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Abstract

In this paper we introduce a tensor subspace based format for the representation of a tensor in
a tensor space. To do this we use a property of minimal subspaces which allows us to describe the
tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the
associated minimal subspaces, we introduce the set of tensors in a tree based format with either bounded
or fixed tree based rank. This class contains the Tucker format and the Hierarchical Tucker format
(including the Tensor Train format). In particular, any tensor of the topological tensor space under
consideration admits best approximations in the set of tensors in the tree based format with bounded
tree based rank. Moreover, we show that the set of tensors in the tree based format with fixed tree based
rank is an analytic Banach manifold. The local chart representation of the manifold is often crucial for
an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems. We
also show, under some natural assumptions, that the tangent (Banach) space at a given tensor is a
complemented subspace in the natural ambient tensor Banach space and hence the set of tensors in the
tree based format with fixed tree based rank is an immersed submanifold. This fact allows us to extend
the Dirac-Frenkel variational principle in the framework of topological tensor spaces.

2010 AMS Subject Classifications: 15A69, 46B28, 46A32.
Key words: Tensor spaces, Banach manifolds, Tensor formats.

1 Introduction

Tensor formats based on subspaces are widely used in scientific computation. Their constructions are usually
based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most cases a
hierarchical representation fits to the structure of the mathematical model and improves its computational
implementation.

Two of the most popular formats are the Tucker format and the Hierarchical Tucker format [14] (HT
for short). It is possible to show that the Tensor Train format [25] (TT for short), introduced originally
by Vidal [30], is a particular class of the HT format (see, e.g. Chapter 12 in [15]). An important feature
of these formats, in the framework of topological tensor spaces, is the existence of a best approximation in
each fixed set of tensors with bounded rank [7]. In particular, it allows to construct, on a theoretical level,
iterative minimisation methods for nonlinear convex problems over reflexive tensor Banach spaces [8].
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It is well known that the Tucker format is also well applicable to the discretisation of differential equations
in the framework of quantum chemical problems or of multireference Hartree and Hartree-Fock methods
(MR-HF) in quantum dynamics [21]. In particular, it can be shown that the set of Tucker tensors of fixed
rank forms an immersed finite-dimensional manifold [18]. Then the numerical treatment of this class of
problems follows the general concepts of differential equations on manifolds [12]. Recently, similar results
have been obtained for the TT format [16] and the HT format [28] (see also [3]). The term ”matrix-product
state” (MPS) was introduced in quantum physics (see, e.g., [29]). The related tensor representation can be
found already in [30] without a special naming of the representation. The method has been reinvented by
Oseledets and Tyrtyshnikov (see [24], [25], and [26]) and called ”TT decomposition”. For matrix product
systems (MPS), the differential geometry in a finite-dimensional complex Hilbert space setting is covered in
[13].

Some natural questions arise in the framework of topological tensor spaces. The first one is: is it possible
to introduce a class of tensors containing Tucker, HT (and hence the TT) tensors with fixed and bounded
rank ? A second question is: if such a class exists, is it possible to construct a parametrisation for the
set of tensors of fixed rank in order to show that it is a true manifold even in infinite dimensional case?
Finally, if the answers to both questions are yes, we would like to ask the following question: is the set of
tensors of fixed rank an immersed submanifold of the topological tensor space, as ambient manifold, under
consideration ?

The main goal of this paper is the study of the geometric structure of tensor representations based on
subspaces. The paper is organised as follows. Sect. 2 is devoted to preliminary definitions and results about
Banach spaces and Banach manifolds. Next, from Sect. 3 to Sect. 6, we give the contributions of this paper.
More precisely,

• In Sect. 3, we introduce a generalisation, at algebraic and topological levels, of the hierarchical tensor
format in order to include the Tucker tensors (among others) in that class. Moreover, we characterise
the minimal subspaces in that class extending the previous results obtained in [7].

• In Sect. 4, we show that the set of tensors with fixed rank is an analytic Banach manifold and its
geometric structure is independent on the ambient tensor Banach space under consideration.

• In Sect. 5, we discuss the choice of a norm in the ambient tensor Banach space in order to show
that the set of tensors with fixed rank is a immersed submanifold of that space (considered as Banach
manifold). To this end we assume the existence of a norm at each node of the tree not weaker than
the injective norm constructed from the Banach spaces associated with the sons of that node. This
assumption generalises the condition used in [7] to prove the existence of a best approximation in the
Tucker case. More precisely, under this assumption,

– we construct a linear isomorphism, at each point in the manifold of tensors with fixed rank, from
the tangent space at that point to a closed linear subspace of the ambient tensor Banach space,
this subspace being given explicitly,

– we show that the set of tensors with fixed rank is an immersed submanifold and

– we also provide a proof of the existence of best approximation in the set of tensors with bounded
rank.

• In Sect. 6, we give a formalisation in this framework of the multi–configuration time–dependent Hartree
MCTDH method (see [21]) in tensor Banach spaces.

2 Banach manifolds

In the following, X is a Banach space with norm ‖·‖ . The dual norm ‖·‖X∗ of X∗ is

‖ϕ‖X∗ = sup {|ϕ(x)| : x ∈ X with ‖x‖X ≤ 1} = sup {|ϕ(x)| / ‖x‖X : 0 6= x ∈ X} . (2.1)

By L(X,Y ) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as ‖·‖Y←X .
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Definition 2.1 Let X be a Banach space. We say that P ∈ L(X,X) is a projection if P ◦ P = P. In this
situation we also say that P is a projection from X onto P (X) parallel to KerP.

From now on, we will denote P ◦ P = P 2. Observe that if P is a projection then IX − P is also a
projection. Moreover, IX − P is parallel to P (X) := ImP.

Observe that each projection gives rise to a pair of closed subspaces, namely U = ImP and V = KerP
such that X = U ⊕ V. It allows us to introduce the following two definitions.

Definition 2.2 We will say that a subspace U of a Banach space X is a complemented subspace if U is
closed and there exists V in X such that X = U ⊕ V and V is also a closed subspace of X. This subspace V
is called a (topological) complement of U and (U, V ) is a pair of complementary subspaces.

Corresponding to each pair (U, V ) of complementary subspaces, there is a projection P mapping X onto
U along V, defined as follows. Since for each x there exists a unique decomposition x = u+ v, where u ∈ U
and v ∈ V, we can define a linear map P (u+ v) := u, where ImP = U and KerP = V. Moreover, P 2 = P.

Definition 2.3 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of all comple-
mented subspaces of X.

U ∈ G(X) holds if and only if U is a closed subspace and there exists a closed subspace V in X such
that X = U ⊕ V. Observe that X and {0} are in G(X). Moreover, by the proof of Proposition 4.2 of [6], the
following result can be shown.

Proposition 2.4 Let X be a Banach space. The following conditions are equivalent:

(a) U ∈ G(X).

(b) There exists P ∈ L(X,X) such that P 2 = P and ImP = U.

(c) There exists Q ∈ L(X,X) such that Q2 = Q and KerQ = U.

Moreover, from Theorem 4.5 in [6], the following result can be shown.

Proposition 2.5 Let X be a Banach space. Then every finite dimensional subspace U ∈ G(X).

Let V and U be closed subspaces of a Banach space X such that X = U⊕V. From now on, we will denote
by P

U⊕V the projection onto U along V. Then we have P
V⊕U = IX − PU⊕V . Let U,U ′ ∈ G(X). We say that

U and U ′ have a common complementary subspace in X, if X = U ⊕W = U ′ ⊕W for some W ∈ G(X).
The following result will be useful (see Lemma 2.1 in [4]).

Lemma 2.6 Let X be a Banach space and assume that W , U , and U ′ are in G(X). Then the following
statements are equivalent:

(a) X = U ⊕W = U ′ ⊕W, i.e., U and U ′ have a common complement in X.

(b) P
U⊕W |U ′ : U ′ → U has an inverse.

Furthermore, if Q =
(
P
U⊕W |U′

)−1
, then Q is bounded and Q = P

U′⊕W |U .

Definition 2.7 Let M be a set. An atlas of class Cp (p ≥ 0) on M is a family of charts with some indexing
set A, namely {(Mα, uα) : α ∈ A}, having the following properties:

AT1 {Mα}α∈A is a covering1 of M, that is, Mα ⊂M for all α ∈ A and ∪α∈AMα = M.

AT2 For each α ∈ A, (Mα, uα) stands for a bijection uα : Mα → Uα of Mα onto an open set Uα of a Banach
space Xα, and for any α and β the set uα(Mα ∩Mβ) is open in Xα.

1The condition of an open covering is not needed, see [19].

3



AT3 Finally, if we let Mα ∩Mβ = Mαβ and uα(Mαβ) = Uαβ , the transition mapping uβ ◦u−1
α : Uαβ → Uβα

is a Cp-diffeomorphism.

Since different atlases can give the same manifold, we say that two atlases are compatible if each chart of
one atlas is compatible with the charts of the other atlas in the sense of AT3. One verifies that the relation
of compatibility between atlases is an equivalence relation.

Definition 2.8 An equivalence class of atlases of class Cp on M is said to define a structure of a Cp-Banach
manifold on M, and hence we say that M is a Banach manifold. In a similar way, if an equivalence class
of atlases is given by analytic maps, then we say that M is an analytic Banach manifold. If Xα is a Hilbert
space for all α ∈ A, then we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices α, or even that
they are isomorphic. If Xα is linearly isomorphic to some Banach space X for all α, we have the following
definition.

Definition 2.9 Let M be a set and X be a Banach space. We say that M is a Cp Banach manifold modelled
on X if there exists an atlas of class Cp over M with Xα linearly isomorphic to X for all α ∈ A.

Example 2.10 Every Banach space is a Banach manifold (for a Banach space Y , simply take (IY , Y ) as
atlas, where IY is the identity map on Y ). In particular, the set of all bounded linear maps L(X,X) of a
Banach space X is a Banach manifold.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by

GL(X) := {A ∈ L(X,X) : A invertible } .

Example 2.11 If X is a Banach space, then GL(X) is a Banach manifold, because it is an open set in
L(X,X). Moreover, the map A 7→ A−1 is analytic (see 2.7 in [27]).

Example 2.12 (Grassmann Banach manifold) Let X be a Banach space. Then, following [5] (see also
[27] and [22]), it is possible to construct an atlas for G(X). To show that the atlas is an analytic Banach
manifold, denote one of the complements of U ∈ G(X) by W, i.e., X = U ⊕W . Then we define the Banach
Grassmannian of U relative to W by

G(W,X) := {V ∈ G(X) : X = V ⊕W} .

It is possible to introduce a bijection

ΨU⊕W : G(W,X) −→ L(U,W )

as the inverse of
Ψ−1
U⊕W : L(U,W ) −→ G(W,X),

defined by
Ψ−1
U⊕W (L) = G(L) := {u+ L(u) : u ∈ U} .

Observe that G(0) = U and G(L) ⊕ W = X for all L ∈ L(U,W ). It can be shown that the collection
{ΨU⊕W ,G(W,X)}U∈G(X) is an analytic atlas, and therefore, G(X) is an analytic Banach manifold. In

particular, for each U ∈ G(X) the set G(W,X)
ΨU⊕W∼= L(U,W ) is also a Banach manifold.

Example 2.13 Let X be a Banach space, from Proposition 2.5, every finite dimensional subspace belongs
to G(X). It allows to introduce Gn(X), the space of all n-dimensional subspaces of X. It can be shown (see
[22]) that Gn(X) is a connected component of G(X), and hence it is also a Banach manifold modelled on
L(U,W ), here U ∈ Gn(X) and X = U⊕W. Moreover,

⋃
n≤r Gn(X) is also a Banach manifold for each fixed

r <∞.
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Example 2.14 Let X be the Banach space obtained as the completion of the normed space (X, ‖ · ‖). We
say that U ∈ Gn(X) if and only if U ∈ Gn(X) and U ⊂ X. We claim that Gn(X) is also a Banach
manifold. To prove this claim, we need to show that for each U ∈ Gn(X) such that U ⊕W = X, it holds
that if U ′ ∈ G(W,X) then U ′ ⊂ X. Observe that X = U ⊕ (W ∩ X) where W ∩ X is a linear subspace
dense in W = W ∩ X. Assume that the claim is not true, then there exists U ′ ∈ G(W,X) such that
U ′ ⊕W = X and U ′ ∩ X 6= U ′. Clearly U ′ ∩ X 6= {0}, otherwise W ∩ X = X a contradiction. We have
X = (U ′ ∩X) ⊕ (W ∩X), which implies X = (U ′ ∩X) ⊕W, a contradiction and the claim follows. Then
the collection {ΨU⊕W ,G(W,X)}U∈Gn(X) is an analytic atlas, and therefore, Gn(X) is an analytic Banach

manifold modelled on L(U,W ), here U ∈ Gn(X) and X = U ⊕W.

Let M be a Banach manifold of class Cp, p ≥ 1. Let m be a point of M. We consider triples (U,ϕ, v)
where (U,ϕ) is a chart at m and v is an element of the vector space in which ϕ(U) lies. We say that two of
such triples (U,ϕ, v) and (V, ψ,w) are equivalent if the derivative of ψϕ−1 at ϕ(m) maps v on w. Thanks to
the chain rule it is an equivalence relation. An equivalence class of such triples is called a tangent vector of
M at m.

Definition 2.15 The set of such tangent vectors is called tangent space of M at m and it is denoted by
Tm(M).

Each chart (U,ϕ) determines a bijection of Tm(M) on a Banach space, namely the equivalence class
of (U,ϕ, v) corresponds to the vector v. By means of such a bijection it is possible to equip Tm(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

Example 2.16 If X is a Banach space, then Tx(X) = X for all x ∈ X.

Example 2.17 Let X be a Banach space and take A ∈ GL(X). Then TA(GL(X)) = L(X,X).

Example 2.18 For U ∈ G(X) such that X = U ⊕W for some W ∈ G(X), we have TU (G(X)) = L(U,W ).

Example 2.19 We point out that for a Hilbert space X with associated inner product 〈·, ·〉 and norm ‖ · ‖,
its unit sphere denoted by

SX := {x ∈ X : ‖x‖ = 1},

is a Hilbert manifold of codimension one. Moreover, for each x ∈ SX , its tangent space is

Tx(SX) = span {x}⊥ = {x′ ∈ X : 〈x, x′〉 = 0}.

3 Minimal subspaces and the representation of tensors in the Tree
Based Format

3.1 Tensor spaces in tree based format

Concerning the definition of the algebraic tensor space a
⊗d

j=1 Vj generated from vector spaces Vj (1 ≤ j ≤ d),
we refer to Greub [10]. As underlying field we choose R, but the results hold also for C. The suffix ‘a’ in

a

⊗d
j=1 Vj refers to the ‘algebraic’ nature. By definition, all elements of

V := a

d⊗
j=1

Vj

are finite linear combinations of elementary tensors v =
⊗d

j=1 vj (vj ∈ Vj) .
The following notations and definitions will be useful. We recall that L(V,W ) is the space of linear maps

from V into W, while V ′ = L(V,R) is the algebraic dual of V . For metric spaces, L(V,W ) denotes the
continuous linear maps, while V ∗ = L(V,R) is the topological dual of V .
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Let D := {1, . . . , d} be the index set of the ‘spatial directions’. In the sequel, the index sets D\{j} will
appear. Here, we use the abbreviations

V[j] := a

⊗
k 6=j

Vk , where
⊗
k 6=j

means
⊗

k∈D\{j}

.

Similarly, elementary tensors
⊗

k 6=j vk are denoted by v[j].
For vector spaces Vj and Wj over R, let linear mappings Aj : Vj → Wj (1 ≤ j ≤ d) be given. Then the

definition of the elementary tensor

A =

d⊗
j=1

Aj : V = a

d⊗
j=1

Vj −→W = a

d⊗
j=1

Wj

is given by

A

 d⊗
j=1

vj

 :=

d⊗
j=1

(Ajvj) . (3.1)

Note that (3.1) extends uniquely to a linear mapping A : V→W.

Remark 3.1 (a) Let V := a

⊗d
j=1 Vj and W := a

⊗d
j=1Wj. Then the linear combinations of tensor

products of linear mappings A =
⊗d

j=1Aj defined by means of (3.1) form a subspace of L(V,W):

a

d⊗
j=1

L(Vj ,Wj) ⊂ L(V,W).

(b) The special case of Wj = R for all j (implying W = R) reads as a

⊗d
j=1 V

′
j ⊂ V′ .

(c) If dim(Vj) < ∞ and dim(Wj) < ∞ for all j, the inclusion ‘⊂’ in (a) and (b) can be replaced by ‘=’.
This can be easily verified by just checking the dimensions of spaces involved.

Often, mappings A =
⊗d

j=1Aj will appear, where most of the Aj are the identity (and therefore
Vj = Wj). If Ak ∈ L(Vk,Wk) for one k and Aj = id for j 6= k, we use the following notation:

id[k] ⊗Ak := id⊗ . . .⊗ id︸ ︷︷ ︸
k−1 factors

⊗Ak ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
d−k factors

∈ L(V,V[k] ⊗aWk),

provided that it is obvious which component k is meant. By the multiplication rule
(⊗d

j=1Aj

)
◦
(⊗d

j=1Bj

)
=⊗d

j=1 (Aj ◦Bj) and since id ◦Aj = Aj ◦ id, the following identity2 holds for j 6= k:

id⊗ . . .⊗ id⊗Aj ⊗ id⊗ . . .⊗ id⊗Ak ⊗ id⊗ . . .⊗ id
= (id[j] ⊗Aj) ◦ (id[k] ⊗Ak)
= (id[k] ⊗Ak) ◦ (id[j] ⊗Aj)

(in the first line we assume j < k). Proceeding inductively with this argument over all indices, we obtain

A =

d⊗
j=1

Aj = (id[1] ⊗A1) ◦ · · · ◦ (id[d] ⊗Ad).

If Wj = R, i.e., if Aj = ϕj ∈ V ′j is a linear form, then id[j] ⊗ ϕj ∈ L(V,V[j]) is used as symbol for
id⊗ . . .⊗ id⊗ ϕj ⊗ id⊗ . . .⊗ id defined by

(id[j] ⊗ ϕj)

(
d⊗
k=1

vk

)
= ϕj(vj) ·

⊗
k 6=j

vk.

2Note that the meaning of id[j] and id[k] may differ: in the second line of (3.2), (id[k] ⊗ Ak) ∈ L(V,V[k] ⊗a Wk) and

(id[j]⊗Aj) ∈ L
(
V[k] ⊗a Wk,V[j,k] ⊗a Wj ⊗a Wk

)
, whereas in the third one (id[j]⊗Aj) ∈ L(V,V[j]⊗aWj) and (id[k]⊗Ak) ∈

L
(
V[j] ⊗a Wj ,V[j,k] ⊗a Wj ⊗a Wk

)
. Here V[j,k] = a

⊗
l∈D\{j,k} Vl .
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Thus, if ϕ = ⊗dj=1ϕj ∈
⊗d

j=1 V
′
j , we can also write

ϕ = ⊗dj=1ϕj = (id[1] ⊗ ϕ1) ◦ · · · ◦ (id[d] ⊗ ϕd).

Consider again the splitting of V = a

⊗d
j=1 Vj into V = Vj ⊗a V[j] with V[j] := a

⊗
k 6=j Vk . For a linear

form ϕ[j] ∈ V′[j], the notation idj ⊗ϕ[j] ∈ L(V, Vj) is used for the mapping

(idj ⊗ϕ[j])

(
d⊗
k=1

vk

)
= ϕ[j]

(⊗
k 6=j

vk

)
· vj .

If ϕ[j] =
⊗

k 6=j ϕk ∈ a

⊗
k 6=j V

′
k is an elementary tensor3, ϕ[j]

(⊗
k 6=j v

(k)
)

=
∏
k 6=j ϕk

(
v(k)

)
holds in (3.2).

Finally, we can write (3.2) as

ϕ = ⊗dj=1ϕj = ϕj ◦ (idj ⊗ϕ[j]) for 1 ≤ j ≤ d.

We introduce the abbreviation TBF for ‘tree based format’. For instance, a TBF tensor is a tensor
represented in the tree based format, etc. The tree based rank will be abbreviated by TB rank. To introduce
the underlying tree we use the following example.

Example 3.2 Let us consider D = {1, 2, 3, 4, 5, 6}, then

VD = a

6⊗
j=1

Vj =


a

3⊗
j=1

Vj

⊗a

a

5⊗
j=4

Vj

⊗a V6 = V123 ⊗a V45 ⊗a V6.

Observe that VD = a

⊗6
j=1 Vj can be represented by the tree given in Figure 3.1 and VD = V123⊗aV45⊗aV6

by the tree given in Figure 3.2. We point out that there are other trees to describe the tensor representation
VD = V123 ⊗a V45 ⊗a V6, because

VD =


a

3⊗
j=1

Vj

⊗a

a

5⊗
j=4

Vj

⊗a V6 =

V1 ⊗a


a

3⊗
j=2

Vj

⊗a

a

5⊗
j=4

Vj

⊗a V6,

that is, V123 = a

⊗3
j=1 Vj = V1 ⊗a V23 (see Figure 3.3).

The above example motivates the following definition.

Definition 3.3 The tree TD is called a dimension partition tree of D if

(a) all vertices α ∈ TD are non–empty subsets of D,

(b) D is the root of TD,

(c) every vertex α ∈ TD with #α ≥ 2 has at least two sons. Moreover, if S(α) ⊂ 2D denotes the set of
sons of α then α = ∪β∈S(α)β where β ∩ β′ = ∅ for all β, β′ ∈ S(α), β 6= β′.

If S(α) = ∅, α is called a leaf. The set of leaves is denoted by L(TD). An easy consequence of Definition 3.3
is that the set of leaves L(TD) coincides with the singletons of D, i.e., L(TD) = {{j} : j ∈ D}.

Example 3.4 Consider D = {1, 2, 3, 4, 5, 6}. Take

TD = {D, {1}, {2}, {3}, {4}, {5}, {6}} and S(D) = {{1}, {2}, {3}, {4}, {5}, {6}}

(see Figure 3.1). Then S(D) = L(TD).
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{1, 2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}{1}

Figure 3.1: A dimension partition tree related to VD = a

⊗6
j=1 Vj .

{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{3}{2}{1}

Figure 3.2: A dimension partition tree related with VD = V123 ⊗a V45 ⊗a V6.

{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{2, 3}

{3}{2}

{1}

Figure 3.3: A dimension partition tree related with VD = V123 ⊗a V45 ⊗a V6 where V123 = V1 ⊗a V23.

8



Example 3.5 In Figure 3.2 we have a tree which corresponds to VD = V123 ⊗a V45 ⊗a V6. Here D =
{1, 2, 3, 4, 5, 6} and

TD = {D, {1, 2, 3}, {4, 5}, {1}, {2}, {3}, {4}, {5}, {6}},
S(D) = {{1, 2, 3}, {4, 5}, {6}}, S({4, 5}) = {{4}, {5}}, S({1, 2, 3}) = {{1}, {2}, {3}}.

Moreover L(TD) = {{1}, {2}, {3}, {4}, {5}, {6}}.

Finally we give the definition of a TBF tensor.

Definition 3.6 Let D be a finite index set and TD be a partition tree. Let Vj be a vector space for j ∈ D,
and consider for each α ∈ TD \ L(TD) a tensor space Vα := a

⊗
β∈S(α) Vβ . Then the collection of vector

spaces {Vα}α∈TD\{D} is called a representation of the tensor space VD = a

⊗
α∈S(D) Vα in tree based

format.

Observe that we can write VD = a

⊗
α∈S(D) Vα = a

⊗
j∈D Vj . A first property of TBF tensors is the

independence of the representation of the algebraic tensor space VD with respect to the tree TD.

Lemma 3.7 Let D be a finite index set and TD be a partition tree. Let Vj be a vector space for j ∈ D.
Assume that {Vα}α∈TD\{D} is a representation of the tensor space VD = a

⊗
α∈S(D) Vα in the tree based

format. Then for each α1 ∈ TD\{D} there exist α2, . . . , αm ∈ TD\{D,α1} such that D = ∪mi=1αi, αi∩αj = ∅
and VD = a

⊗m
i=1 Vαi .

3.2 Minimal subspaces for TBF tensors

Let Vj be a vector space for j ∈ D, where D is a finite index set, and α1, . . . , αm ⊂ 2D \ {D, ∅}, be such
that αj ∩ αj = ∅ for all i 6= j and D =

⋃m
j=1 αi. For v ∈ a

⊗m
i=1 Vαi we define the minimal subspace of v

on each Vαi := a

⊗
j∈αi Vj for 1 ≤ i ≤ m, as follows.

Definition 3.8 For a tensor v ∈ a

⊗
j∈D Vj = a

⊗m
i=1 Vαi the minimal subspaces denoted by Umin

αi (v) ⊂
Vαi , for 1 ≤ i ≤ m, are defined by the property that v ∈ a

⊗m
i=1 Uαi implies Umin

αi (v) ⊂ Uαi , while
v ∈ a

⊗m
i=1 U

min
αi (v) .

The minimal subspaces are useful to introduce the following sets of tensor representations based on
subspaces. Fix r = (r1, . . . , rd) ∈ Nd. Then we define the set of Tucker tensors with bounded rank r in

V = a

⊗d
j=1 Vj by

Tr(V) :=
{
v ∈ V : dimUmin

j (v) ≤ rj , 1 ≤ j ≤ d
}
,

and the set of Tucker tensors with fixed rank r in V = a

⊗d
j=1 Vj by

Mr(V) :=
{
v ∈ V : dimUmin

j (v) = rj , 1 ≤ j ≤ d
}
.

Then Mr(V) ⊂ Tr(V) ⊂ V holds.

The next characterisation of Umin
αj (v) for 1 ≤ j ≤ m is due to [15] (it is included in the proof of Lemma

6.12). Since we assume that Vαj are vector spaces for 1 ≤ j ≤ m, then we may consider the subspaces

U Iαj (v) :=
{

(idαj ⊗ϕ[αj ])(v) : ϕ[αj ] ∈ a

⊗
k 6=j

V′αk

}
and

U IIαj (v) :=
{

(idαj ⊗ϕ[αj ])(v) : ϕ[αj ] ∈ a

⊗
k 6=j

Umin
αk

(v)′
}
,

for 1 ≤ j ≤ m. Moreover, if Vαj are normed spaces for 1 ≤ j ≤ m we can also consider

U IIIαj (v) :=
{

(idαj ⊗ϕ[αj ])(v) : ϕ[αj ] ∈ a

⊗
k 6=j

V∗αk

}
,

and
U IVαj (v) :=

{
(idαj ⊗ϕ[αj ])(v) : ϕ[αj ] ∈ a

⊗
k 6=j

Umin
αk

(v)∗
}
,

3Recall that an elementary tensor is a tensor of the form v1 ⊗ · · · ⊗ vd.
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Theorem 3.9 Assume that Vαj are vector spaces for 1 ≤ j ≤ m. Then the following statements hold.

(a) For any v ∈ V = a

⊗m
j=1 Vαj , it holds

Umin
αj (v) = U Iαj (v) = U IIαj (v),

for 1 ≤ j ≤ m.

(b) Assume that Vαj are normed spaces for 1 ≤ j ≤ m. Then for any v ∈ V = a

⊗m
j=1 Vαj , it holds

Umin
αj (v) = U IIIαj (v) = U IVαj (v),

for 1 ≤ j ≤ m.

Let D = ∪mi=1αi be a given partition. Assume that α1 = ∪nj=1βj is also a given partition, then we have

minimal subspaces Umin
βj

(v) ⊂ Vβj = a

⊗
k∈βj Vk for 1 ≤ j ≤ n and Umin

αi (v) ⊂ Vαi = a

⊗
k∈αi Vk for

1 ≤ i ≤ m. Observe that Vα1 = a

⊗n
j=1 Vβj , where

v ∈ a

m⊗
i=1

Umin
αi (v) and v ∈


a

n⊗
j=1

Umin
βj (v)

⊗a (a

m⊗
i=2

Umin
αi (v)

)
.

Example 3.10 Let us consider D = {1, 2, 3, 4, 5, 6} and the partition tree TD given in Figure 3.2. Take
v ∈ a

⊗
j∈D Vj = Vα1

⊗a Vα2
⊗a Vα3

, where α1 = {1, 2, 3}, α2 = {4, 5}, and α3 = {6}. Then we can

conclude that there are minimal subspaces Umin
αν (v) for ν = 1, 2, 3, such that v ∈ a

⊗3
ν=1 Umin

αν (v) and also
minimal subspaces Umin

j (v) for j ∈ D, such that v ∈ a

⊗
j∈D U

min
j (v)

The relation between Umin
j (v) and Umin

αν (v) is as follows (see Corollary 2.9 of [7]).

Proposition 3.11 Let Vj be a vector space for j ∈ D, where D is a finite index set, and D = ∪mi=1αi be a
given partition. Let v ∈ a

⊗
j∈D Vj . For a partition α1 = ∪mj=1βj it holds

Umin
α1

(v) ⊂ a

m⊗
j=1

Umin
βj (v) .

The following result gives us the relationship between a basis of Umin
α1

(v) and a basis of Umin
βj

(v) for
1 ≤ j ≤ m.

Proposition 3.12 Let Vj be a vector space for j ∈ D, where D is a finite index set. Let α ⊂ D such
that α =

⋃m
i=1 αi, where ∅ 6= αi are pairwise disjoint for 1 ≤ i ≤ m. Let v ∈ a

⊗
j∈D Vj . The following

statements hold.

(a) For each 1 ≤ i ≤ m, it holds

Umin
αi (v) = span

(idαi ⊗ϕ(α\αi)
)

(vα) : vα ∈ Umin
α (v) and ϕ(α\αi) ∈ a

⊗
k 6=i

Umin
αk

(v)′


= span

(idαi ⊗ϕ(α\αi)
)

(vα) : vα ∈ Umin
α (v) and ϕ(α\αi) ∈ a

⊗
k 6=i

V′αk

 .

(b) Assume that Vα := a

⊗m
i=1 Vαi and Vαi , for 1 ≤ i ≤ m, are normed spaces. For each 1 ≤ i ≤ m it

holds

Umin
αi (v) = span

(idαi ⊗ϕ(α\αi)
)

(vα) : vα ∈ Umin
αi (v) and ϕ(α\αi) ∈ a

⊗
k 6=i

Umin
αk

(v)∗


= span

(idαi ⊗ϕ(α\αi)
)

(vα) : vα ∈ Umin
α (v) and ϕ(α\αi) ∈ a

⊗
k 6=i

V∗αk


10



Proof. Statements (a) and (b) follows in a similar way. Let γ = D \ α and write γ =
⋃n
i=1 γi, where

∅ 6= γi ⊂ D are pairwise disjoint for i = 1, 2, . . . , n. In particular, to prove (b), we observe that

VD = Vα ⊗a Vγ =

(
a

m⊗
i=1

Vαi

)
⊗a


a

n⊗
j=1

Vγj

 .

Then, by Theorem 3.9(b), using U IVαi (v), we have

Umin
α (v) =

(idα ⊗ϕ(γ))(v) : ϕ(γ) ∈ a

m⊗
j=1

Umin
γj (v)∗

 and

Umin
αi (v) =

(idαi ⊗ϕ(D\αi))(v) : ϕ(D\αi) ∈


a

⊗
k 6=i

Umin
αk

(v)∗

⊗a

a

m⊗
j=1

Umin
γj (v)∗


for 1 ≤ i ≤ m. Take vα ∈ Umin

α (v). Then there existsϕ(γ) ∈ a

⊗m
j=1 U

min
γj (v)∗ such that vα =

(
idα ⊗ϕ(γ)

)
(v).

Now, for ϕ(α\αi) ∈ a

⊗
k 6=i U

min
αk

(v)∗ , we have(
idαi ⊗ϕ(α\αi)

)
(vα) =

(
idαi ⊗ϕ(α\αi) ⊗ϕ(D\α)

)
(v),

and hence
(
idαi ⊗ϕ(α\αi)

)
(vα) ∈ Umin

αi (v). Now, take vαi ∈ Umin
αi (v), then there exists

ϕ(D\αi) ∈


a

⊗
k 6=i

Umin
αk

(v)∗

⊗a

a

m⊗
j=1

Umin
γj (v)∗


such that vαi =

(
idαi ⊗ϕ(D\αi)

)
(v). Then ϕ(D\αi) =

∑r
i=1ψ

(α\αi)
i ⊗φ(γ)

i , where φ
(γ)
i ∈ a

⊗m
j=1 U

min
γj (v)∗

and ψ
(α\αi)
i ∈ a

⊗
k 6=i U

min
αk

(v)∗ for 1 ≤ i ≤ r. Thus,

vαi =
(
idαi ⊗ϕ(D\αi)

)
(v)

=

r∑
i=1

(
idαi ⊗ψ

(α\αi)
i ⊗ φ(γ)

i

)
(v)

=

r∑
i=1

(
idαi ⊗ψ

(α\αi)
i

)(
(idα ⊗ φ(γ)

i )(v)
)
.

Observe that (idα ⊗ φ(γ)
i )(v) ∈ Umin

α (v). Hence the other inclusion holds and the first equality of second
statement is proved. To show the second one, proceed in a similar way by using Theorem 3.9(b) and the
definition of U IIIαj (v).

From now on, given ∅ 6= α ⊂ D, we will denote Vα := a

⊗
j∈α Vj , rα := dimUmin

α (v) and Umin
D (v) :=

span {v}. Observe that for each v ∈ VD we have that (dimUmin
α (v))α∈2D\{∅} is in N2#D−1.

Definition 3.13 Let D be a finite index set and TD be a partition tree. Let Vj be a vector space for
j ∈ D, Assume that {Vα}α∈TD\{D} is a representation of the tensor space VD = a

⊗
α∈S(D) Vα in the tree

based format. Then for each v ∈ VD = a

⊗
j∈D Vj we define its tree based rank (TB rank) by the tuple

(dimUmin
α (v))α∈TD ∈ N#TD .

In order to characterise the tensors v ∈ VD satisfying (dim Umin
α (v))α∈TD = r, for a fixed r := (rα)α∈TD ∈

N#TD , we introduce the following definition.

Definition 3.14 We will say that r := (rα)α∈TD ∈ N#TD is an admissible tuple for TD, if there exists
v ∈ VD \ {0} such that dimUmin

α (v) = rα for all α ∈ TD \ {D}.
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3.3 The representations of tensors of fixed TB rank

Before introducing the representation of a tensor of fixed TB rank we need to define the set of coefficients
of that tensors. To this end, we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a
finite-dimensional setting.

Definition 3.15 For α ⊂ 2D, and β ⊂ α the map Mβ is defined as the isomorphism

Mβ : R×µ∈α rµ → R(
∏
µ∈β rµ)×(

∏
δ∈α\β rδ),

C(iµ)µ∈α 7→ C(iµ)µ∈β ,(iδ)δ∈α\β

It allows to introduce the following definition.

Definition 3.16 For α ⊂ 2D, let C(α) ∈ R×µ∈α rµ . We say that C(α) ∈ R×µ∈α rµ
∗ if and only if∏

µ∈α

(
det
(
Mµ(C(α))Mµ(C(α))T

)
+ det

(
Mµ(C(α))TMµ(C(α))

))
> 0,

where Mµ(C(α)) ∈ Rrµ×(
∏
δ∈α\{µ} rδ) for each µ ∈ α. We point out that this condition is equivalent that all

Mµ(C(α)) have maximal rank.

Since the determinant is a continuous function, R×µ∈α rµ
∗ is an open set in R×µ∈α rµ , and hence a finite-

dimensional manifold. Moreover, the tangent space TC(α)

(
R×µ∈α rµ
∗

)
= R×µ∈α rµ for all C(α) ∈ R×µ∈α rµ

∗

(cf. Definition 2.15).

Definition 3.17 Let TD be a given dimension partition tree and fix some tuple r ∈ NTD for TD. The set of
TBF tensors of bounded TB rank r is defined by

BT r(VD) :=
{
v ∈ VD : dimUmin

α (v) ≤ rα for all α ∈ TD
}
, (3.3)

and the set of TBF tensors of fixed TB rank r is defined by

FT r(VD) :=
{
v ∈ BT r(VD) : dimUmin

α (v) = rα for all α ∈ TD
}
. (3.4)

Note that FT r(VD) = ∅ for an inadmissible tuple r. For r, s ∈ NTD we write s ≤ r if and only if sα ≤ rα
for all α ∈ TD. Then we have

BT r(VD) = {0} ∪
⋃
s≤r

FT s(VD).

Next we give some useful examples.

Example 3.18 (Tucker format) Consider the partition tree over D := {1, . . . , d}, where S(D) = L(TD) =
{{j} : 1 ≤ j ≤ d}. Let (rD, r1, . . . , rd) be admissible, then rD = 1 and rj ≤ dimVj for 1 ≤ j ≤ d. Thus we
can write

BT (1,r1,...,rd)(VD) = T(r1,...,rd)(VD)

and
FT (1,r1,...,rd)(VD) =M(r1,...,rd)(VD).

Example 3.19 (Tensor Train format) Consider a binary partition tree over D := {1, . . . , d} given by

TD = {D, {{j} : 1 ≤ j ≤ d}, {{j + 1, . . . , d} : 1 ≤ j ≤ d− 2}}.

In particular, S({j, . . . , d}) = {{j}, {j + 1, . . . , d}} for 1 ≤ j ≤ d− 1. This tensor based format is related to
the following chain of inclusions:

Umin
D (v) ⊂ Umin

1 (v)⊗a Umin
2···d(v) ⊂ Umin

1 (v)⊗a Umin
2 (v)⊗a Umin

3···d(v) ⊂ · · · ⊂ a

⊗
j∈D

Umin
j (v) .
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Let Vj be vector spaces for j ∈ D and TD be a tree. Let v ∈ FT r(VD). Then dimUmin
α (v) = rα, for

each α ∈ TD \ {D}. Since v ∈ a

⊗
α∈S(D) U

min
α (v) , there exists C(D) ∈ R×α∈S(D) rα such that

v =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα
, (3.5)

where {u(α)
iα

: 1 ≤ iα ≤ rα} is a basis of Umin
α (v). For each α ∈ S(D) we set

U
(α)
iα

:=
∑

1≤iβ≤rβ
β∈S(D)
β 6=α

C
(D)
(iβ)β∈S(D)

⊗
β∈S(D)
β 6=α

u
(β)
iβ
, (3.6)

then (3.5) can be written as

v =
∑

1≤iα≤rα

u
(α)
iα
⊗U

(α)
iα
. (3.7)

Let
Umin
S(D)\{α}(v) := {(id[α] ⊗ ϕα)(v) : ϕα ∈ Umin

α (v)∗}.

We claim that {U(α)
iα

: 1 ≤ iα ≤ rα} are linearly independent. To prove the claim assume that U
(α)
1

is a linear combination of {U(α)
iα

: 2 ≤ iα ≤ rα}, then U
(α)
1 =

∑
2≤iα≤rα λiαU

(α)
iα

where λiα 6= 0 for some
2 ≤ iα ≤ rα. Thus,

v =
∑

2≤iα≤rα

(u
(α)
iα

+ λiαu
(α)
1 )⊗U

(α)
iα
,

since {u(α)
iα

+ λiαu
(α)
1 : 2 ≤ iα ≤ rα} are linearly independent we have dimUmin

α (v) < rα, a contradiction.

Since {U(α)
iα

: 1 ≤ iα ≤ rα} are linearly independent for each α ∈ S(D), from (3.7) we have that

Umin
S(D)\{α}(v) = span {U(α)

iα
: 1 ≤ iα ≤ rα},

and from (3.6), we deduce thatMα(C(D)) maps a basis into another one for each α ∈ S(D) and hence C(D) ∈
R×β∈S(D) rβ
∗ . We remark, that if S(D) = L(TD), then (3.5) gives us the classical Tucker representation.

Now, assume S(D) 6= L(TD). Then, for each µ ∈ TD\{D} such that S(µ) 6= ∅, thanks to Proposition 3.11,
we have

Umin
µ (v) ⊂ a

⊗
β∈S(µ)

Umin
β (v) .

Consider {u(µ)
iµ

: 1 ≤ iµ ≤ rµ} a basis of Umin
µ (v) and {u(β)

iβ
: 1 ≤ iβ ≤ rβ} a basis of Umin

β (v) for β ∈ S(µ)

and 1 ≤ iµ ≤ rµ. Then, there exists C(µ) ∈ Rrµ×(×β∈S(α) rβ) such that

u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗
β∈S(µ)

u
(β)
iβ
. (3.8)

for 1 ≤ iµ ≤ rµ. Since {u(µ)
iµ

: 1 ≤ iµ ≤ rµ} is a basis, we can identify C(µ) with the matrixMµ(C(µ)), in the

non-compact Stiefel manifold R
rµ×(

∏
β∈S(µ) rβ)

∗ , which is the set of matrices in Rrµ×(
∏
β∈S(α) rβ) whose rows

are linearly independent (see 3.1.5 in [1]). In a similar way as in the root case, for each fixed 1 ≤ iµ ≤ rµ
and β ∈ S(µ), we introduce

U
(β)
iµ,iβ

:=
∑

1≤iδ≤rδ
δ∈S(µ)
δ 6=β

C
(µ)
iµ,(iδ)δ∈S(µ)

⊗
δ∈S(µ)
δ 6=β

u
(δ)
iδ
, (3.9)
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where 1 ≤ iβ ≤ rβ . Hence, we can write (3.8) as

u
(µ)
iµ

=
∑

1≤iβ≤rβ

u
(β)
iβ
⊗U

(β)
iµ,iβ

,

where 1 ≤ iµ ≤ rµ and β ∈ S(µ). From Proposition 3.12(a), we have

Umin
β (v) = span

(idβ ⊗ ϕ(µ\β))(u
(µ)
iµ

) : 1 ≤ iµ ≤ rµ and ϕ(µ\β) ∈ a

⊗
δ∈S(µ)\{β}

Umin
δ (v)′


= span

(idβ ⊗ ϕ(µ\β))(u
(µ)
iµ

) : 1 ≤ iµ ≤ rµ and ϕ(µ\β) ∈ a

⊗
δ∈S(µ)\{β}

V′δ

 ,

and hence Umin
β (u

(µ)
iµ

) ⊂ Umin
β (v) for 1 ≤ iµ ≤ rµ. Let us consider {ϕ(β)

iβ
: 1 ≤ iβ ≤ rβ} ⊂ Umin

β (v)′ a dual

basis of the finite dimensional space {u(β)
iβ

: 1 ≤ iβ ≤ rβ}, that is, ϕ
(β)
iβ

(u
(β)
jβ

) = δiβ ,jβ for all 1 ≤ iβ , jβ ≤ rβ ,

and β ∈ S(µ). Thus, we haveidβ ⊗ ⊗
δ∈S(µ)
δ 6=β

ϕ
(δ)
jδ

 (u
(µ)
iµ

) =
∑

1≤jβ≤rβ

C
(µ)
iµ,(jδ)δ∈S(µ)

u
(β)
jβ
∈ Umin

β (v)

for each multi-index (jδ)δ∈S(µ)\β ∈×δ∈S(µ)
δ 6=β

{1, . . . , rδ}. Then, for β ∈ S(µ),

Umin
β (v) = span


idβ ⊗ ⊗

δ∈S(µ)
δ 6=β

ϕ
(δ)
jδ

 (u
(µ)
iµ

) : (jδ)δ∈S(µ)\β ∈ ×
δ∈S(µ)
δ 6=β

{1, . . . , rδ}, 1 ≤ iµ ≤ rµ


with dimUmin

β (v) = rβ if and only if rankMβ(C(µ)) = rβ for β ∈ S(µ). Finally, we have C(µ) ∈ Rrµ×(×δ∈S(µ) rδ)
∗

for all µ ∈ TD \ L(TD). In a similar way, by using idS(µ)\β ⊗ϕ
(β)
jβ

for 1 ≤ jβ ≤ rβ , over u
(µ)
iµ

it can be proved
that

Umin
S(µ)\{β}(u

(µ)
iµ

) = span
{

U
(β)
iµ,iβ

: 1 ≤ iβ ≤ rβ
}

for 1 ≤ iµ ≤ rµ and also

Umin
S(µ)\{β}(v) = span

{
U

(β)
iµ,iβ

: 1 ≤ iβ ≤ rβ , 1 ≤ iµ ≤ rµ.
}
.

Now, we claim that
{

U
(β)
iµ,iβ

: 1 ≤ iβ ≤ rβ
}

are linearly independent in a

⊗
δ 6=β Vδ for 1 ≤ iµ ≤ rµ and β ∈

S(µ). Otherwise, there exist λiβ for 1 ≤ iβ ≤ rβ not all identically zero such that
∑

1≤iβ≤rβ λiβU
(β)
iµ,iβ

= 0.

Take wβ ∈ Vβ \ {0} and then

wβ ⊗

 ∑
1≤iβ≤rβ

λiβU
(β)
iµ,iβ

 =
∑

1≤iβ≤rβ

λiβwβ ⊗U
(β)
iµ,iβ

= 0.

Observe that

∑
1≤iβ≤rβ

(
λiβwβ ⊗U

(β)
iµ,iβ

)
=

∑
1≤iδ≤rδ
δ∈S(µ)

C
(µ)
iµ,(iδ)δ∈S(µ)

λiβwβ ⊗

 ⊗
δ 6=β

δ∈S(µ)

u
(δ)
iδ

 = 0,
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for 1 ≤ iµ ≤ rµ and β ∈ S(µ), take a dual basis of {ϕ(δ)
iδ

: 1 ≤ iδ ≤ rδ} ⊂ V∗δ of {u(δ)
iδ

: 1 ≤ iδ ≤ rδ} ⊂ Vδ

where ϕ
(δ)
iδ

(u
(δ)
jδ

) = δiδ,jδ for all 1 ≤ iδ, jδ ≤ rδ. Then we obtain

idβ ⊗

 ⊗
δ∈S(µ)\{β}

ϕ
(δ)
iδ

 ∑
1≤iβ≤rβ

(
λiβwβ ⊗U

(β)
iµ,iβ

) =
∑

1≤iβ≤rβ

C
(µ)
iµ,(iδ)δ∈S(µ)

λiβwβ = 0,

that is,Mβ(C(µ))T zβ = 0, where zβ := (λiβwβ)
rβ
iβ=1. Since rankMβ(C(µ)) = rβ , then dim KerMβ(C(µ))T =

0, and hence zβ = (λiβwβ)
rβ
iβ=1 = (0)

rβ
iβ=1 for β ∈ S(γ), a contradiction. In consequence,

dimUmin
S(µ)\{β}(u

(µ)
iµ

) = dimUmin
β (u

(µ)
iµ

) = rβ

for 1 ≤ iµ ≤ rµ and β ∈ S(µ). Hence Umin
β (v) = Umin

β (u
(µ)
iµ

) holds for 1 ≤ iµ ≤ rµ and β ∈ S(µ).

From (3.5) and (3.8) we obtain the Tucker representation of v, when S(D) 6= L(TD), as

v =
∑

1≤ik≤rk
k∈L(TD)


∑

1≤iα≤rα
α∈TD\{D}
α/∈L(TD)

C
(D)
(iα)α∈S(D)

∏
µ∈TD\{D}
S(µ)6=∅

C
(µ)
iµ,(iβ)β∈S(µ)


⊗

k∈L(TD)

u
(k)
ik
. (3.10)

Moreover, necessary conditions for r ∈ N#TD to be admissible are

rD = 1,
r{j} ≤ dimVj for {j} ∈ L(TD),
rα ≤

∏
β∈S(α) rβ for α ∈ TD \ L(TD),

rδ ≤ rα
∏
β∈S(α)\{δ} rβ for α ∈ TD \ L(TD) and δ ∈ S(α).

Example 3.20 Let us consider D = {1, 2, 3, 4, 5, 6}, then

VD = a

6⊗
j=1

Vj =


a

3⊗
j=1

Vj

⊗a

a

5⊗
j=4

Vj

⊗a V6 = V123 ⊗a V45 ⊗a V6.

It is well known (see [7]) that v ∈ a

⊗6
j=1 U

min
j (v) and v ∈ Umin

123 (v)⊗a Umin
45 (v)⊗a Umin

6 (v). From Propo-
sition 3.12 we have

Umin
D (v) ⊂ Umin

123 (v)⊗a Umin
45 (v)⊗a Umin

6 (v) ⊂ a

6⊗
j=1

Umin
j (v) .

Moreover, we can write

v =

r123∑
i123=1

r45∑
i45=1

r6∑
i6=1

C
(D)
i123,i45,i6

u
(123)
i123

⊗ u
(45)
i45
⊗ u(6)

i6
, C(D) ∈ Rr123×r45×r6∗

where

u
(123)
i123

=

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

C
(123)
i123,i1,i2,i3

u
(1)
i1
⊗ u(2)

i2
⊗ u(3)

i3
, C(123) ∈ Rr123×r1×r2×r3∗

and

u
(45)
i45

=

r4∑
i4=1

r5∑
i5=1

C
(45)
i45,i4,i5

u
(4)
i4
⊗ u(5)

i5
, C(45) ∈ Rr45×r4×r5∗ .
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Finally

v =

r1∑
i1=1

· · ·
r6∑
i6=1

(
r123∑
i123=1

r45∑
i45=1

C
(D)
i123,i45,i6

C
(123)
i123,i1,i2,i3

C
(45)
i45,i4,i5

)
︸ ︷︷ ︸

vi1,...,i6

6⊗
k=1

u
(k)
ik
,

where u
(k)
ik
∈ Umin

k (v) for 1 ≤ k ≤ 6.

The procedure, given a basis of Umin
α (v) for α ∈ TD \ {D}, used to obtain (3.10), is completely charac-

terised by a finite tuple of tensors

C(v) := (C(α))α∈TD\L(TD) ∈ ×
α∈TD\L(TD)

Rrα×(×β∈S(α) rβ),

where C(D) ∈ R×α∈S(D) rα
∗ and C(µ) ∈ Rrµ×(×β∈S(µ) rβ)

∗ , for each µ ∈ TD \ {D} such that S(µ) 6= ∅. From
now on, to simplify the notation, we introduce for an admissible r ∈ NTD the product vector space

Rr := ×
α∈TD\L(TD)

Rrα×(×β∈S(α) rβ),

with rD = 1. It allows us to introduce its open subset Rr
∗, and hence a manifold, defined as

Rr
∗ :=

{
C ∈ Rr : C(D) ∈ R×α∈S(D) rα

∗ and C(µ) ∈ Rrµ×(×β∈S(µ) rβ)
∗

for each µ ∈ TD \ {D} such that S(µ) 6= ∅.

}
.

Before characterising the ”local coordinates” of a tensor v ∈ FT r(VD) we need to introduce topological
TBF tensors.

3.4 Topological TBF tensors

First, we recall the definition of some topological tensor spaces and we will give some examples.

Definition 3.21 We say that V‖·‖ is a Banach tensor space if there exists an algebraic tensor space V and
a norm ‖·‖ on V such that V‖·‖ is the completion of V with respect to the norm ‖·‖, i.e.,

V‖·‖ := ‖·‖

d⊗
j=1

Vj = a

⊗d

j=1
Vj

‖·‖

.

If V‖·‖ is a Hilbert space, we say that V‖·‖ is a Hilbert tensor space.

Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3.22 For Ij ⊂ R (1 ≤ j ≤ d) and 1 ≤ p <∞, the Sobolev space HN,p(Ij) consists of all univariate
functions f from Lp(Ij) with bounded norm4

‖f‖N,p;Ij :=

( N∑
n=0

∫
Ij

|∂nf |p dx

)1/p

,

whereas the space HN,p(I) of d-variate functions on I = I1 × I2 × . . .× Id ⊂ Rd is endowed with the norm

‖f‖N,p :=
( ∑

0≤|n|≤N

∫
I

|∂nf |p dx
)1/p

4It suffices to have in (3.22) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.
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Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖123

HN,p(I2)⊗a HN,p(I3)
‖·‖23

HN,p(I2)HN,p(I2)

Lp(I1)

Figure 3.4: A representation in the topological tree based format for the tensor Banach space

Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖123

. Here ‖ · ‖23 and ‖ · ‖123 are given norms.

with n ∈ Nd0 being a multi-index of length |n| :=
∑d
j=1 nj. For p > 1 it is well known that HN,p(Ij) and

HN,p(I) are reflexive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces HN (Ij) :=
HN,2(Ij) and HN (I) := HN,2(I) are Hilbert spaces. As a first example,

HN,p(I) = ‖·‖N,p

d⊗
j=1

HN,p(Ij)

is a Banach tensor space. Examples of Hilbert tensor spaces are

L2(I) = ‖·‖0,2

d⊗
j=1

L2(Ij) and HN (I) = ‖·‖N,2

d⊗
j=1

HN (Ij) for N ∈ N.

In the definition of a tensor Banach space ‖·‖
⊗

j∈D Vj we have not fixed, whether Vj , for j ∈ D, are
complete or not. This leads us to introduce the following definition.

Definition 3.23 Let D be a finite index set and TD be a dimension partition tree. Let (Vj , ‖ · ‖j) be a
normed space such that Vj‖·‖j is a Banach space obtained as the completion of Vj , for j ∈ D, and consider

a representation {Vα}α∈TD\{D} of the tensor space VD = a

⊗
j∈D Vj where for each α ∈ TD \ L(TD) we

have a tensor space Vα = a

⊗
β∈S(α) Vβ . If for each α ∈ TD \ L(TD) there exists a norm ‖ · ‖α defined

on Vα such that Vα‖·‖α
= ‖·‖α

⊗
β∈S(α) Vβ is a tensor Banach space, we say that {Vα‖·‖α

}α∈TD\{D} is a

representation of the tensor Banach space VD‖·‖D
= ‖·‖D

⊗
j∈D Vj in the topological tree based format.

Since Vα = a

⊗
j∈α Vj ,

Vα‖·‖α
= ‖·‖α

⊗
α∈S(D)

Vα = ‖·‖α

⊗
j∈α

Vj

holds for all α ∈ TD \ L(TD).

Example 3.24 Figure 3.4 gives an example of a representation in the topological tree-based format for an
anisotropic Sobolev space.

Remark 3.25 Observe that a tree as given in Figure 3.5 is not included in the definition of the topological
tree based format. Moreover, for a tensor v ∈ Lp(I1) ⊗a (HN,p(I2) ⊗‖·‖23 HN,p(I3)), we have Umin

23 (v) ⊂
HN,p(I2) ⊗‖·‖23 HN,p(I3). However, in the topological tree based representation of Figure 3.4, for a given
v ∈ Lp(I1) ⊗a HN,p(I2) ⊗a HN,p(I3) we have Umin

23 (v) ⊂ HN,p(I2) ⊗a HN,p(I3), and hence Umin
23 (v) ⊂

Umin
2 (v)⊗a Umin

3 (v).

The difference between the tensor spaces involved in Figure 3.4 and Figure 3.5 is the following. For all
β ∈ TD \ L(TD), if ‖ · ‖β is also a norm on the tensor space a

⊗
η∈S(β) Vη‖·‖η

, we have

‖·‖β

⊗
η∈S(β)

Vη‖·‖η
⊃ Vβ‖·‖β

= ‖·‖β

⊗
η∈S(β)

Vη = ‖·‖β

⊗
j∈β

Vj .
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Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖23

‖·‖123

HN,p(I2)⊗a HN,p(I3)
‖·‖23

HN,p(I2)HN,p(I2)

Lp(I1)

Figure 3.5: A representation for the tensor Banach space Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖23

‖·‖123
, using a

tree. Here ‖ · ‖23 and ‖ · ‖123 are given norms.

A desirable property for the tensor product is that if ‖·‖α is also a norm on the tensor space a

⊗
β∈S(α) Vβ‖·‖β

,

then

‖·‖α

⊗
β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗
β∈S(α)

Vβ = ‖·‖α

⊗
j∈α

Vj (3.11)

must be true for all α ∈ TD \L(TD). To precise these ideas, we introduce the following definitions and results.

Let ‖·‖j , 1 ≤ j ≤ d, be the norms of the vector spaces Vj appearing in V = a

⊗d
j=1 Vj . By ‖·‖ we denote

the norm on the tensor space V. Note that ‖·‖ is not determined by ‖·‖j , for j ∈ D, but there are relations

which are ‘reasonable’. Any norm ‖·‖ on a

⊗d
j=1 Vj satisfying∥∥∥⊗d

j=1
vj

∥∥∥ =
∏d

j=1
‖vj‖j for all vj ∈ Vj (1 ≤ j ≤ d) (3.12)

is called a crossnorm. As usual, the dual norm of ‖·‖ is denoted by ‖·‖∗. If ‖·‖ is a crossnorm and also ‖·‖∗

is a crossnorm on a

⊗d
j=1 V

∗
j , i.e.,∥∥∥⊗d

j=1
ϕ(j)

∥∥∥∗ =
∏d

j=1
‖ϕ(j)‖∗j for all ϕ(j) ∈ V ∗j (1 ≤ j ≤ d) , (3.13)

then ‖·‖ is called a reasonable crossnorm.

Remark 3.26 Eq. (3.12) implies the inequality ‖
⊗d

j=1 vj‖ .
∏d
j=1 ‖vj‖j which is equivalent to the conti-

nuity of the multilinear tensor product mapping5 between normed spaces:

⊗
:

d×
j=1

(
Vj , ‖·‖j

)
−→

(
a

d⊗
j=1

Vj , ‖·‖
)
, (3.14)

defined by
⊗

((v1, . . . , vd)) =
⊗d

j=1 vj, the product space being equipped with the product topology induced by
the maximum norm ‖(v1, . . . , vd)‖ = max1≤j≤d ‖vj‖j.

The following result is a consequence of Lemma 4.34 of [15].

5Recall that a multilinear map T from×d

j=1(Vj , ‖ · ‖j) equipped with the product topology to a normed space (W, ‖ · ‖) is
continuous if and only if ‖T‖ <∞, with

‖T‖ := sup
(v1,...,vd)

‖(v1,...,vd)‖≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖v1‖1≤1,...,‖vd‖d≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖T (v1, . . . , vd)‖
‖v1‖1 . . . ‖vd‖d

.
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Lemma 3.27 Let (Vj , ‖ · ‖j) be normed spaces for 1 ≤ j ≤ d. Assume that ‖ · ‖ is a norm on the tensor

space a

⊗d
j=1 Vj‖·‖j such that the tensor product map

⊗
:

d×
j=1

(
Vj‖·‖j , ‖·‖j

)
−→

(
a

d⊗
j=1

Vj‖·‖j , ‖·‖
)

(3.15)

is continuous. Then (3.14) is also continuous and

‖·‖

d⊗
j=1

Vj‖·‖j = ‖·‖

d⊗
j=1

Vj

holds.

Definition 3.28 Assume that for each α ∈ TD\L(TD) there exists a norm ‖·‖α defined on a

⊗
β∈S(α) Vβ‖·‖β .

We will say that the tensor product map
⊗

is TD-continuous if the map

⊗
: ×
β∈S(α)

(Vβ‖·‖β , ‖ · ‖β)→


a

⊗
β∈S(α)

Vβ‖·‖β , ‖ · ‖α


is continuous for each α ∈ TD \ L(TD).

The next result gives the conditions to have (3.11).

Theorem 3.29 Assume that we have a representation {Vα‖·‖α
}α∈TD\{D} in the topological tree based format

of the tensor Banach space VD‖·‖D
= ‖·‖D

⊗
α∈S(D) Vα , such that for each α ∈ TD \L(TD), the norm ‖ · ‖α

is also defined on a

⊗
β∈S(α) Vβ‖·‖β and the tensor product map

⊗
is TD-continuous. Then

‖·‖α

⊗
β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗
β∈S(α)

Vβ = ‖·‖α

⊗
j∈α

Vj ,

holds for all α ∈ TD \ L(TD).

Proof. From Lemma 3.27, if the tensor product map⊗
: ×
β∈S(α)

(Vβ‖·‖β
, ‖ · ‖β) −→ (a

⊗
β∈S(α)

Vβ‖·‖β
, ‖ · ‖α)

is continuous, then

‖·‖α

⊗
β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗
β∈S(α)

Vβ ,

holds. Since Vα = a

⊗
β∈S(α) Vβ = a

⊗
j∈α Vj , the theorem follows.

Example 3.30 Assume that the tensor product maps⊗
: (Lp(I1), ‖ · ‖0,p;I1)× (HN,p(I2)⊗‖·‖23 H

N,p(I3), ‖ · ‖23)→ (Lp(I1)⊗a (HN,p(I2)⊗‖·‖23 H
N,p(I3)), ‖ · ‖123)

and ⊗
: (HN,p(I2), ‖ · ‖N,p;I1)× (HN,p(I3), ‖ · ‖N,p;I2)→ (HN,p(I2)⊗a HN,p(I3), ‖ · ‖23)

are continuous. Then the trees of Figure 3.4 and Figure 3.5 are the same.
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Now, assume that we have a representation {Vα‖·‖α
}α∈TD\{D} of the Banach tensor space VD‖·‖D

=

‖·‖D
⊗

α∈S(D) Vα , in the topological tree based format. Take VD = a

⊗
α∈S(D) Vα and v ∈ FT r(VD).

From Example 2.14, the finite dimensional subspace Umin
α (v) ⊂ Vα ⊂ Vα‖·‖α

belongs to the Banach manifold

Grα(Vα) for α ∈ TD \ {D} (see also Example 2.13). Hence, (Umin
α (v))α∈TD\{D} belongs to the product

manifold
Gr(TD) := ×

α∈TD\{D}
Grα(Vα).

In consequence, under the above assumption, every v ∈ FT r(VD) is completely characterised by(
C(v), (Umin

α (v))α∈TD\{D}
)
∈ Rr

∗ ×Gr(TD).

We remark that it allows to define a surjective map

%
r

: FT r(VD) −→ Rr
∗ ×Gr(TD), v 7→ %

r
(v) :=

(
C(v), (Umin

α (v))α∈TD\{D}
)
,

that will be useful in the next section to define a manifold structure on FT r(VD).

4 The manifold of TBF tensors of fixed TB rank

Let {Vα‖·‖α
}α∈TD\{D} be a representation of a Banach tensor space VD‖·‖D

= ‖·‖D
⊗

α∈S(D) Vα , in the

topological tree based format. Set VD := a

⊗
α∈S(D) Vα .

Now, fix v ∈ FT r(VD) and consider a basis {u(α)
iα

: 1 ≤ iα ≤ rα} of Umin
α (v) for each α ∈ TD \ {D}

such that v can be represented by means (3.5) and (3.8). Thus v is completely characterised by C ∈ Rr
∗ and

({u(α)
iα

: 1 ≤ iα ≤ rα})α∈TD\{D}. Assume a decomposition into a direct sum

Vα‖·‖α
= Umin

α (v)⊕Wmin
α (v)

for α ∈ TD \ {D}. From Example 2.14 we have for each α ∈ TD \ {D} a set

G(Wmin
α (v),Vα‖·‖α

) = {Uα ∈ G(Vα‖·‖α
) : Uα ⊕Wmin

α (v) = Vα‖·‖α
}

and a bijective map ΨUmin
α (v)⊕Wmin

α (v) : G(Wmin
α (v),Vα‖·‖α

) −→ L(Umin
α (v),Wmin

α (v)). Clearly, the map

Ψv : ×
α∈TD\{D}

G(Wmin
α (v),Vα‖·‖α

)→ ×
α∈TD\{D}

L(Umin
α (v),Wmin

α (v)),

defined as Ψv :=×α∈TD\{D}ΨUmin
α (v)⊕Wmin

α (v) is also bijective. Furthermore, it is a local chart for U(v) :=

{Umin
α (v)}α∈TD\{D} in Gr(TD), such that Ψv(U(v)) = 0 := (0)α∈TD\{D}. To simplify the notation, for each

v ∈ FT r(VD) we will use

LTD (v) := ×
α∈TD\{D}

L
(
Umin
α (v),Wmin

α (v)
)

= {L := {Lα}α∈TD\{D} : Lα ∈ L
(
Umin
α (v),Wmin

α (v)
)
},

which is a closed subspace of the Banach space

LTD := ×
α∈TD\{D}

L
(
Vα‖·‖α

,Vα‖·‖α

)
,

and
Gr(U(v)) := ×

α∈TD\{D}
G(Wmin

α (v),Vα‖·‖α
),

which is a local neighbourhood of U(v) in the manifold Gr(TD). Moreover, U = Ψ−1
v (L) with Uα = G(Lα) ={

uα + Lα(uα) : uα ∈ Umin
α (v)

}
for each α ∈ TD \ {D}. A useful result is the following.
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Lemma 4.1 For each α ∈ TD\{D}, the set L(Umin
α (v),Wmin

α (v)) is a complemented subspace of L(Vα‖·‖α
,Vα‖·‖α

),
and hence for each v ∈ VD, the set LTD (v) is a complemented subspace of LTD .

Proof. Observe that the map

Πα : L
(
Vα‖·‖α

,Vα‖·‖α

)
→ L

(
Vα‖·‖α

,Vα‖·‖α

)
defined by

Πα(Lα) = PWmin
α (v)⊕Umin

α (v)LαPUmin
α (v)⊕Wmin

α (v)

is a projection onto L(Umin
α (v),Wmin

α (v)).

Now, let π2 : Rr
∗ ×Gr(TD) −→ Gr(TD) be the morphism π2(C,U) := U. Then we introduce the map

ΛTD := π2 ◦ %r : FT r(VD) −→ Gr(TD) ⊂ G(TD), w 7→ U(w) := (Umin
α (w))α∈TD\{D},

and observe that for each w ∈ FT r(VD) we have

Λ−1
TD

(ΛTD (w)) =
{
u ∈ FT r(VD) : Umin

α (u) = Umin
α (w) for all α ∈ TD \ {D}

}
.

We define the local neighbourhood of v, denoted by U(v), in FT r(VD) as

U(v) := Λ−1
TD

(Gr(U(v))) = %−1
r

(Rr
∗ ×Gr(U(v))) ⊂ FT r(VD).

Observe that for each w ∈ U(v) we have

Vα‖·‖α
= Umin

α (w)⊕Wmin
α (v),

where Umin
α (w) ∈ G(Wmin

α (v),V‖·‖α), for each α ∈ TD \ {D}. Since

G(Wmin
α (v),Vα‖·‖α

)
ΨUmin

α (v)⊕Wmin
α (v)∼= L(Umin

α (v),Wmin
α (v)),

there exists a unique Lα ∈ L(Umin
α (v),Wmin

α (v)) such that

ΨUmin
α (v)⊕Wmin

α (v)(U
min
α (w)) = Lα

for each α ∈ TD \ {D}. Moreover, we claim that

Umin
α (w) = span{Lα(u

(α)
iα

) + u
(α)
iα

: 1 ≤ iα ≤ rα}

holds for all α ∈ TD \ {D}. To prove the claim, we only need to show that

{Lα(u
(α)
iα

) + u
(α)
iα

: 1 ≤ iα ≤ rα}

are linearly independent in Umin
α (w). If the last statement is not true, we may assume without loss of

generality that

Lα(u
(α)
1 ) + u

(α)
1 =

rα∑
k=2

λk(Lα(u
(α)
k ) + u

(α)
k ),

i.e.,

Lα(u
(α)
1 )−

rα∑
k=2

λkLα(u
(α)
k ) =

rα∑
k=2

λku
(α)
k − u

(α)
1 .

The left-hand side is in Wmin
α (v) and the right-hand side is in Umin

α (w). Since Wmin
α (v) ∩ Umin

α (w) = {0}
we then have a contradiction and the claim follows.

Take w ∈ U(v), for each u ∈ Λ−1
TD

(ΛTD (w)) ⊂ U(v), we fix the basis

{w(α)
iα

:= u
(α)
iα

+ Lα(u
(α)
iα

) : 1 ≤ iα ≤ rα}
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of Umin
α (w) for each α ∈ TD \ {D}. Then we define ξw : Λ−1

TD
(ΛTD (w)) −→ Rr

∗ by

ξw(u) := C(u) = (C(α)(u))α∈TD\L(TD),

where
u =

∑
1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

(u)
⊗

α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

)

and, if S(D) 6= L(T ), for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

(u)
⊗

β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

),

for 1 ≤ iµ ≤ rµ. Clearly, ξw is one-to-one. On the other hand, given B ∈ Rr
∗, we can construct u ∈

Λ−1
TD

(ΛTD (w)) satisfying B = C(u). Thus we can conclude that ξw is a bijection which is independent of w.

It allows us to define a local chart Θv : U(v) −→ Rr
∗ × LTD (v) by

Θv(w) := (ξw(w),Ψv ◦ ΛTD (w)) = (C(w),Ψv(U(w))) .

More precisely, Θv(w) = (C(w),L) if and only if

w =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

(w)
⊗

α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

), (4.1)

where, if S(D) 6= L(TD), for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

(w)
⊗

β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

) (4.2)

for 1 ≤ iµ ≤ rµ. Proceeding iteratively along the tree, we obtain, for S(D) 6= L(TD), a Tucker format
representation of w given by

w =
∑

1≤ik≤rk
k∈L(TD)


∑

1≤iα≤rα
α∈S(D)
α/∈L(TD)

C
(D)
(iα)α∈S(D)

(w)
∏

µ∈TD\{D}
S(µ)6=∅

C
(µ)
iµ,(iβ)β∈S(µ)

(w)


⊗

k∈L(TD)

(Lk(u
(k)
ik

) + u
(k)
ik

).

The next result shows that the collection {Θv,U(v)}v∈FT r(VD) is an atlas for FT r(VD).

Theorem 4.2 Let {Vα‖·‖α
}α∈TD\{D} be a representation of a Banach tensor space

VD‖·‖D
= ‖·‖D

⊗
α∈S(D)

Vα ,

in the topological tree based format. Then the collection {Θv,U(v)}v∈FT r(VD) is an analytic atlas for
FT r(VD). Furthermore, the set FT r(VD) of TBF tensors with fixed TB rank is an analytic Banach manifold
modelled on Rr × LTD (w), here w ∈ FT r(VD).

Proof. Clearly, {U(v)}v∈FT r(VD) is a covering of FT r(V) and AT1 is true. Take (C,L) ∈ Rr
∗ ×LTD (v). By

using (4.1)-(4.2), we can construct w ∈ U(v) such that Θv(w) = (C,L) , and in consequence Θv is surjective.
Now, consider that Θv(u) = Θv(w). Since Umin

α (u) = Umin
α (w) for all α ∈ TD \ {D} and C(v) = C(w),
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also from (4.1)-(4.2) we can conclude that w = u. In consequence, AT2 in Definition 2.7 holds. Finally for
v,u ∈ FT r(VD) consider U(v,u) := U(v) ∩ U(u). Observe that w ∈ U(v,u) if and only if

Umin
α (w) ∈ G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
) for α ∈ TD.

Then we need to show that
Θv ◦Θ−1

u : Θu (U(v,u)) −→ Θv (U(v,u))

is a diffeomorphism. To this end, assume that {u(α)
iα

: 1 ≤ iα ≤ rα} is a basis of Umin
α (v) and {z(α)

iα
: 1 ≤

iα ≤ rα} is a basis of Umin
α (u) for α ∈ TD \ {D}. For each (C,L) ∈ Θu (U(v,u)) , let w ∈ U(v,u) be such

that Θu(w) = (C,L) , and
Θv ◦Θ−1

u (C,L) = Θv(w) = (B,N) .

Now, we describe the transformation C 7→ B. We have

w =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

(w)
⊗

α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

)

=
∑

1≤iα≤rα
α∈S(D)

D
(D)
(iα)α∈S(D)

(w)
⊗

α∈S(D)

(Nα(z
(α)
iα

) + z
(α)
iα

),

where
Umin
α (w) = span{u(α)

iα
+ Lα(u

(α)
iα

) : 1 ≤ iα ≤ rα},

Lα(u
(α)
iα

) + u
(α)
iα

=
∑

1≤iβ≤rβ
β∈S(α)

C
(α)
iα,(iβ)β∈S(µ)

(w)
⊗

β∈S(α)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

),

Umin
α (w) = span{z(α)

iα
+Nα(z

(α)
iα

) : 1 ≤ iα ≤ rα}

and
Nα(z

(α)
iα

) + z
(α)
iα

=
∑

1≤iβ≤rβ
β∈S(α)

B
(α)
iα,(iβ)β∈S(µ)

(w)
⊗

β∈S(α)

(Nβ(z
(β)
iβ

) + z
(β)
iβ

)

holds for 1 ≤ iα ≤ rα and α ∈ TD \ {D}. We show the existence of a linear isomorphism

A(D) : R×α∈S(D) rα
∗ → R×α∈S(D) rα

∗

such that A(D)(C(D)) = B(D), as follows. Let SD :=
⊗

α∈S(D) Sα, where Sα ∈ L(Umin
α (w), Umin

α (w)), is
defined by

Sα(Lα(u
(α)
iα

) + u
(α)
iα

) :=
∑

1≤jα≤iα

A
(α)
iα,jα

(Lα(u
(α)
jα

) + u
(α)
jα

) = Nα(z
(α)
iα

) + z
(α)
iα

for 1 ≤ iα ≤ rα and α ∈ S(D). Clearly, A(α) ∈ GL(Rrα), and

SD ∈ L


a

⊗
α∈S(D)

Umin
α (w) , a

⊗
α∈S(D)

Umin
α (w)


is a linear isomorphism. Moreover, A(D) :=

⊗
α∈S(D)A

(α) : R×α∈S(D) rα
∗ → R×α∈S(D) rα

∗ and B(D) =

A(D)(C(D)). Proceeding in a similar way for each α ∈ TD \{{D}∪L(TD)}, we can construct a linear isomor-

phism A(α) : Rrα×(×β∈S(α) rβ)
∗ → Rrα×(×β∈S(α) rβ)

∗ such that A(α)(C(α)) = B(α). The above construction
allows us to define a map A : Rr

∗ → Rr
∗ given by A(C) = B, which is also a linear isomorphism and we can

write
Θv ◦Θ−1

u (C,L) = (A(C),N) = (A(C),Ψv ◦ ΛTD (w))) .
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Since ΛTD (w) = U(w) and Umin
α (w) = Ψ−1

Umin
α (u)⊕Wmin

α (u)
(Lα) for each α ∈ TD \ {D}, we obtain

Θv ◦Θ−1
u (C,L) =

(
A(C),

(
Ψv ◦Ψ−1

u

)
(L)
)
.

From [5] we know that ΨUmin
α (v)⊕Wmin

α (v) ◦Ψ−1
Umin
α (u)⊕Wmin

α (u)
mapping from

ΨUmin
α (u)⊕Wmin

α (u)

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
)
⊂ L(Umin

α (u),Wmin
α (u))

to
ΨUmin

α (v)⊕Wmin
α (v)

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
)
⊂ L(Umin

α (v),Wmin
α (v))

is an analytic diffeomorphism for each α ∈ TD \ {D}. Then Ψv ◦Ψ−1
u is an analytic diffeomorphism from

Ψu

(
×

α∈TD\{D}

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
))
⊂ LTD (u)

to

Ψv

(
×

α∈TD\{D}

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α

))
⊂ LTD (v).

Clearly, AT3 holds and the theorem follows.

Remark 4.3 We observe that the geometric structure of manifold is independent of the choice of the norm
‖ · ‖D over the tensor space VD.

Corollary 4.4 Assume that Vα‖·‖α
is a Hilbert space with norm ‖ · ‖α for α ∈ TD \ {D}. Then FT r(VD)

is an analytic Hilbert manifold modelled on Rr ××α∈TD\{D}W
min
α (w)rα , here w ∈ FT r(VD).

Proof. We can identify each Lα ∈ L
(
Umin
α (v),Wmin

α (v)
)

with a (w
(α)
sα )sα=rα

sα=1 ∈ Wmin
α (v)rα , where w

(α)
sα =

Lα(uα(sα)) and Umin
α (v) = span {uα(1), . . . ,u

α
(rα)} for α ∈ TD \ {D}. Thus we can identify each (C,L) ∈ U(v)

with a pair
(C,W) ∈ Rr

∗ × ×
α∈TD\{D}

Wmin
α (v)rα ,

where W := ((w
(α)
sα )sα=rα

sα=1 )α∈TD\{D}. We assume that Rr
∗ ××α∈TD\{D}W

min
α (v)rα is an open subset of the

Hilbert space Rr ××α∈TD\{D}W
min
α (v)rα endowed with the product norm

‖ (C,W) ‖× :=
∑

α∈TD\L(TD)

‖Cα‖F +
∑

α∈TD\{D}

rα∑
sα=1

‖w(α)
sα ‖α.

It allows us to define local charts, also denoted by Θv, by

Θ−1
v : Rr

∗ × ×
α∈TD\{D}

Wmin
α (v)rα −→ U(v),

where Θ−1
v (C,W) = w. Here w is given by (4.1)–(4.2) putting Lα(u

(α)
iα

) = w
(α)
iα
, 1 ≤ iα ≤ rα and α ∈ TD \

{D}. Since each local chart is defined over an open subset of the Hilbert space Rr××α∈TD\{D}W
min
α (v)rα ,

the corollary follows.

By using the geometric structure of local charts for the manifold FT r(VD), we can identify its tangent
space at v with Tv(FT r(VD)) := Rr × LTD (v). We will consider Tv(FT r(VD)) endowed with the product
norm

‖‖(C,L)‖‖ :=
∑

α∈TD\L(TD)

‖C(α)‖F +
∑

α∈TD\{D}

‖Lα‖Wmin
α (v)←Umin

α (v).

with ‖ · ‖F the Frobenius norm.

Note that L(Vα‖·‖α
,Vα‖·‖α

) endowed with the norm ‖ · ‖Vα‖·‖α
←Vα‖·‖α

is a Banach space. Thus, even if

V‖·‖α is a Hilbert space for all α ∈ TD \ {D}, the set LTD is a Banach space.
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5 Is FT r(VD) an immersed submanifold?

We start with a brief discussion about the choice of the ambient manifold for FT r(VD) which is the milestone
to give a positive answer to the question that gives the title of this section. Let {Vα‖·‖α

}α∈TD\{D} be a
representation of the Banach tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj , in the topological tree based format.

Take VD := a

⊗
j∈D Vj and assume the existence of two norms ‖ · ‖D,1 and ‖ · ‖D,2 on VD. Then we have

VD ⊂ VD
‖·‖D,1

and VD ⊂ VD
‖·‖D,2

. The next example illustrates this situation.

Example 5.1 Let V1‖·‖1
:= H1,p(I1) and V2‖·‖2

= H1,p(I2). Take VD := H1,p(I1) ⊗a H1,p(I2), from The-
orem 4.2 we obtain that FT r(VD) is a Banach manifold. However, we can consider as ambient manifold

either VD
‖·‖D,1

:= H1,p(I1 × I2) or VD
‖·‖D,2

= H1,p(I1) ⊗‖·‖(0,1),p H1,p(I2), where ‖ · ‖(0,1),p is the norm
given by

‖f‖(0,1),p :=

(
‖f‖pp +

∥∥∥∥ ∂f∂x2

∥∥∥∥p
p

)1/p

for 1 ≤ p <∞.

Now, the question is: what is the good choice to show that FT r(VD) is an immersed submanifold? The
main result of this section is to show that if for each α ∈ TD \ L(TD) the norm ‖ · ‖α is not weaker than
the injective norm generated by the Banach spaces {Vβ‖·‖β

: β ∈ S(α)} then FT r(VD) is an immersed

submanifold of VD
‖·‖D

. To see this we need to introduce the following definitions and results.

5.1 On the differentiability of the standard inclusion map

Assume that the tensor product map
⊗

is TD-continuous. The natural ambient space for FT r(VD) is

the Banach tensor space VD
‖·‖D

= VD‖·‖D
. Since the natural inclusion i : FT r(VD) −→ VD‖·‖D

, given

by i(v) = v, is an injective map we will study i as a function between Banach manifolds. To this end we
introduce the following definitions.

Definition 5.2 Let X and Y be two Banach manifolds. Let F : X → Y be a map. We shall say that F is a
Cr morphism if given x ∈ X there exists a chart (U,ϕ) at x and a chart (W,ψ) at F (x) such that F (U) ⊂W,
and the map

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W )

is a Cr-Fréchet differentiable map.

To describe i as a morphism, we proceed as follows. Given v ∈ FT r(VD), we consider U(v), a local
neighbourhood of v, and then

i ◦Θ−1
v : Rr

∗ × LTD (v)→ V‖·‖D , (C,L) 7→
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗
α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

),

where for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗
β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

)

for 1 ≤ iµ ≤ rµ.

Our next step is to recall the definition of the differential as a morphism which gives a linear map between
the tangent spaces of the manifolds involved with the morphism.
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Definition 5.3 Let X and Y two Banach manifolds. Let F : X → Y be a Cr morphism, i.e.,

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W )

is a Cr-Fréchet differentiable map, where (U,ϕ) is a chart in X at x and (W,ψ) is a chart in Y at F (x).
For x ∈ X, we define

TxF : Tx(X) −→ TF (x)(Y ), v 7→ [(ψ ◦ F ◦ ϕ−1)′(ϕ(x))]v.

Assume that i ◦Θ−1
v is Fréchet differentiable, then Tvi : Rr × LTD (v)→ V‖·‖D , is given by

Tvi(Ċ, L̇) = [(i ◦Θ−1
v )′(Θv(v))](Ċ, L̇).

The next result says us that if the tensor product map is continuous, then it is also Fréchet differentiable.

Proposition 5.4 Let (Vj , ‖ · ‖j) be normed spaces for 1 ≤ j ≤ d. Assume that ‖ · ‖ is a norm onto the

tensor space a

⊗d
j=1 Vj‖·‖j such that the tensor product map (3.15) is continuous. Then it is also Fréchet

differentiable and its differential is given by

D
(⊗

(v1, . . . , vd)
)

(w1, . . . , wd) =

d∑
j=1

v1 ⊗ . . .⊗ vj−1 ⊗ wj ⊗ vj+1 ⊗ · · · vd.

Proof. Clearly, D
⊗

(v1, . . . , vd) is a multilinear map. If we assume that the tensor product map (3.14) is

continuous, that is ‖
⊗d

j=1 uj‖ ≤ C
∏d
j=1 ‖uj‖j for some C > 0, then

‖D
⊗

(v1, . . . , vd)(w1, . . . , wd)‖ ≤ C
d∑
j=1

‖v1‖1 · · · ‖vj−1‖j−1‖wj‖j‖vj+1‖j+1 · · · ‖vd‖d

≤ C

 d∑
j=1

∏d
k=1 ‖vk‖k
‖vj‖j

 max
1≤k≤d

‖wk‖k

shows that D
⊗

(v1, . . . , vd) is also continuous. Finally,

‖ ⊗ (v1 + h1, · · · , vd + hd)−⊗(v1, · · · , vd)−D ⊗ (v1, · · · , vd)(h1, · · · , hd)‖

=

d∑
i1,i2=1
i1<i2

‖Ti1,i2(hi1 , hi2) +

d∑
i1,i2,i3=1
i1<i2<i3

Ti1,i2,i3(hi1 , hi2 , hi3) + . . .+ T1,...,d(h1, . . . , hd)‖

≤ ‖
d∑

i1,i2=1
i1<i2

Ti1,i2(hi1 , hi2)‖+

d∑
i1,i2,i3=1
i1<i2<i3

‖Ti1,i2,i3(hi1 , hi2 , hi3)‖+ . . .+ ‖T1,...,d(h1, . . . , hd)‖

where the Ti1,...,ik are multilinear maps defined by Ti1,...,ik(hi1 , . . . , hik) = ⊗dj=1zj with zj = hj if j ∈
{i1, . . . , ik}, and zj = vj otherwise. Since these multilinear maps have at least two arguments, we have

‖Ti1,...,ik(hi1 , . . . , hik)‖ ≤ C
∏

j∈{i1,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

≤ C max
1≤j≤d

‖hj‖j
∏

j∈{i2,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

= C‖(h1, . . . , hd)‖
∏

j∈{i2,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

which proves that
‖Ti1,...,ik (hi1 ,...,hik )‖

‖(h1,...,hd)‖ tends to zero as (h1, . . . , hd) → 0, and therefore
⊗

is Fréchet differ-

entiable and the proposition follows.
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Recall that VD‖·‖D
= ‖·‖D

⊗
j∈D Vj is a tensor Banach space. Let v ∈ FT r(VD) ⊂ VD‖·‖D

be such that

v =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα
,

where for each µ ∈ TD \ ({D} ∪ L(TD)) we have

u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(α)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗
β∈S(µ)

u
(β)
iβ

for 1 ≤ iµ ≤ rµ. Recall that for α ∈ S(D) we have Umin
S(D)\{α}(u

(µ)
iµ

) = span {U(α)
iα

: 1 ≤ iα ≤ rα}, and for µ ∈
TD \ ({D} ∪ L(TD)) we know that Umin

β (u
(µ)
iµ

) = Umin
β (v) and Umin

S(µ)\{β}(u
(µ)
iµ

) = span {U(β)
iµ,iβ

: 1 ≤ iβ ≤ rβ}
for 1 ≤ iµ ≤ rµ and β ∈ S(µ). Hence

Wmin
β (v) = Wmin

β (u
(µ)
iµ

) for 1 ≤ iµ ≤ rµ and β ∈ S(µ).

Let us define the linear subspace

Z
(D)
big (v) := a

⊗
α∈S(D)

Umin
α (v) ⊕

 ⊕
α∈S(D)

Z
(α)
big (v)⊗a Umin

S(D)\{α}(v)

 ,

where Z
(γ)
big(v) := Wmin

γ (v) if γ ∈ L(TD) or

Z
(γ)
big(v) := Wmin

γ (v) ∩


a

⊗
β∈S(γ)

Umin
β (v) ⊕

 ⊕
β∈S(γ)

Z
(β)
big (v)⊗a Umin

S(γ)\{β}(v)

 ,

if γ /∈ L(TD). The next lemma describes the tangent map Tvi.

Proposition 5.5 Assume that the tensor product map
⊗

is TD-continuous. Let v ∈ FT r(VD) be such that
Θv(v) = (C(v), 0), where C(v) = (C(α))α∈TD\L(TD) ∈ Rr, 0 = (0)α∈TD\{D} ∈ LTD (v) and

Umin
α (v) = span {u(α)

iα
: 1 ≤ iα ≤ rα}

for α ∈ TD \ {D}. Then the following statements hold.

(a) The map i ◦Θ−1
v from Rr

∗ × LTD (v) to VD‖·‖D
is Fréchet differentiable, and hence

Tvi ∈ L
(
Tv(FT r(VD)),VD‖·‖D

)
.

(b) Assume (Ċ, L̇) ∈ Tv(FT r(VD)), where Ċ = (Ċ(α))α∈TD\L(TD) ∈ Rr and L̇ = (L̇α)α∈TD\{D} ∈ LTD (v).

Then ẇ = Tvi(Ċ, L̇) if and only

ẇ =
∑

1≤iα≤rα
α∈S(D)

Ċ
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

α∈S(D)

∑
1≤iα≤rα

(
L̇α(u

(α)
iα

)⊗U
(α)
iα

)
, (5.1)

where
U

(α)
iα

=
∑

1≤iβ≤rβ
β∈S(D)
β 6=α

C
(D)
(iβ)β∈S(D)

⊗
β∈S(D)

u
(β)
iβ
, (5.2)
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and for each γ ∈ TD \ {D} with S(γ) 6= ∅,

L̇γ(u
(γ)
iγ

) =
∑

1≤iβ≤rβ
β∈S(γ)

Ċ
(γ)
iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

β∈S(γ)

∑
1≤iβ≤rβ

(
L̇β(u

(β)
iβ

)⊗U
(β)
iγ ,iβ

)
, (5.3)

where
U

(β)
iγ ,iβ

=
∑

1≤iδ≤rδ
δ∈S(µ)
δ 6=β

C
(γ)
iµ,(iδ)δ∈S(γ)

⊗
δ 6=β
δ∈S(γ)

u
(δ)
iδ
, (5.4)

for 1 ≤ iγ ≤ rγ and 1 ≤ iβ ≤ rβ.

(c) The inclusion Tvi(Tv(FT r(VD))) ⊂ Z
(D)
big (v) holds and Tvi is an injective linear operator.

Proof. To prove statement (a), observe that for each uα ∈ Umin
α (v), α ∈ TD \ {D}, the map

Φuα : L(Umin
α (v),Wmin

α (v))→Wmin
α (v), Lα 7→ Lα(uα),

is linear and continuous, and hence Fréchet differentiable. Clearly, its differential is given by [Φ′uα(Lα)](Hα) =
Hα(uα). Also, if the tensor product map

⊗
is TD-continuous, by Proposition 5.4, the tensor product map⊗

:×β∈S(γ)(Vβ‖·‖β , ‖ · ‖β)→
(
a

⊗
β∈S(γ) Vβ‖·‖β , ‖ · ‖γ

)
, for γ ∈ TD \ L(TD), is also Fréchet differentiable.

Then, by the chain rule, the map Θ−1
v is Fréchet differentiable. Since Tvi(Ċ, L̇) = [(i ◦Θ−1

v )′(C, 0)](Ċ, L̇), (a)
follows. By using the chain rule we obtain

ẇ =
∑

1≤iα≤rα
α∈S(D)

Ċ
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

µ∈S(D)

∑
1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

L̇µ(u
(µ)
iµ

)⊗
⊗

α∈S(D)
α6=µ

u
(α)
iα

 ,

where for each γ ∈ TD \ {D} with S(γ) 6= ∅,

L̇γ(u
(γ)
iγ

) =
∑

1≤iβ≤rβ
β∈S(γ)

Ċ
(γ)
iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

δ∈S(γ)

∑
1≤iβ≤rβ
β∈S(γ)

C
(γ)
iγ ,(iβ)β∈S(γ)

L̇δ(u(δ)
iδ

)⊗
⊗
β 6=δ

β∈S(γ)

u
(β)
iβ


holds for 1 ≤ iγ ≤ rγ . From (3.5), (3.6), (3.8) and (3.9), we obtain (5.1) and (5.3) and statement (b) is
proved.

To prove the first statement of (c), observe that L̇γ(u
(γ)
iγ

) ∈ Z
(γ)
big(v) for 1 ≤ iγ ≤ rγ and γ ∈ TD \ {D},

that is, ẇ ∈ Z
(D)
big (v). Then the inclusion

Tvi (Tv(FT r(VD)) ⊂ Z
(D)
big (v),

follows. Now, consider that

Tvi
(

(Ċ(α))α∈TD\L(TD), (L̇β)β∈TD\{D}

)
= 0,

that is,

0 =
∑

1≤iα≤rα
α∈S(D)

(Ċ(D))(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

α∈S(D)

∑
1≤iα≤rα

(
L̇α(u

(α)
iα

)⊗U
(α)
iα

)
.
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Thus, ∑
1≤iα≤rα
α∈S(D)

(Ċ(D))(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

= 0,

∑
1≤iα≤rα

(
L̇α(u

(α)
iα

)⊗U
(α)
iα

)
= 0 for α ∈ S(D),

and hence Ċ(D) = 0, because
{⊗

α∈S(D) u
(α)
iα

}
is a basis of a

⊗
α∈S(D) U

min
α (v) , and L̇α(u

(α)
iα

) ⊗U
(α)
iα

= 0

for 1 ≤ iα ≤ rα, because the {U(α)
iα

: 1 ≤ iα ≤ rα} are linearly independent for α ∈ S(D). Then L̇α = 0 for
all α ∈ S(D). Proceeding inductively from the root to the leaves, assume that for γ ∈ TD \ {D} such that
γ /∈ L(TD), we have

0 = L̇γ(u
(γ)
iγ

) =
∑

1≤iβ≤rβ
β∈S(γ)

(Ċ(γ))iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

β∈S(γ)

∑
1≤iβ≤rβ

(
L̇β(u

(β)
iβ

)⊗U
(β)
iγ ,iβ

)
,

for 1 ≤ iγ ≤ rγ . Thus, ∑
1≤iβ≤rβ
β∈S(γ)

(Ċ(γ))iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

= 0,

∑
1≤iβ≤rβ

(
L̇β(u

(β)
iβ

)⊗U
(β)
iγ ,iβ

)
= 0 for β ∈ S(γ).

As in the root case we obtain Ċ(γ) = 0 from the first equation and∑
1≤iβ≤rβ

(
L̇β(u

(β)
iβ

)⊗U
(β)
iγ ,iβ

)
= 0,

for 1 ≤ iγ ≤ rγ and β ∈ S(γ), from the second one. Since {U(β)
iγ ,iβ

: 1 ≤ iβ ≤ rβ} are linearly independent

for 1 ≤ iγ ≤ rγ and β ∈ S(γ) we have L̇β(u
(β)
iβ

) = 0 for 1 ≤ iβ ≤ rβ and β ∈ S(γ). We conclude, that(
(Ċ(α))α∈TD\L(TD), (L̇β)β∈TD\{D}

)
= ((0)α∈TD\L(TD), (0)β∈TD\{D}),

and, in consequence, Tvi is injective.

The next corollary says us that for Tucker tensors the linear subspace Z
(D)
big (v) characterises the tangent

space at v in the manifold inside the tensor space VD‖·‖D
.

Corollary 5.6 Assume that S(D) = L(TD) and the tensor product map
⊗

is TD-continuous. Let v ∈
Mr(VD), then Tvi(Tv(Mr(VD))) = Z

(D)
big (v) and hence

Z
(D)
big (v) = a

⊗
α∈S(D)

Umin
α (v) ⊕

 ⊕
α∈S(D)

Wmin
α (v)⊗a Umin

S(D)\{α}(v)


is linearly isomorphic to Tv(Mr(VD)).

Proof. First, we claim that Z
(D)
big (v) ⊂ Tvi(Tv(Mr(VD))). Then the corollary follows from Proposition 5.5(c)

and the above claim. To prove the claim take w ∈ Z
(D)
big (v). Then we can write

w =
∑

1≤iα≤rα
α∈S(D)

(Ċ(D))(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

α∈S(D)

∑
1≤iα≤rα

(
w

(α)
iα
⊗U

(α)
iα

)
,
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where w
(α)
iα
∈ Z

(α)
big (v) = Wmin

α (v) for 1 ≤ iα ≤ rα and α ∈ S(D). Recall that Umin
S(D)\{α}(v) = span {U(α)

iα
:

1 ≤ iα ≤ rα}. Now, define L̇α ∈ L(Umin
α (v),Wmin

α (v)) by L̇α(u
(α)
iα

) := w
(α)
iα

for 1 ≤ iα ≤ rα and α ∈ S(D).

Then the claim follows from w = Tvi(Ċ
(D), (L̇α)α∈S(D)).

Now, our next step is to construct for each v ∈ FT r(VD) a linear space, namely Z(D)(v) ⊂ Z
(D)
big (v),

such that Z(D)(v) = Tvi (Tv(FT r(VD))) .

To this end, assume that the tensor product map is TD-continuous and for γ ∈ TD \ ({D} ∪ L(TD))
consider

u
(γ)
iγ

=
∑

1≤iβ≤rβ
β∈S(γ)

C
(α)
iγ ,(iβ)β∈S(α)

⊗
β∈S(γ)

u
(β)
iβ
∈M(rβ)β∈S(γ)


a

⊗
β∈S(γ)

Vβ


for 1 ≤ iγ ≤ rγ and β ∈ S(γ). Let

i :M(rβ)β∈S(γ)


a

⊗
β∈S(γ)

Vβ

 −→ Vγ‖·‖γ

be the standard inclusion map. Then we have a linear injective map

T
u

(γ)
iγ

i : R×β∈S(γ) rβ × ×
β∈S(γ)

L(Umin
β (v),Wmin

β (v))→ Vγ‖·‖γ

given by

T
u

(γ)
iγ

i(Ċ
(γ)
iγ
, (L̇β)β∈S(γ)) =

∑
1≤iβ≤rβ
β∈S(γ)

Ċ
(γ)
iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

β∈S(γ)

∑
1≤iβ≤rβ

L̇β(u
(β)
iβ

)⊗U
(β)
iγ ,iβ

,

where U
(β)
iγ ,iβ

=
∑

1≤iδ≤rδ
δ∈S(γ)
δ 6=β

C
(α)
iγ ,(iδ)δ∈S(γ)

⊗
δ∈S(γ) u

(δ)
iδ

for 1 ≤ iβ ≤ rβ and β ∈ S(γ). We have a linear subspace

Z
(γ)
big(u

(γ)
jγ

) := T
u

(γ)
jγ

i

(
R×β∈S(γ) rβ × ×

β∈S(γ)

L(Umin
β (v),Wmin

β (v))

)
∼= R×β∈S(γ) rβ × ×

β∈S(γ)

L(Umin
β (v),Wmin

β (v))

for 1 ≤ jγ ≤ rγ and following the proof of Corollary 5.6, it can be shown that

Z
(γ)
big(u

(γ)
jγ

) = a

⊗
β∈S(γ)

Umin
β (v) ⊕

 ⊕
β∈S(γ)

Wmin
β (v)⊗a span

{
Ujγ ,iβ : 1 ≤ iβ ≤ rβ

}
for 1 ≤ jγ ≤ rγ . Let πiγ : Rrγ××β∈S(γ) rβ → R×β∈S(γ) rβ be given by πiγ (Ċ(γ)) = Ċ

(γ)
iγ
, for 1 ≤ iγ ≤ rγ . Then

we can write

L̇γ(u
(γ)
iγ

) = T
u

(γ)
iγ

i(πiγ (Ċ(γ)), (L̇β)β∈S(γ)),

for 1 ≤ iγ ≤ rγ .

Now, for each γ ∈ TD \ {D} we define a linear subspace Hγ(v) ⊂ Wmin
γ (v)rγ as follows. Let Hγ(v) :=

Wmin
γ (v)rγ if γ ∈ L(TD). For γ /∈ L(TD) we construct Hγ(v) in the following way. Let

Υγ,v : Rrγ××β∈S(γ) rβ × ×
β∈S(γ)

Hβ(v) −→Wmin
γ (v)rγ
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be a linear map defined by

Υγ,v(Ċ(γ), ((w
(β)
iβ

)
rβ
iβ=1)β∈S(γ)) := (w

(γ)
iγ

)
rγ
iγ=1,

where
w

(γ)
iγ

:=
∑

1≤iβ≤rβ
β∈S(γ)

Ċ
(γ)
iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

β∈S(γ)

∑
1≤iβ≤rβ

w
(β)
iβ
⊗U

(β)
iγ ,iβ

,

for 1 ≤ iγ ≤ rγ . Observe that if we define L̇γ(u
(γ)
iγ

) := w
(γ)
iγ

for 1 ≤ iγ ≤ rγ and L̇β(uiβ ) := w
(β)
iβ

for

1 ≤ iβ ≤ rβ and β ∈ S(γ), then

w
(γ)
iγ

= T
u

(γ)
iγ

i(πiγ (Ċ(γ)), (L̇β)β∈S(γ)) ∈ Z
(γ)
big(u

(γ)
iγ

),

for 1 ≤ iγ ≤ rγ , and hence by Proposition 5.5 the map Υγ,v is injective. Finally, we define the linear subspace

Hγ(v) := Υγ,v

(
Rrγ××β∈S(γ) rβ × ×

β∈S(γ)

Hβ(v)

)
.

For δ ∈ TD \ {D} let Πiδ : Wmin
δ (v)rδ → Wmin

δ (v) be given by Πiδ((w
(δ)
kδ

)rδkδ=1) := w
(δ)
iδ

for 1 ≤ iδ ≤ rδ.

Observe, that for each β ∈ S(γ), we can identify (w
(β)
iβ

)
rβ
iβ=1 ∈ Hβ(v) with∑

1≤iβ≤rβ

w
(β)
iβ
⊗U

(β)
iγ ,iβ

=
∑

1≤iβ≤rβ

Πiβ ((w
(β)
kβ

)
rβ
kβ=1)⊗U

(β)
iγ ,iβ

for 1 ≤ iγ ≤ rγ . It allows us to construct an injective linear map

fβ,iγ : Hβ(v) −→ Vγ‖·‖γ , (w
(β)
iβ

)
rβ
iβ=1 7→

∑
1≤iβ≤rβ

w
(β)
iβ
⊗U

(β)
iγ ,iβ

,

for 1 ≤ iγ ≤ rγ . Hence fβ,iγ (Hβ(v)) is a linear subspace of Vγ‖·‖γ linearly isomorphic toHβ(v) for 1 ≤ iγ ≤ iγ .
Thus,

Πiγ (Hγ(v)) =

{
a

⊗
β∈S(γ) U

min
β (v) ⊕

(⊕
β∈S(γ) fβ,iγ (Hβ(v))

)
if γ /∈ L(TD),

Wmin
γ (v) if γ ∈ L(TD),

where

fβ,iγ (Hβ(v)) =

{ ⊕rβ
iβ=1 Πiβ (Hβ(v))⊗a span{U(β)

iγ ,iβ
} if β /∈ L(TD)⊕rβ

iβ=1W
min
β (v)⊗a span{U(β)

iγ ,iβ
} if β ∈ L(TD)

for 1 ≤ iγ ≤ rγ .

Finally, we construct a linear subspace Z(D)(v) ⊂ VD‖·‖D
by using a linear injective map

ΥD,v : R×α∈S(D) rα × ×
α∈S(D)

Hα(v) −→ VD‖·‖D

defined by

Υγ,v(Ċ(D), ((w
(α)
iα

)rαiα=1)α∈S(D)) := w

where
w :=

∑
1≤iα≤rα
α∈S(D)

Ċ
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

α∈S(D)

∑
1≤iα≤rα

w
(α)
iα
⊗U

(α)
iα
.

Then Z(D)(v) := ΥD,v

(
R×α∈S(D) rα ××α∈S(D)Hα(v)

)
. Moreover, we can introduce for each α ∈ S(D) a

linear injective map

fD,α : Hα(v)→ VD‖·‖D
, (wiα)rαiα=1 7→

∑
1≤iα≤rα

w
(α)
iα
⊗U

(α)
iα
.

31



Then fα(Hα(v)) is a linear subspace in VD‖·‖D
linearly isomorphic to Hα(v). It is not difficult to show that

fD,α(Hα(v)) =

{ ⊕rα
iα=1 Πiα(Hα(v))⊗a span{U(α)

iα
} if α /∈ L(TD)⊕rα

iα=1W
min
α (v)⊗a span{U(α)

iα
} if α ∈ L(TD)

for α ∈ S(D). By construction, we have

Z(D)(v) = a

⊗
α∈S(D)

Umin
α (v) ⊕

 ⊕
α∈S(D)

fD,α(Hα(v))

 .

Corollary 5.7 Assume that S(D) 6= L(TD) and the tensor product map
⊗

is TD-continuous. Let v ∈
FT r(VD), then Tvi(Tv(FT r(VD))) = Z(D)(v) and hence it is linearly isomorphic to Tv(FT r(VD)).

Proof. From Proposition 5.5 and the construction of Z(D)(v), the inclusion Tvi(Tv(FT r(VD))) ⊂ Z(D)(v)
holds. Now, take w ∈ Z(D)(v). Then we can write

w =
∑

1≤iα≤rα
α∈S(D)

(Ċ(D))(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

α∈S(D)

∑
1≤iα≤rα

(
w

(α)
iα
⊗U

(α)
iα

)
,

where Ċ(D) ∈ R×α∈S(D) rα and w
(α)
iα
∈Wmin

α (v) for 1 ≤ iα ≤ rα. Then we can define L̇α ∈ L(Umin
α (v),Wmin

α (v))

by L̇α(u
(α)
iα

) := w
(α)
iα

for 1 ≤ iα ≤ rα, and we have

(Ċ(D), (L̇α)α∈S(D)) ∈ R×α∈S(D) rα × ×
α∈S(D)

L(Umin
α (v),Wmin

α (v)).

Moreover,
∑

1≤iα≤rα w
(α)
iα
⊗U

(α)
iα
∈ fD,α(Hα(v)) for α ∈ S(D). If α /∈ L(TD), then (w

(α)
iα

)rαiα=1 ∈ Hα(v) =

Υα,v

(
Rrα××β∈S(γ) rβ ××β∈S(α)Hβ(v)

)
. Hence there exists

(Ċ(α), ((w
(β)
iβ

)
rβ
iβ=1)β∈S(α)) ∈ Rrα××β∈S(α) rβ × ×

β∈S(α)

Hβ(v)

such that
w

(α)
iα

=
∑

1≤iβ≤rβ
β∈S(α)

Ċ
(α)
iα,(iβ)β∈S(α)

⊗
β∈S(α)

u
(β)
iβ

+
∑

β∈S(α)

∑
1≤iβ≤rβ

w
(β)
iβ
⊗U

(β)
iα,iβ

for 1 ≤ iα ≤ rα. Define L̇β(u
(β)
iβ

) := w
(β)
iβ

for 1 ≤ iβ ≤ rβ and β ∈ S(α). Then

(Ċ(α), (L̇β)β∈S(α)) ∈ Rrγ××β∈S(γ) rβ × ×
β∈S(α)

L(Umin
β (v),Wmin

β (v)).

Moreover,
∑

1≤iβ≤rβ w
(β)
iβ
⊗ U

(β)
iα,iβ

∈ fβ,iα (Hβ(v)) for 1 ≤ iα ≤ rα. If β /∈ L(TD), then (w
(β)
iβ

)
rβ
iβ=1 ∈

Hβ(v) = Υβ,v

(
Rrβ××γ∈S(β) rγ ××γ∈S(β)Hγ(v)

)
. Proceeding in a similar way from the root to the leaves,

we construct (Ċ, L̇) ∈ Tv(FT r(VD)), where Ċ = (Ċ(α))α∈TD\L(TD) ∈ Rr and L̇ = (L̇α)α∈TD\{D} ∈ LTD (v)

such that w = Tvi(Ċ, L̇). Thus, we can conclude that Z(D)(v) ⊂ Tvi (Tv(FT r(VD))) and the equality
follows.

Example 5.8 Consider the binary tree TD given in Figure 5.1 and consider TB ranks r = (1, r1, r23, r2, r3).
Let v ∈ FT r(V1 ⊗a V2 ⊗a V3) and assume that the tensor product map

⊗
is TD-continuous. Then

Z(123)(v) =
(
Umin

1 (v)⊗a Umin
23 (v)

)
⊕ f123,1(H1(v))⊕ f123,23(H23(v)),
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{1, 2, 3}

{2, 3}

{3}{2}

{1}

Figure 5.1: A binary tree TD.

where

f123,1(H1(v)) =

r1⊕
i1=1

Wmin
1 (v)⊗a span {U(1)

i1
} ⊂ V1‖·‖1

⊗a
(
V2‖·‖2

⊗a V3‖·‖3

)
,

f123,23(H23(v)) =

r23⊕
i23=1

span {U(23)
i23
} ⊗a Πi23(H23(v)) ⊂ V1‖·‖1

⊗a
(
V2‖·‖2

⊗a V3‖·‖3

)
,

and

Πi23(H23(v)) =
(
Umin

2 (v)⊗a Umin
3 (v)

)
⊕

(
r2⊕
i2=1

Wmin
2 (v)⊗a span {U(2)

i23,i2
}

)
⊕

(
r3⊕
i3=1

span {U(3)
i23,i3
} ⊗aWmin

3 (v)

)
,

which is a linear subspace in V2‖·‖2
⊗a V3‖·‖3

.

5.2 Is the standard inclusion map an immersion?

Next we recall the definition of an immersion between manifolds.

Definition 5.9 Let F : X → Y be a morphism between Banach manifolds and let x ∈ X. We shall say that
F is an immersion at x, if there exists an open neighbourhood Xx of x in X such that the restriction of F
to Xx induces an isomorphism from Xx onto a submanifold of Y. We say that F is an immersion if it is an
immersion at each point of X.

For Banach manifolds we have the following criterion for immersions (see Theorem 3.5.7 in [22]).

Proposition 5.10 Let X,Y be Banach manifolds of class Cp (p ≥ 1). Let F : X → Y be a Cp morphism
and x ∈ X. Then F is an immersion at x if and only if TxF is injective and TxF (Tx(X)) ∈ G(Y ).

A concept related with an immersion between Banach manifolds is the following.

Definition 5.11 Assume that X and Y are Banach manifolds and let f : X −→ Y be a Cr morphism. If f
is an injective immersion, then f(X) is called an immersed submanifold of Y .

Recall that there exists injective immersions which are not isomorphisms onto manifolds. It allows us to
introduce the following definition.

Definition 5.12 An injective immersion f : X −→ Y which is a homeomorphism onto f(X) with the
relative topology induced from Y is called an embedding. Moreover, if f : X −→ Y is an embedding, then
f(X) is called an embedded submanifold of Y.

A classical example of an immersed submanifold which is not an embedded submanifold is given by the
map f : (3π/4, 7π/4) −→ R2, written in polar coordinates by r = cos 2θ. It can be see that f is an injective
immersion however f(3π/4, 7π/4) is not an open set in R2, because any neighborhood of 0 in R2 intersects
f(3π/4, 7π/4) in a set with ”corners” which is not homeomorphic to an open interval (see Figure 5.2).
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Figure 5.2: The set f(3π/4, 7π/4) in R2. The ”o” means that the lines approach without touch.

Example 5.13 Consider the morphism f : FT r(VD) −→ Rr×LTD defined by f(v) = Θv(v) = (C,L). Then
in local coordinates we have Θ−1

v ◦f◦idRr×LTD (v)
= idRr×LTD (v)

. Clearly, f is injective and Tvf(Rr×LTD (v)) =

idRr×LTD (v)
(Rr × LTD (v)) = Rr × LTD (v). From Lemma 4.1 we have that LTD (v) ∈ G(LTD ) and hence

Rr × LTD (v) ∈ G(Rr × LTD ). Then by Proposition 5.10 f is an immersion. Moreover, f(FT r(VD)) with
the topology induced by Rr × LTD is homeomorphic to FT r(VD) when we consider in FT r(VD) the initial
topology induced by f. We point out that with this topology in each local neighborhood U(v) is an open set in
FT r(VD). Moreover, f is an embedding and f(FT r(VD)) is an embedded submanifold of Rr × LTD .

From the above example we have that even the manifold FT r(VD) is a subset of VD‖·‖D
its geometric

structure is fully compatible with topology of the Banach space Rr × LTD .

Finally, to show that i is an inmersion, and hence FT r(VD)) is an immersed submanifold of VD‖·‖D
,

we need to prove that Tvi is injective and Tvi (Tv(FT r(VD))) ∈ G(V‖·‖D ). To do this we need a stronger
condition than the TD-continuity of the tensor product. Grothendieck [11] named the following norm ‖·‖∨
the injective norm.

Definition 5.14 Let Vi be a Banach space with norm ‖·‖i for 1 ≤ i ≤ d. Then for v ∈ V = a

⊗d
j=1 Vj

define ‖·‖∨(V1,...,Vd) by

‖v‖∨(V1,...,Vd) := sup

{
|(ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd) (v)|∏d

j=1 ‖ϕj‖∗j
: 0 6= ϕj ∈ V ∗j , 1 ≤ j ≤ d

}
. (5.5)

It is well known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [20] and (3.12)-
(3.13)). Further properties are given by the next proposition (see Lemma 4.96 and 4.2.4 in [15]).

Proposition 5.15 Let Vi be a Banach space with norm ‖·‖i for 1 ≤ i ≤ d, and ‖ · ‖ be a norm on V :=

a

⊗d
j=1 Vj . The following statements hold.

(a) For each 1 ≤ j ≤ d introduce the tensor Banach space Xj := ‖·‖∨(V1,...,Vj−1,Vj+1,...,Vd)

⊗
k 6=j Vk . Then

‖ · ‖∨(V1,...,Vd) = ‖ · ‖∨(Vj ,Xj) (5.6)

holds for 1 ≤ j ≤ d.
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(b) The injective norm is the weakest reasonable crossnorm on V, i.e., if ‖·‖ is a reasonable crossnorm on
V, then

‖·‖ & ‖·‖∨(V1,...,Vd) (5.7)

(c) For any norm ‖·‖ on V satisfying ‖·‖∨(V1,...,Vd) . ‖·‖ , the map (3.14) is continuous, and hence Fréchet
differentiable.

Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj , in the

topological tree based format. Take VD := a

⊗
j∈D Vj and assume that the tensor product map

⊗
is

TD-continuous. From Theorem 3.29, we may assume that we have a tensor Banach space

Vα‖·‖α
= ‖·‖α

⊗
β∈S(α)

Vβ‖·‖β

for each α ∈ TD \ L(TD), and a Banach space Vj‖·‖j for j ∈ L(TD). Let α ∈ TD \ L(TD). To simplify the

notation, we write for A,B ⊂ S(α)

‖ · ‖∨(A) := ‖ · ‖∨({Vδ‖·‖δ
:δ∈A}),

and
‖ · ‖∨(A,∨(B)) := ‖ · ‖∨({Vδ‖·‖δ

:δ∈A},XB)

where
XB := ‖·‖∨(B)

⊗
β∈B

Vβ‖·‖β
.

From Proposition 5.15(a), we can write

‖ · ‖∨(S(α)) = ‖ · ‖∨(β,∨(S(α)\β))

for each β ∈ S(α). From now on, we assume that

‖ · ‖α & ‖ · ‖∨(S(α)) for each α ∈ TD \ L(TD), (5.8)

holds. Recall that Proposition 5.15(c) implies that the tensor product map
⊗

is TD-continuous. Since
‖ · ‖α & ‖ · ‖∨(β,∨(S(α)\β)) holds for each β ∈ S(α), the tensor product map

⊗
: (Vβ‖·‖β

, ‖ · ‖β)×

‖·‖∨(S(α)\β)

⊗
δ∈S(D)\{β}

Vδ‖·‖δ
, ‖ · ‖∨(S(α)\β)

→ (Vα‖·‖α
, ‖ · ‖α)

is also continuous for each β ∈ S(α). A first useful result is the following lemma.

Lemma 5.16 Assume that (5.8) holds. Let α ∈ TD \L(TD) and take β ∈ S(α). If Wβ ∈ G(Vβ‖·‖β
) satisfies

Vβ‖·‖β
= Uβ ⊕Wβ for some finite dimensional subspace Uβ in Vβ‖·‖β

, then Wβ ⊗a U[β] ∈ G(Vα‖·‖α
) for

every finite dimensional subspace U[β] ⊂ a

⊗
δ∈S(α)\β Vδ‖·‖δ

.

Proof. First, observe that if Wβ is a finite dimensional subspace, then Wβ ⊗a U[β] is also finite dimensional,
and hence the lemma follows. Thus, assume that Wβ is an infinite dimensional closed subspace of Vβ‖·‖β

,

and to simplify the notation write

Xβ := ‖·‖∨(S(α)\β)

⊗
δ∈S(D)\{β}

Vδ‖·‖δ
.

If U[β] ⊂ Xβ is a finite dimensional subspace, then there exists W[β] ∈ G(Xβ) such that Xβ = U[β] ⊕W[β].
Since the tensor product map⊗

: (Vβ‖·‖β
, ‖ · ‖β)×

(
Xβ , ‖ · ‖∨(S(α)\β)

)
→ (Vα‖·‖α

, ‖ · ‖α)
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is continuous and by Lemma 3.18 in [7], for each elementary tensor vβ ⊗ v[β] ∈ Vβ‖·‖β
⊗a Xβ we have

‖(idβ ⊗ PU[β]⊕W[β]
)(vβ ⊗ v[β])‖α ≤ C

√
dimU[β] ‖vβ‖β‖v[β]‖∨(S(α)\β)

= C
√

dimU[β] ‖vβ ⊗ v[β]‖∨(S(α))

≤ C ′
√

dimU[β] ‖vβ ⊗ v[β]‖α.

Thus, (idβ ⊗ PU[β]⊕W[β]
) is continuous over Vβ‖·‖β

⊗a Xβ , and hence in Vα‖·‖α
. Now, take into account that

idβ = P
Uβ⊕Wβ

+ P
Wβ⊕Uβ

,

and hence
idβ ⊗ PU[β]⊕W[β]

= P
Uβ⊕Wβ

⊗ P
U[β]⊕W[β]

+ P
Wβ⊕Uβ

⊗ P
U[β]⊕W[β]

.

Observe that idβ ⊗ PU[β]⊕W[β]
and P

Uβ⊕Wβ
⊗ P

U[β]⊕W[β]
are continuous linear maps over Vβ‖·‖β

⊗a Xβ , and

then P
Wβ⊕Uβ

⊗ P
U[β]⊕W[β]

is a continuous linear map over Vβ‖·‖β
⊗a Xβ . Thus,

Pα := P
Wβ⊕Uβ

⊗ P
U[β]⊕W[β]

∈ L(Vα‖·‖α
,Vα‖·‖α

)

and Pα ◦ Pα = Pα. Since Pα(Vα‖·‖α
) = Wβ ⊗a U[β], by Proposition 2.4 the lemma follows.

Lemma 5.17 Let X be a Banach space and assume that U, V ∈ G(X). If U ∩V = {0}, then U ⊕V ∈ G(X).
Moreover, U ∩ V ∈ G(X) holds.

Proof. To prove the first statement assume that U ∩V = {0}. Since U, V ∈ G(X) there exist U ′, V ′ ∈ G(X),
such that X = U⊕U ′ = V ⊕V ′. Then U = X∩U = (V ⊕V ′)∩U = U ∩V ′ and V = X∩V = (U⊕U ′)∩V =
V ∩ U ′. In consequence, we can write

U ⊕ V ⊕ (U ′ ∩ V ′) = (U ∩ V ′)⊕ (V ∩ U ′)⊕ (U ′ ∩ V ′) = (U ⊕ U ′) ∩ (V ⊕ V ′) = X,

and the first statement follows. To prove the second one, observe that X = (U ∩ V )⊕ (U ∩ V ′)⊕ (V ∩U ′)⊕
(U ′ ∩ V ′).

A very useful consequence of the above two lemmas is the following.

Theorem 5.18 Let {Vα‖·‖α
}α∈TD\{D} be a representation of a tensor Banach space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj ,

in the topological tree based format and assume that (5.8) holds. Then Z(D)(v) ∈ G(VD‖·‖D
), and hence

FT r(VD) is an immersed submanifold of VD‖·‖D
.

Proof. Since the tensor product map is TD-continuous, Proposition 5.5 gives us the differentiability of Tvi.
Assume first that S(D) = L(TD). From Corollary 5.6 we have

Z(D)(v) = a

⊗
α∈S(D)

Umin
α (v) ⊕

 ⊕
α∈S(D)

Wmin
α (v)⊗a Umin

S(D)\{α}(v)

 .

For each α ∈ S(D) we have Wmin
α (v) ∈ G(Vα‖·‖α

) and Umin
S(D)\{α}(v) ⊂ a

⊗
δ∈S(D)\{α}Vδ‖·‖δ

is a finite

dimensional subspace. From Lemma 5.16 we have Wmin
α (v)⊗a Umin

S(D)\{α}(v) ∈ G(VD‖·‖D
) for all α ∈ S(D).

Since a

⊗
α∈S(D) U

min
α (v) ∈ G(VD‖·‖D

), by Lemma 5.17, we obtain that Z(D)(v) ∈ G(VD‖·‖D
).

Now, assume that S(D) 6= L(TD). Then

Z(D)(v) = a

⊗
α∈S(D)

Umin
α (v) ⊕

 ⊕
α∈S(D)

fD,α(Hα(v))

 .

36



and

fD,α(Hα(v)) =

{ ⊕rα
iα=1 Πiα(Hα(v))⊗a span{U(α)

iα
} if α /∈ L(TD)⊕rα

iα=1W
min
α (v)⊗a span{U(α)

iα
} if α ∈ L(TD)

for α ∈ S(D). For α ∈ L(TD) we have Wmin
α (v) ∈ G(Vα‖·‖α

) and span{U(α)
iα
} is a finite dimensional

subspace for 1 ≤ iα ≤ rα, and from Lemma 5.16, Wmin
α (v)⊗a span{U(α)

iα
} ∈ G(VD‖·‖D

) for 1 ≤ iα ≤ rα. By

Lemma 5.17, fD,α(Hα(v)) ∈ G(VD‖·‖D
). Otherwise, if α /∈ L(TD) then

fD,α(Hα(v)) =

rα⊕
iα=1

Πiα(Hα(v))⊗a span{U(α)
iα
},

where

Πiα(Hα(v)) = a

⊗
β∈S(α)

Umin
β (v) ⊕

 ⊕
β∈S(α)

fβ,iα(Hβ(v))


for 1 ≤ iα ≤ rα. Now,

fβ,iα(Hβ(v)) =

{ ⊕rβ
iβ=1 Πiβ (Hβ(v))⊗a span{U(β)

iα,iβ
} if β /∈ L(TD)⊕rβ

iβ=1W
min
β (v)⊗a span{U(β)

iα,iβ
} if β ∈ L(TD)

for 1 ≤ iα ≤ rα. Clearly, if β ∈ L(TD) then fβ,iα(Hβ(v)) ∈ G(Vα‖·‖α
) for 1 ≤ iα ≤ rα. Then we can write,

Πiα(Hα(v)) = a

⊗
β∈S(α)

Umin
β (v) ⊕

 ⊕
β∈S(α)
β∈L(TD)

fβ,iα(Hβ(v))

⊕
 ⊕

β∈S(α)
β/∈L(TD)

fβ,iα(Hβ(v))


for 1 ≤ iα ≤ rα. Starting by the leaves, that is γ ∈ L(TD), we have that always Πiγ (Hγ(v)) = Wmin

γ (v) ∈
G(Vγ‖·‖γ

) for 1 ≤ iγ ≤ rγ , and hence for δ ∈ TD such that γ ∈ S(δ) we obtain fγ,iδ(Hγ(v)) ∈ G(Vδ‖·‖δ
) for

1 ≤ iδ ≤ rδ. Proceeding inductively from the leaves to the root, we obtain that fβ,iα(Hβ(v)) ∈ G(Vα‖·‖α
),

for β ∈ S(α) with β /∈ L(TD) and 1 ≤ iα ≤ rα. Lemma 5.17 says us that Πiα(Hα(v)) ∈ G(Vα‖·‖α
) for

1 ≤ iα ≤ rα. From Lemma 5.16 and Lemma 5.17 we obtain that fD,α(Hα(v)) ∈ G(VD‖·‖D
). Also by

Lemma 5.17, we have Z(D)(v) ∈ G(VD‖·‖D
) and hence this proves the theorem.

Example 5.19 Recall the topological tensor spaces introduced in the Example 3.22. Let Ij ⊂ R (1 ≤ j ≤ d)
and 1 ≤ p < ∞. Given tree TD, for α ∈ TD let Iα :=×j∈α Ij , and hence Lp(Iα) is a tensor Banach space
for all α ∈ TD. In this example we denote the usual norm of Lp(Iα) by ‖ · ‖α,p. Since ‖ · ‖α,p is a reasonable
crossnorm (see Example 4.72 in [15]), then (5.8) holds for all α ∈ TD. From Theorem 5.18 we obtain that

FT r

(
a

⊗d
j=1 L

p(Ij)
)

is an immersed submanifold of Lp(ID).

Example 5.20 Now, we return to Example 5.1. From Example 4.42 in [15] we know that the norm
‖ · ‖(0,1),p is a crossnorm on H1,p(I1) ⊗a H1,p(I2), and hence it is not weaker than the injective norm. In
consequence, from Theorem 5.18, we obtain that FT r(H

1,p(I1)⊗a H1,p(I2)) is an immersed submanifold in
H1,p(I1)⊗‖·‖(0,1),p H1,p(I2).

Since in a reflexive Banach space every closed linear subspace is proximinal (see p. 61 in [9]), we have
the corollary.

Corollary 5.21 Let {Vα‖·‖α
}α∈TD\{D} be a representation of a reflexive tensor Banach space VD‖·‖D

=

‖·‖D
⊗

j∈D Vj , in the topological tree based format and assume that (5.8) holds. Let v ∈ FT r(VD), then for

each u̇ ∈ VD‖·‖D
there exists v̇best ∈ Z(D)(v) such that

‖u̇− v̇best‖ = min
v̇∈Z(D)(v)

‖u̇− v̇‖. (5.9)
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5.3 On the best BT r(VD)-approximation

To end this section we would discuss about the BT r(VD)-best approximation. In Corollary 4.4 in [7] the
following result, which is re-stated here using the notations of the present paper, is proved as a consequence
of a similar result showed for tensors in Tucker format with bounded rank.

Theorem 5.22 Let VD = a

⊗
j∈D Vj and let {Vαj ‖·‖αj

: 2 ≤ j ≤ d} ∪ {Vj‖·‖j : 1 ≤ j ≤ d} for d ≥ 3, be a

representation of a reflexive Banach tensor space VD‖·‖D
= ‖·‖D

⊗
j∈D Vj , in topological tree based format

such that

(a) ‖ · ‖D & ‖ · ‖∨(V1‖·‖j
,...,Vd‖·‖d

),

(b) Vαd = Vd−1 ⊗a Vd, and Vαj = Vj−1 ⊗a Vαj+1
, for 2 ≤ j ≤ d− 1, and

(c) ‖ · ‖αj := ‖ · ‖∨(V j−1 ‖·‖j−1
,...,Vd‖·‖d

) for 2 ≤ j ≤ d.

Then for each v ∈ VD‖·‖D
there exists ubest ∈ BT r(VD) such that

‖v − ubest‖D = min
u∈BT r(VD)

‖v − u‖D.

It seems clear that tensor Banach spaces as we show in Example 3.5 are not included in this framework.
Observe that this choice of norms satisfies (5.8). So a natural question is if for a representation in the
topological tree based format of a reflexive Banach space satisfying (5.8) the statement of Theorem 5.22 is
also true. To prove this, we will reformulate some of the results given in [7]. In the aforementioned paper,
the milestone to prove the existence of a best approximation is the extension of the definition of minimal
subspace for tensors v ∈ VD‖·‖D

\VD. To do this the authors use a similar result to the following lemma

(see Lemma 3.8 in [7]).

Lemma 5.23 Let Vj‖·‖j be a Banach space for j ∈ D, where D is a finite index set, and α1, . . . , αm ⊂
2D \ {D, ∅}, be such that αi ∩ αj = ∅ for all i 6= j and D =

⋃m
i=1 αi. Assume that if #αi ≥ 2 for some

1 ≤ i ≤ m, then Vαi ‖·‖αi
is a tensor Banach space. Consider the tensor space

VD := a

m⊗
i=1

Vαi ‖·‖αi

endowed with the injective norm ‖·‖∨(Vα1 ‖·‖α1
,...,Vαm ‖·‖αm

). Fix 1 ≤ k ≤ m, then given ϕ[αk] ∈ a

⊗
i6=k V∗αi ‖·‖αi

the map idαk ⊗ ϕ[αk] belongs to L
(
VD,Vαk ‖·‖αk

)
. Moreover, idαk ⊗ϕ[αk] ∈ L(VD

‖·‖,
,Vαk ‖·‖αk

) for any

norm satisfying
‖ · ‖ & ‖ · ‖∨(Vα1 ‖·‖α1

,...,Vαm ‖·‖αm
).

Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj , in the

topological tree based format and assume that (5.8) holds. Then the tensor product map is TD-continuous
and, by Theorem 3.29,

Vα‖·‖α
= ‖·‖α

⊗
β∈S(α)

Vβ‖·‖β = ‖·‖α

⊗
β∈S(α)

Vβ = ‖·‖α

⊗
j∈α

Vj ,

holds for each α ∈ TD \ L(TD). Observe, that V∗α‖·‖α ⊂ V∗α for all α ∈ S(D). Take VD = a

⊗
j∈D Vj . Since

‖ · ‖D & ‖ · ‖∨(S(D)), from Lemma 5.23 and Proposition 3.12(b), we can extend for v ∈ VD‖·‖D
\VD, the

definition of minimal subspace for each α ∈ S(D) as

Umin
α (v) :=

(idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗
β∈S(D)\{α}

V∗β

 .
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Observe that (idα ⊗ϕ[α]) ∈ L(VD‖·‖D
,Vα‖·‖α

). Recall that if v ∈ VD and α /∈ L(TD), from Proposition 3.11,

we have Umin
α (v) ⊂ a

⊗
β∈S(α) U

min
β (v) ⊂ a

⊗
β∈S(α) Vβ . Moreover, by Proposition 3.12(b), for β ∈ S(α)

we have

Umin
β (v) = span

(idβ ⊗ϕ[β])(vα) : vα ∈ Umin
α (v) and ϕ[β] ∈ a

⊗
δ∈S(α)\{β}

V∗δ


= span

(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗
µ∈S(D)\{α}

V∗µ and ϕ[β] ∈ a

⊗
δ∈S(α)\{β}

V∗δ

 .

Thus, (idα ⊗ϕ[α])(v) ∈ Umin
α (v) ⊂ Vα ⊂ Vα‖·‖α

, and hence

(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) ∈ Umin
β (v) ⊂ Vβ ⊂ Vβ‖·‖β

,

when #β ≥ 2. However, if v ∈ VD‖·‖D
\VD then (idα ⊗ϕ[α])(v) ∈ Umin

α (v) ⊂ Vα‖·‖α
. Since ‖·‖α & ‖·‖∨(S(α))

also by Lemma 5.23 we have idβ ⊗ϕ[β] ∈ L(Vα‖·‖α
,Vβ‖·‖β

). In consequence, a natural extension of the

definition of minimal subspace Umin
β (v), for v ∈ VD‖·‖D

\VD, is given by

Umin
β (v) := span

(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗
µ∈S(D)\{α}

V∗µ and ϕ[β] ∈ a

⊗
δ∈S(α)\{β}

V∗δ

 .

To simplify the notation, we can write

(idβ ⊗ϕ[β,α])(v) := (idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v)

whereϕ[β,α] := ϕ[α]⊗ϕ[β] ∈
(
a

⊗
µ∈S(D)\{α}V∗µ

)
⊗a
(
a

⊗
δ∈S(α)\{β}V∗δ

)
and (idβ ⊗ϕ[β,α]) ∈ L(VD‖·‖D

,Vβ‖·‖β
).

Proceeding inductively, from the root to the leaves, we define the minimal subspace Umin
j (v) for each

j ∈ L(TD) such that there exists η ∈ TD \ {D} with j ∈ S(η) as

Umin
j (v) := span

{
(idj ⊗ϕ[j,η,...,β,α])(v) : ϕ[j,η,...,β,α] ∈Wj

}
,

where

Wj :=


a

⊗
µ∈S(D)\{α}

V∗µ

⊗a

a

⊗
δ∈S(α)\{β}

V∗δ

⊗a · · · ⊗a

a

⊗
k∈S(η)\{j}

V ∗k

 .

With this extension the following result it can be shown (see Lemma 3.13 in [7]).

Lemma 5.24 Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj ,

in the topological tree based format and assume that (5.8) holds. Let {vn}n≥0 ⊂ VD‖·‖D
with vn ⇀ v, and

µ ∈ TD \ ({D} ∪ L(TD)) then for each γ ∈ S(µ) we have

(idγ ⊗ϕ[γ,µ,··· ,β,α])(vn) ⇀ (idγ ⊗ϕ[γ,µ,··· ,β,α])(v) in Vγ‖·‖γ
,

for all ϕ[γ,µ,··· ,β,α] ∈
(
a

⊗
µ∈S(D)\{α}V∗µ

)
⊗a
(
a

⊗
δ∈S(α)\{β}V∗δ

)
⊗a · · · ⊗a

(
a

⊗
η∈S(µ)\{γ} V

∗
η

)
.

Then in a similar way as Theorem 3.15 in [7] the following theorem can be shown.

Theorem 5.25 Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj ,

in the topological tree based format and assume that (5.8) holds. Let {vn}n≥0 ⊂ VD‖·‖D
with vn ⇀ v, then

dimUmin
α (v)

‖·‖α
= dimUmin

α (v) ≤ lim inf
n→∞

dimUmin
α (vn),

for all α ∈ TD \ {D}.

39



Now, following the proof of Theorem 4.1 in [7] we obtain the final theorem.

Theorem 5.26 Let VD = a

⊗
j∈D Vj and let {Vα‖·‖α

}α∈TD\{D} be a representation of a reflexive Banach
tensor space VD‖·‖D

= ‖·‖D
⊗

j∈D Vj , in the topological tree based format and assume that (5.8) holds. Then

for each v ∈ VD‖·‖D
there exists ubest ∈ BT r(VD) such that

‖v − ubest‖D = min
u∈BT r(VD)

‖v − u‖D.

6 On the Dirac–Frenkel variational principle on tensor Banach
spaces

6.1 Model Reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
VD‖·‖D

, given by

u̇(t) = F(t,u(t)), for t ≥ 0 (6.1)

u(0) = u0, (6.2)

where we assume u0 6= 0 and F : [0,∞) × VD‖·‖D
−→ VD‖·‖D

satisfying the usual conditions. Let

{Vα‖·‖α
}α∈TD\{D} be a representation of VD‖·‖D

= ‖·‖D
⊗

j∈D Vj , in the topological tree based format

and assume that (5.8) holds. As usual we will consider VD = a

⊗
j∈D Vj . We want to approximate u(t),

for t ∈ I := (0, ε) for some ε > 0, by a differentiable curve t 7→ vr(t) from I to FT r(VD), where r ∈ NTD is
such that vr(0) = u(0) = u0 ∈ FT r(VD).

Our main goal is to construct a Reduced Order Model of (6.1)–(6.2) over the Banach manifold FT r(VD).
Since F(t,vr(t)) in VD‖·‖D

, for each t ∈ I, and Z(D)(vr(t)) is a closed linear subspace in VD‖·‖D
, we have

the existence of a v̇r(t) ∈ Z(D)(vr(t)) such that

‖v̇r(t)− F(t,vr(t))‖D = min
v̇(t)∈Z(D)(vr(t))

‖v̇(t)− F(t,vr(t))‖D,

It is well known that, if VD‖·‖D
is a Hilbert space, then v̇r(t) = Pvr(t)(F(t,vr(t))), where

Pvr(t) = PZ(D)(vr(t))⊕Z(D)(vr(t))⊥

is called the metric projection. It has the following important property: v̇r(t) = Pvr(t)(F(t,vr(t))) if and
only if

〈v̇r(t)− F(t,vr(t)), v̇(t)〉D = 0 for all v̇(t) ∈ Z(D)(vr(t)).

The concept of a metric projection can be extended to the Banach space setting. To this end we recall
the following definitions. A Banach space X with norm ‖ · ‖ is said to be strictly convex if ‖x + y‖/2 < 1
for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y. It is uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two
sequences {xn}n∈N and {yn}n∈N such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn + yn‖/2 = 1. It is known that
a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if
the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ U := {z ∈ X : ‖z‖ = 1}. Finally, a Banach space X is said to be uniformly smooth if its
modulus of smoothness

ρ(τ) = sup
x,y∈U

{
‖x+ τy‖+ ‖x− τy‖

2
− 1

}
, τ > 0,

satisfies the condition limτ→0 ρ(τ) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
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Banach space is finite-dimensional. It is known that the space Lp (1 < p < ∞) is a uniformly convex and
uniformly smooth Banach space.

Let 〈·, ·〉 : X ×X∗ −→ R denote the duality map, i.e.,

〈x, f〉 := f(x).

The normalised duality mapping J : X −→ 2X
∗

is defined by

J(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = (‖f‖∗)2}.

Notice that, in a Hilbert space, the duality mapping is the identity operator. The duality mapping J has
the following properties (see [2]):

(a) If X is smooth, the map J is single-valued;

(b) if X is smooth, then J is norm–to–weak∗ continuous;

(c) if X is uniformly smooth, then J is uniformly norm–to–norm continuous on each bounded subset of
X.

Let {Vα‖·‖α
}α∈TD\{D} be a representation of reflexive and strictly convex tensor Banach space VD‖·‖D

=

‖·‖D
⊗

j∈D Vj , in the topological tree based format and assume that (5.8) holds. For F(t,vr(t)) in VD‖·‖D
,

with a fixed t ∈ I, it is known that the set{
v̇r(t) : ‖v̇r(t)− F(t,vr(t))‖D = min

v̇(t)∈Z(D)(vr(t))
‖v̇(t)− F(t,vr(t))‖D

}
is always a singleton. Let Pvr(t) be the mapping of VD‖·‖D

onto Z(D)(vr(t)) defined by v̇r(t) := Pvr(t)(F(t,vr(t)))
if and only if

‖v̇r(t)− F(t,vr(t))‖D = min
v̇(t)∈Z(D)(vr(t))

‖v̇(t)− F(t,vr(t))‖D.

It is also called the metric projection. The classical characterisation of the metric projection allows us to
state the next result.

Theorem 6.1 Let {Vα‖·‖α
}α∈TD\{D} be a representation of reflexive and strictly convex tensor Banach

space VD‖·‖D
= ‖·‖D

⊗
j∈D Vj , in the topological tree based format and assume that (5.8) holds. Then for

each t ∈ I we have

v̇r(t) = Pvr(t)(F(t,vr(t)))

if and only if

〈v̇r(t)− v̇(t), J(F(t,vr(t))− v̇r(t))〉 ≥ 0 for all v̇(t) ∈ Z(D)(vr(t)).

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Let TD a given tree and assume that for each α ∈ TD
we have a Banach space Vα‖·‖α

, such that (5.8) holds and where VD‖·‖D
is a reflexive, strictly convex and

smooth tensor Banach space. Following [17], we can define a function φ : VD‖·‖D
×VD‖·‖D

−→ R by

φ(u,v) = ‖u‖2D − 2〈u, J(v)〉+ ‖v‖2D,

where 〈·, ·〉 denotes the duality map and J is the normalised duality mapping. It is known that the set{
v̇r(t) : φ(v̇r(t),F(t,vr(t))) = min

v̇(t)∈Z(D)(vr(t))
φ(v̇(t),F(t,vr(t)))

}
is always a singleton. It allows us to define a map Πvr(t) : VD‖·‖D

−→ Z(D)(vr(t)) by v̇r(t) := Πvr(t)(F(t,vr(t)))
if and only if

φ(v̇r(t),F(t,vr(t))) = min
v̇(t)∈Z(D)(vr(t))

φ(v̇(t),F(t,vr(t))).

The map Πvr(t) is called the generalised projection. It coincides with the metric projection when VD‖·‖D
is

a Hilbert space.
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Remark 6.2 We point out that, in general, the operators Pvr(t) and Πvr(t) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection give us the following theorem.

Theorem 6.3 Let {Vα‖·‖α
}α∈TD\{D} be a representation of reflexive, strictly convex and smooth tensor

Banach space VD‖·‖D
= ‖·‖D

⊗
j∈D Vj , in the topological tree based format and assume that (5.8) holds.

Then for each t ∈ I we have

v̇r(t) = Πvr(t)(F(t,vr(t)))

if and only if

〈v̇r(t)− v̇(t), J(F(t,vr(t)))− J(v̇r(t))〉 ≥ 0 for all v̇(t) ∈ Z(D)(vr(t)).

6.2 The time–dependent Hartree method

Let 〈·, ·〉j be a scalar product defined on Vj (1 ≤ j ≤ d), i.e., Vj is a pre-Hilbert space. Then V = a

⊗d
j=1 Vj

is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v =
⊗d

j=1 v
(j) and

w =
⊗d

j=1 w
(j) by

〈v,w〉 =

〈
d⊗
j=1

v(j),

d⊗
j=1

w(j)

〉
:=

d∏
j=1

〈
v(j), w(j)

〉
j

for all v(j), w(j) ∈ Vj . (6.3)

This bilinear form has a unique extension 〈·, ·〉 : V × V → R. One verifies that 〈·, ·〉 is a scalar product,
called the induced scalar product. Let V be equipped with the norm ‖·‖ corresponding to the induced scalar

product 〈·, ·〉 . As usual, the Hilbert tensor space V‖·‖ = ‖·‖
⊗d

j=1 Vj is the completion of V with respect
to ‖·‖. Since the norm ‖·‖ is derived via (6.3), it is easy to see that ‖·‖ is a reasonable and even uniform
crossnorm.

Let us consider in V‖·‖ a flow generated by a densely defined operator A ∈ L(V‖·‖,V‖·‖). More precisely,
there exists a collection of bijective maps ϕt : D(A) −→ D(A), here D(A) denotes the domain of A, satisfying

(i) ϕ0 = id,

(ii) ϕt+s = ϕt ◦ϕs, and

(iii) for u0 ∈ D(A), the map t 7→ ϕt is differentiable as a curve in V‖·‖, and u(t) := ϕt(u0) satisfies

u̇ = Au,

u(0) = u0.

In this framework we want to study the approximation of a solution u(t) = ϕt(u0) ∈ V‖·‖ by a curve

vr(t) := λ(t)⊗dj=1 vj(t) in the Hilbert manifold M(1,...,1)(V), also called in [21] the Hartree manifold. The
time–dependent Hartree method consists in the use of the Dirac–Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following Reduced Order Model:

v̇r(t) = Pvr(t)(Avr(t)) for t ∈ I,
vr(0) = v0,

with v0 = λ0 ⊗dj=1 v
(j)
0 ∈ M(1,...,1)(V) being an approximation of u0

6. By using the characterisation of the

metric projection in a Hilbert space, for each t > 0 we would like to find v̇r(t) ∈ Tvr(t)i
(
Tvr(t)(M(1,...,1)(V))

)
such that

〈v̇r(t)−Avr(t), v̇(t)〉 = 0 for all v̇(t) ∈ Tvr(t)i
(
Tvr(t)(M(1,...,1)(V))

)
, (6.4)

vr(0) = v0 = λ0 ⊗dj=1 v
(j)
0 ,

and where, without loss of generality, we may assume ‖v(j)
0 ‖j = 1 for 1 ≤ j ≤ d. A first result is the following.

6Indeed, v0 can be chosen as the best approximation of u0 in M(1,...,1)(V) because M(1,...,1)(V) = T(1,...,1)(V) \ {0}.
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Lemma 6.4 Let v ∈ C1(I,U(v0)), where v(0) = v0 ∈M(1,...,1)(V) and (U(v0),Θv0
) is a local chart for v0

inM(1,...,1)(V). Assume that v is also a C1-morphism between the manifolds I ⊂ R and U(v0) ⊂M(1,...,1)(V)

such that v(t) = λ(t)
⊗d

j=1 vj(t) for some λ ∈ C1(I,R) and vj ∈ C1(I, Vj) for 1 ≤ j ≤ d. Then

v̇(t) = λ̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

v̇j(t)⊗
⊗
k 6=j

vk(t) = Tv(t)i(Ttv(1)). (6.5)

Moreover, if vj(t) ∈ SVj , i.e., ‖vj(t)‖j = 1, for t ∈ I and 1 ≤ j ≤ d, then v̇j(t) ∈ Tvj(t)(SVj ) for t ∈ I and
1 ≤ j ≤ d.

Proof. First at all, we recall that by the construction of U(v0) it follows that Wmin
j (v0) = Wmin

j (v(t))

and that Umin
j (v0) = span{v(j)

0 } is linearly isomorphic to Umin
j (v(t)) for all t ∈ I and 1 ≤ j ≤ d. Assume

Θv0
(v(t)) = (λ(t), L1(t), . . . , Ld(t)), i.e.,

v(t) := λ(t)

d⊗
j=1

(idj + Lj(t)) (v
(j)
0 ),

where λ ∈ C1(I,R \ {0}), Lj ∈ C1(I,L(Umin
j (v0),Wmin

j (v0))) and (idj + Lj(t))(v
(j)
0 ) ∈ Umin

j (v(t)) for
1 ≤ j ≤ d. We point out that the linear map Ttv : R→ Tv(t)(M(1,...,1)(V)) is characterised by

Ttv(1) = (Θv0 ◦ v)′(t) = (λ̇(t), L̇1(t), . . . , L̇d(t)). (6.6)

Since Lj ∈ C1(I,L(Umin
j (v0),Wmin

j (v0))) then L̇j ∈ C0(I,L(Umin
j (v0),Wmin

j (v0))). Observe that Umin
j (v0)

and Umin
j (v(t)) have Wmin

j (v0) as a common complement. From Lemma 2.6 we know that

PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t)) : Umin

j (v(t)) −→ Umin
j (v0)

is a linear isomorphism. We can write

Lj(t) = Lj(t)PUmin
j (v0)⊕Wmin

j (v0) and L̇j(t) = L̇j(t)PUmin
j (v0)⊕Wmin

j (v0),

and then in (6.6) we identify L̇j(t) ∈ L(Umin
j (v0),Wmin

j (v0))) with

L̇j(t)PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t)) ∈ L(Umin

j (v(t)),Wmin
j (v0))).

Introduce vj(t) := (idj + Lj(t))(v
(j)
0 ) for 1 ≤ j ≤ d. Then

L̇j(t)(vj(t)) = L̇j(t)PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t))(v

(j)
0 + Lj(t)(v

(j)
0 )) = L̇j(t)(v

(j)
0 )

holds for all t ∈ I and 1 ≤ j ≤ d. Hence

v̇j(t) = L̇j(t)(v
(j)
0 ) = L̇j(t)(vj(t)) (6.7)

holds for all t ∈ I and 1 ≤ j ≤ d. From Lemma 5.5(b) and (6.6), we have

Tv(t)i(Ttv(1)) = λ̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

L̇j(t)(vj(t))⊗
⊗
k 6=j

vk(t),

and, by using (6.7) for v(t) = λ(t)
⊗d

j=1 vj(t), we obtain (6.5).

To prove the second statement, recall that Umin
j (v(t)) = span {vj(t)} and Vj = Umin

j (v(t)) ⊕Wmin
j (v0)

for 1 ≤ j ≤ d. Then we consider

Wmin
j (v0) = span {vj(t)}⊥ = {uj ∈ Vj : 〈uj , vj(t)〉j = 0} for 1 ≤ j ≤ d,
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and hence 〈v̇j(t)), vj(t)〉j = 0 holds for 1 ≤ j ≤ d. From Remark 2.19, we have (v̇1(t), . . . , v̇d(t)) ∈
C(I,×d

j=1 Tvj(t)(SVj )), because of Wmin
j (v0) = Tvj(t)(SVj ) for 1 ≤ j ≤ d.

Before stating the next result, we introduce for vr(t) = λ(t)
⊗d

j=1 vj(t) the following time dependent
bilinear forms

ak(t; ·, ·) : Vk × Vk −→ R,

by

ak(t; zk, yk) :=

〈
A

zk ⊗⊗
j 6=k

vj(t)

 ,

yk ⊗⊗
j 6=k

vj(t)

〉
for each 1 ≤ k ≤ d. Now, we will show the next result (compare with Theorem 3.1 in [21]).

Theorem 6.5 (Time dependent Hartree method) The solution vr(t) = λ(t)
⊗d

j=1 vj(t) for (v1(t), . . . , vd(t)) ∈
×d

j=1 SVj of

v̇r(t) = Pvr(t)(Avr(t)) for t ∈ I,
vr(0) = v0,

satisfies
〈v̇j(t), ẇj(t)〉j − aj(t; vj(t), ẇj(t)) = 0 for all ẇj(t) ∈ Tvj(t)(SVj ), 1 ≤ j ≤ d,

and

λ(t) = λ0 exp

(∫ t

0

〈
A
(
⊗dj=1vj(s)

)
,⊗dj=1vj(s)

〉
ds

)
.

Proof. From Lemma 6.4 we have Tvr(t)

(
M(1,...,1)(V)

)
= R ××d

j=1 Tvj(t)(SVj ), Thus, for each ẇ(t) ∈
Tv(t)i

(
Tv(t)

(
M(1,...,1)(V)

))
there exists (β̇(t), ẇ1(t), . . . , ẇd(t)) ∈ R××d

j=1 Tvj(t)(SVj ), such that

ẇ(t) = β̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

ẇj(t)⊗
⊗
k 6=j

vk(t).

Then (6.4) holds if and only if〈
v̇r(t)−Avr(t), β̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

ẇj(t)⊗
⊗
k 6=j

vk(t)

〉
= 0

for all (β̇(t), ẇ1(t), . . . , ẇd(t)) ∈ R××d
j=1 Tvj(t)(SVj ). Then

λ̇(t)β̇(t) + λ(t)2
d∑
j=1

〈v̇j(t), ẇj(t)〉j − 〈A d⊗
s=1

vs(t), ẇj(t)⊗
⊗
k 6=j

vk(t)〉


−λ(t)β̇(t)〈A

d⊗
j=1

vj(t),

d⊗
j=1

vj(t)〉 = 0,

i.e.,

β̇(t)
(
λ̇(t)− λ(t)〈A

⊗d
j=1 vj(t),

⊗d
j=1 vj(t)〉

)
+λ(t)2

∑d
j=1

(
〈v̇j(t), ẇj(t)〉j − 〈A

⊗d
s=1 vs(t), ẇj(t)⊗

⊗
k 6=j vk(t)〉

)
= 0

(6.8)

holds for all β̇(t) ∈ R and (ẇ1(t), . . . , ẇd(t)) ∈×d
j=1 Tvj(t)(SVj ). If λ(t) solves the differential equation

λ̇(t) =
〈
A
(
⊗dj=1vj(t)

)
,⊗dj=1vj(t)

〉
λ(t)

λ(0) = λ0,
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i.e.,

λ(t) = λ0 exp

(∫ t

0

〈
A
(
⊗dj=1vj(s)

)
,⊗dj=1vj(s)

〉
ds

)
,

then the first term of (6.8) is equal to 0. Therefore, from (6.8) we obtain that for all j ∈ D,

〈v̇j(t), ẇj(t)〉j − 〈A
d⊗
s=1

vs(t), ẇj(t)⊗
⊗
k 6=j

vk(t)〉 = 0,

that is,
〈v̇j(t), ẇj(t)〉j − aj(t; vj(t), ẇj(t)) = 0

holds for all ẇj(t) ∈ Tvj(t)(SVj ), and the theorem follows.
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