
k (x1)

]
2

= p1p2X
(1)
k (p1)e−λ

(1)
k t.

Thus we have

p1p2X
(1)
k (p1)e−λ

(1)
k t =

[
u, x1x2X

(1)
k (x1)

]
2

=
(
u2, x

1x2X
(1)
k (x1)

)
2

+
(
u1,21 , x1(1− x1)X

(1)
k (x1)

)
1

because x1x2 vanish on the other boundaries

=
∑
m≥0

( ∑
|α|=m

c(2)m,α

(∫
V2

x1x2X(2)
m,α(x1, x2)X

(1)
k (x1)dx

))
e−λ

(2)
m t

+
∑
m≥0

cm,k

(
X

(1)
k , w1X

(1)
k

)
e−λ

(1)
m t

because of the orthogonality of (·, ·)1 with respect to w1

=
∑
m≥0

rme
−λ(2)

m t +
∑
m≥0

cm,kdke
−λ(1)

m t

By equating of coefficients of eαt we obtain u1,21 . Similarly we obtain u1. Then,
we define the coefficients of u10 from the 1−th moment.

Note that when φ = xi, L∗2(φ) = 0, therefore [ut, φ]2 = 0 or

[u, xi]2 = [u(0), xi] = pi.

It follows that

p1 = [u, x1] = (u2, x
1)2 + (u0,11 , x1)1 + (u1,21 , x1)1 + u10(1, 0, t).

Thus we obtain u10(1, 0, t). Similarly we have all u0. Therefore we obtain the global
solution u.

It is easy to check that u is a global solution. To prove the uniqueness we proceed
as follows: Assume that u is the difference of any two global solutions, i.e. u satisfies

ut = L2u, in V2 × (0,∞),

u(x, 0) = 0, in V2

[ut, φ]2 = [u, L∗2φ]2, for all φ ∈ H2.

We will prove that

(2.17) [u, φ]2 = 0 ∀φ ∈ H2.
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In fact,

[ut, 1]2 = [u, L∗2(1)]2 = 0⇒ [u, 1]2 = [u(0), 1]2 = 0,

[ut, x
i]2 = [u, L∗2(xi)]2 = 0⇒ [u, xi]2 = [u(0), xi]2 = 0,

[ut, w1(xi)X(1)
m (xi)]2 = [u, L∗2(w1(xi)X(1)

m (xi))]2 = −λ(1)m [u,w1(xi)X(1)
m (xi)]2

⇒ [u,w1(xi)X(1)
m (xi)]2 = [u(0), w1(xi)X(1)

m (xi)]2e
−λ(1)

m t = 0,

[ut, w2(x1, x2)X(2)
m,α(x1, x2)]2 = [u, L∗2(w2(x1, x2)X(2)

m,α(x1, x2))]2 = −λ(2)m [u,w2(x1, x2)X(2)
m,α(x1, x2)]2

⇒ [u,w2(x1, x2)X(2)
m,α(x1, x2)]2 = [u(0), w2(x1, x2)X(2)

m,α(x1, x2)]2e
−λ(2)

m t = 0.

We need only to prove that Eq. (2.17) holds for all

φ(x1, x2) = (x1)m(x2)n, ∀m,n ≥ 0.

(1) If n = 0,m ≥ 0, we see that φ can be generated from {1, x1, w1(x1)X
(1)
m (x1)},

therefore [u, φ]2 = 0

(2) Ifm = 0, n ≥ 0, we see that φ can be generated from {1, x2, w1(x2)X
(1)
m (x2)},

therefore [u, φ]2 = 0
(3) If n = 1,m ≥ 1, we expand (x1)m−1 by

(x1)m−1 =
∑
k≥0

ckX
(1)
k (x1).

Note that

L∗2

(
x1x2X

(1)
k (x1)

)
= −λ(1)k x1x2X

(1)
k (x1)

Therefore

[ut, x
1x2X

(1)
k (x1)]2 = [u, L∗2

(
x1x2X

(1)
k (x1)

)
]2 = −λ(1)k [u, x1x2X

(1)
k (x1)]2.

It follows that

[u, x1x2X
(1)
k (x1)]2 = [u(0), x1x2X

(1)
k (x1)]2e

−λ(1)
k = 0.

Therefore
[u, φ]2 =

∑
k≥0

ck[u, x1x2X
(1)
k (x1)]2 = 0.

(4) If n ≥ 2,m ≥ 1 we use the inductive method in n. We have

(x1)m(x2)n = x1x2(x1 + x2 − 1)(x1)m−1(x2)n−2 + (x1)m(1− x1)(x2)n−1

= −w2(x1, x2)(x1)m−1(x2)n−2 + (x1)m(1− x1)(x2)n−1.

In the assumption of induction, we have

[u, (x1)m(1− x1)(x2)n−1]2 = 0

Then, we expand (x1)m−1(x2)n−2 by

(x1)m−1(x2)n−2 =
∑
m,α

c(2)m,αX
(2)
m,α(x1, x2).

Therefore

[u,w2(x1, x2)(x1)m−1(x2)n−2]2 =
∑
m,α

c(2)m,α[u,w2(x1, x2)X(2)
m,α(x1, x2)]2 = 0.

It follows that [u, (x1)m(x2)n]2 = 0.
Thus, u = 0.
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3. Applications

In this section, we present some applications of our global solution to the evo-
lution of the process (Xt)t≥0 such as the expectation and the second moment of
the absorption time, the probability distribution of the absorption time for having
k + 1 alleles, the probability of having exactly k + 1 alleles, the αth moments, the
probability of heterogeneity, and the rate of loss of one allele in a population having
k + 1 alleles. Several of our formulas are known from other methods, see [9], [15],
[16], [17], [19], [20], but we emphasize here the general and unifying approach.

3.1. The absorption time for having (k + 1) alleles. The moments of the
sojourn and absorption times were derived by Nagylaki [21] for two alleles, and

by Lessard and Lahaie [18] in the multi-allele case. We denote by T k+1
n+1 (p) =

inf
{
t > 0 : Xt ∈ V k|X0 = p

}
the first time when the population has (at most) k+1

alleles. T k+1
n+1 (p) is a continuous random variable valued in [0,∞) and we denote by

φ(t, p) its probability density function. It is easy to see that V k is invariant under
the process (Xt)t≥0, i.e. if Xs ∈ V k then Xt ∈ V k for all t ≥ s (once an allele is
lost from the population, it can never again be recovered). We have the equality

P(T k+1
n+1 (p) ≤ t) = P(Xt ∈ V k|X0 = p) =

∫
V k

u(x, p, t)dµ(x).

It follows that

φ(t, p) =

∫
V k

∂

∂t
u(x, p, t)dµ(x)

Therefore the expectation for the absorption time of having k+ 1 alleles is (see [9],
p. 194)

E(T k+1
n+1 (p)) =

∫ ∞
0

tφ(t, p)dt

=

∫
V k

∫ ∞
0

t
∂

∂t
u(x, p, t)dtdµ(x)

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
|α|=m

c(j)m,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(∫ ∞
0

t
∂

∂t
e−λ

(j)
m tdt

)
dµ

(i0,...,ij)
j (x)

+

n∑
i=0

n∑
k=1

∑
m≥0

∑
|α|=m

c(k)m,αa
(k)
m,α,i

(∫ ∞
0

t
∂

∂t
e−λ

(k)
m tdt

)
,

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
|α|=m

c(j)m,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(
− 1

λ
(j)
m

)
dµ

(i0,...,ij)
j (x)

+

n∑
i=0

n∑
k=1

∑
m≥0

∑
|α|=m

c(k)m,αa
(k)
m,α,i

(
− 1

λ
(k)
m

)
.
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and the second moment of this absorption time is (see [1], [20])

E(T k+1
n+1 (p))2 =

∫ ∞
0

t2φ(t, p)dt

=

∫
V k

∫ ∞
0

t2
∂

∂t
u(x, p, t)dtdµ(x)

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
|α|=m

c(j)m,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(∫ ∞
0

t2
∂

∂t
e−λ

(j)
m tdt

)
dµ

(i0,...,ij)
j (x)

+

n∑
i=0

n∑
k=1

∑
m≥0

∑
|α|=m

c(k)m,αa
(k)
m,α,i

(∫ ∞
0

t2
∂

∂t
e−λ

(k)
m tdt

)
,

=

k∑
j=1

∑
(i0,...,ij)∈Ij

∑
m≥0

∑
|α|=m

c(j)m,α

∫
V

(i0,...,ij)

j

X(j)
m,α(x)

(
− 2

(λ
(j)
m )2

)
dµ

(i0,...,ij)
j (x)

+

n∑
i=0

n∑
k=1

∑
m≥0

∑
|α|=m

c(k)m,αa
(k)
m,α,i

(
− 2

(λ
(k)
m )2

)
.

In order to see what this means, we consider the case of 3 alleles.

u(x1, x2; t) =u2(x1, x2; t)χV2
+ u0,11 (x1, 0; t)χV 0,1

1
+ u0,21 (0, x2; t)χV 0,2

1
+ u0,01 (x1, 1− x1; t)χV 0,0

1

+ u10(t)δe1 + u20(t)δe2 + u00(t)δe0 .

with the product is

[u, φ]2 =(u2, φ)2 + (u0,11 , φ(·, 0))1 + (u0,21 , φ(0, ·))1 + (u0,11 , φ(·, 1− ·))1
+ u10(1, 0; t)φ(1, 0) + u20(0, 1; t)φ(0, 1) + u00(0, 0; t)φ(0, 0)

=

∫
V2

u2(x1, x2; t)φ(x1, x2)dx1dx2 +

∫ 1

0

u0,11 (x1, 0; t)φ(x1, 0)dx1 +

∫ 1

0

u0,21 (0, x2; t)φ(0, x2)dx2

+
1√
2

∫ 1

0

u1,21 (x1, 1− x1; t)φ(x1, 1− x1)dx1

+ u10(1, 0; t)φ(1, 0) + u20(0, 1; t)φ(0, 1) + u00(0, 0; t)φ(0, 0).

By expansion of eigenvectors, we have

u2(x; p; t) =
∑
m≥0

∑
|α|=m

c(2)m,α(p)X(2)
m,α(x)e−λ

(2)
m t.

where c
(2)
m,α(p) is uniquely defined. Representing u1(x; t) by

u0,11 (x1, 0; t) =
∑
m≥0

a0,1m (x1)e−λ
(1)
m t;(3.1)

u0,21 (0, x2; t) =
∑
m≥0

a0,2m (x2)e−λ
(1)
m t;(3.2)

u1,21 (x1, 1− x1; t) =
∑
m≥0

a1,2m (x1)e−λ
(1)
m t,(3.3)

where the coefficients a·,·m(x1) are defined as follows.
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Put

ψn(x1) := x1(1− x1)X(1)
n (x1).

we note that ψn(0) = ψn(1) = 0 and

L∗2ψn(x1) = −λ(1)n ψn(x1).

it follows [
ut, ψn(x1)

]
2

=
[
u, L∗2(ψn(x1))

]
2

= −λ(1)n
[
u, ψn(x1)

]
2

Therefore

ψn(p1)e−λ
(1)
n t =

[
u(0), ψn(x1)

]
2
e−λ

(1)
n t =

[
u, ψn(x1)

]
2

=
(
u2, ψn(x1)

)
2

+
(
u1, ψn(x1)

)
1

+ (u0, ψn(x1))0

=
∑
m≥0

∑
|α|=m

c(2)m,α

(
X(2)
m,α, ψn(x1)

)
2
e−λ

(2)
m t +

∑
m≥0

(
am(x1), ψn(x1)

)
1
e−λ

(1)
m t

where am(x1) := a0,1m (x1) + a1,2m (x1) and note that ψn(0) = ψn(1) = 0

=
(
a0(x1), ψn(x1)

)
1
e−λ

(1)
0 t +

∑
m≥1

{(
am(x1), ψn(x1)

)
1

+
∑

|α|=m−1

c(2)m,α

(
X(2)
m,α, ψn(x1)

)
2

}
e−λ

(1)
m t

(because of λ(1)m = λ
(2)
m−1)

We obtain by equating the coefficients in terms of e−λt

(
a0(x1), ψn(x1)

)
1

= δ0,nψn(p1)(
am(x1), ψn(x1)

)
1

= δm,nψn(p1)−
∑

|α|=m−1

c
(2)
m−1,α

(
X

(2)
m−1,α, ψn(x1)

)
2
, if m ≥ 1

(3.4)

Remark 3.1. the coefficients of u2 occur in the representation of the coefficients of
u1 because of the probability flux.

Similarly because of

L∗2(x1) = 0,[
ut, x

1
]
2

=
[
u, L∗2(x1)

]
2

= 0.

We have

p1 =
[
u(0), x1

]
2

=
[
u, x1

]
2

=
(
u2, x

1
)
2

+
(
u1, x

1
)
1

+ (u0, x
1)0



WRIGHT-FISHER MODEL 21

Thus,

u10(p; t) = p1 −
∑
m≥0

∑
|α|=m

c(2)m,α(p)
(
X(2)
m,α, x

1
)
2
e−λ

(2)
m t

−
∑
m≥0

(
a0,1m , x1

)
1
e−λ

(1)
m t

−
∑
m≥0

(
a1,2m , x1

)
e−λ

(1)
m t

= p1 −
(
a0(x1), x1

)
1
e−λ

(1)
0 t −

∑
m≥1

{(
am(x1), x1

)
1

+
∑

|α|=m−1

c
(2)
m−1,α

(
X

(2)
m−1,α, x

1
)
2

}
e−λ

(1)
m t.

The expectation for the absorption time of having only 1 alleles is

E(T 1
3 (p)) =

∫ ∞
0

tφ(t,p)dt

=

∫ ∞
0

t
∂

∂t

(
u10(p; t) + u20(p; t) + u00(p; t)

)
dt.

We first calculate the first term; the other terms will be obtained similarly. To do
this, we expand x1 by ψn(x1)

x1 =
∑
n≥0

dnψn(x1).

We construct a sequence of entropy functions on [0, 1] as follows

• E0(x) = −x
• Er(x) is the unique solution of the boundary value problem{

L∗1(Er(x)) = −rEr−1(x)

Er(0) = Er(1) = 0

By some simple calculations, we obtain some first entropy functions

(1) E0(x) = −x
(2) E1(x) = −2(1− x) log(1− x)
(3) E2(x) = −8xz(x) + 8(1− x) log(1− x)
(4) E3(x) = 48(1− x)u(x) + 96[xz(x)− (1− x) log(1− x)]

where

z(x) =

∫ 1

x

ln(1− y)

y
dy, u(x) =

∫ 1

x

z(y)

1− y
dy

Lemma 3.2. The entropy functions satisfy(
X

(1)
m , x1

)
1

λ
(1)
m

=
(
E1(x1), X(1)

m

)
1
,

2
(
X

(1)
m , x1

)
1(

λ
(1)
m

)2 =
(
E2(x1), X(1)

m

)
1
,
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and more generally,

r!
(
X

(1)
m , x1

)
1(

λ
(1)
m

)r =
(
Er(x

1), X(1)
m

)
1
, r ≥ 2.

Proof. We have

λ(1)m

(
E1(x1), X(1)

m

)
1

=
(
E1(x1), λ(1)m X(1)

m

)
1

=
(
E1(x1),−L1

(
X(1)
m

))
1

=
(
− L∗1

(
E1(x1)

)
, X(1)

m

)
1
, because of E1(0) = E1(1) = 0

=
(
− L∗1

(
E1(x1)

)
, X(1)

m

)
1

=
(
x1, X(1)

m

)
1
.

Similarly we have

(
λ(1)m

)2(
E2(x1), X(1)

m

)
1

=λ(1)m

(
E2(x1), λ(1)m X(1)

m,α

)
1

=λ(1)m

(
E2(x1),−L1

(
X(1)
m,α

))
1

=λ(1)m

(
− L∗1

(
E2(x1)

)
, X(1)

m

)
1
, because of E2(0) = E2(1) = 0

=λ(1)m

(
− L∗1

(
E2(x1)

)
, X(1)

m

)
1

=λ(1)m

(
2E1(x1), X(1)

m

)
1

=
(

2x1, X(1)
m

)
1
, because of the above calculation.

The proof for all r is similar. �

From the Lemma, we have the expansion of E1(x1)

E1(x1) =
∑
n≥0

dn

λ
(1)
n

ψn(x1).
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Therefore we have∫ ∞
0

t
∂u10(p; t)

∂t
dt

=
(
a0(x1), x1

)
1

∫ ∞
0

tλ
(1)
0 e−λ

(1)
0 tdt

+
∑
m≥1

{(
am(x1), x1

)
1

+
∑

|α|=m−1

c
(2)
m−1,α

(
X

(2)
m−1,α, x

1
)
2

}∫ ∞
0

tλ(1)m e−λ
(1)
m tdt

=

(
a0(x1), x1

)
1

λ
(1)
0

+
∑
m≥1

(
am(x1), x1

)
1

+
∑
|α|=m−1 c

(2)
m−1,α

(
X

(2)
m−1,α, x

1
)
2

λ
(1)
m

=
∑
n≥0

dn

{(
a0(x1), ψn(x1)

)
1

λ
(1)
0

+
∑
m≥1

(
am(x1), ψn(x1)

)
1

+
∑
|α|=m−1 c

(2)
m−1,α

(
X

(2)
m−1,α, ψn(x1)

)
2

λ
(1)
m

}

=
∑
n≥0

dn

{
δ0,nψn(p1)

λ
(1)
0

+
∑
m≥1

δm,nψn(p1)

λ
(1)
m

}
, because of (3.4)

=
∑
m≥0

dm

λ
(1)
m

ψm(p1)

= E1(p1).

Thus, we have

E(T 1
3 (p)) = E1(p1) + E1(p2) + E1(p3).

Remark 3.3. We can obtain the r-th moments of this absorption time by the same
method, i.e.

E(T 1
3 (p))r = Er(p

1) + Er(p
2) + Er(p

3).

3.2. The probability distribution of the absorption time for having k + 1
alleles. We note that XTk+1

n+1 (p)
is a random variable valued in Vk. We consider

the probability that this random variable takes its value in V
(i0,...,ik)
k , i.e., the

probability of the population at the first time having at most k+1 alleles to consist
precisely of the k + 1 alleles {Ai0 , . . . , Aik}. Let gk be a function of k variables
defined inductively by

g1(p1) =p1;

g2(p1, p2) =
p1

1− p2
g1(p2) +

p2

1− p1
g1(p1);

gk+1(p1, . . . , pk+1) =

k+1∑
i=1

pi

1−
∑
j 6=i

pj
gk(p1, . . . , pi−1, pi+1, . . . , pk+1)

Then we shall have

Theorem 3.4.

P
(
XTk+1

n+1 (p)
∈ V (i0,...,ik)

k

)
= gk+1(pi0 , . . . , pik).
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Proof. Method 1: By proving that

P
(
XTk+1

n+1 (p)
∈ V (i0,...,ik)

k |XTk
n+1(p)

∈ V (i1,...,ik)
k

)
=

pi0

1− pi1 − . . .− pik
.

and elementary combinatorial arguments, we immediately obtain the result (see
[19])

Method 2: By proving that it is the unique solution of the classical Dirichlet
problem 

(L
(i0,...,ik)
k )∗v(p) = 0 in Vk

lim
p→q

v(p) = 1, q ∈ V (i0,...,ik)
k ,

lim
p→q

v(p) = 0, q ∈ ∂Vk\V (i0,...,ik)
k \Vk−1.

�

3.3. The probability of having exactly k+1 alleles. The probability of having
only the particular allele Ai is (see [12])

P(Xt ∈ V (i)
0 |X0 = p) =

∫
V

(i)
0

u
(i)
0 (x, t)dµ

(i)
0 (x)

= u
(i)
0 (ei, t)

= pi −
n∑
k=1

∑
m(k)≥0

∑
l(k)≥0

∑
|α(k)|=l(k)

c
(k)

m(k),l(k),α(k)

(
xi, X

(k)

l(k),α(k)

)
k
e
−λ(k)

m(k)
t
.

The probability of having exactly the (k + 1) allele {A0, . . . , Ak} (the coexistence
probability of alleles {A0, . . . , Ak}) is (see [16], [20])

P(Xt ∈ V (i0,...,ik)
k |X0 = p) =

∫
V

(i0,...,ik)

k

u
(i0,...,ik)
k (x, t)dµ

(i0,...,ik)
k (x)

=
∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,α

 ∫
V

(i0,...,ik)

k

X(k)
m,α(x)dµ

(i0,...,ik)
k (x)

 e−λ
(k)
m t.

3.4. The αth moments. The αth-moments are (see [15, 16, 17])

mα(t) =[u,xα]n

=

∫
Vn

xαu(x, t)dµ(x)

=

n∑
k=0

∑
(i0,...,ik)∈Ik

∫
V

(i0,...,ik)

k

xαu
(i0,...,ik)
k (x, t)dµ

(i0,...,ik)
k (x).
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3.5. The probability of heterogeneity. The probability of heterogeneity is (see
[16])

Ht =(n+ 1)! [u,wn]n

=(n+ 1)! (un, wn)n (because wn vanishes on the boundary)

=(n+ 1)!
( ∑
m≥0

∑
|α|=m

c(n)m,αX
(n)
m,αe

−λ(n)
m,αt, wnX

(n)
0,0

)
n

=(n+ 1)!
(
c
(n)
0,0X

(n)
0,0 , wnX

(n)
0,0

)
n
e−λ

(n)
0,0t (because of the orthogonality of the eigenvectors X(n)

m,α)

=H0 e
− (n+1)(n+2)

2 t

3.6. The rate of loss of one allele in a population having k+ 1 alleles. We
have the solution of the form

u =

n∑
k=0

uk(x, t)χVk
(x)

The rate of loss of one allele in a population with (k+1) alleles equals the rate of
decrease of

uk(x, t) =
∑
m≥0

∑
l≥0

∑
|α|=l

c
(k)
m,l,αX

(k)
l,α (x)χVk

(x)e−λ
(k)
m t.

which is λ
(k)
0 = k(k+1)

2 . This means that the rate of loss of alleles in the population
decreases as k gets smaller in the course of the process (see [10], [13], [16]).

Conclusion

We have developed a new global solution concept for the Fokker-Planck equation
associated with the Wright-Fisher model, and we have proved the existence and
uniqueness of this solution (Theorem 2.9). From this solution, we can easily read
off the properties of the considered process, like the absorption time of having
k + 1 alleles, the probability of having exactly k + 1 alleles, the αth moments, the
probability of heterogeneity, and the rate of loss of one allele in a population having
k + 1 alleles.

Acknowlegement

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement n◦ 267087.



26 TAT DAT TRAN, JULIAN HOFRICHTER, JÜRGEN JOST
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