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A version of the H-LU factorization is introduced, based on the individual compu-
tational tasks occurring during the block-wise H-LU factorization. The dependencies
between these tasks form a directed acylic graph, which is used for efficient scheduling
on parallel systems. The algorithm is especially suited for many-core processors
and shows a much improved parallel scaling behavior compared to previous H-LU
factorization algorithms.
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1 Introduction
Hierarchical matrices (H-matrices), introduced in [11], are a powerful tool to represent dense
matrices coming from integral equations or partial differential equations in a hierarchical, block-
oriented, data-sparse way with log-linear memory costs. Furthermore, a matrix arithmetic,
e.g., matrix addition, multiplication, inversion and LU factorization, is possible with log-linear
computation costs (see [7]).

In [15] this H-arithmetic was modified to use parallel, shared memory machines. The basic
building block of this parallel H-arithmetic was the H-matrix multiplication, which relied on the
fact that all per-sub-block computations could be collected and executed in parallel for all matrix
blocks.
H-inversion and H-LU factorization are formulated as recursive block algorithms, similar to

standard blocked algorithms for dense matrices. Beside the actual recursion, both algorithms are
based on H-matrix multiplication. Furthermore, an intrinsic sequential order, e.g., for diagonal
elements, is present in these algorithms. Therefore, only the matrix multiplications can be used
for parallelization.

For H-inversion, this form of parallelization was usable for machines up to 16 computing
cores (see [15]), e.g., multi-core CPUs. On the other hand, H-LU factorization only showed a
disappointing performance, since in addition to the diagonal, recursion also took place in the
off-diagonal part due to matrix solves with upper or lower block tridiagonal matrices.

Especially on today’s many-core systems with many more than 16 processing cores, this
algorithm was not applicable. The only exception are H-matrices from domain-decomposition
problems, which consist of several, decoupled systems and therefore provide more room for
concurrent computations.
∗Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22–26, 04103 Leipzig, Germany, rok@mis.mpg.de
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Task based H-LU Factorization

For dense matrices sequential linear algebra implementations are widely available by the BLAS
and LAPACK software libraries ([3]). The algorithms in these software packages are optimized
for optimal usage of memory hierarchies in classical (and modern) CPUs. As an example, the
LU factorization splits the matrix in blocks of columns, so called panels, which are handled at
once (see Figure 1). Within a panel, each column is handled one after the other, e.g., finding
pivots, swapping rows and updating the remaining elements in the column. Afterwards, the
block structure of the panel allows to use matrix multiplication to update the trailing submatrix,
thereby optimizing CPU cache usage.

On parallel machines such algorithms are often implemented by using a parallel version of
the BLAS library, i.e., the actual algorithm is unmodified and only parallel matrix-vector or
parallel matrix-matrix operations are used. However, when using multi- or many-core CPUs, this
LU factorization algorithm possesses a critical bottleneck, since all updates need to wait for the
current panel to have been computed. Furthermore, parallelization within a panel computation is
limited, finally leading to a limited performance on such computer systems (see [5]).

Figure 1: Panel (left) and tile (right) based LU factorization

To fix this problem, the panel was further split into square submatrices or tiles (see Figure 1).
As soon as a tile in a panel was finished, the update operations for blocks in the trailing submatrix
can be started, thereby eliminating the synchronization problem.

In such a dense LU factorization, each operation, e.g., LU factorization of a diagonal tile or the
update of a block via matrix multiplication, forms a single task, i.e., atomic unit of computation
with data dependencies. The tasks and their dependencies hereby form a directed acyclic graph
(DAG), which can be used to efficiently schedule the tasks onto the different CPU cores. For a
detailed introduction into the specific tasks used in a tile-based LU factorization we refer the
reader to [4, 5, 17, 18, 21].

Due to the high amount of work per task, these algorithms are also especially suited for graphics
processing units (GPUs), for which programming interfaces like CUDA or OpenCL (see [14, 20])
are available. For GPUs or hybrid CPU+GPU systems, the PLASMA software package ([1])
implements dense linear algebra based on tiles with the aim to provide the same function set as
LAPACK. The MAGMA software ([2]) extends this to multiple GPUs in a single host system.

An analog approach can also be applied to sparse matrix factorization. In particular the
multi-frontal approach introduced in [6] is suited for task-based DAG computations due to its
elimination or assembly tree which is used to organize the work. Nodes in an assembly tree
correspond to one or more columns of the matrix. While a node can only be processed after all
its child nodes, independent subtrees may be handled in parallel. Furthermore, for large nodes,
e.g., representing several columns, the work may be split into subtasks. In [12] and [19] the reader
will find more details about the design of such DAG-based sparse solvers.
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However, although highly efficient in terms of raw CPU power, due to the quadratic/cubic
computational complexity, dense linear algebra is no replacement for algorithms with (log-)
linear complexity like H-matrices, assuming the latter is applicable to a specific problem. A
similar property holds for sparse solvers as the complexity is dependent on the fill-in during LU
factorization, which may destroy near-linear complexity (see [8]).

Therefore, in this work the concept of task-based DAG computations is used to split the H-LU
factorization into single tasks and to define corresponding dependencies to form a DAG. This
task/DAG-based algorithm is able to utilize parallel CPUs much more efficiently compared to the
classical recursive algorithm and in particular demonstrates an optimal parallel scaling behavior
on many-core systems.

In Section 2 basic terms forH-matrices are defined together with the standardH-LU factorization
algorithm. The new task-based algorithm is described in Section 3. Numerical experiments are
presented in Section 4, followed by a conclusion in Section 5.

2 Definitions
2.1 H-Matrices
Let I be an index set and n = #I its cardinality. The basic building block of an H-matrix is the
hierarchical partitioning of I in the form of a cluster tree (or H-tree):

Definition 2.1 (Cluster Tree) The tree TI = (V,E) is called a cluster tree over I if

1. I is the root of TI and

2. for all vertices v ∈ V either v = ∪̇v′∈S(v)v
′ or v is a leaf of TI .

Here, S(v) is the set of sons of v. The set of leaves of TI is denoted by L(TI). A node in TI is also
called a cluster and we write t ∈ TI if t ∈ V . Nodes in the cluster tree with the same distance from
the root are said to be on the same level of the tree. Finally, let T `

I := {t ∈ TI : level(t) = `}.

Remark 2.2 The leaves of the cluster tree TI have an upper limit nmin > 0 for their size, e.g., for
all t ∈ L(TI) : #t ≤ nmin. In practical applications, this is also used to stop further partitioning
of clusters, i.e., for t ∈ TI if #t ≤ nmin, t will be a leaf in TI . In this sense, nmin is the analog to
a minimal block size when working with dense matrices, e.g., to optimize cache performance.

The cluster tree TI defines the set of subsets of I which may be used to partition the product
index set I × I and hence, the matrix index set. For an H-matrix to be efficient, the partitioning
has to be restricted to a minimal set of block clusters t× s with t, s ∈ TI , such that t× s is either
small, i.e., t, s ∈ L(TI), or admissible. The admissibility of a node is in general defined by the
corresponding application. For typical problems involving partial differential equations or integral
equations the classical admissibility condition is given by:

min(diam(t), diam(s)) ≤ η dist(t, s) (1)

Here, diam(·) and dist(·, ·) denote the diameter of and distance between geometrical entities
associated with the clusters, e.g., the support of basis functions.

Using the admissibility condition, the actual partitioning of I × I can be constructed. For this,
a cluster tree over I × I is built, with its leaves forming the partition.
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Definition 2.3 (Block Cluster Tree) Let TI be a cluster tree over I. The block cluster tree
TI×I over TI is defined recursively for a node b = t× s, starting with the root I × I:

S(b) =
{
∅ if b is admissible or S(t) = ∅ or S(s) = ∅,
S ′ otherwise

with S ′ := {t′ × s′ : t′ ∈ S(t), s′ ∈ S(s)} and repeated for all nodes in S(b).

The admissibility condition ensures that admissible blocks in TI×I can be approximated up
to a predefined accuracy ε ≥ 0 by low-rank matrices with maximal rank k. The set of all such
matrices forms the set of H-matrices:

Definition 2.4 (H-Matrix) For a block cluster tree TI×I over a cluster tree TI and k ∈ N, the
set of H-matrices H(TI×I , k) is defined as

H(TI×I , k) :=
{
M ∈ RI×I

∣∣∣ ∀t× s ∈ L(TI×I) :

rank(M |t×s) ≤ k ∨ {t, s} ∩ L(TI) 6= ∅}

Low-rank submatrices M |t×s in H-matrices are represented in the factorized form M = ABT

with A ∈ Rt×k and B ∈ Rs×k. With this, the storage complexity of H-matrices is in O (kn logn)
(see [7]).
H-matrices also allow matrix arithmetic, e.g., matrix-vector multiplication, matrix addition,

multiplication, inversion and LU factorization. With the exception of matrix-vector multiplication,
these operations are approximative to ensure the log-linear storage complexity. For this, the sum
of low-rank matrices is truncated to rank k using a low-rank singular value decomposition (see [7]).
This results in a complexity of O

(
k2n logn

)
for matrix addition and O

(
k2n log2 n

)
for matrix

multiplication, inversion and LU factorization.
Instead of a fixed rank k, construction and arithmetics of H-matrices may also be performed

with respect to the precision ε. For this, during the truncation of low-rank matrices, only singular
values s`, 0 ≤ ` < k, (and corresponding vectors) with s` ≥ ε · s0 are used for the truncation result,
while s0 ≥ s1 ≥ s2 . . . is assumed. This leads to a variable rank in the subblocks of the H-matrix.
In practice, such a fixed-accuracy arithmetics is often more efficient than a fixed-rank arithmetics,
which is why it is used for all subsequent examples.

2.2 Sequential H-LU Factorization
For an H-matrix A the factorization A = LU with a unit diagonal lower triangular H-matrix L
and an upper triangular H-matrix U is to be computed.

Let t× t ∈ TI×I with S(t) = {t0, . . . , t`−1}. Then, due to the block structure of the matrices
A|t×t, L|t×t and U |t×t, i.e.,

A|t×t = A|t0×t0 · · · A|t0×t`−1
... . . . ...

A|t`−1×t0 · · · A|t`−1×t`−1

 =

 L|t0×t0
... . . .

L|t`−1×t0 · · · L|t`−1×t`−1


U |t0×t0 · · · U |t0×t`−1

. . . ...
U |t`−1×t`−1

 =

L|t×tU |t×t,
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the H-LU factorization can be formulated recursively as in Algorithm 1.

Algorithm 1 Recursive H-LU factorization.
procedure lu( in: A|t×t, out: L|t×t, U |t×t )

for i := 0, . . . , `− 1 do
lu( A|ti×ti );
for j := i+ 1, . . . , `− 1 do

solve upper( A|tj×ti , L|tj×ti , U |ti×ti );
solve lower( A|ti×tj , L|ti×ti , U |ti×tj );

for j, k := i+ 1, . . . , `− 1 do
A|tj×tk := A|tj×tk − Ltj×tiUti×tk ;

In a similar way, a recursive algorithm for solving B|s×t = L|t×tC|s×t, s × t ∈ TI×I ,S(s) =
{s0, . . . , s`−1}, with a given lower triangular H-matrix L, general H-matrix B and unknown
H-matrix C is obtained and shown in Algorithm 2.

Algorithm 2 Solve with lower triangular H-matrix.
procedure solve lower( in: B|s×t, L|t×t, out: C|s×t )

for i := 0, . . . , `− 1 do
for j := 0, . . . , `− 1 do

solve lower( B|ti×sj , L|ti×ti , C|ti×sj );
for k := i+ 1, . . . , `− 1 do

for j := 0, . . . , `− 1 do
B|tk×tj := B|tk×tj − Ltk×tiCti×tj ;

A similar recursive algorithm can be formulated for solving with an upper triangular H-matrix.

Remark 2.5 In Algorithm 1 and Algorithm 2 only the recursive part of the actual algorithms is
presented, which is used as long as all arguments of the routines are block matrices. If one of the
input matrices is a dense or low-rank matrix, special routines are used. This algorithm structure
appears in many other algorithms of H-algebra as well.

Unfortunately, these algorithms only provide very limited opportunities for parallelization. In
the case of binary cluster trees, the standard case in practical applications, there are just two
matrix solves to be performed in parallel in Algorithm 1. Similarly, the two matrices in a block
row may be handled in parallel in Algorithm 2. Only the matrix updates themselves can be
computed with optimal parallel scaling. Especially the strict, local execution order together with
the recursive nature of these algorithms inhibits parallel execution. Therefore, the achievable
parallel speedup is small (cf. [15]).

Remark 2.6 In [13] an alternative H-LU factorization was introduced, based on an index-
wise data partitioning where also individual operations per block may be distributed onto several
processors. In theory, this yields a much better parallel scaling behavior.

3 Task-based H-LU Factorization
Before the task-based H-LU factorization is defined, the corresponding formulation for dense
matrices is described. The concepts can then be generalized to block structures in H-matrices.
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3.1 LU Factorization of Dense Matrices
Let A ∈ Rn×n be a dense matrix, i.e., represented by storing all matrix coefficients explicitly, and
the dense LU factorization A = LU is sought. In particular, the blocked (or tiled) LU factorization
is of interest, i.e., for a given block size N > 0 with n = nb ·N for some nb ∈ N, A decomposes
into blocks Aij ∈ RN×N , 0 ≤ i, j < nb. After factorizing the diagonal block Aii = LiiUii, all
blocks Lji and Uij , i < j < nb in the current block row and column have to be computed via
matrix solves LiiUij = Aij and LjiUii = Aji. Afterwards all blocks Ak`, i < k, ` < nb of A in the
trailing submatrix are updated via Ak` := Ak` − LkiUi`.
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Figure 2: Dense LU factorization: separate algorithm stages (left), incoming and outgoing depen-
dencies (right).

The parallel dense LU factorization algorithm can be described in terms of distinct stages (see
Figure 2 (left)), e.g., first factorize the diagonal block, then solve in the current row/column and
finally update the trailing matrix:

for i := 0, . . . , nb − 1 do
factorize( i );
parallel for j := i+ 1, . . . , nb − 1 do

solve upper( j, i );
solve lower( i, j );

parallel for k, ` := i+ 1, . . . , nb − 1 do
update( k, i, ` );

where the following functions are used:

• factorize(i) : compute Aii = LiiUii,

• solve upper(j, i) : solve LjiUii = Aji,

• solve lower(i, j) : solve LiiUij = Aij and

• update( k, i, ` ) : compute Ak` := Ak` − LkiUi`.

Remark 3.1 Except for the recursion in the case of H-matrices, the block-wise dense LU factor-
ization and the H-LU factorization in Algorithm 1 are identical if the block index is replaced by
the corresponding index set. The main difference between dense and H-arithmetic is due to the
special routines for handling various combinations of dense, low-rank and block matrices in the
H-matrix case (see Remark 2.5).
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Algorithm 3 Constructs a DAG for the dense LU factorization.
for i := 0, . . . , nb − 1 do

task( factorize( i ) );
parallel for j := i+ 1, . . . , nb − 1 do

task( solve upper( j, i ) ); task( factorize( i ) ) → task( solve upper( j, i ) );
task( solve lower( i, j ) ); task( factorize( i ) ) → task( solve lower( i, j ) );

parallel for k, ` := i+ 1, . . . , nb − 1 do
task( update( k, i, ` ) );
task( solve upper( k, i ) ) → task( update( k, i, ` ) );
task( solve lower( i, ` ) ) → task( update( k, i, ` ) );
if k = ` then task( update( k, i, ` ) ) → task( factorize( k ) );
else if k > ` then task( update( k, i, ` ) ) → task( solve upper( k, ` ) );
else task( update( k, i, ` ) ) → task( solve lower( k, ` ) );

Unfortunately, after the diagonal factorization and the matrix solves, synchronization points
exists, where CPU cores have to wait for all others to finish. Especially on many-core CPUs, this
is a serious drawback, significantly limiting the parallel speedup of such algorithms.

However, each of these computations, being diagonal factorizations (factorize(i)), off-diagonal
matrix solves (solve upper(j, i), solve lower(i, j)) or matrix updates (update(k, i, `)), forms
a separate computational task with several dependencies between them. Wrapping each function
into a task(·) construct yields an algorithm to define the set of all tasks for the dense LU
factorization.

Still missing are the dependencies between these tasks, in the following denoted by “→”, i.e.,
task1 → task2 implies task2 may only start after task1 has finished.

For 0 ≤ i < nb the first part of the dependencies can be directly taken from the above algorithm:

1. (Diagonal Factorization) ∀i < j < nb:

task(factorize(i))→ task(solve upper(j, i)),
task(factorize(i))→ task(solve lower(i, j)),

2. (Update Prerequisites) ∀i < k, ` < nb:

task(solve upper(k, i)) → task(update(k, i, `)),
task(solve lower(i, `))→ task(update(k, i, `)).

Furthermore, each factorization or matrix solve also requires all corresponding updates to be
applied, which completes the set of dependencies:

3. (Contributing updates) ∀` < i < j:

task(update(i, `, i)) → task(factorize(i)),
task(update(j, `, i))→ task(solve upper(j, i)),
task(update(i, `, j))→ task(solve lower(i, j)).

The final algorithm for the dense LU factorization DAG is shown in Algorithm 3, with the
matrix block A00 being the start node and the corresponding task for matrix block Anb−1,nb−1
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the end node of the DAG. Incoming edges of a node correspond to data needed before executing
the task, e.g., due to an update to the local matrix block, whereas outgoing edges correspond to
locally computed data needed by other tasks (see Figure 2 (right)).

Algorithm execution using a DAG has the advantage that any task may be scheduled for
execution as soon as all its dependencies are met, thereby overlapping diagonal factorization tasks
with off-diagonal solve or update tasks. By this the above limitation of stage-based algorithms
with their synchronization points and idle CPU cores can be overcome.

In practice, an optimal scheduling of the tasks depends on various characteristics of the computer
system, e.g., processor layout and memory configuration, which usually involves a careful fine
tuning of corresponding scheduling algorithms. However, the definition of the DAG remains
independent of the computer system as it only reflects the mathematical data dependency. This
significantly simplifies algorithm development.

3.2 H-LU Factorization
When extending the task-based algorithm to H-matrices the hierarchy of the matrix blocks
in the H-matrix has to be taken into account. As an example, the factorization of diagonal
blocks in Figure 3 (left) induce only the matrix solve of blocks on the same level (marked blue).
Furthermore, matrix blocks may form prerequisites for other blocks on different levels (Figure 3
(right)).

Figure 3: Data dependency between tasks during H-LU factorization.

Similar to the dense case, an algorithmic formulation of the LU factorization helps in the
definition of the tasks and their dependencies. However, the algorithms for the H-LU factorization
in Section 2.2 have several disadvantages as they only affect sub blocks in the currently handled
matrix block. Furthermore, the recursion is split into different algorithms, e.g., the factorization
algorithm, the triangular matrix solves and matrix multiplication. All this results in hiding
relations between matrix blocks (and tasks), even if they are on the same level of the block cluster
tree but in different parts of the H-matrix. Furthermore, additional unnecessary dependencies are
introduced due to the structure of these algorithms.

Therefore, a reformulation is needed, where all blocks on the same level of the block cluster
tree are considered. With this, after the factorization of a diagonal block, all off-diagonal matrix
blocks are known, which are ready to be solved. This corresponds to the global scope of the LU
factorization algorithm in the dense matrix case.

However, one important aspect of the algorithms in Section 2.2 shall not be changed: as long as
all arguments of a routine are block matrices, recursion is applied (see Remark 2.5). For parallel
computations this is furthermore extended as functions involving low-rank or dense matrices are

8



Task based H-LU Factorization

t′ s′ t s

Figure 4: Example of multiple solves per matrix block due to double recursion.

considered atomic, i.e., should be handled by a single CPU core. In practice, such operations can
be split into subtasks, e.g., when solving a low-rank matrix all vectors may be handled in parallel,
but to simplify the presentation this is not considered in this work.

In the following, we need to generalize the block dependencies for the dense LU factorization
for the case of H-matrices. For this, the block index is replaced by (sub) index sets.

Definition 3.2 Let I be an index set. For t, s ⊆ I the relation <I is defined as: t <I s iff ∀i ∈
t, i′ ∈ s : i < i′. Furthermore, let t ≤I s iff t <I s ∨ t = s.

In a first step to a global reformulation, the loop over sons of the current index set for matrix
solves and updates in Algorithm 1 is replaced by loops over all index sets on the same level of the
block cluster tree. For a diagonal block A|t×t, t × t ∈ TI×I , this implies that all matrix blocks
A|s×t with s ∈ T level(t)

I , s >I t, s× t ∈ TI×I , i.e., the block row to the right of the diagonal block,
can be solved (Figure 3, left). The analog holds for the block column below and the trailing sub
matrix. Let again S(t) = {t0, . . . , t`−1} be the set of sons of the cluster t.

procedure lu( in: A|t×t, out: L|t×t, U |t×t )
for i := 0, . . . , `− 1 do

lu( A|ti×ti );
for s ∈ T level(ti)

I , s >I ti do
solve upper( A|s×ti , L|s×ti , U |ti×ti );
solve lower( A|ti×s, L|ti×ti , U |ti×s );

for s, r ∈ T level(ti)
I , s, r >I ti, s× r ∈ TI×I do

A|r×s := A|r×s − Lr×tiUti×s;

Remark 3.3 In the above and all subsequent algorithms it is assumed that for a matrix block
A|t′×t′′ (same for L and U) t′ × t′′ ∈ TI×I holds. Tests for this important but natural condition
for H-arithmetic was left out of the algorithms to improve their readability.

Unfortunately, this change alone is not sufficient as it introduces potential multiple computations
of matrix solves (or updates) for a particular matrix block. For t, t′ ∈ TI with t′ ⊂ t, the
factorization of A|t′×t′ will induce the matrix solve of A|s′×t′ with s′ ∈ T level(t′)

I , s′ >I t
′. However,

the same holds for A|t×t and A|s×t with s ∈ T level(t)
I , s >I t and s′ ⊂ s (see Figure 4).

The reason for this behavior is, that recursion is still allowed in all algorithms of the H-LU
factorization, i.e., also in matrix solves and updates. However, due to the global scope of the
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factorization algorithm itself, such a recursion is no longer needed in solve upper/lower and
matrix updates. All matrix blocks corresponding to leaves are already in the scope of the function
LU.

Therefore, to prevent recursion in all functions except LU, at least one operand to matrix solve
and matrix update functions has to be associated with a leaf in TI×I . Adding corresponding tests
yields the global H-LU Algorithm 4.

Algorithm 4 H-LU factorization with global scope.
procedure lu( in: A|t×t, out: L|t×t, U |t×t )

for i := 0, . . . , `− 1 do
lu( A|ti×ti );
for s ∈ T level(ti)

I , s >I ti do
if {ti × ti, s× ti} ∩ L(TI×I) 6= ∅ then

solve upper( A|s×ti , L|s×ti , U |ti×ti );
if {ti × ti, ti × s} ∩ L(TI×I) 6= ∅ then

solve lower( A|ti×s, L|ti×ti , U |ti×s );
for s, r ∈ T level(ti)

I , s, r >I ti do
if {r × s, r × ti, ti × s} ∩ L(TI×I) 6= ∅ then

A|r×s := A|r×s − Lr×tiUti×s;

Remark 3.4 Algorithm 4 already provides a much improved degree of parallelism compared to
Algorithm 1, e.g., all matrix blocks in the current (global) block row/column can be solved in
parallel. However, it still contains synchronization points between all CPUs and hence, will not
show optimal parallel scaling.

Having a working algorithm for the global H-LU factorization allows to define an algorithm to
construct a corresponding DAG. We start with the definition of all involved tasks. Again, this is
done by wrapping all function calls in task constructs. Before this, we simplify the function calls
by using the following abbreviations:

• factorize(t) for lu(A|t×t),

• solve upper(s, t) for solve upper(A|s×t, L|s×t, U |t×t),

• solve lower(t, s) for solve lower(A|t×s, L|t×t, U |t×s) and

• update(r, t, s) for A|r×s := A|r×s − Lr×tUt×s.

Using these functions and wrapping all function calls for matrix solves and matrix updates in
Algorithm 4 in tasks one obtains Algorithm 5 for the task set.

In addition to matrix solves/updates in Algorithm 5 also tasks for diagonal factorizations are
used. However, factorization tasks only perform computations if ti × ti ∈ L(TI×I). In particular,
no recursive LU factorization takes place for non-leaf block clusters (see also Remark 3.5).

Furthermore, the (block) index sets for individual matrix solve and update tasks are collected in
the sets Tsolve and Tupdate(·) as they will be needed in the following for setting up the dependencies
between tasks.

For the task dependencies we start with the relations between diagonal factorization and
off-diagonal matrix solves as defined by Algorithm 5. For this, let t ∈ TI :
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Algorithm 5 Defines task set of H-LU factorization.
procedure lu dag( in: A|t×t, out: L|t×t, U |t×t )

for i := 0, . . . , `− 1 do
lu dag( A|ti×ti );
task(factorize(ti));
for s ∈ T level(ti)

I , s >I ti do
if {ti × ti, s× ti} ∩ L(TI×I) 6= ∅ then

task(solve upper( s, ti ) );
Tsolve := Tsolve ∪ {s× ti};

if {ti × ti, ti × s} ∩ L(TI×I) 6= ∅ then
task(solve lower( ti, s ) );
Tsolve := Tsolve ∪ {ti × s};

for s, r ∈ T level(ti)
I , s, r >I ti do

if {r × s, r × ti, ti × s} ∩ L(TI×I) 6= ∅ then
task(update(r, ti, s));
Tupdate(r × s) := Tupdate(r × s) ∪ {ti};

1. (Diagonal Factorization) ∀s ∈ T level(t)
I , s >I t:

{t× t, s× t} ∩ L(TI×I) 6= ∅ =⇒ task(factorize(t))→ task(solve upper(s, t)),
{t× t, t× s} ∩ L(TI×I) 6= ∅ =⇒ task(factorize(t))→ task(solve lower(t, s)),

Now let s, r ∈ T
level(t)
I with s, r >I t. Unfortunately, for the update task for A|r×s, the

dependencies cannot be expressed from Algorithm 4 as directly as before, since no tasks for solving
Lr×t or Ut×s may exist, e.g., if the diagonal and off-diagonal blocks are both non-leaf matrix
blocks. Instead, all tasks corresponding to subblocks of Lr×t and Ut×s are needed to ensure that
updates take place only after all computations for these subblocks have been finished.

For this, the set Tsolve can be used as it contains all block index sets for which matrix solve
tasks exist due to Algorithm 5. One notes that by construction, t × s ∈ Tsolve =⇒ ∀ t′ × s′ ∈
TI×I \ {t× s} : t× s ∩ t′ × s′ = ∅, i.e., a matrix block is only solved once.

Let again t ∈ TI . Then the dependencies between solve and update tasks can be formulated as:

2. (Update Prerequisites) ∀r, s ∈ T level(t)
I , r, s >I t:

∀r′ × t′ ∈ Tsolve with r′ × t′ ⊆ r × t : task(solve upper(r′, t′))→ task(update(r, t, s)),
∀t′ × s′ ∈ Tsolve with t′ × s′ ⊆ t× s : task(solve lower(t′, s′))→ task(update(r, t, s)).

Finally, update tasks for a matrix block A|r×s, r × s ∈ TI×I , induce dependencies to all matrix
solve or factorization tasks acting on r′ × s′ ∈ TI×I with r′ × s′ ∩ r × s 6= ∅. In contrast to the
previous dependency set, here r′ × s′ can be on an arbitrary level, i.e., below, equal to or above
r × s.

To set up all corresponding dependencies regarding r×s, the set Tupdate(r×s) from Algorithm 5
is used:

3. (Contributing updates) :

11
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∀r′ × s′ ∈ Tsolve ∪ {r′′ × r′′ ∈ TI×I} , r′ × s′ ∩ r × s 6= ∅:

∀t ∈Tupdate(r × s) :
r′ >I s

′ : task(update(r, t, s))→ task(solve upper(r′, s′))
r′ <I s

′ : task(update(r, t, s))→ task(solve lower(r′, s′))
r′ = s′ : task(update(r, t, s))→ task(factorize(r′))

Here, the set {r′′ × r′′ ∈ TI×I} of diagonal block clusters is included for all factorization tasks.
In Figure 5 the corresponding dependencies are shown for the marked matrix block. Here,

the pairs of blue matrix blocks form contributing updates, whereas the marked matrix block
itself forms an update prerequisite for all green matrix blocks. Finally, the diagonal factorization
dependency is marked red.

Figure 5: Data dependency between tasks during H-LU factorization.

Dependencies due to diagonal factorization and update prerequisites can be integrated into Al-
gorithm 5. However, setting up dependencies due to contributing updates during the computation
of the task set is more involved, since first all corresponding tasks from all levels in TI×I have to
be known. Therefore, this is performed in a post-processing step after computing the whole task
set by a simple tree traversal from the root to the leaves and shifting down dependencies from
Tupdate(·) until a block cluster in Tsolve is reached (see Algorithm 6).

Algorithm 6 Assigning dependencies due to contributing updates.
procedure assign depend( in: t× s )

if t× s ∈ Tsolve then
for t′ × s′ ∈ TI×I with t′ × s′ ⊆ t× s do

for r ∈ Tupdate(t′ × s′) do
if t <I s then

task(update(t′, r, s′))→task(solve lower(t, s));
else

task(update(t′, r, s′))→task(solve upper(t, s));
else

for i, j := 0, . . . , `− 1 do
Tupdate(ti × sj) := Tupdate(ti × sj) ∪ Tupdate(t× s);
assign depend(ti × sj);

12
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The remaining procedure for computing the DAG for an H-LU factorization is shown in
Algorithm 7. Here, the factorization of the upper left (leaf) matrix block represents the start node
of the DAG and the factorization of the lower right (leaf) matrix block its end node.

Algorithm 7 Computes DAG for H-LU factorization (except contributing updates).
procedure lu dag( in: A|t×t, out: L|t×t, U |t×t )

for i := 0, . . . , `− 1 do
lu dag( A|ti×ti );
task(factorize(ti));
for s ∈ T level(ti)

I , s >I ti do
if {ti × ti, s× ti} ∩ L(TI×I) 6= ∅ then

task(solve upper( s, ti ) );
Tsolve := Tsolve ∪ {s× ti};
task(factorize(ti)) → task(solve upper( s, ti ));

if {ti × ti, ti × s} ∩ L(TI×I) 6= ∅ then
task(solve lower( ti, s ) );
Tsolve := Tsolve ∪ {ti × s};
task(factorize(ti)) → task(solve lower( ti, s ));

for r, s ∈ T level(ti)
I , r, s >I ti do

if {r × s, r × ti, ti × s} ∩ L(TI×I) 6= ∅ then
task(update(r, ti, s));
Tupdate(r × s) := Tupdate(r × s) ∪ {ti};
for all r′ × t′ ∈ Tsolve, r

′ × t′ ⊆ r × ti do
task(solve upper(r′, t′)) → task(update(r, ti, s));

for all t′ × s′ ∈ Tsolve, t
′ × s′ ⊆ ti × s do

task(solve lower(t′, s′)) → task(update(r, ti, s));

An example of the resulting DAG is presented in Figure 6. To reduce the number of edges,
only one half of the graph is shown, i.e., no dependencies with respect to solving with a lower
triangular matrix. Furthermore, the DAG is split into subgraphs for each level in the H-matrix to
emphasize the dependencies between different levels.

Figure 6: Example for a DAG for H-LU.

Remark 3.5 The above defined DAG for the H-LU factorization only represents one possible
solution to the problem. Alternative DAGs may introduce more nodes to collect dependencies,
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e.g., for matrix solve tasks for non-leaf off-diagonal blocks to agglomerate all dependencies due to
subblocks, thereby reducing the number of dependencies to update tasks. Furthermore, different
LU strategies, e.g., variations of left-looking or right-looking strategies, may also lead to different
tasks and therefore to different DAGs. Also possible subtasks of special routines for handling dense
and low-rank matrices can be integrated into the H-LU-DAG (see Remark 2.5).

As in the dense case, tasks in the DAG may be executed as soon as all their dependencies are
met, which again allows to overlap diagonal factorization with solve or update operations. In
contrast to this, the classical recursive H-LU factorization is restricted by the recursive block
hierarchy, which enforces synchronization of all CPU cores at the diagonal blocks. This becomes
obvious when the individual stages of both factorization algorithms, i.e., groups of blocks which
may by computed simultaneously, are explicitly shown as in Figure 7. There, for the task-based
algorithm the execution may follow the anti-diagonal of the matrix (Figure 7, right), while the
recursive algorithm has to finish diagonal matrix blocks before computing off-diagonal matrix
blocks (Figure 7, left).
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Figure 7: Stages of recursive (left) and task-based (right) H-LU factorization.

Remark 3.6 In Figure 7, we assumed linear computation costs per block to simplify the presen-
tation.

3.3 H-LU Factorization with Domain Decomposition
H-matrices for the domain decomposition case possess a special structure with large zero blocks,
which will remain zero during H-LU factorization (see Figure 8), thereby yielding a more efficient
algorithm. This is achieved by decoupling subdomains by an inner boundary (or interface), and
ordering the indices accordingly (refer to [9, 10]). Due to this decoupling, matrix blocks with index
sets associated with different domains only have zero coefficients. Matrix blocks with interface
indices are non-zero and are handled as standard H-matrices, i.e., based on standard geometrical
or algebraic clustering algorithms.

Diagonal matrix blocks corresponding to different subdomains may be handled in parallel,
followed by the factorization of the matrix block with indices of the inner boundary. Therefore
the parallel scaling behavior of the domain decomposition approach strongly depends on the size
of this interface block. For H-matrices geometrical and black-box algorithms for computing a
suitable interface have been developed in [9] and [10].

In case of nested dissection, the domain decomposition approach is recursively applied to the
subdomains.
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Figure 8: Matrix structure for the domain decomposition case (left) and nested dissection case
(right).

Due to this structure, the DAG of the H-LU factorization will not have a single but nd start
nodes in the case of domain decomposition with nd domains and 2` start nodes for the nested
dissection case, where ` is the recursion depth (marked blocks in Figure 8). Hence, the inherent
parallelism of the domain decomposition approach is automatically utilized with the task-based
approach.

4 Numerical Results
All examples are computed on an Intel XeonPhi 5110P accelerator card with 60 CPU cores and 8
GB main memory.

Due to the high number of CPU cores, this computing platform serves as an example of a
many-core system. In contrast to other accelerator cards derived from graphic cards, the XeonPhi
card can be programmed very similarly to classical CPUs, e.g., without special programming
interfaces like CUDA or OpenCL. In particular, the whole program may run natively on the
accelerator card.

This native execution mode was also used in the experiments below as it avoids any additional
communication between the accelerator card and the host system due to offloading certain
computations as in the OpenCL case.

However, the native execution mode is limited by the relatively small amount of main memory
available for the program, e.g., compared to typical memory sizes of standard compute servers.
This limitation will be overcome by the next generation of these processors.

Remark 4.1 The Intel XeonPhi 5110P also supports the simultaneous execution of up to four
threads per core if different threads can use different (sub) units of a single core, referred to as
hyper-threading. This feature was not used during the benchmarks since the algorithms did benefit
only little by it, presumably since the individual tasks are still too large for hyper-threading.

All computations are performed using the software library HLIBpro ([16]). Low-level linear
algebra functions are provided by the Intel Math Kernel Library v11.0. For task handling and
task scheduling the Threading Building Blocks v4.2 are used.

The parallel performance is measured by the parallel speedup S(p) = tseq/t(p). Here, tseq is
the run-time of the best sequential implementation, whereas t(p) is the run-time of the parallel
algorithm for p processors or CPU cores. Due to overhead, the task-based algorithm shows a
slightly larger run-time compared to the recursive algorithm if only a single CPU core is used,
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i.e., in the sequential case. Therefore for p = 1 the recursive H-LU factorization was used for all
experiments below.

4.1 Integral Equations
We consider the integral equation∫

Γ
κ(x, y)u(x)dy = f(x), x ∈ Γ

with Γ = ∂Ω,Ω ⊂ R3, and kernel function κ. Galerkin’s method with piecewise constant trial
functions is applied for discretisation on a triangulation of Ω.

Two different domains Ω are used for the numerical tests: a spherical grid with 47720 triangles
and a cylindrical grid with 41728 triangles (see Figure 9). The cylindrical grid has characteristics
of a one-dimensional problem and should give some practical lower bounds for the achievable
speedup.

Figure 9: Grids used for H-LU factorization.

Using the standard admissibility (1) with η = 2 and nmin = 20, the resulting block partitions
are shown in Figure 10. The similarity of the cylinder problem with the one-dimensional problem
is obvious with large off-diagonal blocks.

Figure 10: Block partitioning for the sphere (left) and cylinder (right) grid.

Furthermore, different kernel functions are used for the experiments:

• for the Laplace single layer potential k1(x, y) = 1
|x−y| and
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Figure 11: Speedup of task-based and recursive H-LU factorization for Laplace kernel on a sphere
(left) and cylinder (right) grid.

• for the Helmholtz single layer potential k2(x, y) = eiκ|x−y|

|x−y|

Here, κ = 2 + i denotes the wave number (low-frequency case).
For both grids and kernel functions the H-LU factorization was computed for a fixed block-wise

accuracy of ε = 10−4 (relative with respect to the spectral norm). The measured time for the
task-based H-LU factorization includes the time for constructing the DAG.
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Figure 12: Speedup of task-based and recursive H-LU factorization for Helmholtz kernel on a
sphere (left) and cylinder (right) grid.

In Figure 11 the parallel speedup for the task-based and the classical recursiveH-LU factorization
for the Laplace kernel function is shown. The advantage of the task-based approach is obvious
with an almost optimal speedup.

Computations on the cylindrical grid result in a slightly reduced parallel speedup since the
number of tasks is smaller and fewer very costly tasks are present compared to the spherical grid.
However, the difference of the maximal speedup for both grids is small.

When computing the H-LU factorization for the Helmholtz kernel function, as shown in
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Figure 12, the parallel speedup of both algorithms is even higher due to the more costly complex
arithmetic and a higher rank of low-rank blocks. This results in a better ratio of computation to
overhead compared to the Laplace case.

However, the general picture is identical with the recursive algorithm only benefiting little from
the increased computational work per block and still showing a very limited speedup.

Finally, in Figure 13 the parallel speedup of the H-LU factorization in dependence on the
problem size is shown for a fixed (maximal) number of CPU cores. Even for very small problem
sizes, the task-based algorithm is capable of reaching a substantial portion of the maximal
achievable speedup.
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Figure 13: Scaling of H-LU factorization speedup for 60 cores and an increasing problem size for
Laplace and Helmholtz kernel.

4.2 Domain Decomposition
As an example for domain decomposition, we consider the convection-diffusion equation

−κ∆u+ b · ∇u = f in Ω =]0, 1[d, d ∈ {2, 3}.

with a circular convection direction b:

b(x) :=
(

0.5− x2
x1 − 0.5

)
.

In R3, the third component of b is zero. The value of κ is set to 10−3 resulting in a dominant
convection.

The problem is discretised using a finite element method with piecewise linear ansatz functions
on a uniform triangulation of Ω with 1046529 unknowns in R2 and 531441 unknowns in R3

respectively. The computation of the inner boundary was done using the black-box algorithm
described in [10].

In contrast to the integral equation example, the computation of the DAG takes a significant
portion of the whole execution time. The main reason for this is that the number of unknowns
is much larger and therefore the matrix has more blocks, but on the other hand the costs per
unknown are smaller. In the current implementation, the DAG is still computed sequentially,
thereby limiting the parallel speedup.
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In Figure 14 the speedup of the H-LU factorization for the 2D and the 3D case are shown. In
the 2D case, both algorithms show an almost identical parallel speedup if the computation of
the DAG is taken into account. Without this, the speedup is much better, demonstrating the
currently large portion of the DAG computation on the H-LU-factorization.
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Figure 14: Speedup of H-LU factorization for convection diffusion equation and nested dissection
in R2 (left) and R3 (right).

Especially for the classical recursive algorithm, the parallel speedup is mainly due to the inherent
parallel structure of the factorization because of the block decoupling (see [10]).

However, even without the computation of the DAG, the parallel speedup is less than in the
case of dense matrices, e.g., for an integral equation. The reason for this is management overhead
for handling the DAG during execution while at the same time the computation costs per block
are small.

In the 3D case, the situation changes, since the classical LU factorization is limited by the
larger interfaces in R3. On the other hand, the task-based algorithm can handle tasks associated
with the interface blocks as soon as possible, thereby overcoming this limitation.

As can be seen in Figure 15 the parallel speedup is close to the maximal achievable speedup
already for small problem sizes. Nevertheless, again the large negative influence of the (still
sequential) DAG computation is also visible.

5 Conclusion
On many-core systems a formulation of the H-LU factorization based on individual tasks and
the dependencies between them was introduced, which lead to an almost optimal parallel scaling
behavior for different problem classes. Furthermore, the principal technique of task-based
parallelism is applicable to various other H-matrix algorithms and by this forms a foundation for
H-matrix implementations on such architectures for future processors.

The modified execution order of the H-LU factorization with global scope, e.g., the computation
of blocks in a global block row instead of just local subblocks, is also applicable on distributed
memory machines. Here, the H-matrix is distributed among several computing nodes in some
suitable way and node-local computations can be performed as soon as the data is available. First
numerical experiments indicate, that again, the modified factorization algorithm yields a higher
parallel speedup compared to previous implementations.
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Figure 15: Scaling of H-LU factorization speedup for 60 cores and an increasing problem size for
nested dissection in R2 and R3.

The existing limitation of the implementation due to the sequential computation of the DAG
can be overcome by omitting the DAG and using a dynamic task creation system, e.g., spawn
matrix solve tasks after the factorization of a diagonal block. Albeit, such an approach would
make the handling of all dependencies for a single task more involved.
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