
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

The asymptotic behavior of a class of nonlinear

semigroups in Hadamard spaces

by
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THE ASYMPTOTIC BEHAVIOR OF A CLASS OF NONLINEAR
SEMIGROUPS IN HADAMARD SPACES

MIROSLAV BAČÁK AND SIMEON REICH

Abstract. We study a nonlinear semigroup associated to a nonexpansive mapping on
a Hadamard space and establish its weak convergence to a fixed point. A discrete-time
counterpart of such a semigroup, the proximal point algorithm, turns out to have the
same asymptotic behavior. This complements several results in the literature – both
classical and more recent ones. As an application, we obtain a new approach to heat
flows in singular spaces for discrete, as well as continuous times.

1. Introduction and Main Results

Throughout the paper, the symbol (H, d) stands for a Hadamard space, that is, a com-
plete geodesic metric space of nonpositive curvature. Given a nonexpansive mapping
F : H → H, we study the asymptotic behavior of its resolvent and of the nonlinear
semigroup it generates.

As a motivation, we first recall some known results in gradient flow theory in Hadamard
spaces. Let f : H → (−∞,∞] be a convex lower semicontinuous (lsc) function. Given
λ > 0, we define the resolvent of f by

(1) Jλx := arg min
y∈H

[
f(y) +

1

2λ
d(x, y)2

]
, x ∈ H,

and put J0x := x for each x ∈ H. The gradient flow semigroup corresponding to f is
defined by

(2) Stx := lim
n→∞

(
J t

n

)n
x, x ∈ dom f,

for every t ∈ [0,∞). Gradient flow semigroups in Hadamard spaces have been studied
by several authors [18, 21, 25, 4, 5, 6] and the theory can be extended to more general
metric spaces [1].
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2 M. BAČÁK AND S. REICH

If C ⊂ H is a convex set, we denote the corresponding metric projection by PC . The
set of minimizers of a function f : H → (−∞,∞] is denoted by Min f.

Theorem 1.1. [17, Theorem 3.1.1] Let f : H → (−∞,∞] be a convex lsc function and
x0 ∈ H. Assume there exists a sequence (λn) ⊂ (0,∞) with λn → ∞ such that (Jλnx0)
is a bounded sequence. Then f attains its minimum and

lim
λ→∞

Jλx0 = PMin f (x0) .

Recall that the proximal point algorithm (PPA, for short) starting at a point x0 ∈ H
generates the sequence

(3) xn := Jλnxn−1, n ∈ N,
where λn > 0 for each n ∈ N. In contrast to Theorem 1.1, it is known that the PPA
converges only weakly.

Theorem 1.2. [4, Theorem 1.4] Let f : H → (−∞,∞] be a convex lsc function attaining
its minimum on H. Then for an arbitrary starting point x0 ∈ H and any sequence of
positive reals (λn) such that

∑∞
1 λn =∞, the sequence (xn) ⊂ H defined by (3) converges

weakly to a minimizer of f.

It is not surprising that the gradient flow behaves in the same way.

Theorem 1.3. [4, Theorem 1.5] Let f : H → (−∞,∞] be a convex lsc function attaining
its minimum on H. Then, given a starting point x0 ∈ dom f, the gradient flow xt := Stx0
converges weakly to a minimizer of f as t→∞.

In a Hilbert space H, one can define the resolvent and the semigroup for an arbitrary
maximally monotone operator A : H → 2H . The situation described above then corre-
sponds to the case A := ∂f for a convex lsc function f : H → (−∞,∞]. In particular,
the semigroup in (2) provides us with a solution to the parabolic problem

u̇(t) ∈ −∂f (u(t)) , t ∈ (0,∞),

u(0) = u0 ∈ H,
for a curve u : [0,∞)→ H. Indeed, in this case u(t) := Stu0.

In the present paper, we prove analogs of the above gradient flow results which in
a Hilbert space H correspond to another important instance of a maximal monotone
operator, namely A := I − F, where F : H → H is nonexpansive and I : H → H is the
identity.

Let F : H → H be a nonexpansive mapping. We now define its resolvent and the
semigroup it generates as in [25]. Given a point x ∈ H and a number λ > 0, the
mapping Gx,λ : H → H defined by

(4) Gx,λ(y) :=
1

1 + λ
x+

λ

1 + λ
Fy, y ∈ H,

is a strict contraction with Lipschitz constant λ
1+λ

, and hence has a unique fixed point,
which will be denoted Rλx. The mapping x 7→ Rλx is called the resolvent of F.
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It is known that the limit

(5) Ttx := lim
n→∞

(
R t

n

)n
x, x ∈ H,

exists uniformly with respect to t on each bounded subinterval of [0,∞). Moreover, the
family (Tt) is a a strongly continuous semigroup of nonexpansive mappings [25]. This
definition appeared in [23, Theorem 8.1] in a similar context, namely, for a coaccretive
operator on a hyperbolic space.

The following result is a counterpart of Theorem 1.1. It was proved for the Hilbert
ball in [13, Theorem 24.1] and for a bounded Hadamard space in [19, Theorem 26]. The
latter proof however works also without the boundedness assumption, as we demonstrate
in Section 3 for the reader’s convenience.

Theorem 1.4. Let F : H → H be a nonexpansive mapping and x ∈ H. If there exists a
sequence (λn) ⊂ (0,∞) such that λn →∞ and the sequence (Rλnx)n∈N is bounded, then
FixF is nonempty and

(6) lim
λ→∞

Rλx = PFixF (x).

Conversely, if FixF 6= ∅, then the curve (Rλx)λ∈(0,∞) is bounded.

Our results are presented in Proposition 1.5 and Theorem 1.6 below. In Proposi-
tion 1.5, we give an algorithm which finds a fixed point of F. It is a counterpart of
Theorem 1.2. For a general form of this algorithm in Hilbert space, see [10, Theo-
rem 23.41]. See also [12, Theorem 2.6], [23, Corollary 7.10] and [24, Theorem 4.7]. The
best result in Hadamard spaces works only with λn = λ > 0; see [2, Theorem 6.4].

Proposition 1.5. Let F : H → H be a nonexpansive mapping with at least one fixed
point and let (λn) ⊂ (0,∞) be a sequence satisfying

∑
n λ

2
n =∞. Given a point x0 ∈ H,

put

(7) xn := Rλnxn−1, n ∈ N.
Then the sequence (xn) converges weakly to a fixed point of F.

Note that the assumption
∑

n λ
2
n = ∞ appears also in Hilbert spaces; see [10, Theo-

rem 23.41].
We also study the asymptotic behavior of the nonlinear semigroup defined in (5).

A Hilbert ball version of this result appears in [22].

Theorem 1.6. Let F : H → H be a nonexpansive mapping with at least one fixed point
and let x0 ∈ H. Then Ttx0 converges weakly to a fixed point of F as t→∞.

As noted in [9, Remark, p. 7], there exists a counterexample in Hilbert space showing
that the convergence in Theorem 1.6 is not strong in general. This counterexample is
based on an earlier work of J.-B. Baillon [8].

In Section 6, we apply Proposition 1.5 and Theorem 1.6 to harmonic mapping theory
in singular spaces and obtain the convergence of a heat flow to a solution to a Dirichlet
problem under very mild assumptions. To this end, we construct discrete and continuous
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heat flows by (7) and (5), respectively, with F being the nonlinear Markov operator. To
the best of our knowledge, these constructions are new and complement the existing
approaches, for instance, the gradient flow of the energy functional.

2. Preliminaries

Here we will recall some basic definitions and fact on Hadamard spaces. More infor-
mation can be found in the books [3, 11, 17]

Throughout the paper, the space (H, d) is Hadamard, that is, it is a complete geodesic
metric space satisfying

(8) d (x, γt)
2 ≤ (1− t)d (x, γ0)

2 + td (x, γ1)
2 − t(1− t)d (γ0, γ1)

2 ,

for any x ∈ H, any geodesic γ : [0, 1]→ H, and any t ∈ [0, 1]. Given a closed and convex
set C ⊂ H and a point x ∈ H, there exists a unique point c ∈ C such that

d(x, c) = d(x,C) := inf
y∈C

d(x, y).

We denote this point c by PCx and call the mapping PC : H → C the metric projection
of H onto the set C.

Given a bounded sequence (xn) ⊂ H, put

(9) ω (x; (xn)) := lim sup
n→∞

d (x, xn)2 , x ∈ H.

Then the function ω defined in (9) has a unique minimizer, which we call the asymptotic
center of (xn). We shall say that (xn) ⊂ H weakly converges to a point x ∈ H if x is the

asymptotic center of each subsequence of (xn) . We use the notation xn
w→ x. Clearly, if

xn → x, then xn
w→ x. If there is a subsequence (xnk

) of (xn) such that xnk

w→ z for some
z ∈ H, we say that z is a weak cluster point of the sequence (xn) .

Proposition 2.1. [7, Proposition 3.3] Let C ⊂ H be a closed convex set. Assume
(xn) ⊂ H is a Fejér monotone sequence with respect to C. Then we have:

(i) (xn) is bounded,
(ii) d(xn+1, C) ≤ d(xn, C) for each n ∈ N.

(iii) (xn) weakly converges to some x ∈ C if and only if all weak cluster points of
(xn) belong to C.

(iv) (xn) converges to some x ∈ C if and only if d(xn, C)→ 0.

For each λ > 0 and x ∈ H, we have Rλx = x if and only if Fx = x. Furthermore, we
have the following estimate.

Lemma 2.2. [25, Lemma 3.4] Let F : H → H be a nonexpansive mapping. Then its
resolvent satisfies

(10) d (x,Rλx) ≤ λd(x, Fx),

for every λ ∈ (0,∞).
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Proof. Since Rλx is a fixed point of the contraction Gx,λ, it can be approximated by the
Banach contraction principle. Therefore,

d (x,Rλx) ≤
∞∑
n=1

d
(
Gn−1
x,λ (x), Gn

x,λ(x)
)

≤ d (x,Gx,λ(x))
∞∑
n=1

(
λ

1 + λ

)n−1
≤ (1 + λ)d (x,Gx,λ(x)) ,

and we are done, because the right-hand side is equal to λd(x, Fx). �

Consequently,

d
(
x,Rn

t
n
x
)
≤

n−1∑
j=0

d
(
Rj

t
n

x,Rj+1
t
n

x
)
≤ nd

(
x,R t

n
x
)

= td(x, Fx),

and taking the limit n→∞, we obtain

(11) d (x, Ttx) ≤ td(x, Fx).

3. Proof of Theorem 1.4

Proof of Theorem 1.4. To simplify our notation, put xλ := Rλx for each λ ∈ (0,∞). Fix
now 0 < µ < λ and let

4
(
x, Fxλ, Fxµ

)
⊂ R2

be a comparison triangle for 4 (x, Fxλ, Fxµ) . We have∥∥Fxλ − Fxµ∥∥ = d (Fxλ, Fxµ) ≤ d (xλ, xµ) ≤ ‖xλ − xµ‖ .

Without loss of generality we can assume x = 0 ∈ R2. From this and the fact that
xλ = λ

1+λ
F (xλ) and xµ = µ

1+µ
Fxµ we further obtain〈

1 + λ

λ
xλ −

1 + µ

µ
xµ,

1 + λ

λ
xλ −

1 + µ

µ
xµ

〉
≤ ‖xλ − xµ‖ .

A simple computation yields(
1 + λ

λ
− 1 + µ

µ

)2

‖xµ‖+

(
(1 + λ)2

λ2
− 1

)
‖xλ − xµ‖

≤ 2

(
1 + µ

µ
− 1 + λ

λ

)
1 + λ

λ
〈xµ, xλ − xµ〉 .

Consequently,

〈xµ, xλ − xµ〉 ≥ 0.

Since

‖xλ‖2 = ‖xµ‖2 + ‖xλ − xµ‖2 + 2 〈xµ, xλ − xµ〉 ,
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we have
‖xµ‖ ≤ ‖xλ‖ ,

and

(12) d (xλ, xµ)2 ≤ ‖xλ − xµ‖2 ≤ ‖xλ − x‖2 − ‖xµ − x‖2 .
The monotonicity of λ 7→ ‖xλ‖ and the boundedness of the sequence {xλn} yield the
boundedness of the curve (xλ)λ∈(0,∞). Inequality (12) therefore implies that

d (xλ, xµ)2 → 0, as λ, µ→∞.
Let z ∈ H be the limit point of (xλ). By continuity we have

d(z, Fz) = lim
λ→∞

d (xλ, Fxλ) = lim
λ→∞

1

1 + λ
d (x, Fxλ) = 0,

which means that z ∈ FixF.
We will now show z = PFixF (x). Let p ∈ FixF and repeat the above argument with

the triangle 4 (x, p, F (xµ)) . We obtain

d(x, p)2 = ‖x− p‖2 ≥ ‖x− xµ‖2 + ‖xµ − p‖2 ≥ d (x, xµ)2 + d (xµ, p)
2 ,

and after taking the limit µ→∞, we have

d(x, p)2 ≥ d(x, z)2 + d (z, p)2 ,

which completes the proof that z = PFixF (x).
Finally, it is easy to see that if FixF 6= ∅, then (xλ)λ∈(0,∞) is bounded. �

4. Proof of Proposition 1.5

Proof of Theorem 1.5. Let x ∈ H be a fixed point of F. Then, for each n ∈ N, we have

d (xn−1, x) ≥ d (Rλnxn−1, Rλnx) = d (xn, x) ,

which verifies the Fejér monotonicity of (xn) with respect to FixF. Put

βn :=
1

1 + λn
.

Inequality (8) yields

d (x, xn)2 ≤ βnd (x, xn−1)
2 + (1− βn)d (x, Fxn)2

− βn(1− βn)d (xn−1, Fxn)2

≤ βnd (x, xn−1)
2 + (1− βn)d (x, xn)2 − βnd (xn−1, xn)2 ,

which gives

d (xn−1, xn)2 ≤ d (x, xn−1)
2 − d (x, xn)2

and hence

λ2n
d (xn−1, xn)2

λ2n
≤ d (x, xn−1)

2 − d (x, xn)2 .(13)
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By the triangle inequality, we have

d (xn, xn+1) + d (xn+1, Fxn+1) ≤ d (xn, Fxn) + d (Fxn, Fxn+1)

≤ d (xn, Fxn) + d (xn, xn+1)

and therefore

(14)
d (xn, xn+1)

λn+1

= d (xn+1, Fxn+1) ≤ d (xn, Fxn) =
d (xn−1, xn)

λn
.

Summing up (13) over n = 1, . . . ,m, where m ∈ N, and using (14), we obtain( m∑
n=1

λ2n

)
d (xm−1, xm)2

λ2m
≤ d (x, x0)

2 − d (x, xm)2 .

Taking the limit m→∞, we arrive at

d (xm, Fxm) =
1

λm
d (xm−1, xm)→ 0, as m→∞.

Assume now that z ∈ H is a weak cluster point of (xn) . Then

lim sup
n→∞

d (Fz, xn) ≤ lim sup
n→∞

[d (Fz, Fxn) + d (Fxn, xn)] ,

≤ lim sup
n→∞

d (z, xn) + 0.

By the uniqueness of the weak limit, we get z = Fz. Finally, apply Proposition 2.1(iii)
to conclude that (xn) weakly converges to a fixed point of F. �

5. Proof of Theorem 1.6

Proof of Theorem 1.6. We mimic the technique from [22] and adapt it to our situation.
First observe that

d (Rλx, FRλx) =
1

λ
d (x,Rλx) ≤ d(x, Fx),

by (10). Hence we have

d(x, Fx) ≥ d
(
R t

n
x, FR t

n
x
)
≥ d

(
Rn

t
n
x, FRn

t
n
x
)
,

and after taking the limit n→∞, we also have

d(x, Fx) ≥ d (Ttx, FTtx) .

The semigroup property implies that

d (Ttx, FTtx) ≤ d (Tsx, FTsx) ,

whenever s ≤ t and therefore the limit

(15) lim
t→∞

d (Ttx, FTtx)

exists. We will now show that this limit actually equals 0.
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Let 0 ≤ s ≤ t. Then inequality (11) yields

d (Tsx, Ttx) ≤
n−1∑
j=0

d
(
Ts+ j

n
(t−s)x, Ts+ j+1

n
(t−s)x

)
≤ t− s

n

n−1∑
j=0

d
(
Ts+ j

n
(t−s)x, FTs+ j

n
(t−s)x

)
,

and after letting n→∞, we obtain

(16) d (Tsx, Ttx) ≤
∫ t

s

d (Trx, FTrx) dr.

Next we prove that

(17) lim
t→∞

d (Ttx, FTtx) ≤ 1

h
lim
t→∞

d (Tt+hx, Ttx) .

To this end, we repeatedly use the inequality

d
(
FRn

λx,R
n−k+1
λ x

)
≤ 1

1 + λ
d
(
FRn

λx,R
n−k
λ x

)
+

λ

1 + λ
d
(
Rn
λx,R

n−k+1
λ x

)
,

valid for each 1 ≤ k ≤ n, to obtain

d (FRn
λx,R

n
λx) ≤ 1

(1 + λ)n
d (FRn

λx, x)

+ λ
n−1∑
j=0

1

(1 + λ)j+1
d
(
Rn
λx,R

n−j+1
λ x

)
.

Put now λ := t
n

and take the limit n→∞. One arrives at

d (Ttx, FTtx) ≤
∫ t

0

e−rd (Ttx, Tt−rx) dr + e−td (FTtx, x) .

Applying inequality (16) and an elementary calculation, we arrive at

etd (Ttx, FTtx) ≤
∫ t

0

(er − 1) d (Trx, FTrx) dr + d (FTtx, x)

or (
et − 1

)
d (Ttx, FTtx) ≤

∫ t

0

(er − 1) d (Trx, FTrx) dr + d (Ttx, x) .

Replacing t by h and then x by Ttx gives(
eh − 1

)
d (Tt+hx, FTt+hx) ≤

∫ t+h

t

(
er−t − 1

)
d (Trx, FTrx) dr

+ d (Tt+hx, Ttx) .
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By an easy calculation we obtain

d (Tt+hx, Ttx) ≥
(
eh − 1

)
[d (Tt+hx, FTt+hx)− d (Ttx, FTtx)]

+ hd (Ttx, FTtx) ,

which proves (17). Then (17) and (16) yield

lim
t→∞

d (Ttx, FTtx) ≤ lim sup
h→∞

1

h
d (Thx, x)

≤ lim
h→∞

1

h

∫ h

0

d (Trx, FTrx) dr

= lim
t→∞

d (Ttx, FTtx) .

From this, we can see that the limit in (15) is independent of x and is therefore equal to
0, for one may choose x ∈ FixF.

To finish the proof, choose a sequence tn → ∞ and put xn := Ttnx0. Since Tt is
nonexpansive, we know that the sequence (xn) is Fejér monotone with respect to FixF.
In particular, xn is bounded and has therefore a weak cluster point z ∈ H. It suffices to
show that z ∈ FixF. We easily get

lim sup
n→∞

d (Fz, xn) ≤ lim sup
n→∞

d (Fz, Fxn) + lim sup
n→∞

d (Fxn, xn)

≤ lim sup
n→∞

d (z, xn) ,

which by the uniqueness of the weak limit gives z = Fz. Here we used, of course, the
fact that the limit in (15) is 0.

It is easy to see that z is independent of the choice of the sequence (tn) and therefore

Ttx0
w→ z. �

6. Discrete and continuous heat flows in singular spaces

There have been considerable interest in harmonic mappings between singular spaces
and several (nonequivalent) approaches have been developed. See, for example, [14,
15, 16, 18, 20, 26, 27, 28]. We will follow [26] and consider an L2-Dirichlet problem
for mappings from a measure space equipped with a symmetric Markov kernel to a
Hadamard space. Under the assumption that the Markov kernel satisfies an L2-spectral
bound condition, it is shown in [26] that a Dirichlet problem has a unique solution
and that an associated heat flow converges to this solution. The L2-spectral bound
condition is completely natural albeit rather strong, since the heat flow semigroup is
then a contracting mapping and converges to the unique solution exponentially fast.

In the present paper, we use a somewhat different approach than [26] to construct
discrete and continuous time heat flows, namely formulae (7) and (5). Then we employ
Proposition 1.5 and Theorem 1.6 to obtain the convergence of these heat flows to a
solution to the Dirichlet problem. Let us first formulate the Dirichlet problem for singular
spaces. For the details, see the original paper [26] .
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Let (M,M, µ) be a measure space with σ-algebraM, measure µ and assume that it is
complete in the sense that all subsets of a µ-null set belong to M. Given a set D ∈M,
define

L2(D) :=
{
u ∈ L2(M) : u = 0 a.e. on M \D

}
.

Next, let (H, d) be a Hadamard space and fix a measurable mapping h : M → H, we
define the nonlinear Lebesgue space L2(D,H, h) of measurable mappings f : M → H
satisfying

d (f(·), h(·))2 ∈ L2(D).

The space L2(D,H, h), when equipped with the metric

d2(f, g) :=

(∫
M

d (f(x), g(x))2 µ(dx)

) 1
2

,

is again a Hadamard space.
Let p := p(x, dy) be a Markov kernel, which is symmetric with respect to µ, that is,

we have p(x, dy)µ(dx) = p(y, dx)µ(dy) for every x, y ∈ M. Then one can define the
nonlinear Markov operator P : L2(M,H, h)→ L2(M,H, h) by

Pf(x) := arg min
z∈H

∫
M

d (z, f(y))2 p(x, dy),

where f ∈ L2(M,H, h). By [26, Theorem 5.2], we know that

d2 (Pf, Pg) ≤ d2 (Pf, Pg) ,

for every f, g ∈ L2(M,H, h), that is, the nonlinear Markov operator is nonexpansive on
L2(M,H, h). A fixed point of P is called a harmonic mapping.

Remark 6.1. If M ⊂ Rn is a bounded set and P : L2(M,R) → L2(M,R) is the usual
(linear) Markov operator, then the laplacian satisfies ∆ = I − P, with I : L2(M,R) →
L2(M,R) being the identity, and we see that a function f : M → R is harmonic if ∆f = 0.

Since we are concerned with the Dirichlet problem, a somewhat refined notion of a
nonlinear Markov operator is needed. Given D ∈M, define a new Markov kernel

pD(x, dy) := χD(x)p(x, dy) + χM\Dδx(dy),

for every x, y ∈ M. Denote P(D) the nonlinear Markov operator associated with the
kernel pD. Then we have

P(D)f(x) =

{
Pf(x) if x ∈ D
f(x) if x ∈M \D,

and P(D) : L2(D,H, h)→ L2(D,H, h) is also nonexpansive.

Definition 6.2 (The L2-Dirichlet problem). Let D ∈M and h : M → H be a measurable
mapping. Is there f ∈ L2(D,H, h) such that P(D)f = f?
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In [26, Theorem 6.4], the author shows that the Dirichlet problem has a unique solution
provided the linear operator

P(D)f(x) :=

∫
M

f(y)pD(x, dy), f ∈ L2(M),

satisfies the spectral bound condition λk > 0 for some k ∈ N, where

λk := 1− ‖P k
(D)‖L2(D).

Under this assumption, one also gets strong (and exponentially fast) convergence of
an associated heat flow to the (unique) solution to the Dirichlet problem. In contrast,
we apply Proposition 1.5 and Theorem 1.6 with F := P(D) and do not assume any
spectral bound condition. We are then able to conclude that if there exists a solution
to the Dirichlet problem for a measurable mapping h : M → H, both the proximal point
algorithm (discrete time heat flow) and the semigroup (continuous time heat flow) weakly
converge to a mapping f ∈ L2(D,H, h) such that P(D)f = f.

We finish our paper by making the following conjecture.

Conjecture 6.3. The heat flow semigroup (Tt) defined by (5) for F := P(D) coincides
with the heat flow constructed in [26, Theorem 8.1].
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[2] D. Ariza-Ruiz, L. Leustean and G. López-Acedo, firmly nonexpansive mappings in classes of
geodesic spaces, Trans. Amer. Math. Soc., in press.
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12 M. BAČÁK AND S. REICH

[14] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for

lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 165–246.
[15] J. Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2

(1994), 173–204.
[16] J. Jost, Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations

5 (1997), 1–19.
[17] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, Birkhäuser, Basel, 1997.
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