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1. Introduction

The Wright-Fisher model, that is, the random genetic drift model devel-
oped by Fisher [2] and by Wright [12] and mathematically solved by Kimura
[6, 7] is the basic stochastic model in population genetics (see for instance
[1]). The discrete model is concerned with the evolution of the probabilities
between non-overlapping generations in a population of fixed size of two
or more alleles obtained from random sampling in the parental generation.
This basic model thus describes random genetric drift, and additional biolog-
ical mechanisms like mutation, selection, or a spatial population structure
can then be superposed. As such, the model works with a finite popula-
tion in discrete time, but the mathematical analysis of Kimura and others

Date: February 26, 2014.

1



2 TAT DAT TRAN, JULIAN HOFRICHTER, JÜRGEN JOST

turned to its diffusion approximation suggested by Kolmogorov. This diffu-
sion approximation works with an infinite population in continuous time. It
consists of two partial differential equations of parabolic type for the prob-
ability density function for the various alleles, the so-called forward and
backward Kolmogorov equations. In [10, 11], we have presented a general
solution scheme for the associated diffusion process that keeps track of the
population across possible allele losses. With our scheme, all basic quanti-
ties of interest, like expected times of allele losses, can be readily derived.
In other words, we derive a global solution, in contrast to the local ones of
Kimura and others. A crucial ingredient in our scheme are the equations for
the moments of the probability distribution.

A somewhat simpler model than the Wright-Fisher model that however
leads to the same diffusion approximation is the Moran model, a simple
birth-death process in continuous time, see [1]. In the Wright-Fisher model,
when creating the next generation, for each new member of the population
a parent in the previous generation is randomly chosen. This has the con-
sequence that one and the same individual in that parent generation could
produce several offspring. In the Moran model, in contrast, a randomly cho-
sen individual gives birth to a clone, and then another random individual in
the population is killed to keep the population size constant. Thus, here, in
each step, only one offspring is produced.

As mentioned, the Kolmogorov diffusion equations are concerned with as-
ymptotic quantities, and in particular, do not account for small population
size effects. Therefore, Houchmandzadeh and Vallade [4] have proposed to
use the master equation for the probability distribution to directly derive
a partial differential equation for the probability generating function of the
process. This approach can produce exact formulae even for finite popula-
tions. In [4], this has been carried out for the Moran model with two alleles,
not only for the basic model of random genetic drift, but also including the
case of selection.

In the present paper, we derive a partial differential equation for the
exponential moment generating function of the Wright-Fisher model with
arbitrarily many alleles, utilizing our scheme of moment equations men-
tioned above. From this scheme, we can then also easily rederive formulae
for quantities of interest like fixation probabilities. In order to facilitate the
understanding, we shall always first treat the simplest case of two alleles
and then present the case of arbitrarily many alleles.

2. Master equation

In this section we shall use the master equations that express the evolution
of the probability distribution for the alleles in the population in terms of
the transition probabilities, in order to derive differential equations for the
moments of the process.
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2.1. 2 alleles. Consider a continuous time stochastic process {Xt}t≥0 with
values in

S2N
1 =

{
0,

1

2N
, . . . , 1

}
,

with transition rates B(k, j) from state k to j specified below.
The master equation for the probability function

P (t, i, j) = P

(
Xt =

j

2N

∣∣∣∣∣X0 =
i

2N

)
will be

(2.1)
∂P (t, i, j)

∂t
=

2N∑
k=0

P (t, i, k)B(k, j), ∀i, j = 0, 2N,

with the initial values P (0, i, j) = δij . In matrix form, this reads as

(2.2)

{
∂P (t)
∂t = P (t)B, ∀t ≥ 0

P (0) = I

This is a linear problem (2.2), with the unique solution P (t) = eBt. B and
P (t) then commute, and therefore we also have

(2.3)
∂P (t, i, j)

∂t
=

2N∑
k=0

P (t, k, j)B(i, k), ∀j = 0, 2N.

For B, we consider two cases
(2.4)
2N∑
k=0

( k

2N

)n
B(i, k) =

n(n− 1)

2

(( i

2N

)n−1
−
( i

2N

)n)
, ∀n ≥ 0; i = 0, 2N

and

(2.5) B(i, k) =

(
2N

k

)( i

2N

)k(
1− i

2N

)2N−k
− δi,k, i, k = 0, 2N

Remark 2.1. • Case (2.5) corresponds to the Wright-Fisher model,
more precisely a continuous time Wright-Fisher model with discrete
states, whereas the implicit scheme (2.4) will get rid off certain error
terms for finite population size.
• In (2.4), which has been directly constructed from the moment equa-

tion, the coefficients B(i, k) could become negative (see for example
[3] for such a generalization of the master equation concept).
• Since in general the transition rates B(i, j) are nonzero for any pair
i, j, in our master equations, starting from state i we can directly
access any other state with positive probability. Therefore, for the
probability generating function, we would get an 2N−order partial
differential equation which may be hard to solve. In contrast, for
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the moment generating function, we shall get a second order partial
differential equation which can be solved by a simple expansion.

We shall prove that in the limit of the population size 2N → ∞, these
master equations will produce the classical Wright-Fisher diffusion equa-
tions. Moreover we shall prove that these master equations satisfy the mo-
ment formulae, exactly for (2.4) and approximately for (2.5). Therefore
we can apply the moment generating function technique to calculate the
conditional probability function.

Being interested in the case of large 2N , we set

x =
i

2N
, y =

j

2N
, z =

k

2N
, dx = dy = dz =

1

2N
and

p(t, x, y)dy = P (t, i, j), b(x, y) = B(i, j).

Then, we obtain from (2.3)

∂p(t, x, y)

∂t
=
∑
z

p(t, z, y)b(x, z), ∀y ∈ S2N
1 ,

Now we expand the function p(t, z, y) in z at x and obtain

p(t, z, y) =
∑
n≥0

1

n!

∂np(t, x, y)

∂xn
(z − x)n.

(1) In the case of (2.4), we obtain∑
z

znb(x, z) =
n(n− 1)

2

(
xn−1 − xn

)
, ∀n ≥ 0; x ∈ S2N

1 .

It follows by induction that

(2.6)


∑
z

(z − x)nb(x, z) = 0, n 6= 2∑
z

(z − x)2b(x, z) = x(1− x).

Then we obtain

∂p(t, x, y)

∂t
=
∑
z

p(t, z, y)b(x, z)

=
∑
z

{∑
n≥0

1

n!

∂np(t, x, y)

∂xn
(z − x)n

}
b(x, z)

=
x(1− x)

2

∂2p(t, x, y)

∂x2

(2.7)

which is exactly the classical Wright-Fisher diffusion equation.
(2) In the case of (2.5), we obtain∑
z

znb(x, z) =
n(n− 1)

4N

(
xn−1 − xn

)
+O

( 1

N2

)
, ∀n ≥ 0; x ∈ S2N

1 .
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It follows by induction that

(2.8)


∑
z

(z − x)nb(x, z) = O
(

1
N2

)
, n 6= 2∑

z
(z − x)2b(x, z) = x(1−x)

2N .

Then we obtain

∂p(t, x, y)

∂t
=
∑
z

p(t, z, y)b(x, z)

=
∑
z

{∑
n≥0

1

n!

∂np(t, x, y)

∂xn
(z − x)n

}
b(x, z)

=
x(1− x)

4N

∂2p(t, x, y)

∂x2
+O

( 1

N2

)
(2.9)

which is an approximation of the Wright-Fisher diffusion equation.

Now we shall use the master equation (2.1) to derive the moment equation.
In fact, the n− th moment of this conditional probability function is

mn(t) :=

2N∑
j=0

(
j

2N

)n
P (t, i, j).

Therefore we have

ṁn(t) =
∑
y

yn
∂p(t, x, y)

∂t

1

2N

=
∑
y

yn
∑
z

p(t, x, z)b(z, y)
1

2N
by the Master equation (2.1)

=
∑
z

(∑
y

ynb(z, y)

)
p(t, x, z)

1

2N

=
∑
z

n(n− 1)

2
(zn−1 − zn)p(t, x, z)

1

2N
by the formula for b from (2.4)(

=
∑
z

n(n− 1)

4N
(zn−1 − zn)p(t, x, z)

1

2N
+O

( 1

N2

)
by the formula for b from (2.5)

)

=− n(n− 1)

2
mn(t) +

n(n− 1)

2
mn−1(t) in the case of (2.4)(

= −n(n− 1)

4N
mn(t) +

n(n− 1)

4N
mn−1(t) +O

( 1

N2

)
in the case of (2.5)

)
.

(2.10)
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2.2. K + 1 alleles. Consider a continuous time stochastic process {Xt}t≥0

with values in

S2N
K :=

{
i

2N
=
( i1

2N
, · · · , iK

2N

)
: iu ∈ N0 for all u = 1,K, and

K∑
u=1

iu ≤ 2N

}
.

To simplify the notation, we also put

Ω2N
K := 2NS2N

K =

{
i =

(
i1, · · · , iK

)
: iu ∈ N0 for all u = 1,K, and

K∑
u=1

iu ≤ 2N

}
.

The master equation for the conditional probability function

P (t, i, j) = P

(
Xt =

j

2N

∣∣∣∣∣X0 =
i

2N

)
then is

(2.11)
∂P (t, i, j)

∂t
=

∑
k∈Ω2N

K

P (t, i,k)B(k, j), ∀i, j ∈ Ω2N
K ,

with initial values P (0, i, j) = δij. In matrix form, we have

(2.12)

{
∂P (t)
∂t = P (t)B, ∀t ≥ 0

P (0) = I

As for 2 alleles, the problem (2.12) has a unique solution P (t) = eBt, and B
and P (t) commute, and therefore we also have

(2.13)
∂P (t, i, j)

∂t
=

∑
k∈Ω2N

K

P (t,k, j)B(i,k), ∀i, j ∈ Ω2N
K ,

where B is defined by the formulae

∑
k∈Ω2N

K

( k

2N

)α
B(i,k) = −|α|(|α| − 1)

2

( i

2N

)α
−

K∑
u=1

αu(αu − 1)

2

( i

2N

)α−eu
,

∀α ∈ NK0 ; i ∈ Ω2N
K .

(2.14)

Again, when we work with the correct coefficients B(i,k) as in (2.5), we
get some correction of order 1

N2 which, of course, can be asymptotically
neglected as before.

We shall prove that in the limit of the population size 2N → ∞, this
master equation will yield the Wright-Fisher diffusion equation. Again, this
master equation will satisfy the moment formulae and we can apply the mo-
ment generating function technique to calculate the conditional probability
function.
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In fact, when 2N is sufficiently large, we set

x =
i

2N
, y =

j

2N
, z =

k

2N
, dxu = dyu = dzu =

1

2N

and

p(t,x,y)
1

2N
= P (t, i, j), b(x,y) = B(i, j).

Then, we obtain from (2.13)

∂p(t,x,y)

∂t
=
∑
z

p(t, z,y)b(x, z), ∀y ∈ S2N
K ,

Now we expand the function p(t, z,y) in z at x to obtain

p(t, z,y) =
∑
α

1

α!

∂αp(t,x,y)

∂xα
(z− x)α.

We obtain from the formulae (2.14) that

∑
z

zαb(x, z) = −|α|(|α| − 1)

2
xα+

K∑
u=1

αu(αu − 1)

2
xα−eu , ∀α ∈ NK0 ; x ∈ S2N

K .

It follows by induction that

(2.15)


∑
z

(z− x)αb(x, z) = 0, |α| 6= 2∑
z

(z− x)eu+evb(x, z) = xu(δuv − xv), u, v = 1,K.

Then we obtain

∂p(t,x,y)

∂t
=
∑
z

p(t, z,y)b(x, z)

=
∑
z

{ ∑
α∈NK

0

1

α!

∂αp(t,x,y)

∂xα
(z− x)α

}
b(x, z)

=
K∑

u,v=1

xu(δuv − xv)
2

∂2p(t,x,y)

∂xu∂xv

(2.16)

which is exactly the Wright-Fisher diffusion equation for K + 1 alleles.
Now we shall prove that the master equation (2.1) yields the moment

equations.
In fact, the α− th moment of this conditional probability function is

mα(t) :=
∑

j∈Ω2N
K

(
j

2N

)α

P (t, i, j).
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Therefore we have

ṁα(t) =
∑
y

yα∂p(t,x,y)

∂t

1

2N

=
∑
y

yα
∑
z

p(t,x, z)b(z,y)
1

2N
due to the Master equation (2.11)

=
∑
z

(∑
y

yαb(z,y)

)
p(t,x, z)

1

2N

=
∑
z

(
− |α|(|α| − 1)

2
zα +

K∑
u=1

αu(αu − 1)

2
zα−eu)

)
p(t,x, z)

1

2N

by the formulae for b from (2.14)

=− |α|(|α| − 1)

2
mα(t) +

K∑
u=1

αu(αu − 1)

2
mα−eu(t).

(2.17)

3. Moment generating functions

Definition 3.1. (1) Let X be a random variable with discrete values
with probability distribution function p(x) = P

[
X = x

]
. The (ex-

ponential) moment generating function of the random variable X
is

H(s) := E
[
esX
]

=
∑
x

exsp(x)

(defined for those values of s ∈ R for which the sum converges).
(2) Let X = (X1, · · · , XK) be a tuple of random variables with the joint

probability distribution function p(x1, . . . , xK) = P
[
X1 = x1, . . . , XK =

xK
]
. The (exponential) moment generating function of X then is

H(s1, . . . , sK) := E
[
e

K∑
i=1

siX
i]

=
∑

x1,...,xK

e

∑
i
six

i

p(x1, . . . , xK) =
∑
x

es·xp(x).

(defined for those values of s ∈ RK for which the sum converges).

Here, the moments of X can directly be computed from the derivatives
of H(s) at s = 0,

E
[
Xα
]

=
∂αH(s)

∂sα

∣∣∣
s=0

.

We shall now derive the (second order) partial differential equation for the
(exponential) moment generating functions of our Markov process Xt.
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3.1. 2 alleles. The exponential moment generating function is

H(t; s) =E[esXt ]

=
∑
n≥0

sn

n!
E[(Xt)

n]

=
∑
n≥0

sn

n!
mn(t),

(3.1)

where mn(t) is the n− th moment of Xt around 0.
From the equation (2.10) for the moments

ṁn(t) = −n(n− 1)

2
mn(t) +

n(n− 1)

2
mn−1(t)

we obtain

∂H(t; s)

∂t
=
∑
n≥0

ṁn(t)
sn

n!

=
∑
n≥0

[
− n(n− 1)

2
mn(t) +

n(n− 1)

2
mn−1(t)

]
sn

n!

=
∑
n≥2

−1

2
mn(t)

sn

(n− 2)!
+
∑
n≥2

1

2
mn−1(t)

sn

(n− 2)!

=− s2

2

∑
n≥0

mn+2(t)
sn

n!
+
s2

2

∑
n≥0

mn+1(t)
sn

n!

=− s2

2

∂2

∂s2
H(t; s) +

s2

2

∂

∂s
H(t; s).

(3.2)

We now consider solutions of such equations. First, we solve the equation
(3.2) by separation of variables. With H(t; s) = T (t)S(s), the equation
becomes

T ′(t)

T (t)
=
−s2S′′(s) + s2S′(s)

2S
= −λ.

It follows that T (t) = Ce−λt and S(s) satisfies the ODE

(3.3) − x2yxx + x2yx = −2λy.

By putting y(x) =
∑
n≥0

anx
n and equating coefficients in the ODE (3.3) we

obtain:

(1) If

λ 6∈ Λ :=
{
µn =

n(n− 1)

2
, n ∈ N

}
then the ODE (3.3) has a unique solution y(x) = 0;

(2) If λ = µ0 then y0(x) = a
(0)
0 := 1;
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(3) If λ = µk for some k ≥ 1 then the solution is of the form

(3.4) yk(x) =
∑
n≥0

a(k)
n xn

where

(3.5) a(k)
n =


0, if n < k

1, if n = k
n−1

2(µn−µk) · · ·
k

2(µk+1−µk) , if n ≥ k + 1.

Therefore the solution of (3.2) is

H(t; s) =
∑
k≥0

ckyk(s)e
−µkt

=
∑
k≥0

ck

(∑
n≥k

a(k)
n sn

)
e−µkt

=
∑
n≥0

(
n!

n∑
k=0

cka
(k)
n e−µkt

)
sn

n!
.

(3.6)

This yields the moment formula

mn(t) = n!

n∑
k=0

cka
(k)
n e−µkt =

n∑
k=0

ckA
(k)
n e−µkt.

The coefficients ck can be calculated from the initial condition( i

2N

)n
:= pn = mn(0) =

n∑
k=0

ckA
(k)
n , ∀n ≥ 0.

In fact, by representing these equalities in matrix form

(3.7)


1 0 · · · 0 0

A
(0)
1 1 · · · 0 0
...

...
. . .

...

A
(0)
n−1 A

(1)
n−1 · · · (n− 1)! 0

A
(0)
n A

(1)
n · · · A

(n−1)
n n!




c0

c1
...

cn−1

cn

 =


1
p
...

pn−1

pn

 ,

it follows that

(3.8)


c0

c1
...

cn−1

cn

 =


1 0 · · · 0 0

A
(0)
1 1 · · · 0 0
...

...
. . .

...

A
(0)
n−1 A

(1)
n−1 · · · (n− 1)! 0

A
(0)
n A

(1)
n · · · A

(n−1)
n n!



−1 
1
p
...

pn−1

pn

 .
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Remark 3.2. We can easily check some instances: Because of c0 = 1; c1 =

p; c2 = p2−p
2 ; c3 = p3−3/2p2+1/2p

6 then m0(t) = 1;m1(t) = p;m2(t) = p+(p2−
p)e−t;m3(t) = p+ 3/2(p2 − p)e−t + (p3 − 3/2p2 + 1/2p)e−3t.

This also yields the fixation probability at time t is (see also [10])

P (t, i, 2N) = lim
n→∞

mn(t)

= lim
n→∞

n∑
k=0

ckA
(k)
n e−µkt

=p+ lim
n→∞

n∑
k=2

ckA
(k)
n e−µkt,

(3.9)

and the eventual fixation probability

P (∞, i, 2N) = lim
t→∞

(
p+ lim

n→∞

n∑
k=2

ckA
(k)
n e−µkt

)

=p+ lim
n→∞

lim
t→∞

n∑
k=2

ckA
(k)
n e−µkt

=p.

(3.10)

Similarly, by calculating for the other allele (Yt = 1−Xt), we obtain the
extinction probability at time t is (see also [10])

P (t, i, 0) = lim
n→∞

m′n(t)

=1− p+ lim
n→∞

n∑
k=0

ckA
′(k)
n e−µkt

=1− p+ lim
n→∞

n∑
k=2

ckA
′(k)
n e−µkt,

(3.11)

and the eventual extinction probability

P (∞, i, 0) = lim
t→∞

(
1− p+ lim

n→∞

n∑
k=2

ckA
(k)
n e−µkt

)
=1− p.

(3.12)

Denote by T 1
2 (p) = inf {t > 0 : Xt ∈ {0, 1}|X0 = p} the absorption time.

Then we have
P(T 1

2 (p) ≤ t) = P (t, i, 0) + P (t, i, 2N).

Therefore the expectation of the absorption time is

E(T 1
2 (p)) =

∫ ∞
0

t
∂

∂t

(
P (t, i, 0) + P (t, i, 2N)

)
dt

=− lim
n→∞

n∑
k=2

ck(An +A′n)(k) 1

µk
.
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Moreover we have

(3.13)

2N∑
j=0

(
j

2N

)n
P (∞, i, j) = lim

t→∞
mn(t) =

{
p, for n ≥ 1

1, for n = 0

Therefore we obtain the eventual probability

P (∞, i, j) = pδ2N,j + (1− p)δ0,j .

The probability of heterogeneity is (also see [10])

Ht :=2
2N∑
j=0

j

2N

(
1− j

2N

)
P (t, i, j)

=2(m1(t)−m2(t))

=2

(
p−

(
p+ c2A

(2)
2 e−t

))
=2p(1− p)e−t.

(3.14)

3.2. K + 1 alleles. We can apply the same scheme for any K. The expo-
nential generating function now is

H(t; s1, . . . , sK) =
∑
α

mα(t)
sα

α!
,

where mα(t) is the α− th moment of Xt around 0.
From (2.17), i.e.,

(3.15) ṁα(t) = −|α|(|α| − 1)

2
mα(t) +

K∑
i=1

αi(αi − 1)

2
mα−ei(t),
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we obtain

∂H(t; s)

∂t
=
∑
α

ṁα(t)
sα

α!

=
∑
α

[
− |α|(|α| − 1)

2
mα(t) +

K∑
i=1

αi(αi − 1)

2
mα−ei(t)

]
sα

α!

=
∑
α

(
−
∑

i 6=j αiαj

2
−
∑

i αi(αi − 1)

2

)
mα(t)

sα

α!

+
∑
α

K∑
i=1

αi(αi − 1)

2
mα−ei(t)

sα

α!

=− 1

2

∑
i 6=j

sisj
∂2H(t, s)

∂si∂sj
− 1

2

∑
i

s2
i

∂2H(t, s)

∂s2
i

+
K∑
i=1

1

2

∑
i

s2
i

∂H(t, s)

∂si

=− 1

2

K∑
i,j=1

sisj
∂2

∂si∂sj
H(t; s) +

K∑
i=1

s2
i

2

∂

∂si
H(t; s)

(3.16)

Separating variables as above, T (t) = Ce−λt and S(s) satisfies the PDE

(3.17) − 1

2

K∑
i,j=1

sisj
∂2

∂si∂sj
y(s) +

K∑
i=1

s2
i

2

∂

∂si
y(s) = −λy(s).

By putting y(s) =
∑
α
aαsα and equating coefficients in the PDE (3.17)

we obtain:

(1) If

λ 6∈ Λ :=
{
µn =

n(n− 1)

2
, n ∈ N

}
then the PDE (3.17) has a unique solution y(s) = 0;

(2) If λ = µ0 then y0(x) = a
(0)
0 := 1;

(3) If λ = µk for some k ≥ 1 then there are
(
k
2

)
independent solutions

of the form

(3.18) yk,α(s) =
∑
β

a
(k)
α,βsβ, ∀|α| = k.

where

(3.19) a
(k)
α,β =


0, if |β| < k

δαβ , if |β| = k

inductively defined by (3.20) below, if |β| ≥ k + 1
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(3.20) a
(k)
α,β =

K∑
i=1

(βi − 1)a
(k)
α,β−ei

|β|(|β| − 1)− k(k − 1)
.

Therefore the solution of equation (3.17) is

H(t; s) =
∑
k≥0

∑
|α|=k

ck,αyk,α(s)e−µkt

=
∑
k≥0

∑
|α|=k

ck,α

(∑
β

a
(k)
α,βsβ

)
e−µkt

=
∑
β

( |β|∑
k=0

∑
|α|=k

ck,αa
(k)
α,βe

−µkt

)
sβ

=
∑
β

β!

( ∑
|α|≤|β|

c|α|,αa
(|α|)
α,β e

−µ|α|t

)
sβ

β!

(3.21)

This yields the moment formula

mβ(t) = β!
∑
|α|≤|β|

c|α|,αa
(|α|)
α,β e

−µ|α|t =
∑
|α|≤|β|

c|α|,αA
(|α|)
α,β e

−µ|α|t

where the coefficients c|α|,α can be computed from the initial condition

pβ = mβ(0) =
∑
|α|≤|β|

c|α|,αA
(|α|)
α,β , ∀β.

Similarly to the 2 alleles case, we immediately obtain some interesting
quantities

The fixation probabilities at time t is (k = 0, n with e0 = (0, . . . , 0) and
p0 = 1− p1 − · · · − pK)

P (t, i, 2Nek) = lim
n→∞

mnek(t)

= lim
n→∞

n∑
|α|=0

c|α|,αA
(|α|)
α,neke

−µ|α|t

=pk + lim
n→∞

n∑
|α|=2

c|α|,αA
(|α|)
α,neke

−µ|α|t,

(3.22)

and the eventual fixation probability

P (∞, i, 2Nek) = lim
t→∞

(
pk + lim

n→∞

n∑
|α|=2

c|α|,αA
(|α|)
α,neke

−µ|α|t

)
=pk.

(3.23)

The moments of the sojourn and absorption times were derived by Nagy-
laki [9] for two alleles, and by Lessard and Lahaie [8] in the multi-allele case.
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We denote by T k+1
K+1(p) = inf

{
t > 0 : Xt ∈ V k|X0 = p

}
the first time when

the population has (at most) k+ 1 alleles. T k+1
K+1(p) is a continuous random

variable valued in [0,∞) and we denote by φ(t, p) its probability density
function. It is easy to see that V k is invariant under the process (Xt)t≥0,
i.e. if Xs ∈ V k then Xt ∈ V k for all t ≥ s (once an allele is lost from the
population, it can never again be recovered). We have the equality

(3.24) P(T 1
K+1(p) ≤ t) =

K∑
k=0

P (t, i, 2Nek).

Therefore the expectation of the absorption time is

E(T 1
2 (p)) =

∫ ∞
0

t
∂

∂t

( K∑
k=0

P (t, i, 2Nek)
)
dt

=− lim
n→∞

n∑
|α|=2

c|α|,α

K∑
k=0

A
(|α|)
α,nek

1

µ|α|
.

The probability of heterogeneity is (see [11])

Ht =(K + 1)!
∑

j∈Ω2N
K

( j1
2N

)
· · ·
( jK

2N

)(
1−

( j1
2N

)
− · · · −

( jK
2N

))
P (t, i, j)

=(K + 1)!
(
m11(t)−

K∑
k=1

m11+ek(t)
)
,

(where 11 = (1, · · · , 1), ek = (0, · · · , 1, · · · , 0).)

We have from the moment equation{
ṁ11(t) = −K(K−1)

2 m11(t)

m11(0) = p1 . . . pK ,

it follows m11(t) = p1 . . . pKe
−K(K−1)

2
t.

Moreover {
ṁ11+ek(t) = − (K+1)K

2 m11+ek(t) +m11(t)

m11+ek(0) = p1 . . . pK × pk,

it follows m11+ek(t) = e−
(K+1K)

2
tp1 . . . pK

(
pk + eK−1

K

)
.
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Therefore the probability of heterogeneity is

Ht =(K + 1)!
(
m11(t)−

K∑
k=1

m11+ek(t)
)
,

=(K + 1)!

(
p1 . . . pKe

−K(K−1)
2

t −
K∑
k=1

e−
(K+1K)

2
tp1 . . . pK

(
pk +

eK − 1

K

))
=(K + 1)! p1 . . . pK(1− p1 − · · · − pK)e−

(K+1)K
2

t

=H0e
− (K+1)K

2
t.
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