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Abstract

In this paper we introduce a tensor subspace based format for the representation of a tensor in
a tensor space. To do this we use a property of minimal subspaces which allows us to describe the
tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the
associated minimal subspaces, we introduce the set of tensors in a tree based format with either bounded
or fixed tree based rank. This class contains the Tucker format and the Hierarchical Tucker format
(including the Tensor Train format). In particular, any tensor of the topological tensor space under
consideration admits best approximations in the set of tensors in the tree based format with bounded
tree based rank. Moreover, we show that the set of tensors in the tree based format with fixed tree based
rank is an analytic Banach manifold. The local chart representation of the manifold is often crucial for
an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems. We
also show, under some natural assumptions, that the tangent (Banach) space at a given tensor is a
complemented subspace in the natural ambient tensor Banach space and hence the set of tensors in the
tree based format with fixed tree based rank is an immersed submanifold. This fact allows us to extend
the Dirac-Frenkel variational principle in the framework of topological tensor spaces.

2010 AMS Subject Classifications: 15A69, 46B28, 46A32.
Key words: Tensor spaces, Banach manifolds, Tensor formats.

1 Introduction

Tensor formats based on subspaces are widely used in scientific computation. Their constructions are usually
based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most cases a
hierarchical representation fits to the structure of the mathematical model and improves its computational
implementation.

Two of the most popular formats are the Tucker format and the Hierarchical Tucker format [14] (HT
for short). It is possible to show that the Tensor Train format [25] (TT for short), introduced originally
by Vidal [30], is a particular class of the HT format (see, e.g. Chapter 12 in [15]). An important feature
of these formats, in the framework of topological tensor spaces, is the existence of a best approximation in
each fixed set of tensors with bounded rank [7]. In particular, it allows to construct, on a theoretical level,
iterative minimisation methods for nonlinear convex problems over reflexive tensor Banach spaces [8].



It is well known that the Tucker format is also well applicable to the discretisation of differential equations
in the framework of quantum chemical problems or of multireference Hartree and Hartree-Fock methods
(MR-HF) in quantum dynamics [21]. In particular, it can be shown that the set of Tucker tensors of fixed
rank forms an immersed finite-dimensional manifold [18]. Then the numerical treatment of this class of
problems follows the general concepts of differential equations on manifolds [12]. Recently, similar results
have been obtained for the TT format [16] and the HT format [28] (see also [3]). The term ”matrix-product
state” (MPS) was introduced in quantum physics (see, e.g., [29]). The related tensor representation can be
found already in [30] without a special naming of the representation. The method has been reinvented by
Oseledets and Tyrtyshnikov (see [24], [25], and [26]) and called " TT decomposition”. For matrix product
systems (MPS), the differential geometry in a finite-dimensional complex Hilbert space setting is covered in
[13].

Some natural questions arise in the framework of topological tensor spaces. The first one is: is it possible
to introduce a class of tensors containing Tucker, HT (and hence the TT) tensors with fixed and bounded
rank 7 A second question is: if such a class exists, is it possible to construct a parametrisation for the
set of tensors of fixed rank in order to show that it is a true manifold even in infinite dimensional case?
Finally, if the answers to both questions are yes, we would like to ask the following question: is the set of
tensors of fixed rank an immersed submanifold of the topological tensor space, as ambient manifold, under
consideration ?

The main goal of this paper is the study of the geometric structure of tensor representations based on
subspaces. The paper is organised as follows. Sect. 2 is devoted to preliminary definitions and results about
Banach spaces and Banach manifolds. Next, from Sect. 3 to Sect. 6, we give the contributions of this paper.
More precisely,

e In Sect. 3, we introduce a generalisation, at algebraic and topological levels, of the hierarchical tensor
format in order to include the Tucker tensors (among others) in that class. Moreover, we characterise
the minimal subspaces in that class extending the previous results obtained in [7].

e In Sect. 4, we show that the set of tensors with fixed rank is an analytic Banach manifold and its
geometric structure is independent on the ambient tensor Banach space under consideration.

e In Sect. 5, we discuss the choice of a norm in the ambient tensor Banach space in order to show
that the set of tensors with fixed rank is a immersed submanifold of that space (considered as Banach
manifold). To this end we assume the existence of a norm at each node of the tree not weaker than
the injective norm constructed from the Banach spaces associated with the sons of that node. This
assumption generalises the condition used in [7] to prove the existence of a best approximation in the
Tucker case. More precisely, under this assumption,

— we construct a linear isomorphism, at each point in the manifold of tensors with fixed rank, from
the tangent space at that point to a closed linear subspace of the ambient tensor Banach space,
this subspace being given explicitly,

— we show that the set of tensors with fixed rank is an immersed submanifold and

— we also provide a proof of the existence of best approximation in the set of tensors with bounded
rank.

e In Sect. 6, we give a formalisation in this framework of the multi—configuration time-dependent Hartree
MCTDH method (see [21]) in tensor Banach spaces.
2 Banach manifolds
In the following, X is a Banach space with norm ||-||. The dual norm |[|-|| . of X* is
lellx- = sup {lp(z)] : 2 € X with [[z]|x <1} =sup{|p(z)]/|z]x :0# 2z € X}. (2.1)

By £(X,Y) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as |||y, y -



Definition 2.1 Let X be a Banach space. We say that P € L(X,X) is a projection if P o P = P. In this
situation we also say that P is a projection from X onto P(X) parallel to Ker P.

From now on, we will denote P o P = P2. Observe that if P is a projection then Iy — P is also a
projection. Moreover, Ix — P is parallel to P(X) := Im P.

Observe that each projection gives rise to a pair of closed subspaces, namely U = Im P and V = Ker P
such that X = U @ V. It allows us to introduce the following two definitions.

Definition 2.2 We will say that a subspace U of a Banach space X is a complemented subspace if U is
closed and there exists V in X such that X =U ®V and V is also a closed subspace of X. This subspace V
is called a (topological) complement of U and (U, V) is a pair of complementary subspaces.

Corresponding to each pair (U, V') of complementary subspaces, there is a projection P mapping X onto
U along V, defined as follows. Since for each x there exists a unique decomposition z = u + v, where u € U
and v € V, we can define a linear map P(u + v) := u, where Im P = U and Ker P = V. Moreover, P? = P.

Definition 2.3 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of all comple-
mented subspaces of X.

U € G(X) holds if and only if U is a closed subspace and there exists a closed subspace V' in X such
that X = U @ V. Observe that X and {0} are in G(X). Moreover, by the proof of Proposition 4.2 of [6], the
following result can be shown.

Proposition 2.4 Let X be a Banach space. The following conditions are equivalent:
(a) U € G(X).
(b) There exists P € L(X, X) such that P2 =P and Im P = U.
(c) There exists Q € L(X,X) such that Q* = Q and Ker Q = U.
Moreover, from Theorem 4.5 in [6], the following result can be shown.
Proposition 2.5 Let X be a Banach space. Then every finite dimensional subspace U € G(X).

Let V and U be closed subspaces of a Banach space X such that X = U@ V. From now on, we will denote
by P, the projection onto U along V. Then we have P, =Ix —P,,,. Let U, U € G(X). We say that

vVeu

U and U’ have a common complementary subspace in X, if X = U@ W = U’ @& W for some W € G(X).
The following result will be useful (see Lemma 2.1 in [4]).

Lemma 2.6 Let X be a Banach space and assume that W, U, and U’ are in G(X). Then the following
statements are equivalent:

(o) X=UasW =U &W, ie, U and U have a common complement in X.

(b) P,pwlur : U — U has an inverse.

-t , then Q 1is bounded and Q = P,

€BW|U’) UEBW|U'

Furthermore, if Q = (PU

Definition 2.7 Let M be a set. An atlas of class C? (p > 0) on M is a family of charts with some indexing
set A, namely {(My,uq) : a € A}, having the following properties:

AT1 {My}aca is a covering' of M, that is, M, C M for all « € A and Uye s M, = M.

AT2 For each o € A, (M, uy) stands for a bijection uy, : My — Uy of M, onto an open set U, of a Banach
space Xy, and for any o and B the set uq(My N Mpg) is open in X,.

IThe condition of an open covering is not needed, see [19].



ATS Finally, if we let Mo, N\ Mg = Mag and ua(Mag) = Uag, the transition mapping ugouy' : Usg — Upq
is a CP-diffeomorphism.

Since different atlases can give the same manifold, we say that two atlases are compatible if each chart of
one atlas is compatible with the charts of the other atlas in the sense of AT3. One verifies that the relation
of compatibility between atlases is an equivalence relation.

Definition 2.8 An equivalence class of atlases of class CP on M is said to define a structure of a CP-Banach
manifold on M, and hence we say that M is a Banach manifold. In a similar way, if an equivalence class
of atlases is given by analytic maps, then we say that M is an analytic Banach manifold. If X, is a Hilbert
space for all o € A, then we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices «, or even that
they are isomorphic. If X, is linearly isomorphic to some Banach space X for all a,, we have the following
definition.

Definition 2.9 Let M be a set and X be a Banach space. We say that M is a CP? Banach manifold modelled
on X if there exists an atlas of class C? over Ml with X, linearly isomorphic to X for all o € A.

Example 2.10 Every Banach space is a Banach manifold (for a Banach space Y, simply take (Iy,Y) as
atlas, where Iy is the identity map on'Y ). In particular, the set of all bounded linear maps L(X,X) of a
Banach space X is a Banach manifold.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by
GL(X):={A € L(X,X) : A invertible }.

Example 2.11 If X is a Banach space, then GL(X) is a Banach manifold, because it is an open set in
L(X,X). Moreover, the map A — A~ is analytic (see 2.7 in [27]).

Example 2.12 (Grassmann Banach manifold) Let X be a Banach space. Then, following [5] (see also
[27] and [22]), it is possible to construct an atlas for G(X). To show that the atlas is an analytic Banach
manifold, denote one of the complements of U € G(X) by W, i.e., X = U @ W. Then we define the Banach
Grassmannian of U relative to W by

GW.X) ={VeGX): X=VaeW}.
It is possible to introduce a bijection
Yyew : GW,X) — L(U,W)

as the inverse of
‘Ijaéaw LU, W) — G(W, X),

defined by

Ut (L)=G(L) :=={u+L(u):ueU}.

Observe that G(0) = U and G(L) @ W = X for all L € L(U,W). It can be shown that the collection
{Yuew, G(W, X)}ueg(x) is an analytic atlas, and therefore, G(X) is an analytic Banach manifold. In
w OW

particular, for each U € G(X) the set G(W, X) E L(U,W) is also a Banach manifold.

Example 2.13 Let X be a Banach space, from Proposition 2.5, every finite dimensional subspace belongs
to G(X). It allows to introduce G, (X), the space of all n-dimensional subspaces of X. It can be shown (see
[22]) that G, (X) is a connected component of G(X), and hence it is also a Banach manifold modelled on
LU,W), here U € G,(X) and X = U@®W. Moreover, |J,, -, Gn(X) is also a Banach manifold for each fized

r < oQ.



Example 2.14 Let X be the Banach space obtained as the completion of the normed space (X, | - ). We
say that U € G,(X) if and only if U € G,(X) and U C X. We claim that G,(X) is also a Banach
manifold. To prove this claim, we need to show that for each U € G, (X) such that U @ W = X, it holds
that if U' € G(W, X) then U' C X. Observe that X = U & (W N X) where W N X s a linear subspace
dense in W = W N X. Assume that the claim is not true, then there evists U' € G(W,X) such that
UeW =X and U NX # U'. Clearly U' N X # {0}, otherwise W N X = X a contradiction. We have
X = (U NnX)® (WnNX), which implies X = (U' N X) & W, a contradiction and the claim follows. Then
the collection {Vygw, G(W, Y)}UGGn(X) is an analytic atlas, and therefore, G,(X) is an analytic Banach
manifold modelled on L(U,W), here U € G,,(X) and X =U ® W.

Let M be a Banach manifold of class CP, p > 1. Let m be a point of M. We consider triples (U, ¢, v)
where (U, ) is a chart at m and v is an element of the vector space in which p(U) lies. We say that two of
such triples (U, p,v) and (V,v,w) are equivalent if the derivative of 1p~! at ¢(m) maps v on w. Thanks to
the chain rule it is an equivalence relation. An equivalence class of such triples is called a tangent vector of
M at m.

Definition 2.15 The set of such tangent vectors is called tangent space of M at m and it is denoted by
T, (M).

Each chart (U, ) determines a bijection of T,,(M) on a Banach space, namely the equivalence class
of (U, p,v) corresponds to the vector v. By means of such a bijection it is possible to equip T,,(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

Example 2.16 If X is a Banach space, then T,(X) =X for all z € X.
Example 2.17 Let X be a Banach space and take A € GL(X). Then T4 (GL(X)) = L(X, X).
Example 2.18 For U € G(X) such that X =U & W for some W € G(X), we have Ty (G(X)) = L(U, W).

Example 2.19 We point out that for a Hilbert space X with associated inner product (-,-) and norm || - ||,
its unit sphere denoted by
Sx :={x e X :|z|| =1},

is a Hilbert manifold of codimension one. Moreover, for each x € Sx, its tangent space is

T.(Sx) = span {z}* = {2/ € X : (2,2/) = 0}.

3 Minimal subspaces and the representation of tensors in the Tree
Based Format

3.1 Tensor spaces in tree based format

Concerning the definition of the algebraic tensor space ®?:1 V; generated from vector spaces V; (1 < j < d),
we refer to Greub [10]. As underlying field we choose R, but the results hold also for C. The suffix ‘a’ in
a ®;.l:1 V; refers to the ‘algebraic’ nature. By definition, all elements of

are finite linear combinations of elementary tensors v = ®?:1 vj (v; € V).

The following notations and definitions will be useful. We recall that L(V, W) is the space of linear maps
from V into W, while V' = L(V,R) is the algebraic dual of V. For metric spaces, £(V,W) denotes the
continuous linear maps, while V* = £L(V,R) is the topological dual of V.



Let D :={1,...,d} be the index set of the ‘spatial directions’. In the sequel, the index sets D\{j} will
appear. Here, we use the abbreviations

V= ®V;C , where ® means ®
k#j k#j keD\{j}

Similarly, elementary tensors @), 4; Uk are denoted by v;.
For vector spaces V; and W; over R, let linear mappings A; : V; — W, (1 < j < d) be given. Then the
definition of the elementary tensor

d d d
A=@4 V=@V —W=.QW,
Jj=1 j=1 Jj=1
is given by
d d
AlQui | = (Ajv;). (3.1)
j=1 j=1

Note that (3.1) extends uniquely to a linear mapping A : V. — W.

Remark 3.1 (a) Let V := a®?:1 Vi and W := a®?:1 W;. Then the linear combinations of tensor
products of linear mappings A = ®;l:1 A, defined by means of (3.1) form a subspace of L(V,W):
d
«Q) L(V;, W;) C L(V, W).

j=1

(b) The special case of W; =R for all j (implying W = R) reads as a®;l:1 Vicv.
(c) If dim(V;) < oo and dim(W;) < oo for all j, the inclusion ‘C’ in (a) and (b) can be replaced by ‘=
This can be easzly verified by just checking the dimensions of spaces involved.

Often, mappings A = ®?=1 A; will appear, where most of the A; are the identity (and therefore
Vi =W;). If Ay € L(Vj, Wy) for one k and A; = id for j # k, we use the following notation:

@A =id® ... ®idR A, @Iid®...®@id € L(V, Vi @, Wy),
—— ——
k—1 factors d—k factors
provided that it is obvious which component k is meant. By the multiplication rule (®?:1 Aj) o (®§l:1 Bj) =
®;l=1 (A; o B;) and since id o A; = Aj o id, the following identity? holds for j # k:
id®...®id®Aj RIAR ... RIdR A, RId® ... Rid

= (id[j] ® Aj) o (id[k] ® Ag)
= (id[k] ® Ag) o (idm ® Aj)

(in the first line we assume j < k). Proceeding inductively with this argument over all indices, we obtain
d
A=Q)A; = (id;y ® A1) oo (idjg ® Ag).
j=1

If W; =R, ie., if A; = ¢; € V] is a linear form, then idj;; ® p; € L(V,V;) is used as symbol for
d®...Q01dE®p; ¥Iid® ... id defined by

(idy ® ¢)) (@Uk> = v (v)) ®Uk

k#j

?Note that the meaning of id[; and idy) may differ: in the second line of (3.2), (id ® Ax) € L(V, Vi) ®a W) and
(id[;1®A;) € L (Vix] ®a Wi, V{j k] ®a W ®a Wi) , whereas in the third one (id[;;® A;) € L(V, V{;; ®a W) and ( k) ®Ag) €
L (Vij) ®a Wy, Vijk) ®a Wj ®a Wi) . Here Vi = o ®iepy (.43 Vi-



Thus, if ¢ = ®] 195 € ®j , Vi, we can also write

o =®%_p; = (idy ® ¢1) oo (idg ® Pa).

Consider again the splitting of V = ® 1 Vj into V =V, ®@, Vi; with V;; 1=, ®k¢j Vi . For a linear
form ¢(; € ij], the notation id; ® ¢y;) € L(V, V;) is used for the mapping

(id; ® ;) <®vk> = oy <®vk> S

K]

If o) = ®k¢j VK € 4 ®k#j V[ is an elementary tensor?, I (®k¢j v(k)) = Hk# Pk (v(k)) holds in (3.2).
Finally, we can write (3.2) as

=0 1p;=pjolid;@py) forl<j<d

We introduce the abbreviation TBF for ‘tree based format’. For instance, a TBF tensor is a tensor
represented in the tree based format, etc. The tree based rank will be abbreviated by TB rank. To introduce
the underlying tree we use the following example.

Example 3.2 Let us consider D = {1,2,3,4,5,6}, then
6 3 5
:a®‘/j: a®‘/j Qa a®‘/j ®a%:V123®aV45®avé-
et et ‘

Observe that Vp = 4 ®j 1 V5 can be represented by the tree given in Figure 3.1 and Vp = V123®4 V450, Vs
by the tree given in Figure 3.2. We point out that there are other trees to describe the tensor representation
Vp =Via3®q Vys ®4 Vs, because

3

3 5 5
a®vj Qa a®vj ®a‘/6: V1®a a®‘/j Qa a®‘/j ®a‘/67
Jj=1 j=4 j=4

that is, Viag3 = 4 ®§:1 Vi = Vi ®q Vag (see Figure 3.3).
The above example motivates the following definition.
Definition 3.3 The tree Tp is called a dimension partition tree of D if

(a) all vertices a € Tp are non—empty subsets of D,
(b) D is the root of Tp,

(c) every verter a € Tp with #a > 2 has at least two sons. Moreover, if S(a) C 2P denotes the set of
sons of o then o = Ugeg(a)3 where N 3" =0 for all B,5" € S(a), B # 5.

If S(a) = 0, v is called a leaf. The set of leaves is denoted by £(Tp). An easy consequence of Definition 3.3
is that the set of leaves £(Tp) coincides with the singletons of D, i.e., £L(Tp) = {{j} : j € D}.

Example 3.4 Consider D = {1,2,3,4,5,6}. Take
Tp ={D,{1},{2}, {3}, {4}, {5}, {6}} and S(D) = {{1},{2}, {3}, {4}, {5}, {6}}
(see Figure 3.1). Then S(D) = L(Tp).



{1,2,3,4,5,6}

{2 B8 {4 {5y {6}

Figure 3.1: A dimension partition tree related to Vp = ®?:1 Vi .

{1,2,3,4,5,6}
{1,2,3} {4,5} {6}

{1 {2y B8y {4 {5}

Figure 3.2: A dimension partition tree related with Vp = Vi3 ®, V45 ®, V5.

{1,2,3,4,5,6}

{1,2,3} {4,5} {6}

SN N

{23 {4 {8

/N

{2r {3

Figure 3.3: A dimension partition tree related with Vp = Va3 ®, Vy5 ®, Vg where Vioz3 = V) ®, Vos.



Example 3.5 In Figure 3.2 we have a tree which corresponds to Vp = Va3 ®q Vus Qg V. Here D =

{1,2,3,4,5,6} and
Tp ={D,{1,2,3},{4,5},{1},{2}, {3}, {4}, {5}. {6} },
S(D) ={{1,2,3},{4,5},{6}}, S({4,5}) = {{4}, {5}}, S({1,2,3}) = {{1}. {2}, {3}}.
Moreover L(Tp) = {{1},{2},{3},{4}, {5}, {6}}.

Finally we give the definition of a TBF tensor.

Definition 3.6 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for j € D,
and consider for each oo € Tp \ L(Tp) a tensor space Vo, := 4 ®,6’€S(a) Vg . Then the collection of vector
spaces {Va}aerp\{p} i called a representation of the tensor space Vp = a®aeS(D) V., in tree based
format.

Observe that we can write Vp = ®a€S(D) V., =, ®j€D V; . A first property of TBF tensors is the
independence of the representation of the algebraic tensor space Vp with respect to the tree Tp.

Lemma 3.7 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for j € D.
Assume that {Va}aer,\{p} 5 a representation of the tensor space Vp = a®a€S(D) V. in the tree based
format. Then for each ay € Tp\{D} there exist as, ..., € Tp\{D, a1} such that D = U™ c;, a;Nevj = 0
and Vp = @i~y Va, .

3.2 Minimal subspaces for TBF tensors

Let V; be a vector space for j € D, where D is a finite index set, and «ar,...,q, C 2P\ {D,0}, be such
that a; Na; =0 for all i # j and D = U;n:l a;. For v e @~ V,, we define the minimal subspace of v
on each V,, :==, ®j€ai V; for 1 <1i < m, as follows.

Definition 3.8 For a tensor v € , ®jeD Vi = « @i~ Vi, the minimal subspaces denoted by Ug:in(v) C
Va,, for 1 < i < m, are defined by the property that v € @i~ Uy, implies U™ (v) C U,,, while
Vel Us™(v) .

The minimal subspaces are useful to introduce the following sets of tensor representations based on
subspaces. Fix r = (r1,...,74) € N% Then we define the set of Tucker tensors with bounded rank r in

V=,V by
aj=1"J )
Te(V) :={veV:dmU™(v) <r;, 1 <j<d},

and the set of Tucker tensors with fixed rank r in V = , ®§l:1 V; by
M (V) :={v €V :dim U;“i“(v) =r;,1<j<d}.
Then M, (V) C 7+(V) C V holds.

The next characterisation of U('X‘;i“(v) for 1 < j < m is due to [15] (it is included in the proof of Lemma
6.12). Since we assume that V,,; are vector spaces for 1 < j < m, then we may consider the subspaces

UL, ) = {(ida, © 010, )5 010 € 0@, ,, Vin }
and

VL) = { (e, ® 1o )V) : @l € a @), , Umn(v) |,

k#j
for 1 < 5 < m. Moreover, if Vaj are normed spaces for 1 < 7 < m we can also consider

UL ) = {(ide, ® 010 JV) ¢ 010 € 0 @), Vi |

and
ULV (v) = {(z’daj ® P )(V) : Pla, € “®k¢j Umin (v }

3Recall that an elementary tensor is a tensor of the form v @ - - - ® vg.




Theorem 3.9 Assume that V., are vector spaces for 1 < j < m. Then the following statements hold.
(a) For anyv eV =, ®;’L:1 V., , it holds
min _ I _ 11
Uaj (V) - U j(V) - Uaj (V)7

«
for1 <j<m.
(b) Assume that Vo, are normed spaces for 1 < j <m. Then for any v €V = , ®;n:1 V., , it holds
i IIr v
Ui () = UL () = ULV (v),
for1 <j<m.
Let D = U ; be a given partition. Assume that a; = U7_,3; is also a given partition, then we have

minimal subspaces Ué‘;i“(v) C Vg, = a®keﬂj Vi for 1 < 5 < n and Uf;;in(v) C V,, = a®k6ai V,, for
1 <i < m. Observe that V,, = , ®?:1 Vg, , where

Ve, é) UM (v) and v € ® Ugn (v ( ® Umin (v >
i=1

Example 3.10 Let us consider D = {1,2,3,4,5,6} and the partition tree Tp given in Figure 3.2. Take
Ve QicpVi = Va, ®a Va, ®a Vay, where an = {1,2,3}, ao = {4,5}, and ag = {6}. Then we can
conclude that there are minimal subspaces UR™(v) for v =1,2,3, such that v € , ®,3,:1 Unin(v) and also

manimal subspaces Ujmin(v) for j € D, such that v € o Q,cp Umm( )

The relation between U™ (v) and Ugi"(v) is as follows (see Corollary 2.9 of [7]).

Proposition 3.11 Let V; be a vector space for j € D, where D is a finite index set, and D = U «a; be a

given partition. Let v € ®]€D Vj . For a partition ay = UTL, B; it holds

U™ (v) € o @ UE™(v) .
j=1
The following result gives us the relationship between a basis of UZ™(v) and a basis of Ug;i“(v) for
1<j<m.

Proposition 3.12 Let V; be a vector space for j € D, where D is a finite index set. Let o C D such
that o = \J;*, a;, where O # «; are pairwise disjoint for 1 < i < m. Let v € o @..pV; . The following
statements hold.

je€D

(a) For each 1 <1i <m, it holds

U™ (v) = span (idai ® <p(a\ai)) (Va) : Vo € UP(v) and @@\ ¢ ® U™ (v
k#1

= span (idai ® <p(a\ai)) (Vo) : Vo € URN(v) and @\ € ®V;k
ki
(b) Assume that Vo := o @ivy Va, and V,,, for 1 <i < m, are normed spaces. For each 1 <i < m it
holds

UX™(v) = span (z’dai ® go(a\(”‘)) (Vo) 1 Vo € U™ (v) and p\x) ¢ ®Umm v)*
k#i

= span (Z'dai & QD(a\m')) (Va) 1Vq € U(;nin(v) and (P(a\ai) €a ®V?¥k
fti

10



Proof. Statements (a) and (b) follows in a similar way. Let v = D \ a and write v = |J]_, v, where
() # ~; C D are pairwise disjoint for ¢ = 1,2,...,n. In particular, to prove (b), we observe that

VD:Voc®aV'y: <a®vai>®a G®Vw
i=1 j=1

Then, by Theorem 3.9(b), using ULV (v), we have

URin(v) = { (idy @ ) (V) ®Umm and

Ug:in(v) = (idai ® QO(D\O""))(V) . SO(D\OM,) c ® Umm ® Umm
k#i

for 1 <i < m. Take v, € U™ (v). Then there exists p(?) € o @, U,‘;;i“(v)* such that v, = (ida ® ) (V).
Now, for p(®\@i) ¢ Qi Umin(v)* | we have

(e 00) = (0 60 0 49) ),

and hence (ida, ® @(®\*)) (v,) € UMM (v). Now, take vq, € URM(v), then there exists

SD(D\(L ® Umln ® Umm
k#i
such that va, = (ida, ® @P\*)) (v). Then P\ =377 wf-”‘\“i) ® ¢§7), where c;Sp) €@, U (v)*
and wga\al) o Qi Uni™(v)* for 1 < i <. Thus,

- (idm ® ¢<D\ai>) (v)

3 (idai ® P\ @ ¢§”) (v)

1

K2

I
.M*

(ida, @ 9{\*) ((ida @ 6)(V) ) -

=1

Observe that (id, ® qbz("’))(v) € U™n(v). Hence the other inclusion holds and the first equality of second
statement is proved. To show the second one, proceed in a similar way by using Theorem 3.9(b) and the
definition of Ué]U(v). |

From now on, given ) # o C D, we will denote Vo 1= ¢ @, Vj s Ta == dim UM (v) and URin(v) :=
span {v}. Observe that for each v € Vp we have that (dim UZ™(v)),e20\ (g} is in N2#7-1,

Definition 3.13 Let D be a finite index set and Tp be a partition tree. Let V; be a vector space for
J € D, Assume that {Va}aery\(D} 15 @ representation of the tensor space Vp = 4 ®aES(D) V., in the tree
based fOfmat. Then for each v € Vp = a®jeD V; we define its tree based rank (TB rank) by the tuple
(dim UM (v)) yer,, € N#TD,

In order to characterise the tensors v € V p satisfying (dim UM (v))ae7, = v, for a fixed v := (14 )aery €
N#T> | we introduce the following definition.

Definition 3.14 We will say that t := (ro)act, € N¥TP is an admissible tuple for Tp, if there ewists
v € Vp\ {0} such that dim U™ (v) = r,, for all « € Tp \ {D}.

11



3.3 The representations of tensors of fixed TB rank

Before introducing the representation of a tensor of fixed TB rank we need to define the set of coefficients
of that tensors. To this end, we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a
finite-dimensional setting.

Definition 3.15 For a C 2P, and B C a the map Mg is defined as the isomorphism

Mg : RXuea?s R(HMEBT“)X(Héea\ﬁm)7
C( — C(i)

iu)uea I3 P‘Eﬂ?(ié)56(¥\ﬂ

It allows to introduce the following definition.
Definition 3.16 For o C 2P, let C(®) ¢ RXnea™e. We say that C(@) € R*X“e"r“ if and only if

TT (det (Mo (€)M (C)T) + det (Mu(C)T M) ) > 0,

pEQ

where M, (C() € R > (Mscar iy 78) for each u € a. We point out that this condition is equivalent that all
M, (C®) have mazimal rank.

pea T

Since the determinant is a continuous function, R, is an open set in R X nea " and hence a finite-

. . . X X
dimensional manifold. Moreover, the tangent space T (a) <R* ne T“) = RXueam for all C(@ ¢ R, e

(cf. Definition 2.15).

Definition 3.17 Let Tp be a given dimension partition tree and fiz some tuple v € N'P for Tp. The set of
TBF tensors of bounded TB rank t is defined by

BT«(Vp):={veVp: dmUM(v) <rq foralaecTp }, (3.3)
and the set of TBF tensors of fixed TB rank v is defined by
FT(Vp) :={v € BT (Vp) : dim UM (v) =r, for alla € Tp} . (3.4)

Note that F7T(Vp) = 0 for an inadmissible tuple t. For t,5 € N'P we write s < v if and only if s, < 74
for all & € Tp. Then we have
BT(Vp) ={0}U | FT(Vp).

s<t

Next we give some useful examples.

Example 3.18 (Tucker format) Consider the partition tree over D := {1,...,d}, where S(D) = L(Tp) =
{{s}:1<j<d}. Let (rp,ri,...,rq) be admissible, then rp =1 and r; < dimVj for 1 < j < d. Thus we
can write

BT(l,T17...,Td)(VD) = 7ZT17...,Td)(VD)

and

Example 3.19 (Tensor Train format) Consider a binary partition tree over D :={1,...,d} given by

In particular, S({j,...,d}) ={{7},{7 +1,...,d}} for 1 <j <d—1. This tensor based format is related to
the following chain of inclusions:

UB™(v) € UP™(v) @, Ul (v) € UF™ (v) @, US™(v) @, UR(v) € - C o QU™ (v).
jeD

12



Let V; be vector spaces for j € D and Tp be a tree. Let v € FT(Vp). Then dim UM (v) = rq, for
each o € Tp \ {D}. Since v € o @ nes(p) URin(v) , there exists C(P) € R «es ™ such that

— (D) (o)
v= Z (Za)aES(D) ® ;. (3.5)

1<ia<rq a€S(D)
aeS(D)

where {ugf) 11 <ig <74} is a basis of UM (v). For each o € S(D) we set

(@) . )]
Ui = Z (fo)ﬁes(D) ® Wig (3.6)

1<ig<rg BES(D)
BeS(D) BFa
B#a
then (3.5) can be written as
> u¥eul. (3.7)
1<ia<ra

Let
Ui oy (V) = {(id[a) © @a) (V) : 0o € US™(v)*}.

We claim that {U(a) 1 < iy < 1y} are linearly independent. To prove the claim assume that U(a

is a linear combination of {U;’ (@9 <, < To}, then Uj (@) — =D ocio<ra /\iana where \;, # 0 for some
2 < i4 < rq. Thus,

)

v= 3 @) e Ul

2<ia<Ta

@)

since {ugj) +Ai,u;” 12 <, < 1.} are linearly independent we have dim UM (v) < r,, a contradiction.

Since {Uz(:) 11 <1, <1y} are linearly independent for each a € S(D), from (3.7) we have that
U 1y (v) = span {U{Y 11 < < 7o},

and from (3.6), we deduce that M, (C”)) maps a basis into another one for each o € S(D) and hence C(P) ¢
RPESP)™ e remark, that if S(D) = L(Tp), then (3.5) gives us the classical Tucker representation.

Now, assume S(D) # L(Tp). Then, for each u € Tp\{D} such that S(u) # 0, thanks to Proposition 3.11,

we have
Umln ® mln
ﬂ €S(n)

Consider {ugl“) :1 <, <r,} a basis of U (v) and {ugf) 11 <ig < g} a basis of U3™(v) for 8 € S(p)
and 1 <4, <r,. Then, there exists cW e RT“X(XBGSW rs) such that

(n) _ (1) (8)
ui“ o Z Ciuv(iﬁ)ﬁes(u) ® Zﬁ' (38)

1<ig<rp BES(p)

BES (1)
for 1 <4, <r,. Since {ul(-l’f) :1 <14, <r,}is a basis, we can identify C® with the matrix MH(C(“)), in the
non-compact Stiefel manifold R:”X(HB €50 rﬁ), which is the set of matrices in R™*(ITses) ™) whose rows
are linearly independent (see 3.1.5 in [1]). In a similar way as in the root case, for each fixed 1 <4, <1,

and B € S(u), we introduce
() — oW (9)
Uluvlﬂ T Z is(15)ses(u) ® ;s (3'9)

1<ig<rs seS(n)
d€S(1) o#p
6#8
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where 1 < ig < rg. Hence, we can write (3.8) as

W= 3w eu?)

m T3’
1<ig<rg

where 1 <4, <r, and § € S(u). From Proposition 3.12(a), we have

U™ (v) = span § (ids @ o)) 1 S iy S and g0V €0 QTP
seS(w\{8}

= span < (idg ® p"\?))(u (/ )) 1<i, <r,and p"\P ¢, ® A\
seS(m\{B}

and hence U™ (u (”)) Ug™(v) for 1 < i, < 7,. Let us consider {ga(’B) 1 <ig <rg} CU™(v) adual

basis of the finite dimensional space {u(B) 1 <ig <rg}, that is, P )( ) =;

i for all 1 <ig,jg < rg,
and B € S(u). Thus, we have

I

©) (u) (w) (B) min
Zdﬁ® ® ('0 1“ Z Czu (Jé)ées(u) JB U ( )
5€S (1) 1=7p=re
0#£pB

for each multi-index (js)ses(ung € Xsesils-..,rs}. Then, for 3 € S(u),
0#£pB

min 5 .
Ug"(v) = span { | idsg ® ® 90( ) (l) ) (Js)sesung € X AL,...,rs}, 1<, <1y
JeS(p) 5eS(n)
5#£8 0#£B

i T X T,
with dim U5 (v) = 7 if and only if rank M (C") = rg for 8 € S(u). Finally, we have C'*) € R*“X( ses )

(M)

for all p € Tp \ L(Tp). In a similar way, by using idg (. s @ gojﬂ) for 1 < jg < rg, over u;’’ it can be proved

that 4
U gy () = span { U, 21 <ig <}

for 1 <4, <7, and also

US(\ (s} (V) = span {U(B) sl <ig<rg 1<i, < m-}~

R

Now, we claim that {U(ﬁ?iﬁ 1<ig < 7“3} are linearly independent in ®5¢ﬁ Vs for 1 <i, <r,and g €

S(p). Otherwise, there exist \;, for 1 <ig < rg not all identically zero such that Zl<i/3<7"/3 Aig Ugf,)i;s =0.
Take wg € Vg \ {0} and then

wa® | 30 UL | = 3 Awa® UL, =0

1<ig<rp 1<ig<rg

Observe that

(8) _ () ) o) | _
Z ()\15W5®U ’111)_ Z Oiw(ia)éesw))\’ﬂwﬁ@ ® Wi, =0,

lg’iﬁ S'r[g légzg(g’l“),; s 5?5 )
eS(p esS(p
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for 1 <4, <r, and B € S(u), take a dual basis of {cp(-é)

where <p(6)( (6))

id@ ®

5eS(m\{B} 1<is<rs

that is, Mg(C)Tz5 = 0, where zg := ()\iBwﬁ)Zs:l. Since rank M (C' ()

wp)iy—1 = (0);]

0, and hence zg = (A, Wg);, in=1

dim USR5 (0"

for 1 <4, <r, and g € S(u). Hence Umm( )=

(8) ) (3 _ (k) )
® Pis Z (Azﬁwﬂ@)Ul lﬁ) - Z Cim(is)aes(u))\’ﬂ

'1<7;5§7‘5}CV§0f{u§§):1§i5§7‘5}CV5

= §;,.5, for all 1 <5, j5 < rs. Then we obtain

W3 = 0,
1<ig<rg

) = 73, then dim Ker Mz (C)T =

for 5 € S(7), a contradiction. In consequence,

) dlmUmm( (1 )):7“,3

T

U™ (™)) holds for 1 < i, <7, and B € S().

From (3.5) and (3.8) we obtain the Tucker representation of v, when S(D) # L(Tp), as

-

1<ip <rg 1<ia<rq
keL(Tp) | a€Tp\{D}
a¢L(Tp)

(D)
Z C(ia)aesw)

(1) (k)
H Ciuv(iﬁ)ﬁesw) ® Uy, (3.10)
n€Tp\{D} keL(Tp)
S(pu)#0

Moreover, necessary conditions for vt € N#7? to be admissible are

rp =1,

T} < dimV;

ra < [lpes(a) s

rs < 7o lgesanis) 76

for {j} € L(Tp),
fora € Tp \ L(Tp),
for « € Tp \ L(Tp) and § € S(w).

Example 3.20 Let us consider D = {1,2,3,4,5,6}, then

6 3
=@V = | QY | @
j=1

It is well known (see [7]) that v € a®?:1 UJ‘»T‘in(V) and v € UM (v) ®

sition 3.12 we have
Up™(v) C U3 (v) ®

Moreover, we can write

23 T45 76

Z Z Z 1123,140,16

1123 1145 116 1

where

(123 2 : 2 : 2 : (123)
2123 01123 11,12,13

21 112 113 1

and

(45 z : z : (45
Wiss 145,184,105

ig=115=1

Umln ( ) m1n

u't? @u (45) ® (6)

1123

= Vi3 ®q Vs ®q Vs.

5
cQV; | ®a Ve
j=4

o UBR(v) ®, U (v). From Propo-

® Umm

u;, C’(D) c R:123><T45><7'6
6

e ® u(2) ® W3 0023) ¢

RT‘123 XT1XT2 XT3
11 13 *

u® g

14 15 )

45
C( ) c R:45XT4XT5.

15



Finally

1 76 7123 745 (D) ( ) (4 ) *)
123 5
V= Z Z Z Z C112d714u716 1123,%1,%2,13 140774710 ®’LL ik )
i1=1 ig=1

6
2123 1145 1 k:].

whereu GUmm( ) for 1 <k <6.

The procedure, given a basis of UM(v) for o € T \ {D}, used to obtain (3.10), is completely charac-
terised by a finite tuple of tensors

Cv) == (Caerproiry € X Rrex(Xaesma),
a€Tp\L(Tp)

X X
where C(P) € R “€*® "™ and 0 e R:“X( BES(H) Tﬁ)7 for each u € Tp \ {D} such that S(u) # 0. From
now on, to simplify the notation, we introduce for an admissible v € N”? the product vector space

R® = X R7* (X ses(o Tﬁ‘)’
a€Tp\L(Tp)

with rp = 1. It allows us to introduce its open subset R, and hence a manifold, defined as

_ e e, OP)eREw =™ ™ and o) ¢ Ry (Xoese 7o)
" for each p € Tp \ {D} such that S(u) # 0. '

Before characterising the ”local coordinates” of a tensor v € FT.(Vp) we need to introduce topological
TBF tensors.

3.4 Topological TBF tensors

First, we recall the definition of some topological tensor spaces and we will give some examples.

Definition 3.21 We say that V). is a Banach tensor space if there exists an algebraic tensor space V and
a norm ||| on V such that V. is the completion of V with respect to the norm ||-||, i.e.,

———

d
Vi =11 @V =@, Vi
j=1

If V. is a Hilbert space, we say that V. is a Hilbert tensor space.
Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3.22 ForI; CR (1 <j <d) and1 < p < oo, the Sobolev space HY'P(I;) consists of all univariate
functions f from LP(I;) with bounded norm*

N 1/p
s, = (3 [ 10rsras)
n=0 J

whereas the space HN’p(I) of d-variate functions on I =1, x Iy x ... x I; C R?* is endowed with the norm

Flvy=( 3 / o g ax) "’

0<\n|<N

41t suffices to have in (3.22) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.
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Il
Lp(Il) Ra HN,p(]2) Ru HN’p(Ig)d l123

T

I
(1) TG e B

N

HNP (1) HYNP(I)

Figure 3.4: A representation in the topological tree based format for the tensor Banach space
|-
Lr(11) @, HN?(I3) ®, HN’P(];;)" 1128 Here Il - ll2s and || - |[125 are given norms.

with n € N¢ being a multi-index of length |n| = Z?:l nj. For p > 1 it is well known that HN?(I;) and
HNP(1) are reflevive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces HN(Ij) =
HN2(I;) and HN(I) := HN:2(I) are Hilbert spaces. As a first evample,

d
Y1) =y, @ HY (L)
j=1
is a Banach tensor space. Examples of Hilbert tensor spaces are
d d
LM =y, QLX) and HY@) =, QHN(;) for NeN.
J=1 Jj=1

In the definition of a tensor Banach space | ®j6D V; we have not fixed, whether Vj, for j € D, are

complete or not. This leads us to introduce the following definition.

Definition 3.23 Let D be a finite index set and Tp be a dimension partition tree. Let (Vj,| - ||;) be a
normed space such that V;, = is a Banach space obtained as the completion of Vj, for j € D, and consider
J

a representation {Va}acrpo\(py of the tensor space Vp = @ ..pV; where for each oo € Tp \ L(Tp) we
have a tensor space Vo = o Qpeg(ay Vo - If for each o € Tp \ L(Ip) there exists a norm || - [lo defined

on Vo such that Vi, = . ®5€S(a) Vi is a tensor Banach space, we say that {Va,  }acrp\(D} 15 @
representation of the tensor Banach space VDH-HD = |lp ®j€D V; in the topological tree based format.

Since Vo = 0 Qjea Vi
Vapa = Ia ® Vo = | ®Vj
a€eS(D) JEa

holds for all &« € Tp \ L(Tp).

Example 3.24 Figure 3.4 gives an example of a representation in the topological tree-based format for an
anisotropic Sobolev space.

Remark 3.25 Observe that a tree as given in Figure 8.5 is not included in the definition of the topological
tree based format. Moreover, for a tensor v € LP(I1) ®q (HNP(I3) ®|.1,, HYP(I3)), we have Ui (v) C
HNP(I3) @, HYP(I3). However, in the topological tree based representation of Figure 3.4, for a given
v € LP(I1) ®, HYP(I) ®, HYP(I3) we have UB™(v) € HNP(I) ®, HVP(I3), and hence UB™(v) C
U3 (v) @4 U™ (v).

The difference between the tensor spaces involved in Figure 3.4 and Figure 3.5 is the following. For all
B €Tp\L(Tp),if || - |5 is also a norm on the tensor space o @, c5(5) V., » we have

s @ Va, 2 Ve, =i @ Vo= 11, Q5

nes(p) nes(p) Jjes
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[Il123

I-
Lp([l) ®a HN,p(I2) ®a HN’p(Ig)‘I [l23

T

LP(I;) HNr(Ih) ®, HVP(I3)

N

HYP(I)  HYP(Iy)

IRIPR

I ll123
Figure 3.5: A representation for the tensor Banach space LP(I1) ®, HN:?(I3) ®, HNvP(Ig,)" 20 , using a
tree. Here || - ||23 and | - ||125 are given norms.

A desirable property for the tensor product is that if ||-|| is also a norm on the tensor space , ®BeS(a) Vg, I
then

e & Vs = Ila @ Vs =11.QV; (3.11)

BES(a) peS(a) j€a

must be true for all &« € Tp\ L(Tp). To precise these ideas, we introduce the following definitions and results.

Let [|-||;, 1 < j < d, be the norms of the vector spaces V; appearing in V = , ®;-l:1 Vj . By ||-|| we denote

the norm on the tensor space V. Note that [|-|| is not determined by |-, , for j € D, but there are relations
which are ‘reasonable’. Any norm ||| on 4 ®?:1 V; satisfying
d d _
H X, ij =TI _ ol foraliv;ev; 1 <j<ad) (3.12)

is called a crossnorm. As usual, the dual norm of ||-|| is denoted by |[|-||*. If ||-|| is a crossnorm and also ||-||*
is a crossnorm on ®j:1 Vi e,

d NI d . ,
@D = @) @) * ;
|, 9| =TI Ie?l;  foral¢@ ey 1<j<d), (3.13)
then ||-|| is called a reasonable crossnorm.

Remark 3.26 Eq. (3.12) implies the inequality || ®?=1 vl S H?zl llvjll; which is equivalent to the conti-
nuity of the multilinear tensor product mapping® between normed spaces:

d d
®: X (Vi) = (« @il ): (314)
j=1 j=1

defined by @ ((vi,...,v4)) = ®d:1 vj, the product space being equipped with the product topology induced by
the mazimum norm ||(vy, ... 7vd§|| = maxi<;<d ||vj];-

The following result is a consequence of Lemma 4.34 of [15].

d
SRecall that a multilinear map T from X _; (Vj, || - |l;) equipped with the product topology to a normed space (W, || - ||) is
continuous if and only if ||T']| < oo, with

T(v1,...,vq
T == sup IT(v1, ..., v9)| = sup IT(v1,...,vq)|| = sup M
V1seervg) w1,evg) Nall - llvalla
(1, va) <1 lv1ll1 <1, lvglla<1
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Lemma 3.27 Let (V},| - ||;) be normed spaces for 1 < j < d. Assume that || - || is a norm on the tensor
space o ®j=1 Vi, such that the tensor product map
J

®: >< (Vi I,) — (év 1H1) (3.15)

is continuous. Then (3.14) is also continuous and

d d
-1 ®Vju...j = 11V
j=1 j=1

holds.

Definition 3.28 Assume that for each o € Tp\L(Tp) there exists a norm ||-||o defined on o @ geg(a) Vi, -
We will say that the tensor product map Q) is Tp-continuous if the map

>< (V%Hﬂﬁ’||.Hﬁ) —|a CED vbWH37||'”a

BeS(a) BES(a)
is continuous for each a € Tp \ L(Tp).
The next result gives the conditions to have (3.11).

Theorem 3.29 Assume that we have a representation {VQH.HQ YaeTp\{D} in the topological tree based format
of the tensor Banach space Vp, | == |, Ques(p) Va » such that for each o € Tp \ L(Tp), the norm |- [|a
is also defined on ®6€S(a) VgH_”ﬁ and the tensor product map Q) is Tp-continuous. Then

e & VBH s = Il ® Vi = 11.QV -
BeS(a BeS(a JjE

holds for all o € Tp \ L(Tp).

Proof. From Lemma 3.27, if the tensor product map

>< (V,B”.M’H ||[3 ® VBH ||57 ’ CV)

BES(a) ﬁesm)

is continuous, then

[Nl ® Vﬁn-uﬁ = llla ® Vs,

BeS(a) BES(a)
holds. Since V, = ®565(a) Vg =4 ®jea V; , the theorem follows. [

Example 3.30 Assume that the tensor product maps
Q) (LP(10), |- lloper) X (HNP (1) @)y HNP(I3), || [l23) = (L (1) @0 (HNP (1) @y HNP (1)), || - [|123)

and
Q) (HVP(L), || Ivprs) x (HNP(I), || - [ pers) = (HNP (L) @0 HNP (), | - [l23)

are continuous. Then the trees of Figure 3.4 and Figure 3.5 are the same.
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Now, assume that we have a representation {VQH_”(X}aeTD\{D} of the Banach tensor space VD”,HD =
I-lo ®a€S(D) V. , in the topological tree based format. Take Vp = a®a€S(D) V, and v € FT(Vp).
From Example 2.14, the finite dimensional subspace U™ (v) C V,, C V.. belongs to the Banach manifold
Gr,(Va) for a € Tp \ {D} (see also Example 2.13). Hence, (U™ (V))aer,\(p} belongs to the product
manifold

G(Tp) := X G (Va).
aceTp\{D}

In consequence, under the above assumption, every v € FT.(Vp) is completely characterised by
(€(v), (UF™(V))aerp\(p}) € RE X Ge(Tp).
We remark that it allows to define a surjective map
0. : FTe(Vp) — R x Gi(Tp), v 0. (v) = (€(v), (Us"™(V))aerp\(D}) -

that will be useful in the next section to define a manifold structure on F7(Vp).

4 The manifold of TBF tensors of fixed TB rank

Let {Va,,,
topological tree based format. Set Vp := , ®a€S(D) V..

}aeTp\{D} be a representation of a Banach tensor space VDH'HD = Ilp ®a€S(D) V., in the

Now, fix v € FT(Vp) and consider a basis {uz(-j) 11 <ig < 1o} of URR(v) for each a € Tp \ {D}
such that v can be represented by means (3.5) and (3.8). Thus v is completely characterised by € € Rt and
({ul(:“) 11 <ig <7a})aerp\{D}- Assume a decomposition into a direct sum

Vo, = U™ (v) @ Wit (v)
for a € Tp \ {D}. From Example 2.14 we have for each o € Tp \ {D} a set
CWI™(v),Va, ) ={Ua €G(Vqa, ) : Us ®WI" (V) =Vq,  }
and a bijective map Wymin (v)gwmin(v) : GIWIM(V), Vo, ) — LIUF™(v), WP (v)). Clearly, the map

T, X GWEM(v), Vo, )= X LU (v), Wi (v)),
aceTp\{D} aceTp\{D}

defined as Wy := X e\ (p} Yumin(v)@wmin(v) 18 also bijective. Furthermore, it is a local chart for U(v) =
{UP™(v)}aerp\p} in Ge(Tp), such that W, (8(v)) = 0 := (0)aerp\(p}- To simplify the notation, for each
v € FT:(Vp) we will use

Lry(v):= X LUFV), W (v))
acTp\{D}

= {2 = {Laacro\p}  La € £ (U (v), WI" (1))},

which is a closed subspace of the Banach space

Lr,= X L (Vaulua’VO‘H-lla) ’
a€Tp\{D}
and !
Get(v)) = X GWI™(v), Vay,,),
a€Tp\{D}

which is a local neighbourhood of {(v) in the manifold G.(Tp). Moreover, 4 = ¥, (&) with U, = G(L,) =
{us + La(us) t uy € UPM(v)} for each v € Tp \ {D}. A useful result is the following.
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Lemma 4.1 For each o € Tp\{D}, the set L(UL™(v), W™ (v)) is a complemented subspace of L(Vo, Vo)
and hence for each v € Vp, the set L1, (V) is a complemented subspace of Lr,,.
Proof. Observe that the map
Mo i £(Vay o Vo) = £ (Vg Vo)
defined by
o (La) = Pivginw)augin(v) Lo Lupinw)owsinw)
is a projection onto L(UM"(v), Wmin(v)). |

Now, let o : RY X G(Tp) — G(Tp) be the morphism (€, ) := 4. Then we introduce the map
Ar, :=m00:: FTo(Vp) — Ge(Tp) C G(Tp), W (W) := (U™ (W))aeTp\(D}>
and observe that for each w € FT7(Vp) we have
A7 (A, (W) ={u € FT(Vp): US™(u) = US™(w) for all a € Tp \ {D}}.
We define the local neighbourhood of v, denoted by U(v), in FT(Vp) as
UV) = Mg (Ge(t(v))) = o (RS X Ge(U(v))) € FT (VD).
Observe that for each w € U(v) we have
Vo, = Ua™(w) & Wat(v),
where U™ (w) € G(W2in(v), V|..), for each a € Tp \ {D}. Since

A\ 3 N
Umin (v)wmin (v)

GWa™(v), Vay ) = LUF™(v), W™ (v)),
there exists a unique L, € L(UD"(v), Whin(v)) such that
U yymin (vy@wmin(v) (Un (W) = Lq
for each a € Tp \ {D}. Moreover, we claim that
U(‘X“i“( ) = span{L,(u; )) + u(o‘) 1<in <ra}
holds for all & € T \ {D}. To prove the claim, we only need to show that
(La(@™) +ul® i1 < iy < 7o)

are linearly independent in UM (w). If the last statement is not true, we may assume without loss of
generality that

L ( )+ u1 Z Ak (L ,(Ca)),
ie.,

Z A La( Z Mg — uf®

The left-hand side is in W™ (v) and the right-hand side is in U™ (w). Since Wit (v) N UM (w) = {0}
we then have a contradiction and the claim follows.

Take w € U(v), for each u € A}, (ATD( )) CU(v), we fix the basis

{ng) = uz(-:) + La(ugz)) 1<y <7y}
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of UMin(w) for each o € Tp \ {D}. Then we define &y : A;; (A1, (w)) — RS by

§w(u) :==¢€(u) = (C(a)(u))aeTD\L(TD)a

where (D) (a) (a)
o o o
u= Z C(ia)aes(D)(u) ® (Lo‘(uia )+uia )
1<iq<rq aeS(D)
aeS(D)
and, if S(D) # L(T), for each p € Tp \ {D} such that S(u) # () we have
(8 B
L) +ul = 37 e Q) sl ),
1<ig<rg BES (1)
BeS(1)
for 1 < i, < ry. Clearly, {w is one-to-one. On the other hand, given 8 € R}, we can construct u €

1
A;Ll) (A7, (w)) satisfying B = €(u). Thus we can conclude that &, is a bijection which is independent of w.

It allows us to define a local chart © : U(v) — R§ x Lp, (v) by
Ov(w) = (§w(W), ¥y 0 Ary, (W) = (€(w), ¥y (U(w))) -

More precisely, Oy (w) = (€(w), £) if and only if
D
W= Y O™ Q) (Lalw?) + ), (4.1)
1<ia<rq a€S(D)

aeS(D)

where, if S(D) # L(Tp), for each p € Tp \ {D} such that S(u) # ) we have

/ ) (8)
Lu(u§5>)+u§5> = ¥ Cz‘(,f,,)uﬁ)%sm(w) Q) (Lsu)) + ) (4.2)
1<ig<rg BES (1)
BES (1)

for 1 < i, < r,. Proceeding iteratively along the tree, we obtain, for S(D) # L(Tp), a Tucker format
representation of w given by

_ (D) (1) (k) (k)
W= Z Z C(ia)aes(D)(W) H Ciw(ia)aes(u)(w) ® (Lk(uik )—&-uik )-

1<ig<rp | 1<ia<ra n€Tp\{D} keL(Tp)
kel(Tp) | aeS(D) S(pn)#0
ag L(Tp)

The next result shows that the collection {©y,U(V)}ver7, (v, is an atlas for FT(Vp).

Theorem 4.2 Let {Vawa YaeTo\{D} be a representation of a Banach tensor space

Vo, = e @ Va,
aeS(D)

in the topological tree based format. Then the collection {Oy,U(V)}verT (vp) i an analytic atlas for
FT(Vp). Furthermore, the set FT(Vp) of TBF tensors with fived TB rank is an analytic Banach manifold
modelled on R* x Lp, (w), here w € FT(Vp).

Proof. Clearly, {U(V)}verr.(vp) is a covering of FT(V) and AT1 is true. Take (¢, £) € R x L1, (v). By

using (4.1)-(4.2), we can construct w € U(v) such that O, (w) = (€, £), and in consequence O, is surjective.
Now, consider that Oy (u) = O, (w). Since UM% (u) = UM (w) for all a € Tp \ {D} and €(v) = &(w),
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also from (4.1)-(4.2) we can conclude that w = u. In consequence, AT2 in Definition 2.7 holds. Finally for
v,u € FT.(Vp) consider U(v,u) :=U(v) NU(u). Observe that w € U(v,u) if and only if
U™ (w) € GWI™(a), Vo, ) NG(WI™(v), Vg, ) for a € Tp.
Then we need to show that
Oy 00, : 0y (U(v,u)) — Oy (U(V,u))
is a diffeomorphism. To this end, assume that {uz(-:) :1 <, <74} is a basis of UM% (v) and {ZE:) 1<
ia < 7o} is a basis of UM (u) for o € Tp \ {D}. For each (€, £) € O, (U(v,u)), let w € U(v,u) be such
that ©4(w) = (¢, £), and
0,00, (¢, L) =0,(w) =(B,M).

Now, we describe the transformation € — 8. We have

D
w= Y O o™ Q) (La(w?) i)

1<i0<Tq a€S(D)
aeS(D)
D @ @
= Z Dgia))aes(m (w) ® (Na(zz('a)) +Z§a))’
1<iq<rq a€s(D)
a€eS(D)
where )
U(I)(nm(w) _ Span{ugj) + La<uz('j)) 1 <0y < Ta}’a
La(ugj)) —|—u§:) = Z Ci(ja)(i/i)/ﬁes(u) (W) ® (Lﬁ(ugﬁ)) +u§ﬁ))’
1<ig<rg BeS(a)
BeS(a)
U (w) = span{z() + No(a()) 1< o < 1)
and
Nu@ ) +2% = S B W) Q (Ns(z)+22)
alZ; o ias(i8) pes(u) Pi%is *
1<ig<rg BeS(a)
BeS ()

holds for 1 < i, <7, and a € Tp \ {D}. We show the existence of a linear isomorphism

A(D) : R*X aesS(D) Ta s R*X aeS(D) Ta

such that AP)(CP)) = B(P) as follows. Let Sp := Ques(p) Sar Where S € LIUF™ (w), UX™(w)), is
defined by
SalLa({™) +ul) = 3 A% (La{™) +ul®) = No(2!?) + 2

1<ja<ia

for 1 < i, <74 and a € S(D). Clearly, A® € GL(R™), and

SDEL a ® Uglin(w)’a ® U;nin(w)

«eS(D) aeS(D)

is a linear isomorphism. Moreover, AP) := Quesin) Al . R*X"ES(D) ey R}aes(mr" and B(P) =
AP)(CP)), Proceeding in a similar way for each o € Tp \ {{D}UL(Tp)}, we can construct a linear isomor-

ro X (X )T rox (X T .
phism A : R, *(Xaesce o) — R, *(Xaesce 7o) such that A (C(®)) = B(®, The above construction
allows us to define a map 2 : R — RE given by 2((€) = 2B, which is also a linear isomorphism and we can
write

O, 005" (€, £) = (A(Q),MN) = (A(), ¥y 0 A, (W))).
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Since A, (w) = U(w) and UM (w) = \I/E;nm(u)@vvg;n(u)

(L) for each o € Tp \ {D}, we obtain
Oy 00, (¢,8) = (AQ), (Ty o ¥,") (2)).

-1

Ug]in(u)@W&nin (u) m&pplng from

From [5] we know that Wirmin(vygwmin(v) © ¥
U grmin (wy@wmin(w) (GWVE™ (), Vo, ) NGWI(V), Vo, ) C LOUS™ (w), W (u))

to
W ymin (v)@wmin(v) (G(W;‘”“(u),VQH_HQ) N G(Wé““‘(vLVQH_Ha)) C LU (v), W™ (v))

is an analytic diffeomorphism for each o € T \ {D}. Then W, o ¥ ' is an analytic diffeomorphism from

xpu< X (G(W;‘in(u),va,a)mG(W;“in(v),Va_a))> C L7, (n)

acTp\{D}
to
¥, < X (GWI™(u),Va,,.) ﬂG(W;mn(v),Va”_“a)> C Ly, (v).
a€Tp\{D}
Clearly, AT3 holds and the theorem follows. [

Remark 4.3 We observe that the geometric structure of manifold is independent of the choice of the norm
Il - |lp over the tensor space Vp.

Corollary 4.4 Assume that Vo, is a Hilbert space with norm || - ||lo for o € Tp \ {D}. Then FT+(Vp)
is an analytic Hilbert manifold modelled on R® x X e\ (py W™ (w)™, here w € FT(Vp).
Proof. We can identify each L, € £ (UM (v), WM (v)) with a (wgz))s":”’ € Wmin(y)ra where wg‘j)

Sa=1

Lo (uf; ) and Umin(v) = span {ufy),...,uf, ,} for a € Tp \ {D}. Thus we can identify each (€, £) € U(v)
with a pair

(€W eR x X WEin(v),
a€Tp\{D}

where 20 := ((wg‘j))%zm)ae%\{p}. We assume that RE x X ,er,\ (py WA (V)" is an open subset of the

Sa=1

Hilbert space R® x X cr\(p} Wmin(yre endowed with the product norm

lEw) =Y Icr+ > Y Iw

a€Tp\L(Tp) a€Tp\{D} sa=1
It allows us to define local charts, also denoted by ©y,, by

;1 :REx X WRR(v)e — U(v),
a€Tp\{D}

where O, (€,20) = w. Here w is given by (4.1)—(4.2) putting La(u(-a)) =w! 1<iy <ryandaeTp \

{D}. Since each local chart is defined over an open subset of the Hilbert space R* x X aeTp\ (D} W™ (V)"
the corollary follows. [

By using the geometric structure of local charts for the manifold F7(Vp), we can identify its tangent
space at v with Ty (F7T(Vp)) :=R* x L1, (v). We will consider Ty (FT(Vp)) endowed with the product

norm
HEoll= 3 1690+ 3 Ialwpnwcogne.
a€Tp\L(Tp) a€Tp\{D}

with || - || the Frobenius norm.

Note that L(Va, ., Va,.,) endowed with the norm || - ”VQM Vo, Isa Banach space. Thus, even if

V.| is a Hilbert space for all a € Tp \ {D}, the set Lr,, is a Banach space.
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5 Is FT.(Vp) an immersed submanifold?

We start with a brief discussion about the choice of the ambient manifold for 77 (V p) which is the milestone
to give a positive answer to the question that gives the title of this section. Let {Vawa YaeTp\{D} be a
representation of the Banach tensor space VDH_”D = Ilp ®j€D V; , in the topological tree based format.
Take Vp := 4 @;cp V; and assume the existence of two norms || - |[p,1 and || - [|p,2 on Vp. Then we have

Vp C VD”'HD’1 and Vp C VD”'HD’z. The next example illustrates this situation.

Example 5.1 Let Vy = HY? (1) and Vay,, = HY?(1,). Take Vp := H"P(I) ®, H"?(I3), from The-
orem 4.2 we obtain that FT(Vp) is a Banach manifold. However, we can consider as ambient manifold

either V' 7 = H'P(I x 1) or Vp 7% = H' (1) @)y, H'P (L), where || - 0,1y, is the norm

given by
1/p
of I
— e
1700 (”f i+ | )

for1 <p<oo.

Now, the question is: what is the good choice to show that F7.(Vp) is an immersed submanifold? The
main result of this section is to show that if for each o € Tp \ L(Tp) the norm || - ||, is not weaker than
the injective norm generated by the Banach spaces {Vﬂuwua : B € S(a)} then FT(Vp) is an immersed

submanifold of Viwa. To see this we need to introduce the following definitions and results.

5.1 On the differentiability of the standard inclusion map

Assume that the tensor product map ) is Tp-continuous. The natural ambient space for FT.(Vp) is
the Banach tensor space VDH.HD = VDH-HD' Since the natural inclusion i : F7(Vp) — VDH_“D7 given
by i(v) = v, is an injective map we will study i as a function between Banach manifolds. To this end we

introduce the following definitions.

Definition 5.2 Let X and Y be two Banach manifolds. Let F : X — Y be a map. We shall say that F is a
C" morphism if given x € X there exists a chart (U, @) at x and a chart (W,v) at F(x) such that F(U) C W,
and the map

YoFop™tipU)— (W)

is a C"-Fréchet differentiable map.

To describe i as a morphism, we proceed as follows. Given v € FT(Vp), we consider U(v), a local
neighbourhood of v, and then

. _ D « «
1007 iR X L7y (v) = Vi, (€8 Y o(gagaw R (La(ul®) +ul),
1<ia <ra aeS(D)
aeS(D)

where for each p € Tp \ {D} such that S(u) # 0 we have

(w) (w) _ (1) () (B)
L”(uifj ) +ui5 - Z Ci:j,(iﬁ)ﬁes(u) ® (Lﬂ(uiﬁ )+ui/3 )
1<ig<rg BES(u)

BES(1)

for 1 <i, <7y

Our next step is to recall the definition of the differential as a morphism which gives a linear map between
the tangent spaces of the manifolds involved with the morphism.
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Definition 5.3 Let X and Y two Banach manifolds. Let F': X =Y be a C" morphism, i.e.,

YoFop i) (W)

is a C"-Fréchet differentiable map, where (U, ) is a chart in X at x and (W,v) is a chart in'Y at F(z).
For z € X, we define

ToF : To(X) — Tp(Y), v [($oFop™) (o).
Assume that i 0 O is Fréchet differentiable, then Tyi: R® X Lg,(v) = V|, is given by
Ti(€, £) = [(i001) (0v(v))(C, £).
The next result says us that if the tensor product map is continuous, then it is also Fréchet differentiable.

Proposition 5.4 Let (V;,| - |;) be normed spaces for 1 < j < d. Assume that || - || is a norm onto the
tensor space 4 ® Vi, I such that the tensor product map (3.15) is continuous. Then it is also Fréchet
differentiable and zts dzﬁerential is given by

d
D<®(vla~--avd)) (w1,~~~,wd):ZU1®m®”j—1 Dw; ®Ujp1 @+ vq
j=1

Proof. Clearly, D& (v1,...,vq) is a multilinear map. If we assume that the tensor product map (3.14) is
continuous, that is || ®j:1 uj|| < C]_[;l:1 luj]|; for some C > 0, then

d
D) (w1, ., va)(wr, ..., wa)| < CZ lvills - lvj—alli—tllwsllllvjallj+1 - llvalla

Vk ||k
Z Hk 1 ” H max ||wk||k

llv;ll4 1<k<d
shows that D @) (v1,...,vq) is also continuous. Finally,
@ (vr+ha, -, va + ha) —®(v1,-~- y0a) = D@ (vy, -+, va)(hay - hal
d
= Z ||T11,22 117 Z T11,22,13 hn?hmah ) ~+T1,..‘,d(h17'-~ahd)||
i1,02=1 i1,02,i3=1
i1 <ig i1 <i2<i3
d
Z 1,02 217hi2)”+ Z ” 11,2, 13(h117h12ah23)”+"'+HT1 ,,,,, d(hla”'ahd)”
i1,i2=1 11,i2,i3=1
11 <ig 11 <i2<i3

where the T;, . ;. are multilinear maps defined by T;, . i (hiy, ..., hi) = ®?:1Zj with z; = h; if j €

{i1,...,1x}, and z; = v;j otherwise. Since these multilinear maps have at least two arguments, we have
||Ti1;~~~’ik( AR lk)H <C H Hh‘JH] H ||UjHj
J€{it, ik} Je{1,.. . d\{i1,...,ix}
< C max Ihil; TT Il 1T [0l
J€{iz,in} JE{L,...d\{i1,...,ix}
= C||(h1s-sha)ll TT Il 11 ol
j€{in,emyin} FE{L e, dI\ {150 nyig }

which proves that “Til"”‘(’;’; (_]_1 ol il tends to zero as (h1,...,hq) — 0, and therefore ) is Fréchet differ-
entiable and the proposition follows. [
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Recall that VDH_”D = Iilp ®]ED Vj is a tensor Banach space. Let v.e FT(Vp) C VDH Ip be such that

V= Z ((ZDagaes(D) ® u(a)7

1<iq <ra a€eS(D)
aeS(D)

where for each p € Tp \ ({D} U L(Tp)) we have

ul® — (n) (8)
Wi, Z Ciw(iﬁ)ﬁes(u) ® Wi

1<ig<rp BES (1)
BeS(a)

for 1 <, <r,. Recall that for a € S(D) we have Um(m)\{a}( ult )) = span {U(a) 1<, < ra}, and for p €

Tp \ ({D} U L(Tp)) we know that UF™ (u*)) = U2 (v) and Ug?li‘)\{ﬁ}( ul") = span {UY, 1 <ig <rp}
for 1 <14, <r, and g € S(u). Hence

g
Wm“‘( )= Wé“in(ul(»f)) for 1 <, <r, and g € S(n).
Let us define the linear subspace

(D o mm (Ot) m1n
Zyy V)= @ U@ | D szg Us(byfar (V) | »
aGS(D aeS(D

where Z,()’Z;( ) = Wrin(v) if v € L(Tp) or

GD) mln mm (ﬁ)
Zy))(v) = W2 « @ UFmW) e | D Zy,(v) @ U s (v) | |
565(’)’) BeS(v)

if v ¢ L(Tp). The next lemma describes the tangent map Tyi.

Proposition 5.5 Assume that the tensor product map ) is Tp-continuous. Let v € FT(Vp) be such that
@v(v) = (Q:(V), O)7 where Q:(V) = (C(a))aeTD\L(TD) S Rt, 0= (O)aeTD\{D} S £TD (V) and

UMn(v) = span {ugj) 1<y <71o}
for a€ Tp \ {D}. Then the following statements hold.

(a) The map io®F" from RY x L, (v) to Vi, is Fréchet differentiable, and hence

Tyi€e L (Tv(]:Tt(VD))7VDH'”D) :

(b) Assume (@, S) € Ty(FT(Vp)), where ¢ = (C'(O‘))QGTD\[;(TD) €R® and £ = (La)agTD\{D} € L1, (v).
Then w = Tvi(é, £) if and only

W= Z (Za aes(D) ® u; )+ Z Z ( a) ®U(a)) (5.1)

1<in <re OLGS(D) OLES(D) 1<ia <rq
aeS(D)
where . o)
o p—
Ui“ o Z (ig)pes(p) ® ulﬂ’ (5-2)
1§i5§Tﬁ 563
BES(D)
B#a
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and for each v € Tp \ {D} with S(vy) # 0,

LW(U‘E;Y)): Z Zwv(ZB)/ﬁeS(w) ® u(B)—&- Z Z ( ®U£"’)“3) (5:3)

1<ig<rg BES(Y) BeS(vy) 1<ig<rg
BES(v)
where ) I @)
_ v
Uimiﬁ - Z Ciw(is)&esm) ® Y55 (5.4)
1<is<rs O#pB
5€S () eS(v)
3#8

Jor1<iy <ryandl <ig <rg.

(c) The inclusion Tyi(Ty(FT.(Vp))) C Zl(ng)( ) holds and Tyi is an injective linear operator.

Proof. To prove statement (a), observe that for each u, € U™ (v), o € Tp \ {D}, the map
Cu, : LU (V), Wa™ (V) = Wa™(v),  La = La(ua),

is linear and continuous, and hence Fréchet differentiable. Clearly, its differential is given by [®, (Lo)](Ha) =
H, (u,). Also, if the tensor product map ) is Tp-continuous, by Proposition 5.4, the tensor product map

X XﬁES('y)(VBH.HB7 |- ls) — (a pesiy) Vﬁu-uﬁ - ||A,) ,for vy € Tp \ L(Tp), is also Fréchet differentiable.

Then, by the chain rule, the map 3! is Fréchet differentiable. Since Tyi(€, £) = [(i0 ©51)(€,0)](€, £), (a)
follows. By using the chain rule we obtain

w= > O, @ uwle X Y L, [ Lee @ u |,

1<iq <ro aeS(D) nES(D)1<iq<rqo a€eS(D)
aeS(D) aeS(D) aFp

where for each v € Tp \ {D} with S(v) # 0,

Lv(ul('j)): Z 1(3’)1/1 )Bes(v) ® uiﬁ + Z Z lm(lﬁ)ﬁesm (6) ® uiﬁ

1<ig<rg BeS(7) deS(y) 1<ip<rg B#S
BeS(v) BES(7) BeS(v)

holds for 1 < iy, < 7. From (3.5), (3.6), (3.8) and (3.9), we obtain (5.1) and (5.3) and statement (b) is
proved.

To prove the first statement of (c), observe that [./W(ul(:)) € Zlg;g (v) for 1 <i, <r,and v € Tp\ {D},

that is, w € Zgg)

(v). Then the inclusion
Tyi (Ty(FT(VD)) C Z1) (v),

follows. Now, consider that

Toi (Caero\e(ro)s (Ep)sero(py) = O

that is,
_ (o) 7 ( ) (@)
0= (Ciocsy Q@ W+ D ) ( o ®U°‘)
1<ia<ra OZES(D (XES(D) 1<iqn<rq
aeS(D)

28



Thus,

Z (C( (m aes(D) ® u(a)_O

1<ia Sra a€S(D)

aeS(D)
3 (La( e U““)) =0 for a € S(D),
1<i0<ra
and hence CP) = o, because {®a€S(D) ugj)} is a basis of ¢ @,cs(p) Umin(v) | and La(ugj)) ® UE:) =0

for 1 < i, <7, because the {Ugj) : 1 <iq < 1o} are linearly independent for o € S(D). Then Lo =0 for
all a € S(D). Proceeding inductively from the root to the leaves, assume that for v € Tp \ {D} such that
v ¢ L(Tp), we have

_ 7 My _ (ﬁ) (8)
0= L”/(uij )= Z (C ’Y Zv (1) pesy) ® ulﬁ + Z Z ( Wi inﬂ/ﬂ) ’
1<ig<rg BeS(7v) BES(v) 1<ipg<rp
BES(7)
for 1 < i, <r,. Thus,

Z (C( 171 ZB)Bes(w) ® u(ﬁ) _0

1<ig<rg BeS(v)
BES(7)

3 (Lﬁ( D e Ufﬁ)w) =0 for B € S(y).

1§i5§r,3

As in the root case we obtain C") = o from the first equation and

> (L) eul? ) <o,

1<ig<rgp

for 1 <i, <r, and 8 € S(v), from the second one. Since {U(B) : 1 <ig < rg} are linearly independent

1,183
for 1 < i, <r, and 8 € S(vy) we have Lﬁ(ugf)) =0 for 1 <ig <rgand B € S(y). We conclude, that

and, in consequence, T, is injective. [

The next corollary says us that for Tucker tensors the linear subspace ZIEZ) (v) characterises the tangent
space at v in the manifold inside the tensor space V Dy

Corollary 5.6 Assume that S(D) = L(Tp) and the tensor product map @ is Tp-continuous. Let v €

M:(Vp), then Tyi(Ty(M:(Vp))) = Zi.)(v) and hence

D min min min
Z(v)=o @ UZrv) @ | B WEv) @ USD) (V)
aes(D) aes(D)
is linearly isomorphic to Ty (Mr(VD)).

Proof. First, we claim that ZISZ) (v) C Tyi(Ty (My(Vp))). Then the corollary follows from Proposition 5.5(c)

and the above claim. To prove the claim take w & Zgg) (v). Then we can write
_ : (@) ()
we Y iy @ P+ Y Y (W eU?),
1<ia<rq aeS(D) a€S(D)1<ia<ra
aeS(D)
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where WEQ) Zg?g)( ) = Wmin(v) for 1 < i, <7, and a € S(D). Recall that USf‘l(‘jg)\{a}( V) = span {UEZ‘)
1 <iy < ro}. Now, define Lo, € L(UM"(v), WHn(v)) by La(ugj)) = ij for 1 < i, <ry and a € S(D).
Then the claim follows from w = Ty i(C?), (La)aeS(D))~ |

(D)( ),

Now, our next step is to construct for each v € FT(Vp) a linear space, namely ZP)(v) C Zy,, (v

such that Z(P)(v) = Tyi (T (FT(VDp))).

To this end, assume that the tensor product map is Tp-continuous and for v € Tp \ {D} U L(Tp))

consider
(v _ (8)
u;, - = Z zv,(zﬁ)ﬁes(a) ® u;, GM(TB)BES(w) a ® Vi

1<ig<rg BeS(y) BES(v)
BES(v)

for 1 <iy, <r,and 8 € S(v). Let

Mgy sy ® Ve | — V‘Yuww
BeS(v)

be the standard inclusion map. Then we have a linear injective map

Tugwi:RXﬁESW)m x X LUF™(v), WER(v) = Vo

BeS()
given by
60) (8) (5) (8)
T H)I(C (Lﬁ)[iES('y)) Z M,(lﬁ BeS(Y) ® Wiy + Z Z L Ulwﬁﬁ’
1<ig<rg BeS(v) BES(v) 1<is<rs
BES(v)

) (@) (&) ; J
where U Zlfgg(q)é CZ%(ZJ)(;GSM Qses(y) Wi, for 1 <ig <rgand B € S(y). We have a linear subspace
o#B

Zy) () =T mt(RXﬁeSW’"B x X LU (v), W (v )))
BES(v)

NRXﬁes(,\/)Tﬁ X >< E( mln( )Wmln( ))
BeS()

for 1 < j, <r, and following the proof of Corollary 5.6, it can be shown that

Zg;)g (’y) ® Umln ) ey @ Wmln ®a span {Uij in -1 < 7,5 < 7"’3}
BES(7) BES(7)

for1 <j, <r,. Let m, : R™ XX sestn s s RX6esn T8 be given by mW(C.’(’V)) = C.’Z.(j), for1 <i, <r,. Then
we can write

Lw(uﬁj)) T mt(m (C(W)X(L.B)ﬁes(v))?

for 1 <iy <r,.

Now, for each v € Tp \ {D} we define a linear subspace H~(v) C W2 (v)" as follows. Let L (v) :=
Wi (v)™ if 4 € L(Tp). For v ¢ L(Tp) we construct H(v) in the following way. Let

Ty iRm0 X Mg (v) — W (V)"
BeS(v)
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be a linear map defined by

(OO (Wi _Dsese) = (W),
where w . ( ) (8) ([5’) u®
Y Y
Wi, Z in,(18) ges(y) ® g + Z Z Wi M,iﬁ’
1Siﬂ STL—f ES(’Y) BES ) 1<'LB<T3

BES(7)
for 1 <4, < ry. Observe that if we define I'/,,(uz(-j)) = WE;Y) for 1 <4, < ry and Lg(uiﬁ) = ng) for
1<ig <rgand € S(y), then

Wi =T _i(m, (CD), (Lg)sesty) € Zyl)(u (7))

Gy i big
for 1 <4, < 4, and hence by Proposition 5.5 the map Y,  is injective. Finally, we define the linear subspace
Hy(v) =Ty (RTWX Kresons x X Hﬂ(")) :
BeS(7)

For § € Tp \ {D} let IL;; : W™ (v)"™s — W™ (v) be given by I, (wio)r_)) == wi) for 1 < i5 < rs.
Observe, that for each 8 € S(v), we can identify (ww))zlf:l € Hp(v) with

g
> weul = Y Hu((w))i) @ Ul
1<ig<rg 1<ig<rg

for 1 <4, <ry. It allows us to construct an injective linear map

. BN B) B
fﬁdw :H ( )_>V’YH ll (w z([g) 15 17 Z W’E[j ®U'S,Y,)z[35

1<ig<rg

for 1 <i, <r,. Hence fg; (Hp(v)) is alinear subspace of V,
Thus,

e linearly isomorphic to Hg(v) for 1 < i, < ..

1L, (Hq(v)) = o« ®pesiy) Ug™(v) @ (@565 To.ir (Hp(v ))) ify ¢ L(Tp),
' Wmin (v) if v € L(Tp),
where @)
fon (Ms(v)) = Dis—1 i, (Hs(v)) @a Span{Uz gt B¢ L(Tp)
yly @Zﬁ . Wmln( ) Ra Span{Ul "ﬁ} if ,8 S L(TD)
for 1 <i, <r,.
Finally, we construct a linear subspace Z(D)(v) C VDMD by using a linear injective map

Yoy R¥eeso ™ X Ho(v) — Vb,
aeS(D)
defined by
Ty (CP (W) aesin) = w

(2

W= Z (M)QES(D) ® u; )+ Z Z W 13)

1<ia<rq aeS(D) a€S(D)1<ia<ra
a€eS(D)

where

Then Z(P)(v) := Tpy (RXaGS(D) " X X aes(p) ’Ha(v)) . Moreover, we can introduce for each « € S(D) a

linear injective map

foa i Ha(v) = Vo, o, (wi)io = Y wiPeul®.

1<in<rq
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Then fo(Ha(v)) is a linear subspace in Vp, | - linearly isomorphic to Hq (v). It is not difficult to show that

Do I, (Ha(V)) ®a span{Uij)} if o ¢ L(Tp)

ia=1

fpa(Hal(v)) = { ®1a—1 Wmm( ) ®a span{Ugj)} if o € L(TD)

for e € S(D). By construction, we have

® Umin(v) @ @ fD,a(Ha(v))

aes(D) aes(D)

Corollary 5.7 Assume that S(D) # L(Tp) and the tensor product map @ is Tp-continuous. Let v €
FT(Vp), then T i(Ty(FT(Vp))) = ZP)(v) and hence it is linearly isomorphic to Ty(FT(Vp)).

Proof. From Proposition 5.5 and the construction of Z(P)(v), the inclusion Tyi(Ty(F7:(Vp))) € ZP)(v)
holds. Now, take w € Z(P)(v). Then we can write

we Y ) @ uP Y Y (W eul),

1<i0<Tq a€eS(D) a€S(D)1<iq<ry

aeS(D)
where C(P) € R™aes0) " and w(’JZ € W™ (v) for 1 < iy < 7o. Then we can define L, € L(UD™(v), W2 (v))
by La (u (a)) = w(a) for 1 < i, <74, and we have

(CP) (La)aes(py) € R s X L(UMIR(v), W22 (v)).
a€eS(D)

W' @ U € fpo(Ha(v)) for a € S(D). If a ¢ L(Tp), then (w'™)io_| € Ho(v) =

to i

Tov (R”X Xpestn s x X ges(a) Hg(v)) . Hence there exists

Moreover, > i<, <.

(C (WD) ) pesiay) € RT=*Xses™ s X Hg(v)

ig
BeS(a)
such that (a) ( ) (8) (8) B)
« _ (e}
wi'= > e, @ il X Y wileUl,
1<ig<rg BeS(a) BES(a) 1<ig<rg

BeS(a)
for 1 <o < 74. Define Lg(u (B)) : Z(f) for 1 <ig <rgand 8 € S(a). Then

(C, (Lg)pesa)) € RT*Xpesm™ x X LIUR®M(v), WD (v)).
BeS(a)

Moreover, Y, o, wi? @ U, € fau (Ma(v)) for 1 < i < ro. If B ¢ L(Tp), then (wi)"_, €
He(v) =Tsy (R’"ﬁx Xes@) ™ x X yes(s) H,Y(V)) . Proceeding in a similar way from the root to the leaves,
we construct (€, £) € Ty(FT(Vp)), where € = (C() JaeTo\£(Tp) € R and 2= (L a)aerp\{D} € L1y (V)
such that w = Tyi(€, £). Thus, we can conclude that ZP)(v) C Tyi(Ty(FT(Vp))) and the equality
follows. -

Example 5.8 Consider the binary tree Tp given in Figure 5.1 and consider TB ranks v = (1,71, r23,72,73).
Let v € FT (V1 @ Va ®, V3) and assume that the tensor product map Q) is Tp-continuous. Then

202 (v) = (U™ (v) ®a UB™ (V) @ fr23,1(H1(V)) © fi23,23(Has(V)),
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{1,2,3}

{1y {23}

{20 3

Figure 5.1: A binary tree Tp.

where
fi231(Ha(v @ WM™ (v) ®q span {U( '} c Vi, @a <V2||-u2 Ba Vi”n-us)’
’Ll 1
723 (23)
J123,23(Has(v @ span {U; ;" } @a iy (H23(v)) € Vi, @a (‘/QH'||2 Ba V3H-II3> ’
123 1
and

IL,, (Has(v)) = (U™ (v) ®q US™(v))
(GB Wy (v) @, span {UZ) } ) ¢ <ED span {US) } @, W" i“(V)> ’
i2=1 i3=1

which is a linear subspace in Va | @4 V3 .

5.2 Is the standard inclusion map an immersion?

Next we recall the definition of an immersion between manifolds.

Definition 5.9 Let F': X — Y be a morphism between Banach manifolds and let x € X. We shall say that
F is an immersion at x, if there exists an open neighbourhood X, of x in X such that the restriction of F
to X, induces an isomorphism from X, onto a submanifold of Y. We say that F is an immersion if it is an
immersion at each point of X.

For Banach manifolds we have the following criterion for immersions (see Theorem 3.5.7 in [22]).

Proposition 5.10 Let X,Y be Banach manifolds of class CP (p > 1). Let F' : X — Y be a CP morphism
and x € X. Then F is an immersion at x if and only if T, F is injective and T, F(T,(X)) € G(Y).

A concept related with an immersion between Banach manifolds is the following.

Definition 5.11 Assume that X and Y are Banach manifolds and let f : X — Y be a C" morphism. If f
is an injective immersion, then f(X) is called an immersed submanifold of Y.

Recall that there exists injective immersions which are not isomorphisms onto manifolds. It allows us to
introduce the following definition.

Definition 5.12 An injective immersion f : X — Y which is a homeomorphism onto f(X) with the
relative topology induced from Y is called an embedding. Moreover, if f : X — Y is an embedding, then
f(X) is called an embedded submanifold of Y.

A classical example of an immersed submanifold which is not an embedded submanifold is given by the
map f: (37/4,77/4) — R?, written in polar coordinates by r = cos 26. It can be see that f is an injective
immersion however f(37/4,77/4) is not an open set in R?, because any neighborhood of 0 in R? intersects
f(3m/4,7mw/4) in a set with ”corners” which is not homeomorphic to an open interval (see Figure 5.2).
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Figure 5.2: The set f(37/4,77/4) in R2. The ”0” means that the lines approach without touch.

Example 5.13 Consider the morphism f : FT(Vp) — R*x Lr, defined by f(v) = Oy (v) = (€, £). Then
in local coordinates we have O3 o foid, =id Clearly, f is injective and Ty f(R*xLr, (v)) =

RE X Loy (v) B XLy, (v)°
idmthTD(v) (R* X L1, (v)) = R* x L, (V)D From Lemma 4.1 we have that Lr,(v) € G(Lr,) and hence
R* x L1, (v) € G(R® x L1,). Then by Proposition 5.10 f is an immersion. Moreover, f(FT(Vp)) with
the topology induced by R* x L, is homeomorphic to FT.(Vp) when we consider in FT(Vp) the initial
topology induced by f. We point out that with this topology in each local neighborhood U(v) is an open set in

FT(Vp). Moreover, f is an embedding and f(FT.(Vp)) is an embedded submanifold of R* x L.

From the above example we have that even the manifold F7.(Vp) is a subset of Vp,,, its geometric
structure is fully compatible with topology of the Banach space R* x L, .

Finally, to show that i is an inmersion, and hence F7(Vp)) is an immersed submanifold of Vo,
we need to prove that Tyi is injective and Tyvi(Ty(FT(Vp))) € G(V|.|,). To do this we need a stronger
condition than the T'p-continuity of the tensor product. Grothendieck [11] named the following norm |-||,,
the injective norm.

Definition 5.14 Let V; be a Banach space with norm ||-||, for 1 < i < d. Then for v e V = a®;l:1 Vi
define ||'Hv(v1,...,vd) by

[(P1®p2®...8 ¢a) (V)|
d p
Hj:l ||S0J'Hj

It is well known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [20] and (3.12)-
(3.13)). Further properties are given by the next proposition (see Lemma 4.96 and 4.2.4 in [15]).

IVIlvea, v = sup{ 0#Fp; eV 1<5< d} . (5.5)

Proposition 5.15 Let V; be a Banach space with norm ||-||, for 1 <i < d, and | - || be a norm on 'V :=
a ®?:1 Vj . The following statements hold.

(a) For each 1 < j < d introduce the tensor Banach space X := 1l (Ve Vg 1.V 10veea Vi) ®k¢j Vi . Then
..... 1 Via1ee

- lvevvay = 1 v x;) (5.6)

holds for 1 < j <d.
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(b) The injective norm is the weakest reasonable crossnorm on 'V, i.e., if ||-|| is a reasonable crossnorm on

V, then
2 Wl v (5.7)
(c) F?’I" any norm || on 'V satisfying ||-[l\, vy vy S oIl s the map (3.14) is continuous, and hence Fréchet
differentiable.
Let {Va,.,. YacTp\{D} be a representation of the Banach tensor space Vo, = 1o ®j€D V; , in the

topological tree based format. Take Vp = , ®je pV; and assume that the tensor product map ) is
Tp-continuous. From Theorem 3.29, we may assume that we have a tensor Banach space

VO‘H-IIQ = Il ® Vﬁnww
BES(a)

for each oo € Tp \ L(Tp), and a Banach space V;
notation, we write for A, B C S(«a)

for j € L(Tp). Let o € Tp \ L(Tp). To simplify the

-1

| - ||v(A) = ||v({v5H,H5:5eA}),

and
|| ’ Hv(A,v(B)) = || : ||\/({V5H_H5:6EA},XB)
where
XB = |l v ®VBH‘H[3 :
BEB

From Proposition 5.15(a), we can write

- sy = Il - v.vis@g)

for each 8 € S(«). From now on, we assume that
H . ||a 2 || . H\/(S(a)) for each o € TD \ ,C(TD), (58)

holds. Recall that Proposition 5.15(c) implies that the tensor product map ) is Tp-continuous. Since
- lla 2 I - Vg, visa)\p)) holds for each g € S(a), the tensor product map

® : (Vﬁn-ug’ I+ llg) > l-llv(sarne ® Véu-ug A vis@ne | = (Vawa’ Il lla)
seS(DI\{B}

is also continuous for each 8 € S(«). A first useful result is the following lemma.

Lemma 5.16 Assume that (5.8) holds. Let o € Tp\ L(Tp) and take B € S(a). If W5 € G(Vﬁwg) satisfies
Vi, = Us @ Wg for some finite dimensional subspace Ug in Vg, -, then Ws @4 Ujg) € G(Vay.,,) for
every finite dimensional subspace Ujg) C 4 ®5€S(D¢)\[5 V‘SH-H(; .

Proof. First, observe that if Wy is a finite dimensional subspace, then W3 ®, Ujg is also finite dimensional,
and hence the lemma follows. Thus, assume that W3 is an infinite dimensional closed subspace of VBH~H;3’
and to simplify the notation write

X6 = s ® Vi, -

seS(D)\{s}

If Ujg) C X is a finite dimensional subspace, then there exists Wiz € G(Xp) such that X = Uz @ Wig).
Since the tensor product map

® : (VBH-Hﬂ’ - 118) x (X, |l - [lvsans) — (Vay oo - Mla)
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is continuous and by Lemma 3.18 in [7], for each elementary tensor vg ® vig € ngﬁ ®q Xg we have

1Gids @ Py ow,y ) (V8 @ Vig))lla < Cy/dim Upg [[vilisllvig)llvisans

= C\/dim Ug |[vs @ vigllv(sa)
< C'\/dimUg [vs @ vig|la-

Thus, (idg ® PU[ - ]) is continuous over Vﬂwg ®a Xp, and hence in Vo . Now, take into account that
idg = P, BOWg + PWB@UB
and hence

id =P P P P .
s® b Uis18Wig) Upg®Wpg ® Ulg1®Wig) + W@Ug ® Ul ®Wig)

Observe that idg ® PU[ W and PUﬁ@Wﬁ ® PU[B]EDWW] are continuous linear maps over VBH-HB ®q Xg, and
then Pwﬁeauﬁ ® PU[ﬂ]ﬂ?W[m is a continuous linear map over VBH-HB ®q Xg. Thus,

Po =Py, 50, ® PUW]GBWW] € L(Vay . Vayy,)
and P, o P, = P,. Since P, (Va”_”a) = Wp ®q Upg), by Proposition 2.4 the lemma follows. [

Lemma 5.17 Let X be a Banach space and assume that U,V € G(X). IfUNV = {0}, then UV € G(X).
Moreover, UNV € G(X) holds.

Proof. To prove the first statement assume that UNV = {0}. Since U,V € G(X) there exist U', V' € G(X),
such that X = UGU' = V&V’ . Then U = XNU = (V& V)NU =UNV' and V = XNV = (UaU)NV =
V NU'. In consequence, we can write

UaVeUnV)=UnV)Ye(VnUYsU'nNV)=UaU)Nn(VaeV)=

and the first statement follows. To prove the second one, observe that X = (UNV)d(UNV)d(VNU')®
o' nv). -

A very useful consequence of the above two lemmas is the following.

Theorem 5.18 Let {Vo  }tacrp\({p} be arepresentation of a tensor Banach space Vo, = I en Vi

in the topological tree based format and assume that (5.8) holds. Then ZP)(v) € G(VD”_HD), and hence
FT(Vp) is an immersed submanifold of VD”_”D

Proof. Since the tensor product map is Tp-continuous, Proposition 5.5 gives us the differentiability of Ty .
Assume first that S(D) = £L(Tp). From Corollary 5.6 we have

Z(D) ® Umln ) & @ Wmln ®a US(D)\{@}(V)
a€eS(D) a€eS(D)

For each o € S(D) we have W (v) € G(V,,, ) and Ug )\{a}( V) C o @ses(p\fa} Vo, is a finite
dimensional subspace. From Lemma 5.16 we have Wi (v) ®a U"‘(m)\{a}( v) € G(Vp,, ) for all a € S(D).
Since o @ nes(p Um‘n( ) € G(Vp, ), by Lemma 5.17, we obtain that ZP)(v) e G(Vp,,)-

Now, assume that S(D) # L(Tp). Then

ZP V)=, Q U)o | @B foalHalv)

aeS(D) aeS(D)
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and
] @ T, (Ha (V) ©4 span{UY}  if a ¢ L(Tp)
Ipia{Halv) _{ D, W (v) @, span{U™}  if a € L(Tp)

ta=1

for o € S(D). For o € L(Tp) we have W™ (v) € G(V,,, ) and span{UZ(»:)} is a finite dimensional

subspace for 1 < i, < 74, and from Lemma 5.16, W2 (v) @, span{Ugj)} €G(Vp,, ) for 1 <iq <rq. By
Lemma 5.17, fp,oa(Ha(v)) € G(Vp, ). Otherwise, if a ¢ L(Tp) then

fp.a(Ha(v) = @ Ty, (Ha(v)) @uspan{UL},

where

for 1 <i, <r,. Now,

D77, Wi, (Hp(v) ®a span{UL, 1 if B ¢ L(Tp)
D7, WE™™(v) ®q span{U”), } if B € L(Tp)

Tasls

fp.ia(Hp(v)) = {

for 1 <i, <7q. Clearly, if 8 € L(Tp) then fs;,(Hs(v)) € G(Vq,,. ) for 1 <iy < ro. Then we can write,

IL;, (R —. Q) Ut e EB foanMsv) @ | B fou.(Hs(v)

BGS(a) BES (o BeES(a)
,BEL(TD) BEL(TD)

for 1 < i, < ry. Starting by the leaves, that is v € L(Tp), we have that always II; (H,(v)) = WX (v) €
G(Vy,,,) for 1 <iy <7y, and hence for § € Tp such that v € S(§) we obtain f, iﬁ( (V) € (G}(V(;H ) for
1 <is < 5. Proceeding inductively from the leaves to the root, we obtain that fg ., (Hs(v)) € G(Va,, )
for B € S(a) with 8 ¢ L(Tp) and 1 < iy < 74. Lemma 5.17 says us that II;, (Ha(v)) € G(V,,, ) for
1 < iq < rq. From Lemma 5.16 and Lemma 5.17 we obtain that fpo(Ha(v)) € G(Vp ). Also by

Lemma 5.17, we have Z(P)(v) € G(Vp,,, ) and hence this proves the theorem. |

Example 5.19 Recall the topological tensor spaces introduced in the Example 3.22. Let I; CR (1 < j <d)
and 1 < p < co. Given tree Tp, for a € Tp let I, := Xjeca I;, and hence L?(1,) is a tensor Banach space
for all a € Tp. In this example we denote the usual norm of LP(1y) by || - ||a,p- Since || - |la,p s a reasonable
crossnorm (see Example 4.72 in [15]), then (5.8) holds for all o € Tp. From Theorem 5.18 we obtain that

FTe (a ®?:1 L”(Ij)) is an immersed submanifold of LP(Ip).

Example 5.20 Now, we return to Example 5.1. From Ezample 4.42 in [15] we know that the norm

I ll0,1),p is a crossnorm on H“P(Iy) ®a H'P(I3), and hence it is not weaker than the injective norm. In
consequence, from Theorem 5.18, we obtain that FT . (HP(I;) ®, HVP(I3)) is an immersed submanifold in
Hl’p(Il) ®H'H(o,1),p H17P(]2)_

Since in a reflexive Banach space every closed linear subspace is proximinal (see p. 61 in [9]), we have
the corollary.

Corollary 5.21 Let {VQH,HQ}aeTD\{D} be a representation of a reflerive tensor Banach space VDH-IID =
o Qjep Vj » in the topological tree based format and assume that (5.8) holds. Let v € FT(Vp), then for
eachu € Vp,  — there ewists Voest € ZP)(v) such that

i — Voot = min o — V. (5.9)
veZD)(v)
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5.3 On the best B7(Vp)-approximation

To end this section we would discuss about the BT (V p)-best approximation. In Corollary 4.4 in [7] the
following result, which is re-stated here using the notations of the present paper, is proved as a consequence
of a similar result showed for tensors in Tucker format with bounded rank.

Theorem 5.22 Let Vp = a®]EDV and let {V, e 1255 < d} U {VjH-H- :1<j<d} ford>3, bea
a; j
representation of a reflexive Banach tensor space VDH_”D = Ilp ®jeD V; , in topological tree based format
such that
@ 110 211 va, , oy 0
J d

() Vo, =Va1®4q Va, and Vo, =Vj_1 @4 Va,,,, for2<j<d—1, and
(c) I llay = 1" HV(VJ‘4||-H]- """ Vay ) for2<j<d.
Then for each v € VD”_“D there exists Upest € BT (Vp) such that

[V = Wpest|lp = min [|v—ulp.
ueBT(Vp)

It seems clear that tensor Banach spaces as we show in Example 3.5 are not included in this framework.
Observe that this choice of norms satisfies (5.8). So a natural question is if for a representation in the
topological tree based format of a reflexive Banach space satisfying (5.8) the statement of Theorem 5.22 is
also true. To prove this, we will reformulate some of the results given in [7]. In the aforementioned paper,
the milestone to prove the existence of a best approximation is the extension of the definition of minimal
subspace for tensors v € VDH_”D \ Vp. To do this the authors use a similar result to the following lemma
(see Lemma 3.8 in [7]).

Lemma 5.23 Let ‘/j\\»\u be a Banach space for j € D, where D 1is a finite index set, and aq,...,0, C

2D\ {D,0}, be such that a; Naj = O for all i # j and D = \J;-, oi. Assume that if #a; > 2 for some
1 <i<m,then Vg,  is atensor Banach space. Consider the tensor space

m

Vp = “®Vai -l

i=1

endowed with the injective norm |-y (v L Fiz1 <k < m, then given ¢[,,] € « &

l-1I;

LV

O/
1 ey am | lq iz ¥ -l

the map idq, ® $|q,] belongs to L (VD,V% u-lmk) Moreover ida, ® Po,) € L(Vp' ",V

norm satisfying

(2] H'Hak) fOT’ any

-2 lvev v

FL g 7 T M ”'Ham)

Let {Va,.,. tacTp\{D} be a representation of the Banach tensor space Vo, = b ®jeD Vj , in the

topological tree based format and assume that (5.8) holds. Then the tensor product map is Tp-continuous
and, by Theorem 3.29,

Vopp. = . & Vﬁn b= @ Ve =11.Q Vi

BeS(a BeS(a) JEa

holds for each o € Tp \ L(Tp). Observe, that V} C V! forall « € S(D). Take Vp = , Q)

Al ]EDV Since

[l Z |l lv(s(py), from Lemma 5.23 and Proposition 3.12(b), we can extend for v.€ Vp  \ Vp, the
definition of minimal subspace for each a € S(D) as

US™(v) =1 (ida @) (V) i oy €0 Q) V5
peS(D)\ ()
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Observe that (ida ® ¢4)) € LV, Va . )- Recall that if v.€ Vp and a ¢ L(Tp), from Proposition 3.11,
we have UM (v) C R pes(a) U™ (v) C ®pes(a) Vs - Moreover, by Proposition 3.12(b), for 8 € S(a)
we have

U (v) = span < (ids © o) (Ve) : Va € U (V) and g€ 0 Q) Vi
se8(a)\{B}

= span (Zd/} X ‘P[ﬁ]) o (ida ® (P[a])(V) : 90[04] € 4 ® V; and (p[ﬁ] S ® V:g
neS(D)\{a} seS(a)\{8}
Thus, (ide @ Pa))(V) € Umin(v) c 'V, C Vo, and hence
(ids @ @) © (ida ® @pa))(v) € UF™(v) C Vg C \ZI

when #3 > 2. However, if v € VDanD\VD then (id, ® <p[a])(v) € Umin(y) C Va,,.. - Since -l 2 NI [vs(a))
also by Lemma 5.23 we have idg ® 5 € E(VQH.HQ,VM,HB). In consequence, a natural extension of the
definition of minimal subspace Ulg‘i“(v), for v € Vo, \ Vp, is given by

Uglin(v) := span ¢ (idg @ @g)) © (ida @ @) (V) 1 Pla] € a ® V,, and g € 4 ® Vi
neS(D)\{a} seS(a)\{8}

To simplify the notation, we can write

(ids @ P3,01) (V) := (ids @ pig)) © (ida ® @[o))(V)

where (g o) 1= @] ©P[g) € (a ®,ues(D)\fa} VZ)®& (a Qses(an (s} V§> and (ids © p(s,01) € LIV, Vi ,)-
Proceeding inductively, from the root to the leaves, we define the minimal subspace U]I-“i“(v) for each
j € L(Tp) such that there exists n € Tp \ {D} with j € S(n) as

U (v) i=span {(id; @ @ o)) (V) 5 Pl pa) € Wi

where
Wj =1 a ® V; Qa | a ® V; Qa - Qa | a ® Vk*
neS(D)\{a} deS(a)\{B} keS(m\{i}
With this extension the following result it can be shown (see Lemma 3.13 in [7]).
Lemma 5.24 Let{Va, . }tacrp\{D} be arepresentation of the Banach tensor space Vo, = b ®j€D Vi

in the topological tree based format and assume that (5.8) holds. Let {v,}n>0 C Vp,,, withv, = v, and
we€Tp\ ({D}UL(TD)) then for each v € S(1) we have

(’Ld’)’ ® @[’y,,u,w ,B,a])(vn) - (Zd’Y ® <P['y,,u,-~ ,B,a])(v) in V’YH.||H,7

for all @i ... p.0] € (“®MGS(D)\{Q} Vﬁ) Fa (“®5€S(a)\{ﬁ} Vg) D+ Ga (“®n€5<#>\{v} V"*) ‘

Then in a similar way as Theorem 3.15 in [7] the following theorem can be shown.

Theorem 5.25 Let {Va,  taerp\{p) be arepresentation of the Banach tensor space Vo, = IHb ®j6D Vi,
in the topological tree based format and assume that (5.8) holds. Let {vy}n>0 C VDMD with v, — v, then

dim Ug‘i“(v)l"”a = dim U™ (v) < liminf dim U™ (v,,),
n—oo

for all o€ Tp \ {D}.
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Now, following the proof of Theorem 4.1 in [7] we obtain the final theorem.

Theorem 5.26 Let Vp = ®jeD Vi and let {Va,  }aecrp\(D} e a representation of a reflexive Banach
tensor space VDH.”D = b ®j6D Vj , in the topological tree based format and assume that (5.8) holds. Then
for each v € VDH~HD there exists Upest € BT «(Vp) such that

||V - ubest”D = min HV - uHD'
ueBT(Vp)
6 On the Dirac—Frenkel variational principle on tensor Banach
spaces

6.1 Model Reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
VDMD7 given by

u(t) = F(t,u(t)), fort >0 (6.1)

where we assume uy # 0 and F : [0,00) X Vb, — Vb, satisfying the usual conditions. Let
{VQH.HQ}%TD\{D} be a representation of Vo, = o ®jeDVj , in the topological tree based format
and assume that (5.8) holds. As usual we will consider Vp = ,@;cp V; . We want to approximate u(t),
for t € I := (0,¢) for some ¢ > 0, by a differentiable curve t — v,.(t) from I to FT(Vp), where v € NI? is
such that v,.(0) =u(0) =ug € FT(Vp).

Our main goal is to construct a Reduced Order Model of (6.1)—(6.2) over the Banach manifold F7(Vp).
Since F(¢,v,(t)) in Vp, ., for each ¢t € I, and ZP)(v,.(t)) is a closed linear subspace in Vb, we have

the existence of a v,.(t) € Z(P)(v,.(t)) such that

v (1) — F(t, v, (t = i v(t) — F(t,v.(1)| D,
[90) = F (v (O)lp = min N0~ F( v )]

It is well known that, if Vp | ~is a Hilbert space, then V,(t) = Py, ) (F(t, v,(t))), where

Py, t) = Pz (v, (1) @20 (v, (1) *

is called the metric projection. It has the following important property: v,.(t) = Py, ) (F(t,v,(t))) if and
only if
(Vo (t) = F(t, v, (1)), v(t))p = 0 for all v(t) € ZP)(v,.(t)).

The concept of a metric projection can be extended to the Banach space setting. To this end we recall

the following definitions. A Banach space X with norm || - || is said to be strictly convez if ||z + y||/2 < 1
for all ,y € X with ||z|]| = |ly|| = 1 and x # y. It is uniformly convex if lim, o |2, — yn|| = 0 for any two
sequences {Zy, }nen and {yn fnen such that ||z, || = ||yn| = 1 and limy, 00 ||2n + yn||/2 = 1. It is known that

a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if

the limit
i 12+ tyll = 2]
im —
t—0 t

exists for all z,y € U := {z € X : ||z|]| = 1}. Finally, a Banach space X is said to be uniformly smooth if its

modulus of smoothness
I )
z,yelU 2

satisfies the condition lim,_ p(7) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
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Banach space is finite-dimensional. It is known that the space LP (1 < p < c0) is a uniformly convex and
uniformly smooth Banach space.

Let {(-,-) : X x X* — R denote the duality map, i.e.,

(x,f) = f(z).
The normalised duality mapping J : X — 2% is defined by

J(x) = {f € X" :(z, f) = ||=]* = (If1")*}.

Notice that, in a Hilbert space, the duality mapping is the identity operator. The duality mapping J has
the following properties (see [2]):

(a) If X is smooth, the map J is single-valued;
(b) if X is smooth, then J is norm-to-weak* continuous;

(¢) if X is uniformly smooth, then J is uniformly norm—to-norm continuous on each bounded subset of
X.

Let {VQH.HQ }aern\{p} be a representation of reflexive and strictly convex tensor Banach space V Dy =
Ilp @;ep Vj » in the topological tree based format and assume that (5.8) holds. For F(t,v.(t)) in Vp |
with a fixed ¢ € I, it is known that the set

{005 19,0 - Pl lo = _min 90 = FCev 0o
is always a singleton. Let Py, ;) be the mapping of Vp  ~onto ZP)(v,(t)) defined by v,.(t) := Py, ) (F(t,vr(1)))
if and only if

V(1) — F(t, v, (t = i v(t) — F(t,v,.()|p.
[9:0) = F(tvo(O)p = min N0~ F(tve0)]o

It is also called the metric projection. The classical characterisation of the metric projection allows us to
state the next result.

Theorem 6.1 Let {Va“.ua}aeTD\{D} be a representation of reflerive and strictly convex tensor Banach
space VD”,HD = |l'lbp ®jeD Vj , in the topological tree based format and assume that (5.8) holds. Then for
each t € I we have

‘-’r(t) = /Pvr(t) (F(t7 Vr(t)))
if and only if
(Vo (t) = v(t), JF(t, v, (t) —v,(1)) >0 for all v(t) € ZP) (v, (1)).

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Let Tp a given tree and assume that for each o € Tp
we have a Banach space Vg, , such that (5.8) holds and where VDH_”D is a reflexive, strictly convex and
smooth tensor Banach space. Following [17], we can define a function ¢ : VD”_HD X VD”_HD — R by

¢(u,v) = [[ul|p — 2(u, J(v)) + | v][D,
where (-, ) denotes the duality map and J is the normalised duality mapping. It is known that the set
v (t) : d(v. (1), F(t,v,.(t))) = min v(t), F(t,v,(t
{0000 FCvo) = | im0, Fev o))

is always a singleton. It allows us to defineamap Ily () : Vp, ,  — ZP) (v, () by Vi (t) := Ly, (1) (F(t, v,(1)))
if and only if

¢(vr(t)7 F(t7 VT'(t))) = \}'(t)EerlDi?(vr(t)) ¢(V(t)7 F(ta VT'(t)))'

The map Il (4 is called the generalised projection. It coincides with the metric projection when VDMD is
a Hilbert space.
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Remark 6.2 We point out that, in general, the operators Py ) and Ily ) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection give us the following theorem.

Theorem 6.3 Let {VQH“‘Q}QGTD\{D} be a representation of reflexive, strictly conver and smooth tensor
Banach space VDH-IID = o Wjen Vj , in the topological tree based format and assume that (5.8) holds.
Then for each t € I we have

Vi (t) = Iy, o) (F (£, v (1))
if and only if
(0 (1) =¥ (1), JE(, v (1)) = T(¥,(t)) = 0 for all ¥(t) € ZP (v, (1)).

6.2 The time—dependent Hartree method

Let (-, ->j be a scalar product defined on V; (1 < j < d), i.e., V; is a pre-Hilbert space. Then V = ®§l:1 V;
is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v = ®?:1 v and
w=Q"%", wd b

= =1 Yy

d

d d
(v,w) = <®v(j),®w(j)> = H <v(j),w(j)>. for all v, wW) e V. (6.3)
j=1 j=1

i=1 !

This bilinear form has a unique extension (-,-) : V. x V — R. One verifies that (-,-) is a scalar product,
called the induced scalar product. Let 'V be equipped with the norm ||-|| corresponding to the induced scalar

product (-,-). As usual, the Hilbert tensor space V.| = || ®?:1 V; is the completion of V with respect
to ||-||. Since the norm ||| is derived via (6.3), it is easy to see that ||-|| is a reasonable and even uniform
crossnorm.

Let us consider in V. a flow generated by a densely defined operator A € L(V|.;, V|.;). More precisely,
there exists a collection of bijective maps ¢, : D(A) — D(A), here D(A) denotes the domain of A, satisfying
(1) Po = ldv
(ii) @r4s = ;0 Py, and
(iii) for ug € D(A), the map t +— ¢, is differentiable as a curve in V., and u(t) := ¢,(ug) satisfies
u = Au,
u(0) = uo.
In this framework we want to study the approximation of a solution u(t) = ¢,(ug) € V| by a curve
v (t) := A(t) ®?:1 v;(t) in the Hilbert manifold M . 1)(V), also called in [21] the Hartree manifold. The

time—dependent Hartree method consists in the use of the Dirac—Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following Reduced Order Model:

V() = Py, 1) (Av,(t)) for t € I,
v-(0) = vo,
with Vo = AO ®;l:1 ’U(()j)
metric projection in a Hilbert space, for each ¢ > 0 we would like to find v,.(t) € Ty, ()i (Tv, ) (M,...1)(V)))
such that

€ M(,...1)(V) being an approximation of ug®. By using the characterisation of the
<Vr(t) — AVr(t),\"(t» =0 for all V(t) S Tvr(t)i (Tvr(t) (M(l ..... 1)(V))) , (6.4)
VT(O) = Vg = )\0 ®?:1 ’U(()j)7

and where, without loss of generality, we may assume Hvéj ) |l; =1for1 < j<d.A first result is the following.

6Indeed, vo can be chosen as the best approximation of ug in M(l

,,,,,
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Lemma 6.4 Let v € C'(I,U(vy)), where v(0) = vo € M1, 1)(V) and (U(vo), Oy,) is a local chart for vg

in M1,..1y(V). Assume that v is also a Ct-morphism between the manifolds I C R andU(vq) C M, (V)
such that v(t) = A(t) ®?:1 v;(t) for some X € C*(I,R) and v; € C*(1,V;) for 1 < j <d. Then
_ d d
V(t) = At) Q) v (1) + At) D 05(1) @ R) v (t) = Typi(Tyv(1)). (6.5)
i=1 i=1 KA

Moreover, if vi(t) € Sy, i.e., [lv;j(t)|l; =1, fort € I and 1 < j < d, then v;(t) € Ty, )(Sy;) fort € I and
1<j<d.

Proof. First at all, we recall that by the construction of U(vo) it follows that W™ (ve) = W™ (v(t))
and that U™ (vq) = span{v{’’} is linearly isomorphic to Urin(v(t)) for all t € I and 1 < j < d. Assume
Oy (V(1)) = (A1), Li(b), .., Lalt)), i.c.,

d
v(t) == A(t) ) (id; + L; (1) (v§),

Jj=1

where A € CY(I,R\ {0}), L; € CY(I,L(UM(vo), WM™ (vo))) and (id; + L;(t))(v{’) € UM (v(t)) for
1 < j < d. We point out that the linear map T;v : R — Ty ) (M(1,...,1)(V)) is characterised by

,,,,,

Ttv(]-) = (®v0 © V)/(t) - ()‘(t)a Ll(t)v sy Ld(t)) (66)
Since L; € C'(I, L(U™"(vo), W™ (vg))) then Lj e COI, LU (vo), W™ (vg))). Observe that U™ (vo)
and U™ (v(t)) have W™ (v() as a common complement. From Lemma 2.6 we know that

PU;niu(vO)@anin(vO)‘U.;nin(v(t)) : Ujﬂlln(v(t)) — UJHHH(VO)
is a linear isomorphism. We can write
Lg (t) = L] (t)PU]’.“i"(VO)EBiji"(vo) and LJ (t) = LJ (t)PUJ'-“i“(VD)@WJ’f"i"(VQ)?
and then in (6.6) we identify L;(t) € LU (vo), Wi (v))) with
L] (t)P[J_;nin(VO)@W]min(VO) |U]gnin(v(t)) E E(Ujmln(v(t))7 ijln(VO)))_

Introduce v;(t) := (id; + L; (t))(v,gj)) for 1 < j <d. Then

Lj(t)(0;(1)) = L (1) Pywsn gy awon vy omsn ooy (08 + Li () (w6)) = L3 (0)(0f)

holds for all £ € I and 1 < j < d. Hence

5(t) = L3 (1) (e”) = Ly (1) (05 (1)) (6.7)
holds for all t € T and 1 < j < d. From Lemma 5.5(b) and (6.6), we have
d d
T i(Tev(1)) = A1) Qv (1) + A1) D L (1)(v (1) @ Q) vr(b),
=1 =

=1 k£

and, by using (6.7) for v(t) = A(¢) ®?:1 v;(t), we obtain (6.5).
To prove the second statement, recall that UM (v(t)) = span{v;(t)} and V; = U™ (v(t)) & W™ (vo)
for 1 < j < d. Then we consider

WM™ (vo) = span {v; (t)}* = {u; € Vj : (u;,v;(t)); = 0} for 1 < j <d,
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and hence (0;(t)),v;(t)); = 0 holds for 1 < j < d. From Remark 2.19, we have (01(¢),...,04(t)) €
C(I, ><J 1Ty, t)(Sy;)), because of W“““(VO) Ty, 4)(Sy;) for 1 < j < d. ]

Before stating the next result, we introduce for v,.(t) = A(t )®J 1 v;(t) the following time dependent
bilinear forms
ap(t;-, ) : Ve x Vg — R,

a(t; 2, Yr) = <A (Zk ® ®Uj(t)) ) (yk ® ®Uj(t)) >
£k ik

for each 1 < k < d. Now, we will show the next result (compare with Theorem 3.1 in [21]).
Theorem 6.5 (Time dependent Hartree method) The solution v, (t) = A(t) ®?:1 v (t) for (vi(t),...,va(t)) €
X9_1 Sy, of

W0 (t) = Po o (Av, (1) fort € T,

v,-(0) = v,

satisfies
(05 (t), 105 (t)); — a;(t;v5(t),w;(t) = 0 for all w;(t) € Ty, 1)(Sy;), 1<3j<d,

and

A(t) = Ao exp (/Ot (A (®?:1Uj($)) ,®;l=1vj(s)> ds) .

Proof. From Lemma 6.4 we have Ty (../\/l(l,wl)(V)) =R x ijl ']I‘Zj(t)(Svj), Thus, for each w(t) €
Tv(t)i (Tv(t) (M(l,,,,,l)(v))) there exists (B(t),w(t),...,wq(t)) € R x Xj:l ’]r’l)j(t)(S‘/j)7 such that

d d
CSD t) + At j{: () @ Q) vi(t)

g
Then (6.4) holds if and only if

j=1 s=1 k#j
d d
—AMOBOAR) v (1), @) vi(t) =0,
j=1 j=1
B(1) (MO = ADAG, (). @), v; (1)) 65)
A iy ((05(8), 05 (1) <A ®é 1 01,105 (1) © @y vi(1)) = 0 '
holds for all 3(t) € R and (i (t), ..., wa(t)) € Xj 1 Ty, 1)(Sv; ). If A(t) solves the differential equation
/.\(t) =(4 (®?:1Uj(t)) 7®?:1“j(t)> A(t)
A(0) = Ao,
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ie.,

A0 = oo ([ (4 (@) o) ds)

then the first term of (6.8) is equal to 0. Therefore, from (6.8) we obtain that for all j € D,

d
(b5(1), 105 (0)) 5 — (A Q@ ws(8), s (1) ® Q) vk (t)) = 0,
s=1 k#j
that is,
(05(8), 5 (£)); — a; (t; 05 (1), w;(t)) = 0

holds for all w;(t) € T,, (1) (Sv;), and the theorem follows. |
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