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METRIC CURVATURES REVISITED – A BRIEF

OVERVIEW

EMIL SAUCAN

Abstract. We survey metric curvatures, special accent being placed

upon the Wald curvature, its relationship with Alexandrov curvature,

as well as its application in defining a metric Ricci curvature for PL

cell complexes and a metric Ricci flow for PL surfaces. In addition, a

simple, metric way of defining curvature for metric measure spaces is

proposed.

1. Introduction

We begin with a brief motivation for our interest in the material of this

chapter: The reason we study Metric Geometry is due to the fact that

it provides us with a minimalistic framework that requires no additional

smoothness, nor does it impose any supplementary, ad hoc structure upon

a given geometric object. It is therefore our firm belief that this property

renders the metric method as an approach ideally suited for the study of the

various structures and problems encountered in computer Science in gen-

eral, and in Graphics, Imaging and Vision in particular and that, moreover,

this Newtonian stance of “hypotheses non fingo” represents not only the

philosophically correct attitude, it also is ideally suited for the truthful in-

telligence of Digital Spaces. This terse and somewhat vague argument was
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2 EMIL SAUCAN

augmented in [94] with examples drawn fromWavelet Theory (and practice),

DNA Microarray Analysis, Imaging and Graphics, and we briefly mention

them here, too, as well as a possible application to Networking.

To be sure, the term “Metric Geometry” is extensively used elsewhere and

there exists a quite extensive literature on Metric Geometry and its various

applications to Computer Science. (See, e.g. [16], [56], [51], [1], to mention

only very small number of titles from an impressive literature – without any

chance whatsoever of exhausting it). Unfortunately, the “linear”, or “first

order Geometry” considered in the articles mentioned above does not fulfill

all its expectations, and particularly so in Manifold Learning (as well as in

Imaging and Graphics). To explain this, we could emphasize the essential

importance of “second order Geometry”, or succinctly, the Geometry of

curvature, in Graphics, Imaging and Manifold Learning. We did this in

some detail in our previous work already alluded to, so we refrain repeating

ourselves, except to quote again the phrase so aptly coined by the regretted

Robert Brooks: “The fundamental notion of differential geometry is the

concept of curvature” ([18]) – And our goal here is to sketch the very basis

of a metric (“discrete”) Differential Geometry.

Before we conclude the introduction, we wish to outline the structure of

the main part of the paper: In Section 2 we briefly discuss some metric

notions of curvature for 1-dimensional geometric objects, i.e. curves. The

accent is placed on the so called Haantjes (or Finsler-Haantjes) curvature,

partly because we shall make appeal to it in the last section, where we sug-

gest, amongst others, a simple approach to the introduction of a curvature

for metric measure spaces. Section 3 represents the very nucleus, of this

chapter. In its beginning we introduce the “main character” of this paper,

namely the Wald (or Wald-Berestovskii) curvature, we discuss its properties

and its relationship to the much better known notion of Alexandrov curva-

ture and we apply it to develop a metric Ricci flow for PL surfaces as well

as notion of metric Ricci curvature for cell complexes. In the forth – and

last – we recall notion of snowflaking and we apply it to the introduction of

a simple approach to curvature on metric measure spaces, with applications

to Sampling Theory.1

1As the reader will become aware while progressing with this text, we have written

previously two book chapters on metric curvatures. However the present paper does not



LECTURENOTES-LUMINY 3

2. Metric Curvature for Curves

We do not detail here all the basic, simple geometric ideas that reside

behind the various notions of metric curvature; the reader who might feel

a slower, more graduate and detailed exposition is needed is referred to

our previous expositions [90] and [94]. (He might also consult with much

benefit [11], and we refer the reader to this book, as well as to [13], [14]

for any missing notions in our exposition.) Neither do we (as we already

warned the reader) go into details over all the metric curvatures for curves.

However, we find impossible to write an overview on the subject of metric

curvatures without mentioning them, even if only very briefly.

2.1. Menger Curvature. The simplest and most direct version of metric

curvature for curves is the so called Menger curvature κM . It’s idea is to

mimic the definition of the osculatory circle, by first defining the (metric)

curvature of triangles (or triples of points), by defining the curvature K(T )

of a triangle T to be just 1/R(t), where R(T ) is the radius of the circle

circumscribed to the triangle, then passing to the limit (exactly like in the

standard, classical osculatory circle definition). To define K(T ), one makes

appeal to some very elementary and quite well know formulas of high-school

geometry. Unfortunately, this impose on the space under scrutiny an in-

trinsically Euclidean notion of curvature. Nevertheless, Menger curvature

has been employed with considerable success to the study of such problems

as finding estimates (obtained via the Cauchy integral) for the regularity of

fractals and the flatness of sets in the plane (see [75]). As far as practical

implementations are concerned, Menger curvature has been used for curve

reconstruction ([28]). Also, one might consider its use in for the obvious

task of approximating the principal curvatures2, hence the computation of

represent a calque of any of these previous ones. For one, the present one is addressed to

a much more mathematically literate (not to say “very well educated”) audience than the

previous expositions. To be sure, certain repetitions are, unfortunately, unavoidable: After

all, the same subject represents the common theme of all these three papers. However,

we have strived to keep these at an inevitable minimum. Moreover, we did our best to

emphasize different aspects (in general, more modern ones) as well as introducing some

novel applications.
2We know that in mentioning this here we anticipate, somewhat, the reminder of the

paper.
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Gauss and mean curvature, of triangulated (polyhedral) surfaces, and their

manifold uses in Graphics, Imaging and other, related fields. Experiments

with the Menger curvature (see Figure 1) and with the Haantjes curvature

(see below and [98]) have shown, unfortunately, only moderate success.

Figure 1. A standard test image (left) and its Menger cur-

vature (right).

The reader may have already recognized Menger curvature to be nothing

else than Gromov’s K3({p, q, r}), where p, q, r represent the vertices of a tri-

angle, introduced in Memoli’s exposition in the present volume. However,

while the general setting of the modern discourse are certainly important,

there still is use for the classical, “parochial” Menger curvature, as demon-

strated by its many contemporary uses, thus interest and mathematical ac-

tivity around the “old fashioned” Menger curvature still exists, even though

the much more general and modern setting of Kn(X) is much more alluring.

Moreover, it should be noted that, beyond this generality there rests a lot

of uncertainty, as Gromov himself notes [32].

Remark 2.1. Discussing Menger curvature, and mainly the idea behind it,

one can hardly not mention the very recent development [7]3. Here a kind

of “comparison Menger” curvature is introduced. Very loosely formulated,

whereas in the classical Menger curvature a specific, Euclidean in nature,

formula is developed for the circumradius, here it is only compared to that

3Although, when these notes were started, the mentioned work was still not published.
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of a triangle of the same sides, in different model (or gauge) surfaces. This

is similar (and presumably inspired by) the Alexandrov curvature (which we

shall discuss later on).

Remark 2.2. While again anticipating higher dimensional curvatures (and

mainly 2-dimensional ones), we can not leave this short section on Menger

curvature without mentioning the Menger curvature measure:

(2.1) µ(T ) = µp(T ) =
∑

T∈T
κpM (T )(diam T )2 ,

for some p ≥ 1, where κM (T ) denotes the Menger curvature (of the triangle

T ).

(See, e.g. [53] and, for a somewhat different approach and another range

of problems altogether, [107].)

In the applications range, one possible use of the Menger curvature mea-

sure (in its alternative variant) is in the field of Pattern Recognition, for tex-

ture segmentation and classification – see [29]. This represents an approach

to non local “operators” for Imaging, radically different (being “purely”

geometric) from those of Osher et al. [50], [30] and Jost et al. [45], [46].

2.2. Haantjes Curvature. Having only very briefly presented the Menger

curvature, we shall expound in somewhat more detail upon another, less

commonly known notion of metric curvature, namely the so called Haantjes

curvature or Finsler-Haantjes curvature.4 We have chosen to do so not only

because this curvature does not mimic R2 (we already have emphasized this

point in [94] and elsewhere), nor because of its adaptivity to applications

(again, see [94] and the bibliography within, but see also Remark 2.7 below).

The reasons behind our choice are that we both want to present some of

Haantjes connections with other notions (not just of curvature), and because

we wish to suggest it represents a simple and direct alternative – at least in

certain applications – of more involved and fashionable concepts.

Definition 2.3 (Haantjes curvature). Let (M,d) be a metric space and let

c : I = [0, 1]
∼→ c(I) ⊂ M be a homeomorphism, and let p, q, r ∈ c(I), q, r 6=

4Named after Haantjes [42], who extended to metric spaces an idea introduced by

Finsler in his PhD Thesis.
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p. Denote by q̂r the arc of c(I) between q and r, and by qr line segment

from q to r.

We say that c has Haantjes curvature κH(p) at the point p iff:

(2.2) κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)
(
l(q̂r)

)3 ;

where “l(q̂r)” denotes the length – in intrinsic metric induced by d – of q̂r.

Remark 2.4. Since for points/arcs where Haantjes curvature exists, l(q̂r)
d(q,r) →

1, as d(q, r) → 0 (see [42]), κH can alternatively be defined (see, e.g. [49])

as

(2.3) κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)
(
d(q, r))

)3 ;

As it turns out, in applications it is this alternative form of the definition

of Haantjes curvature proves itself to be more malleable (see [94] for some

details).

The definition of Haantjes curvature (in both its versions) is quite intuitive

and even the
(
d(q, r)

)3
factor is clearly inserted for scaling reasons. Far less

intuitive (and somewhat puzzling) is the “24” factor. However, it arises

quite naturally in the proof of following basic (and reassuring, so to say5)

theorem:

Theorem 2.5. Let γ ∈ C3 be smooth curve in R3 and let p ∈ γ be a

regular point. Then the metric curvature κH(p) exists and equals the classical

curvature of γ at p.

(For a proof, see [42] or – probably somewhat more easily accessible –

[13].)

Moreover, the same result holds for Menger curvature (see [13]). In fact,

the two curvatures (when both applicable) coincide, as shown by the next

result:

Theorem 2.6 (Haantjes). Let γ be a rectifiable arc in a metric space (M,d),

and let p ∈ γ. If κM and κH exist, then they are equal.

5since it proves us that, indeed, for smooth curves, Haantjes curvature coincides with

the classical notion of curvature.
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Remark 2.7. With the risk of being somewhat redundant, but to mirror our

presentation of Menger curvature, we mention here, in brief, that Haantjes

has proved its versatility in such diverse fields as Imaging and Graphics,

Wavelets (with applications for texture segmentation) and DNA Microarray

Analysis. (For details see again [94] and the bibliography within. See also

[65] for an application to the quasi-conformal and quasi-isometric planar

representation of (medical) images.)

Figure 2. A natural image (left) and its average Haantjes

curvature (right).

2.2.1. Haanjes curvature and excess. A metric geometry concept that has

been proven itself as both flexible and powerful, in many mathematical set-

tings, and in particular in studying the Global Geometry of Manifolds (see,

e.g., [34], [35] and the bibliography therein), is the excess:

Definition 2.8 (Excess). Given a triangle6 T = △(pxq) in a metric space

(X, d), the excess of T is defined as

(2.4) e = e(T ) = d(p, x) + d(x, q) − d(p, q).

A local version of this notion was introduced (seemingly by Otsu [74]),

namely the local excess (or, more precisely, the local d-excess):

(2.5) ed(X) = sup
p

sup
x∈B(p,ρ)

inf
q∈S(p,ρ)

(e(△(pxq)) ,

6not necessarily geodesic
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where ρ ≤ rad(X) = infp supq d(p, q), (and where B(p, ρ), S(p, ρ) stand – as

they usually do – for the ball and respectively sphere of center p and radius

ρ).

In addition, global variations of this quantity have also been defined:

(2.6) e(X) = inf
(p,q)

sup
x

(e(△(pxq)) ,

and, the so called global big excess (see [74]):

(2.7) E(X) = sup
q

inf
p
sup
x

(e(△(pxq)) .

Intuitively, it is clear that (local) excess and curvature are closely related

concepts, since the geometric “content” of the notion of local excess resides

in the fact that, for any x ∈ B(p, ρ), there exists a (minimal) geodesic γ from

p to S(p, ρ) such that γ is close to x. More precisely, we have the following

relation between the two notions:

(2.8) κ2H(T ) =
e

ρ3
,

where ρ = ρ(p, q), and where by the curvature of a triangle T = T (pxq)

we mean the curvature of the path p̂xq. Here and below we have used a

simplified notation and discarded (for sake of simplicity and clarity) the

normalizing constant “24”.7 Thus Haantjes curvature can be viewed as a

scaled version of excess. Keeping this in mind, one can define also a global

version of this type of metric curvature, namely by defining, for instance:

(2.9) κ2H(X) =
E(X)

diam3(X)
,

or

(2.10) κ2H(X) =
e(X)

diam3(X)
,

as preferred.

To be sure, one can proceed in the opposite direction and express the

proper (i.e. point-wise) Haantjes curvature by means of the definition (2.5)

of local excess, as

(2.11) κ2H(x) = lim
ρ→0

e(x).

7In any case, it is not truly required and, in fact, even cumbersome in practical appli-

cations (see [97], [3] for two such examples).
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Remark 2.9. We should mention that both Menger and Haantjes curvatures

have their more modern (“updated” and “sophisticated”) respective versions

– see [2]. However, let us add here that, at least as far as applications are

concerned, we favour the older notions over their more modern “avatars”,

not solely for their simplicity, but also for a number of reasons, mainly

appertaining to their potential:

(1) First and foremost, while the Alexander-Bishop variants are more

“tight”, so to say, they coincide with their classical counterparts on

all but the most esoteric spaces;

(2) They are applicable to more general settings, fact that represents

a further incentive in their application in discrete (i.e. Computer

Science driven) settings;

(3) In addition, no a priori knowledge of the global geometry of the

ambient space (i.e. Alexandrov curvature) is presumed, nor is it

necessary to first determine the curves of constant curvature (see

[2]) in order to compute these curvatures; furthermore

(4) They are easy to compute in a direct fashion in the discrete setting

(at least amongst those discrete versions we encountered), thus they

are simpler and far more intuitive;

(5) Last – but certainly not least – they are more ready to lend them-

selves to discretization, hence admit easy and direct “semi-discrete”

(or “semi-continuous”) versions, as the one mentioned in Remark 2.7

above. In view of this and their simplicity noted above, they prove

to be more conducive towards practical applications.

3. Metric Curvature for Surfaces: Wald Curvature

3.1. Wald Curvature. We introduce here the main type of metric curva-

ture that we overview in this chapter, namely the so called Wald curvature.

Wald’s seminal idea was to go back to Gauss’ original method of defining

surface curvature by comparison to a standard, model surface (i.e. the unit

sphere in R3), while extending it to general gauge surfaces, rather than

restrict himself to the unit sphere. Moreover, instead of comparing infini-

tesimal areas (which would be an impossible task in general metric space
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not endowed with a measure), he compared quadrangles. More precisely,

his starting point was the following definition:

Definition 3.1. Let (M,d) be a metric space, and let Q = {p1, ..., p4} ⊂ M ,

together with the mutual distances: dij = dji = d(pi, pj); 1 ≤ i, j ≤ 4.

The set Q together with the set of distances {dij}1≤i,j≤4 is called a metric

quadruple.

Remark 3.2. The reader has undoubtedly already recognized that the defi-

nition above conducts toward K4(X). Indeed, we can view, in a sense, this

chapter as representing an extended overview of and discussion on K4(X).

Remark 3.3. The following slightly more abstract definition can be also

considered, one that does not make appeal to the ambient space: a metric

quadruple being a 4 point metric space, i.e. Q =
(
{p1, ..., p4}, {dij}

)
, where

the distances dij verify the axioms for a metric. However, this comes at a

price, as we shall shortly see in Remark 3.5.

Before being able to pass to the next definition we need to introduce

some additional notation: Sκ denotes the complete, simply connected surface

of constant Gauss curvature κ (or space form), i.e. Sκ ≡ R2, if κ = 0;

Sκ ≡ S2√
κ
, if κ > 0; and Sκ ≡ H2√

−κ
, if κ < 0. Here Sκ ≡ S2√

κ
denotes the

sphere of radius R = 1/
√
κ, and Sκ ≡ H2√

−κ
stands for the hyperbolic plane

of curvature
√
−κ, as represented by the Poincaré model of the plane disk

of radius R = 1/
√
−κ .

Definition 3.4. The embedding curvature κ(Q) of the metric quadruple Q

is defined to be the curvature κ of the gauge surface Sκ into which Q can

be isometrically embedded – if such a surface exists.

Remark 3.5. Even though the basic idea of embedding curvature is, in truth,

quite intuitive, care is needed if trying to employ it directly, since there are

a number of issues that arise (as we have anticipated in Remark 3.3 above):

(1) If one uses the second (abstract) definition of the metric curvature

of quadruples, then the very existence of κ(Q) is not assured, as it

is shown by the following

Counterexample 3.6. The metric quadruple of lengths

d12 = d13 = d14 = 1; d23 = d24 = d34 = 2
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Figure 3. Isometric embedding of a metric quadruple in a

gauge surface: S2√
κ
(left) and H2√

κ
(right) .

admits no embedding curvature.

(2) Any linear quadruple is embeddable, apart from the Euclidean plane,

in all hyperbolic planes (i.e. of any strictly negative curvature), as

well as in infinitely many spheres (whose radii are sufficiently large

for the quadruple to be realized upon them).

(3) Moreover, even if a quadruple has an embedding curvature, it still

may be not unique (even if Q is not linear); as it is illustrated by

the following examples:

Example 3.7. (a) For each κ > 0, each neighbourhood of any point

p ∈ Sκ contains a non-degenerate quadruple that is also isomet-

rically embeddable in R2. (For the proof see [13], pp. 372-373).

(b) The quadruple Q of distances d13 = d14 = d23 = d24 = π, d12 =

d34 = 3π/2 admits exactly two embedding curvatures: κ1 = 1
2

and κ2 ∈
(
1
4 ,

4
9

)
. (See [14].)

We are now able to define the Wald curvature [115],[116] (or, more pre-

cisely, its modification due to Berestovskii [10]):
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Definition 3.8. Let (X, d) be a metric space. An open set U ⊂ X is called

a region of curvature ≥ κ iff any metric quadruple can be isometrically

embedded in Sm, for some m ≥ k. A metric space (X, d) is said to have

Wald-Berestovskii curvature ≥ κ iff any x ∈ X is contained in a region

U = U(x) of curvature ≥ κ.

The embedding curvature at a point is now definable most naturally as a

limit. However, we need first yet another preparatory definition:

Definition 3.9. (M,d) be a metric space, let p ∈ M and let N be a neigh-

bourhood of p. Then N is called linear iff N is contained in a geodesic

curve.

Definition 3.10. Let (M,d) be a metric space, and let p ∈ M be an ac-

cumulation point. Then M has (embedding) Wald curvature κW (p) at the

point p iff

(1) Every neighbourhood of p is non-linear;

(2) For any ε > 0, there exists δ > 0 such that if Q = {p1, ..., p4} ⊂ M

and if d(p, pi) < δ , i = 1, ..., 4; then |κ(Q)− κW (p)| < ε.

Fortunately, for “nice” metric spaces – i.e. spaces that are locally suffi-

ciently “plane like” – the embedding curvature exists and it is unique (see,

e.g, [13] and, for a briefer but more easily accessible presentation, [90]).

Moreover – and this represents a fact that is very important for some of our

own goals, as detailed further on (see Section 6.1) – this embedding curva-

ture coincides with the classical Gaussian curvature. Indeed, one has the

following result due to Wald:

Theorem 3.11 (Wald [116]). Let S ⊂ R3, S ∈ Cm, m ≥ 2 be a smooth

surface. Then, given p ∈ S, κW (p) exists and κW (p) = K(p), where K(p)

denotes the Gaussian curvature at p.

Remark 3.12. In the theorem above the metric considered in the computa-

tion of Wald curvature is the intrinsic one of the surface. (Indeed, the re-

ciprocal Theorem 3.13 below is formulated, at least prima facie, for a much

more general class of metric spaces than mere smooth surfaces embedded in

Euclidean 3-space.) However, in applications Euclidean (extrinsic) distances

are used instead. However, this does not represent a theoretical obstruction
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(only, perhaps, a practical one) – see, for instance, [94], Section 4.3 and the

references therein.8

Moreover, Wald also has shown that the following partial reciprocal the-

orem also holds:

Theorem 3.13. Let M be a compact and convex metric space. If κW (p)

exists, for all p ∈ M , then M is a smooth surface and κW (p) = K(p), for all

p ∈ M .

Remark 3.14. Obviously, here the metric considered is the abstract one of

the given metric space, that is proven to coincide with the intrinsic one of a

smooth surface.

The results above, in conjunction, show that Wald curvature represents,

indeed, a proper metrization of the classical (smooth) notion, and not just

a mathematical “divertissement”, lacking any significant geometric content.

We continue with a definition whose full significance will become more

clear in the sequel, where it will be viewed in the correct perspective.

Definition 3.15. A metric quadruple Q = Q(p1, p2, p3, p4), of distances

dij = dist(pi, pj), i = 1, ..., 4, is called semi-dependent (or a sd-quad, for

brevity), there exist 3 indices, e.g. 1,2,3, such that: d12 + d23 = d13.

Remark 3.16. The condition in the definition above implies, in fact, that

the three points in question lie on a common metric segment i.e. a subset of

a given metric space that is isometric to a segment in R (see [13], p. 246).

Perhaps the main advantages of sd-quads stems from in the following fact:

Proposition 3.17. An sd-quad admits at most one embedding curvature.

In fact, there also exists a classification criterion – due to Berestovskii

[10], see also [82], Theorem 18 – for embedding curvature possibilities in the

general case:

Theorem 3.18. Let M , Q be as above. Then one and only one of the

following assertion holds:

(1) Q is linear.

8The literature on the subject being too vast to even begin and enumerate it here.
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(2) Q has exactly one embedding curvature.

(3) Q can be isometrically embedded in some Sm
κ , m ≥ 2; where κ ∈

[κ1, κ2] or (−∞, κ0], where Sm
κ ≡ Rm, if κ = 0; Sm

κ ≡ Sm√
κ
, if κ > 0;

and Sm
κ ≡ Hm√

−κ
, if κ < 0. Moreover, κ ∈ {κ0, κ1, κ2}. represent

the only possible values of planar embedding curvatures, i.e. such

that m = 2. (Here Sm√
κ
denotes the m-dimensional sphere of radius

R = 1/
√
κ, and Hm√

−κ
stands for the m-dimensional hyperbolic space

of curvature
√−κ, as represented by the Poincaré model of the ball

of radius R = 1/
√
−κ) .

(4) There exist no m and k such that Q can be isometrically embedded

in Sm
κ .

3.1.1. A Local-to-Global Result. Before passing to the actual computation of

Wald curvature, we include here a result who’s full importance and relevance

will become much clearer later on. More precisely, we bring the fitting

version of the Toponogov (or Alexandrov-Toponogov) Comparison Theorem:

Theorem 3.19 (Toponogov’s Comparison Theorem for Wald Curvature).

Let (X, d) be an inner metric space of curvature ≥ k. Then the entire X is

a region of Wald curvature ≥ k.

Since the proof is somewhat lengthy and technical we do not bring it here

– see [78] (see also [82]).

3.1.2. Computation of Wald Curvature I: The Exact Formula. A non-negligible

part of the attractiveness of Wald curvature does not reside in its simplicity

and intuitiveness, but also that it comes endowed, so to say, with a sim-

ple formula for its actual computation. (This is in stark contrast with the

Alexandrov (comparison) curvature at least in its usual presentation – but

we shall elaborate later on on this subject.) More precisely, we have the

following formula:

(3.1)

κ(Q) =





0 if D(Q) = 0 ;

κ, κ < 0 if det(cosh
√
−κ · dij) = 0 ;

κ, κ > 0 if det(cos
√
κ · dij) and

√
κ · dij ≤ π

and all the principal minors of order 3 are ≥ 0;
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where dij = d(xi, xj), 1 ≤ i, j ≤ 4, (cosh
√
−κ · dij) is a shorthand for

(cosh
√−κ · dij)1≤i,j≤n, etc., and D(Q) denotes the so called Cayley-Menger

determinant:

(3.2) D(x1, x2, x3, x4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 d212 d213 d214

1 d212 0 d223 d224

1 d213 d223 0 d234

1 d214 d224 d234 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

There is, in fact, nothing mysterious about the formula above. Indeed, it

has a very simple geometric meaning ensuing from the following fact:

(3.3) D(p1, p2, p3, p4) = 8
(
V ol(p1, p2, p3, p4)

)2
,

where V ol(p1, p2, p3, p4) denotes the (un-oriented) volume of the parallelepiped

determined by the vertices p1, ..., p4 (and with edges −−→p1p2,
−−→p1p3,

−−→p1p4).
9 From

here immediately follows that

Proposition 3.20. The points p1, ..., p4 are the vertices of a non-degenerate

simplex in R3 iff D(p1, p2, p3, p4) 6= 0̇.

Clearly, this also implies the opposite assertion, namely that a simplex of

vertices p1, ..., p4 is degenerate, i.e. isometrically embeddable in the plane

R2 ≡ S0 .

It is now relatively easy to guess that the expressions appearing in Formula

(3.2) for the cases where κ 6= 0 represent the equivalents of D(Q) in the

hyperbolic, respective spherical cases, using the well known fact, that, in the

spherical (resp. hyperbolic) metric, the distances dij are replaced by cos dij

(resp. cosh dij). However, the proof of this fact, as well for the analogous

formulas and results in higher dimension diverge from the boundaries of this

restricted exposition, therefore we refer the reader to [13].

Remark 3.21. A stronger result along these lines also exists. Moreover, it

is readily generalized to any dimension. For proofs and further details, see

[13].

9As a historical note, it is perhaps worthwhile to recall that Formula 3.3 above was

proved by Cayley in his very first mathematical paper [22] (published while he was still

begrudgingly making his living as a lawyer!...)
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3.1.3. Computation of Wald Curvature II: An Approximation. Unfortunately,

using Formula (3.1) for the actual computation of κ(Q) is anything but sim-

ple, since the equations involved are – apart from the Euclidean case –

transcendental, therefore not solvable, in general, using elementary meth-

ods. Moreover, they tend to display a numerical instability when solved with

computer assisted methods. (See [89], [98] for a more detailed comments and

some numerical results.)

Note that Formula (3.1) implies that, in practice, a renormalization might

be necessary for some of the vertices of positive Wald-Besetkovskii curvature,

which represents yet another impediment in it use.

Fortunate enough, there exists a good approximation result, due to Robin-

son. Not only does his result give a rational formula for approximating κ(Q)

and provide good error estimates, it also solves one other problem inherent

in the use of the Wald curvature, namely the possible lack of uniqueness

of the computed curvature. The way to circumvent this difficulty and the

other pitfalls of Formula (3.1) is to make appeal to the simpler geometric

configuration of sd-quads:

Theorem 3.22 ([85]). Given the metric semi-dependent quadruple Q =

Q(p1, p2, p3, p4), of distances dij = d(pi, pj), i, j = 1, ..., 4; the embedding

curvature κ(Q) admits a rational approximation given by:

(3.4) K(Q) =
6(cos∡02 + cos∡02

′)

d24
(
d12 sin

2(∡02) + d23 sin
2(∡02′)

)

where: ∡02 = ∡(p1p2p4) , ∡02
′ = ∡(p3p2p4) represent the angles of the Eu-

clidian triangles of sides d12, d14, d24 and d23, d24, d34 , respectively (see also

Figure 4). Moreover the absolute error R satisfies the following inequality:

(3.5) |R| = |R(Q)| = |κ(Q)−K(Q)| < 4κ2(Q)diam2(Q)/λ(Q) ,

where λ(Q) = d24(d12 sin∡02+d23 sin∡02
′)/S2, and where S = Max{p, p′};

2p = d12 + d14 + d24 , 2p
′ = d32 + d34 + d24.

We do not bring here the proof of Robinson’ result – the interested reader

can see [89] and in [98] (and, of course, to Robinson’s original paper [85]).

However, we would like to underline that basic idea of the proof is to basically

calque, in a general metric setting, the original way of defining Gaussian

curvature – in this case, rather than accounting for the area distortion, one
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Figure 4. The Euclidean triangles corresponding to an sd-quad.

measures the curvature by the amount of “bending” one has to apply to

a general planar quadruple so that it may be “straightened” to a triangle

△(p1p3p4), with p2 lying on the edge p1p3 – i.e. isometrically embedded as

a sd-quad – in some Sκ.

Remark 3.23. In some special cases (e.g. when d12 = d32, etc.) simpler

formulas are obtained instead of (3.4) – see, again, [85], or [89], [98]

Naturally, there raises the question whether Formula (3.4) (or any of its

variations mentioned above) is truly efficient in applications. The following

example, due also to Robinson, indicates that, at least in some cases, the

actual computed error is far smaller then the theoretical one provided by

Formula (3.5).

Example 3.24 ([85]). Let Q0 be the quadruple of distances d12 = d23 =

d24 = 0.15, d14 = d34 and of embedding curvature κ = κ(Q0) = 1. Then

κS2 < 1/16 and K(Q0) ≈ 1.0030280, whereas the error computed using

formula (3.5) is |R| < 0.45.

For some experimental results and comparison to other metric curvatures

for images, see [98]. However, we should emphasize that the results therein

do comply to the expectations arising from the following (quite expected,

but nevertheless necessary) theorem:
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Theorem 3.25. Let S be a smooth (differentiable) surface. Then, for any

point p ∈ S:

KG(p) = lim
n→0

K(Qn) ;

for any sequence {Qn} of sd-quads that satisfy the following conditions:

Qn → Q = �p1pp3p4 ; diam(Qn) → 0 .

Sketch of Proof Recall that the Gaussian curvature KG(p) at a point p is

given by:

KG(p) = lim
n→0

κ(Qn) ;

where Qn → Q = �p1pp3p4 ; diam(Qn) → 0. But, if Q is any sd-quad,

then κ2(Q)diam2(Q)/λ(Q) < ∞. Moreover, |R| is small if Q is not close to

linearity. In this case |R(Q)| ∼ diam2(Q), for any given Q (see [85]). The

theorem now follows easily.

�

Remark 3.26. The convergence result provided in Theorem 3.25 is not just

in the sense of measures and errors of different signs do not simply cancel

each other. Indeed, sign(κ(Q)) = sign(K(Q)), for any metric quadruple Q.

Wald Curvature and Isometric Embeddings. Proposition 3.20 and Remark

3.21 rise the general problem of the existence of isometric embeddings of

generic metric metric spaces into gauge spaces. While in its full generality

this is, of course, an unattainable goal, one would still be interested in

the much more restricted, but important in the applied setting (Graphics,

Imaging, Mathematical Modeling, Networking etc.), problem of isometric

embedding of PL surfaces in R3.

A partial result in this direction is a criterion for the local isometric

embedding of polyhedral surfaces in R3, resemblant to the classical Gauss

fundamental (compatibility) equation in the classical differential geometry

of surfaces, that we proved in [93]. However, to be able to formulate it we

need first some additional notations and results:

First, let us note that, in the context of polyhedral surfaces, the natural

choice for the set U required in Definition 3.8 is the star of a given vertex

v, that is, the set {evj}j of edges incident to v. Therefore, for such surfaces,

the set of metric quadruples containing the vertex v is finite.
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Equipped with this quite simple and intuitive choice for U (and in in

analogy with Alexandrov spaces – see also Section 5.1 below) it is quite

natural to consider, for PL surfaces, the following definition of the discrete

(PL, or “finite scale”) Wald curvature KW (v) at the vertex v:

(3.6) KW (v) = min
vi,vj ,vk∈Lk(v)

Kijk
W (v) ,

where Kijk
W (v) = κ(v; vi, vj , vk), and where Lk(v) denotes the link of the

vertex v.10 Note that here we consider the (intrinsic) PL distance between

vertices.

Let Q = {x1, x2, x3, x4} be a metric quadruple and let Vκ(xi) be defined

as follows:

(3.7) Vκ(xi) = ακ(xi;xj , xl) + ακ(xi;xj , xm) + ακ(xi;xl, xm)

where xi, xj , xl, xm ∈ Q are distinct, and κ is any number, and where the

angles αi , i = 1, 2, 3 are as in Figure 5.

Proposition 3.27 ([82], Theorem 23). Let (X, d) be a metric space and let

U ∈ X be an open set. U is a region of curvature ≥ κ iff Vκ(x) ≤ 2π, for

any metric quadruple {x, y, z, t} ⊂ U .

We can now state the desired result for local isometric embedding of

polyhedral surfaces in R3: Given a vertex v, with metric curvature KW (v),

the following system of inequalities should hold:

(3.8)





maxA0(v) ≤ 2π;

α0(v; vj , vl) ≤ α0(v; vj , vp) + α0(v; vl, vp), for all vj , vl, vp ∼ v;

Vκ(v) ≤ 2π;

Here

(3.9) A0 = max
i

V0 ;

10Recall that the link lk(v) of a vertex v is the set of all the faces of St(v) that are not

incident to v. Here St(v) denotes the closed star of v, i.e. the smallest subcomplex (of the

given simplicial complex K) that contains St(v), namely St(v) = {σ ∈ St(v)}∪{θ | θ 6 σ},

where St(v) denotes the star of v, that is the set of all simplices that have v as a face, i.e

St(v) = {σ ∈ K | v 6 σ}.
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Figure 5. The angles ακ(xi, xj , xl) (right), induced by the

isometric embedding of a metric quadruple in S2√
κ
(left).

“∼” denotes incidence, i.e. the existence of a connecting edge ei = vvj

and, of course, Vκ(v) = ακ(v; vj , vl) + ακ(v; vj , vp) + ακ(v; vl, vp), where

vj, vl, vp ∼ v, etc.

Returning to the analogy with the Gauss compatibility equation, the first

two inequalities represent the (extrinsic) embedding condition, while the

third one represents the intrinsic curvature (of the PL manifold) at the

vertex v.

Also, for details and a corresponding global embedding criterion see [93].

Remark 3.28. Before passing to more general issues, let us mention here

that, precisely as a Menger measure was introduced, one can also consider

(and, in fact, much more naturally) a Wald measure (for surfaces);

(3.10) µW (v) = KW (v) ·Area(St(v)),

where St(v) denotes the star of the vertex v.

We defer the investigation for future study of its usefulness in practice.

4. Wald Curvature under Gromov-Hausdorff Convergence

It is practically impossible, both from a purely mathematical viewpoint,

as well as considering the background of this volume as a whole (see mainly
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Memoli’s contribution) to introduce any notion of curvature without dis-

cussing its behaviour under the Gromov-Hausdorff convergence. We begin

with a much more general discussion and continue with some results regard-

ing Wald curvature and Gromov-Hausdorff convergence.

4.1. Intrinsic Properties and Gromov-Hausdorff Convergence. Given

that many of Graphics and Imaging tasks (and Sampling Theory, as well),

reduce, in the end, to better and better approximation by certain nets (or

graphs), be they triangular meshes in the first case, or square grids, in the

second, it is most natural (and, indeed, necessary) to have a comprehensive,

and sound approach to investigating the behaviour and convergence, under

limits, of the relevant properties.11 We overview here some significant results

regarding convergence of nets in metric spaces (basically due, seemingly, to

Gromov).

We begin by reminding the reader the following basic definition:

Definition 4.1. Let (X, d) be a metric space. A set {p1, . . . , pm} ⊂ X is

called an ε-net on(in) X iff the balls B(pk, ε), k = 1, . . . ,m cover X.

It turns out that ε-nets in compact metric spaces have the following im-

portant property:

Proposition 4.2. Let X, {Xn}∞n=1 be compact metric spaces. Then Xn
−→
GH

X

iff for all ε > 0, there exist finite ε-nets S ⊂ X and Sn ⊂ Xn, such that

Sn
−→
GH

S and, moreover, |Sn| = |S|, for large enough n.

The importance of the result above does not reside only in the fact that

compact metric spaces can be approximated by finite ε-nets – after all, just

the existence of some approximation by such sets is hardly surprising – but

rather in the fact that, as we shall shortly see, it assures the convergence of

geometric properties of Sn to those of S, as Xn
−→
GH

X. This would be, in a

nutshell, the real significance of the proposition above.

One can also reformulate Proposition 4.2 in an equivalent, in a less concise

and elegant manner yet, on the other hand, far more useful in concrete

instances (to say nothing of the fact that it is far more familiar in the

Applied Mathematics community):

11It was, it would appear, Gromov’s observation that, in the geometric setting, the

relevant convergence is the Gromov-Hausdorff one.
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Proposition 4.3. Let X,Y be compact metric spaces. Then:

(a) If Y is a (ε, δ)-approximation of X, then dGH(X,Y ) < 2ε+ δ.

(b) If dGH(X,Y ) < ε, then Y is a 5ε-approximation of X.

Recall that ε-δ-approximations are defined as follows:

Definition 4.4. Let X,Y be compact metric spaces, and let ε, δ > 0.

X,Y are called ε-δ-approximations (of each-other) iff: there exist sequences

{xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y such that

(a) {xi}Ni=1 is an ε-net in X and {yi}Ni=1 is an ε-net in Y ;

(b) | dX(xi, xj)− d(yi, yj) | < δ for all i, j ∈ {1, ..., N}.
An (ε, ε)-approximation is called, for short an ε-approximation.

Recall that a metric spaces whose metric d is intrinsic, i.e.induced by a

length structure (i.e. path length) by the ambient metric on a subset of a

given metric space is called a length space. Such spaces are, for obvious

reasons, of special interest in Geometry. (As a basic motivation both theo-

retical and practical, for considering such spaces, would be that of surfaces

in R3.) The following theorem shows that length spaces are closed in the

Gromov-Hausdorff topology:

Theorem 4.5. Let {Xn}∞n=1 be length spaces and let X be a complete metric

space such that Xn
−→
GH

X. Then X is a length space.

Using ε-approximations one can prove the following theorem and corollary,

that are quite important, not only for the specific purpose of this overview,

but in a far more general and powerful context (see e.g. [32] and [19]):

Theorem 4.6 (Gromov). Any compact length space is the GH-limit of a

sequence of finite graphs.

The proof of the theorem above is constructive, therefore potentially

adaptable in practical applications (such as those arrising in Graphics, Imag-

ing and related fields). For this very reason, and for essential simplicity we

bring it below:

Proof. Let ε, δ (δ ≪ ε) small enough, and let S be a δ-net in X. Also, let

G = (V,E) be the graph with V = S and E = {(x, y) | d(x, y) < ε}. We
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shall prove that G is an ε-approximation of X, for δ small enough, more

precisely, for δ < ε2

4diam(X) .

But, since S is an ε-net both inX and in G, and since dG(x, y) ≥ dX(x, y),

it is sufficient to prove that:

dG(x, y) ≤ dX(x, y) + ε .

Let γ be the shortest path between x and y, and let x1, ..., xn ∈ γ, such

that n ≤ length(γ)/ε (and dX(xi, xi+1) ≤ ε/2). Since for any xi there exists

yi ∈ S, such that dX(xi, yi) ≤ δ, it follows that dX(yi, yi+1) ≤ dX(xi, xi+1)+

2δ < ε.

Therefore, (for δ < ε/4), there exists an edge e ∈ G, e = yiyi+1. From

this we get the following upper bound for dG(x, y):

dG(x, y) ≤
n∑

n=0

dX(yi, yi+1) ≤
n∑

n=0

dX(xi, xi+1) + 2δn

But n < 2 length(γ)/ε ≤ 2diam(X)/ε. Moreover: δ < ε2/4 diam(X). It

follows that:

dG(x, y) ≤ dX(x, y) + δ
4diam(X)

ε
< dX(x, y) + ε .

Thus, for any ε > 0, there exists a graph an ε-approximation of X by a

graph G, G = Gε. Hence Gε
−→
ε X. �

In fact, one can strengthen the theorem above as follows:

Corollary 4.7. Let X be a compact length space. Then X is the Gromov-

Hausdorff limit of a sequence {Gn}n≥1 of finite graphs, isometrically embed-

ded in X.

Remark 4.8. A certain amount of care is needed when applying the theorem

above, as the following facts show:

(1) If Gn
→
εX, Gn = (Vn, En). If there exists N0 ∈ N such that

(∗) |En| ≤ N0, for all n ∈ N ,

then X is a finite graph.

(2) If condition (∗) is replaced by:

(∗∗) |Vn| ≤ N0, for all n ∈ N ,

then X will still be always a graph, but not necessarily finite.
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Remark 4.9. Theorem 4.6 can be strengthened as follows: Compact inner

metric spaces can be, in fact, Gromov-Hausdorff approximated by smooth

surfaces that, moreover, are embedded in R3, as shown by Cassorla [21]

(see also [32], p. 99 and the reference therein). In other words, one can

“visualize” in R3 (up to some predetermined but arbitrarily small error) any

compact inner metric space. Unfortunately, the genus of the approximating

surfaces can not remain bounded. (In consequence, in order that a good

approximation even of a simple space be obtained, using the method given

in Cassorla’s proof, one has to increase the topological complexity of the

approximating surface.)

Note also that there is no geometric (curvature) restriction on the approx-

imating surfaces. In fact, it is also stated in [21] that one can approximate

the given spaces with a series of smooth surfaces having Gaussian curvature

bounded from above by -1 (this being, however a seemingly unpublish re-

sult). Unfortunately, to obtain this, one has to abandon the embeddability

in R3 of the approximating surfaces.

We conclude this remark by adding a few words regarding Cassorla’s

proof: He begins by constructing an approximation by graphs, following

Gromov, then he considers the (smooth) boundaries of canonical tube neigh-

borhoods or, in other words, he builds the smooth surfaces having as axes

(or nerve) the graph constructed previously.

4.2. Wald Curvature and Gromov-Hausdorff Convergence. It turns

out (not very surprisingly, in fact, in view of the facts that we shall present

in the next section) that it is somewhat naive to hope for a generic result

for Wald curvature as such. It turns out that the upper and lower bound for

KW display quite different behaviours. There are very few results we can

state, therefore, in the generic case. The basic one is

Lemma 4.10. Let (Xi, di) be compact metric spaces, such that Xi
−→
GH

X. If

Bi ⊂ Xi, Bi = B(pi, r) is a region of curvature ≥ k, for all i ≥ 1, and if

pi−→
GH

p ∈ X, then B = B(p, r) is a region of curvature ≥ k in X.

(Recall that by Theorem 4.5 X is also an inner metric.)

In view of Toponogov’s Theorem we can now formulate:
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Theorem 4.11. Let (Xi, di) be (compact) metric spaces, such that Xi
−→
GH

X.

If Xi has curvature ≥ k, for all i ≥ 1, then X has curvature ≥ k.

Remark 4.12. We should note in his context that the diameter function is

continuous under the the Gromov-Hausdorff convergence.

4.2.1. The case KW ≥ K0. This is the case where a plethora of powerful

results exist, mainly due to Plaut [78], [79], [81].

The first such result represents a generalization of the classical by now

compactness theorem of Gromov (see, e.g. [32]). For its formulation we need

an additional notation: We denote by M(k, n,D) the class of all finitely

dimensional12 spaces of curvature ≥ k, dimension ≤ n and diameter ≤ D.

We can now formulate the theorem in question:

Theorem 4.13 (Plaut [82]). M(k, n,D) is compact in the Gromov-Hausdorff

metric.

Remark 4.14. Let us denote by M(k, n,D) the set of all Riemannian mani-

folds satisfying the same conditions as the spaces in M(k, n,D) (k denoting,

in this case, sectional curvature). Then (clearly) M(k, n,D) ( M(k, n,D).

The results above have quite important consequences for a variety of

practical fields (or, at least, for their more theoretical, basic aspects): Since

by the now classical Gromov Precompactness Theorem [32], any element in

a compact (hence a fortiori precompact) collection of compact metric spaces

admits, for any ε > 0, an ε-net with at most N(ε) number of elements,

they represent quite general sampling theorems, giving, moreover, a strong

upper bound on the number of sampling points – a number that depends,

apart from the class on the manifold, only on the quality of the sampling

(as given by ε). (The price to be paid, so to say, for the strengths above, is

represented by the non-algorithmic nature of these results.)

12The dimension can be taken as the topological dimension or the Hausdorff dimension

– see, e.g. [82].
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In fact, even for a larger class of metric spaces, namely M(k, n, ε), where

ε > 0 denotes a lower bound for the injectivity radius13 some important facts

can be asserted, such as the following theorem:

Theorem 4.15 (Plaut [79]). The elements of M(k, n, ε) are smoothable,

for any n.

Again, the theorem above is also highly relevant to Sampling Theory,

since it shows that the traditional approach in the field, that is of consid-

ering smoothings (“filtrations”) of the given signals/images and sampling

them according to a more traditional, Gauss curvature based scheme is the-

oretically valid.

Moreover, the following compactness result also holds:

Theorem 4.16 (Plaut [79]). M∗(k, n,D, ε) is compact in the Gromov-

Hausdorff metric, where M∗(k, n,D, ε) denotes the class of spaces of di-

mension equal to n, curvature ≥ k, diameter ≤ D and injectivity radius

≥ ε.

In addition to these compactness results, the following finiteness theorems,

representing generalizations of classical results of Cheeger [23], respectively

Grove-Petersen [36] and Grove-Petersen-Wu [37] also hold :

Theorem 4.17 (Perelman [76]). The class M∗(k, n,D) has finitely many

homeomorphism types.

(We believe that by now the notation must be clear to the reader.)

Theorem 4.18 (Perelman [76]). M(k, n,D, v), where v > 0 denotes a lower

bound on volume, has finitely many types of homeomorphism for all n, and

diffeomorphism, for all n 6= 4.

Remark 4.19. At first glance Theorems 4.17 and 4.18 seemingly are contra-

dicted by the existence of infinitely many homotopy types of lens spaces.

However, this is not the case, since they fail to satisfy the conditions of

the theorem even as Riemannian manifolds, thus, a fortiori as Alexandrov

13Without getting into the technical subtleties of the definition of the space of directions

Sp at a point p in a space of bounded curvature, the injectivity radius at p is defined as

infγ∈Sp
supt{γ|[0,t]is minimal}.
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spaces (see [36], p. 196). For instance, the lens spaces S2n+1/Zk have con-

stant curvature equal to 1 and diameter π/2, but have no lower bound on

the volume (and, indeed, they belong to infinitely many homotopy classes.

(Up to a scaling of volume, the same spaces show that the upper bound on

diameter is also necessary).

These last two theorems, as well as the previous, related results of Grove

et al. mentioned above have quite practical importance in the Recognition

Problem (in Manifold Learning and related fields), in particular in deter-

mining the complete so called “Shape DNA”.

More geometrically interesting, powerful results exists, but for lack of

space and for the sake of cohesiveness of the text, we do not bring here –

see [82] and the bibliography cited therein.

4.2.2. The case KW ≤ K0. As already mentioned in the introduction of this

section, spaces of Wald curvature bounded from above display a behaviour

widely divergent from those satisfying the opposite inequality. Most notable

they do not satisfy a fitting Toponogov type theorem, the example of the

flat torus T 2 = S1 × S1 being the basic one (see [82], p. 886 for details).

However, such spaces still have some very interesting geometric properties,

see again [82] as well as [2].

However, the most powerful results, due to Berestovskii [9] and Nikolaev

[69], [70], [71] (see also [80]) are obtained when combining the lower and

upper curvature bounds, the main such theorem being:

Theorem 4.20. A topological space admits a smooth manifold structure

(with or without boundary) iff (i) it is finite dimensional; and (ii) has a

metric curvature bounded both from above and from below.

5. Wald and Alexandrov Curvatures Comparison

We have alluded many times to the notion of Alexander curvature. More-

over, it is quite probably that many (if not most) of the readers are quite

familiar with this concept permeating modern Mathematics, certainly much

more than with the rather esoteric (for some) Wald curvature. It is therefore

only fitting that we finally discuss the relationship between these two types

of comparison curvature.
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5.1. Alexandrov Curvature. We begin by reminding the reader the def-

inition of Alexandrov comparison curvature. Before bringing the formal

definition, let us just specify the main difference between this approach and

Wald curvature: In defining Alexandrov curvature, one makes appeal to

comparison triangles in the model space (i.e. gauge surface Sk), rather than

quadrangles, as in the definition of Wald curvature.

A space is said to be of Alexandrov curvature ≥ k iff any of the following

equivalent conditions holds locally, and to be of Alexandrov curvature ≤ k

iff any of the conditions below holds with the opposite inequality:

Definition 5.1. Let X be an inner metric space, let T = △(p, q, r) be a

geodesic triangle, of sides pq, pr, qr, and let T̃ denote its(a) representative

triangle in Sk.

A0 Given the triangle T = △(p, q, r) and points x ∈ pq and y ∈ pr, there

exists a representative triangle T̃ in Sk. Let x̃, ỹ represent the corresponding

points on the sides of T̃ . Then d(x, y) ≥ d(x̃, ỹ).

A01 Given the triangles T = △(p, q, r) and T̃ as above, and a point

x ∈ pq, d(x, c) ≥ d(x̃, c̃).

A1 Given the triangle T = △(p, q, r), there exists a representative trian-

gle T̃ in Sk, and ∡(pq, pr) ≥ ∡(p̃q̃, p̃r̃), where ∡(pq, pr) denotes the angle

between pq and pr, etc.

A2 For any hinge H = (pq, pr), there exists a representative hinge H̃ =

(p̃q̃, p̃r̃) in Sk and, moreover, d(p, q) ≤ d(p̃, q̃), where a hinge is a pair of

minimal geodesics with a common end point.

Remark 5.2. (1) Axiom A0 represents the basic one in defining Alexan-

drov comparison. It is also the one used by Rinow [84], in his seem-

ingly (semi-)independent development of comparison geometry. (For

a shorter presentation of his approach, but somewhat more accessi-

ble and in English, see [13], [14] and, for an even briefer one, but easy

to reach, [90].) This condition represents nothing more the trans-

formation into an axiom of the following essential geometric fact:

Thales Theorem does not hold in Spherical and Hyperbolic Geome-

try. (In particular – and most spectacular – the line connecting the
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midpoints of two of the edges of a triangle does not equate half of

the third one.14)

(2) Condition A01 clearly represents just a particular case of A0, by

fixing y to be one of the end points of pr, say y = r. However, it is,

actually, equivalent to A0 and it is, in fact, usually easier to check. It

is sometimes used as the basic definition of Alexandrov comparison,

saying, for instance that “negatively curved spaces have short ties”

(the figure of speech being, we believe, self explanatory) – see, e.g.

[114]. The role of sd-quads in such fundamental results as Theorem

3.14 becomes now less strange and, in fact, it will become quite

clear once the result in the next section is introduced. We anticipate

somewhat by adding that now Robinson’s method in Theorem 3.18

shows itself as it truly is: A method15 of approximating the relevant

k appearing in Axiom A01.

(3) We have used here (for the most part) Plaut’s notation in [82]. For an

excellent, detailed, clear (and by now already classical) presentation

of the various comparison conditions, see [19].

(4) Conditions A1 and A2 show that one can introduce comparison Ge-

ometry via angle comparison. However, we prefer a “purely” metric

approach, even if it is somewhat illusory. (See [94] for the application

of this approach to a “purely” metric Regge calculus.)

5.2. Alexandrov Curvature vs. Wald Curvature. Loosely formulated,

the important fact regarding the connection between Wald and Alexandrov

curvatures is that (in the presence of sufficiently many minimal geodesics)

Wald curvature is (essentially) equivalent to Alexandrov curvature or, slightly

more precisely, that inner metric spaces with Wald curvature ≥ k satisfy the

condition of having sufficiently many geodesics. (This fact may be viewed

as an extended, weak Hopf-Rinow type theorem.) The formal enouncement

of this result requires yet more technical definitions, which we present below

for the sake of completeness:

14This well known “paradox” of the foundations of Geometry is, unfortunately, gener-

ally overlooked in certain applications in Imaging and Graphics, which results in a penalty

on the quality of the numerical results.
15developed avant la lettre
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Definition 5.3. Let X be an inner metric space and let γpq ⊂ X be a

minimal geodesic connecting the points p and q. γ is called

(1) extendable beyond q if there exists a geodesic γ̃, such that γ = γ̃|(p,q)
and q ∈ intγ̃.

(2) almost extendable beyond q if for any ε > 0, there exists an r ∈
X \{p, q}, such that σ(q; p, r) < ε, where σ(q; p, r) denotes the strong

excess

(5.1) σ(q; p, r) =
e(T )

min d(p, r), d(r, q)
,

where T = ∆(q, p, r) (and where e(T ), stands, as above, for its

excess).

We shall also need the following

Definition 5.4. Let X be as above and let p ∈ X. We denote

(5.2) Jp = {q ∈ X | ∃! minimal geodesic γpq almost extendable beyond q.} .

We have the following

Theorem 5.5 (Plaut [82],[81]). Let X be an inner metric space of Wald-

Berestovskii curvature ≥ κ. Then, for any p ∈ X, Jp contains a dense Gδ

set.

Since, by the Baire Category Theorem, the intersection of countably many

dense Gδ sets is a dense Gδ set, we obtain the following corollary:

Corollary 5.6. Let X be an inner metric space of Wald-Berestovskii cur-

vature ≥ κ, and let p1, p2, . . . ∈ X. Then there exist points p′1, p
′
2, . . . ∈ X

such that

(1) pi is arbitrarily close to pi, for all i;

(2) There exists a unique minimal geodesic connecting pi and p′i.

Moreover, one can take p′1 = p1.

In other words, given any three points p, q, r in X, there exist points

p1, q1, r1 arbitrarily close to them (respectively) such that p1, q1, r1 represent

the vertices of a triangle whose sides are minimal geodesics or, simply put,

one can construct (minimal geodesic) triangles “almost everywhere”.
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From the corollary above and from the Toponogov Comparison Theorem

we obtain the announced theorem that establishes the essential equivalence

between Alexandrov and Wald curvature, once the existence of “enough

geodesics” is assured:

Theorem 5.7 (Plaut [81],). Let X be an inner metric space. X is a space

of Alexandrov curvature bonded from below iff for every x ∈ X, there exists

an open set U , x ∈ U , such that for every y ∈ U the set Jy contains a dense

Gδ set of U .

(For a different formulation of the results above see [82], Corollary 40.)

In view of the result above, it is easy to recognize finitely dimensional

spaces of Wald curvature ≥ k in the garb that they are widely known in

the modern terminology, namely Alexandrov spaces. The reader can, there-

fore, substitute, in the results in the previous section “Alexandrov space”

whenever this is possible – this is the form in which many of the theorems

in question are better known.

However, Wald curvature allows us to discard conditions as are usually

used when employing the Alexandrov triangle comparison, e.g. local com-

pactness, while still being able to obtain many important theorems, such as

the Toponogov Theorem and the Hopf-Rinow Theorem that we have dis-

cussed above, as well as fitting variants of the Maximal Radius Theorem

and of the Sphere Theorems, that we have only alluded too, unfortunately.

For details the reader is invited to consult [81].

6. A Metric Approach to Ricci Curvature

In this section we concentrate on the application of the metric approach,

and more precisely of Wald curvature, to the defining Ricci flow for cell

complexes and, in dimension 2, to the development of a fitting metric Ricci

flow. Since these problems were studied in detail in our papers [38] and [95],

we present only the main ideas, and hope that the interested reader will

consult the original papers (especially [95], were a more detailed discussion

is contained.16) In consequence, we follow here the exposition in the much

shorter and restricted proceedings paper. However, we emphasize whenever

16Also, we warn the eventual reader of an unfortunate previously unnoted typo towards

the end of [38].
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possible those correlations with the theoretical material included in the pre-

vious section. Also, a new approach to the problem of the Ricci flow for

PL surfaces, also concordant to the theory in the previous section is also

included.

6.1. Metric Ricci Flow for PL Surfaces. Motivated mainly by Perel-

mans work, the Ricci flow has become lately17 an object of active interest

and research in Graphics and Imaging. Previously, various approaches have

been suggested, encompassing such methods as classical approximations of

smooth differential operators, as well as discrete, combinatorial methods.

Among these diverse approaches, the most successful so far proved to

be the one based on the discrete Ricci flow of Chow and Luo [25], due to

Gu (see, e.g. [47] and, for more details, [39]). In truth, the paper [95] was

largely motivated by our desire to get a better understanding of the discrete,

circle-packing based Ricci flow of Chow and Luo, and its relation with the

Ricci flow for smooth surfaces introduced by Hamilton [42] and Chow [24].

6.1.1. A Smoothing based Approach. Our approach, as developed in [95] to

this problem is to pass from the discrete context to the smooth one and

explore the already classical results known in this setting, by applying The-

orem 3.11. To this end we have first to make a few observations: One

can pass from the PL surfaces to smooth ones by employing smoothings,

defined in the precise sense of PL differential Topology (see [64]). Since,

by [64], Theorem 4.8, such smoothings are δ-approximations, and therefore,

for δ small enough, also α-approximations of the given piecewise-linear sur-

face S2
Pol , they approximate arbitrarily well both distances and angles on

S2
Pol . (Due to space restrictions, we do not bring here these technical defi-

nitions, but rather refer the reader to [64].) It should be noted that, while

Munkres’ results concern PL manifolds, they can be applied to polyhedral

ones as well, because, by definition, polyhedral manifolds have simplicial

subdivisions (and furthermore, such that all vertex links18 are combinatorial

17in what would have been probably consider to be a strange – not to say bizarre –

development even only a few years ago
18Recall that the link Lk(v) of a vertex v is the set of all the faces of St(v) that are not

incident to v. Here St(v) denotes the closed star of v, i.e. the smallest subcomplex (of the

given simplicial complex K) that contains St(v), namely St(v) = {σ ∈ St(v)}∪{θ | θ 6 σ},
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manifolds). Of course, for different subdivisions, one may obtain different

polyhedral metrics. However, by the Hauptvermutung Theorem in dimension

2 (and, indeed, for smooth triangulations of diffeomorphic manifolds in any

dimension) (see e.g. [64] and the references therein), any two subdivisions of

the same space will be combinatorially equivalent, hence they will give rise

to the same polyhedral metric. It follows from the observations above that

metric quadruples on SPol are also arbitrarily well approximated (includ-

ing their angles) by the corresponding metric quadruples) on the smooth

approximating surfaces Sm. But, by Theorem 3.11, KW,m(p) – the Wald

metric curvature of Sm, at a point p – equals the classical (Gauss) curvature

K(p). Hence the Gauss curvature of the smooth surfaces Sm approximates

arbitrarily well the metric one of SPL (and, as in [17], the smooth surfaces

differ from polyhedral one only on (say) the 1
m
-neighbourhood of the 1-

skeleton of SPol – see also the discussion below). Moreover, this statement

can be made even more precise, by assuring that the convergence is in the

Hausdorff metric. This follows from results of Gromov (see e.g. [98] for

details).

We can now introduce the metric Ricci flow: By analogy with the classical

flow

(6.1)
dgij(t)

dt
= −2K(t)gij(t) .

we define the metric Ricci flow by

(6.2)
dlij
dt

= −2Kilij ,

where lij = lij(t) denote the edges (1-simplices) of the triangulation (PL

or piecewise flat surface) incident to the vertex vi = vi(t), and Ki = Ki(t)

denotes the Wald curvature at the same vertex, where, as above, we employ

the discrete version of Wald’s curvature defined by Formula (3.6).

Remark 6.1. Before continuing further on, it is important to remark the

asymmetry in equation 6.2, that is caused by the fact that the curvature on

two different vertices acts, so to say, on the same edge. However, passing to

the smooth case, is that the asymmetry in the metric flow that we observed

above disappears automatically via the smoothing process. To this end it is

where St(v) denotes the star of v, that is the set of all simplices that have v as a face, i.e

St(v) = {σ ∈ K | v 6 σ}.
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important to note that while the formula of KW (v) involves the edges inci-

dent to v, it is – precisely by this incidence criterion – a curvature attached

to the vertex v. (For further details see [94] as well as Section 6.1.2. below.)

We also consider the close relative of (6.1), the normalized flow

(6.3)
dgij(t)

dt
= (K −K(t))gij(t) ,

and its metric counterpart

(6.4)
dlij
dt

= (K̄ −Ki)lij ,

whereK, K̄ denote the average classical, respectively Wald, sectional (Gauss)

curvature of the initial surface S0: K =
∫
S0

K(t)dA
/ ∫

S0
dA, and K̄ =

1
|V |

∑|V |
i=1Ki, respectively. (Here |V | denotes, as usually, the cardinality of

the vertex set of SPol.)

An Approximation Result. The first result that we can bring is a metric

curvature version of classical result of Brehm and Kühnel [17] (where the

combinatorial/defect definition of curvature for polyhedral surfaces is used.

Proposition 6.2. Let S2
Pol be a compact polyhedral surface without bound-

ary. Then there exists a sequence {S2
m}m∈N of smooth surfaces, (homeomor-

phic to S2
Pol), such that

(1) (a) S2
m = S2

Pol outside the 1
m
-neighbourhood of the 1-skeleton of

S2
Pol,

(b) The sequence {S2
m}m∈N converges to S2

Pol in the Hausdorff met-

ric;

(2) K(S2
m) → KW (S2

Pol), where the convergence is in the weak sense.

Remark 6.3. As we have already noted above, the converse implication –

namely that Gaussian curvatureK(Σ) of a smooth surface Σ may be approx-

imated arbitrarily well by the Wald curvatures KW (ΣPol,m) of a sequence

of approximating polyhedral surfaces ΣPol,m – is quite classical.

For a more in-depth discussion and analysis of the convergence rate in

the proposition above, see [94].

Remark 6.4. In view of the equivalence of the Alexandrov and Wald curva-

tures), one can view the result above as a elementary, restricted to dimension
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2, but on other hand a more specific and constructive version of Theorem

4.11.

As already stressed, the “good”, i.e. metric and curvature, approxima-

tions results mentioned above, imply that one can study the properties of

the metric Ricci flow via those of its classical counterpart, by passing to a

smoothing of the polyhedral surface. The use of the machinery of metric

curvature considered has the benefit that, by using it, the “duality” between

the combinatorics of the packings (and angles) and the metric disappears:

The flow becomes purely metric and, moreover, the curvature at each stage

(i.e. for every “t”) is given – as in the smooth setting – in an intrinsic

manner, that is in terms of the metric alone.

We bring here the most important properties that follow immediately

using this approach (for further results and additional details, see [95]).

Existence and Uniqueness. The first result that we should bring here is the

following

Proposition 6.5. Let (S2
Pol, gPol) be a compact polyhedral 2-manifold with-

out boundary, having bounded discrete Wald curvature. Then there exists

T > 0 and a smooth family of polyhedral metrics g(t), t ∈ [0, T ], such that

(6.5)

{
∂g
∂t

= −2KW (t)g(t) t ∈ [0, T ] ;

g(0) = gPol .

(Here KW (t) denotes the Wald curvature induced by the metric g(t).)

Moreover, both the forwards and the backwards (when existing) Ricci flows

have the uniqueness of solutions property, that is, if g1(t), g2(t) are two Ricci

flows on S2
Pol, such that there exists t0 ∈ [0, T ] such that g1(t0) = g2(t0),

then g1(t) = g2(t), for all t ∈ [0, T ].

Beyond the theoretical importance, the existence and uniqueness of the

backward flow would allow us to find surfaces in the conformal class of a

given circle packing (Euclidean or Hyperbolic). More importantly, the use

of purely metric, Wald curvature based, approach adopted, rather than the

combinatorial (and metric) approach of [25], allows us to give a preliminary

and purely theoretical at this point, answer to Question 2, p. 123, of [25],

namely whether there exists a Ricci flow defined on the space of all piecewise
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constant curvature metrics (obtained via the assignment of lengths to a

given triangulation of 2-manifold). Since, by the results of Hamilton’s [42]

and Chow [24], the Ricci flow exists for all compact surfaces, it follows that

the fitting metric flow exists for surfaces of piecewise constant curvature. In

consequence, given a surface of piecewise constant curvature (e.g. a mesh

with edge lengths satisfying the triangle inequality for each triangle), one can

evolve it by the Ricci flow, either forward, as in the works discussed above,

to obtain, after the suitable area normalization, the polyhedral surface of

constant curvature conformally equivalent to it; or backwards (if possible)

to find the “primitive” family of surfaces – including the “original” surface

obtained via the backwards Ricci flow, at time T – conformally equivalent

to the given one.

Convergence Rate. A further type of result, quite important both from the

theoretical viewpoint and for computer-driven applications, is that of the

convergence rate (see [39], [38] for the precise definition).

Since we already know that the solution exists and it is unique (see also

the subsection below for the nonformation of singularities), by appealing to

the classical results of [42] and [24], we can control the convergence rate of

the curvature, as follows:

Theorem 6.6. Let (S2
Pol, gPol) be a compact polyhedral 2-manifold without

boundary. Then the normalized metric Ricci flow converges to a surface of

constant metric curvature. Moreover, the convergence rate is

(1) exponential, if K̄ = K̄W < 0 (i.e. χ(S2
Pol) < 0) ;

(2) uniform; if K̄ = 0 (i.e. χ(S2
Pol) = 0);

(3) exponential, if K̄ > 0 (i.e. χ(S2
Pol) > 0).

Singularities Formation. Another extremely important aspect of the Ricci

flow, both smooth or discrete, is that of singularities formation. Again, a

certain (theoretical, at least) advantage of the proposed method presents

itself. Indeed, by [25], Theorem 5.1, for compact surfaces of genus ≥ 2, the

combinatorial Ricci flow evolves without singularities. However, for surfaces

of low genus no such result exists. Indeed, in the case of the Euclidean back-

ground metric, that is the one of greatest interest in graphics, singularities

do appear. Moreover, such singularities are always combinatorial in nature
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and amount to the fact that, at some t, the edges of at least one triangle do

not satisfy the triangle inequality. These singularities are removed in heuris-

tic manner. However, by [42], Theorem 1.1, the smooth Ricci flow exists at

all times, i.e. no singularities form. From the considerations above, it fol-

lows that the metric Ricci flow also exists at all times without the formation

of singularities.

Embeddability in R3. The importance of the embeddability of the flow is

not solely theoretical (e.g. if one considers the problem of the Ricci flow

for surfaces of piecewise constant curvature), as it is essential in Imaging

(see [4], [108]), and of high importance in Graphics. Indeed, even our very

capability of seeing (grayscale) images is nothing but a translation, in the

field of vision, of the embeddability of the associated height-surface into R3.

(Or, perhaps one should view the mathematical aspect as a formalization

of a physical/biological phenomenon...) We should note here that in this

respect there exists a certain (mainly theoretical, at this point in time)

advantage of our proposed metric flow over the combinatorial Ricci flow

[39], [47]. Indeed, in the combinatorial flow, the goal is to produce, via

the circle packing metric, a conformal mapping from the given surface to a

surface of constant (Gauss) curvature. Since in the relevant cases (see, e.g.

[39]) the surface in question is a planar region (usually a subset of the unit

disk), its embeddability (not necessarily isometric) is trivial. Moreover, in

the above mentioned works, there is no interest (and indeed, no need) to

consider the (isometric) embeddability of the surfaces S2
t (see below) for an

intermediate time t 6= 0, T .

The tool that allows us to obtain this type of results is making appeal

(again) to δ-approximations, in combination with classical results in embed-

ding theory. Indeed, by [64], Theorem 8.8 a δ-approximation of an embed-

ding is also an embedding, for small enough δ. Since, as we have already

mentioned, smoothing represent δ-approximations, the possibility of using

results regarding smooth surfaces to infer results regarding polyhedral em-

beddings is proven. (The other direction – namely from smooth to PL and

polyhedral manifolds – follows from the fact that the secant approximation is

a δ-approximation if the simplices of the PL approximation satisfy a certain
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nondegeneracy condition – see [64], Lemma 9.3.) We state here the relevant

facts:

Let S2
0 be a smooth surface of positive Gauss curvature, and let S2

t denote

the surface obtained at time t from S2
0 via the Ricci flow. (For all omitted

background material (proofs, further results, etc.) we refer to [43].)

Proposition 6.7. Let S2
0 be the unit sphere S2, equipped with a smooth

metric g, such that χ(S2
0) > 0. Then the surfaces S2

t are (uniquely, up to a

congruence) isometrically embeddable in R3, for any t ≥ 0.

In fact, this results can be slightly strengthened as follows:

Corollary 6.8. Let S2
0 be a compact smooth surface. If χ(S2

0) > 0, then

there exists some t0 ≥ 0, such that the surfaces S2
t are isometrically embed-

dable in R3, for any t ≥ t0.

In stark contrast with this positive result regarding surfaces uniformized

by the sphere, for (complete) surfaces uniformized by the hyperbolic plane

we only have the following negative result:

Proposition 6.9. Let (S2
0 , g0) be a complete smooth surface, and consider

the normalized Ricci flow on it. If χ(S2
0) < 0, then there exists some t0 ≥ 0,

such that the surfaces S2
t are not isometrically embeddable in R3, for any

t ≥ t0.

6.1.2. An Alexandrov Surfaces Based Approach. After a completed version

of our paper [95] was essentially finished, we noted that there are other

works regarding the Ricci flow on surfaces with conical singularities, and

especially Richards paper [84] on the smoothing of (compact) Alexandrov

surfaces via the Ricci flow. We would like to stress that our approach as

developed is different from Richard’s work, being much more direct and, in

a sense, more elementary. Moreover, we should also accentuate the fact that

our method facilitates concrete, computational treatment of the flow. On

the other hand, Richard’s method uses the very Ricci flow for smoothing,

and makes no appeal to approximations, making it much more alluring for

theoretical ends. However, its proof is far from trivial and we don’t even
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sketch it here, since it would take us to far afield, and the interested reader

is invited too study Richard’s paper.19

More important to our purpose here, Richard’s method also provides us

with a smoothing of the given PL surface, hence all the theoretical results

in the previous section also follow via this route.

However, Richard’s method of proof seems to be adaptable in order to

solve the following

Problem 1. Devise a purely metric flow.

Surely, such a flow, independent both from smoothing and to the advanced

(and somewhat abstract) mathematical apparatus of [84] would provide a

powerful and flexible tool for many Imaging and graphics tasks, akin to the

one based on Chow and Luo’s paper (see the relevant bibliography mentioned

above).

One basic observation that needs to be made in this context is that the

lack of symmetry that we mentioned when we first introduced the metric

flow, will not disappear by passing to the limit, and has to be dealt with

in a different and direct manner. From symmetry reasons, a natural way of

defining the flow is (using the same notation as before):

(6.6)
dlij
dt

= −Ki +Kj

2
lij ,

where in this case, Ki,Kj denote, of course, the Wald curvature at the ver-

tices vi and vj , respectively. It is also important to notice that, in fact, this

expression appears also in the practical method of computing the combina-

torial curvature, where it is derived via the use of a conformal factor (see

[39]).

6.1.3. An Application: Smoothable Metrics on Cube Complexes. We illus-

trate our belief in the many possible applications of the metric Ricci flow

with only one such example (due to space and time restrictions), apper-

taining to the corpus of “Pure” Mathematics. The following seemingly well

19Note that to apply Richard’s result we have only to consider our surfaces as an

Alexandrov surface having curvature bounded from below, condition that is, evidently,

satisfied. (In this regard and for a discussion on the definition of Wald/Alexandrov cur-

vature for PL surfaces, see [95], pp. 26-27.
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known problem in the theory of cube complexes20 was posed to the author

by Joel Haas [41], together with the basic idea of the first part of the proof,

for which the author is deeply grateful.

Let C be a cube complex, satisfying the following conditions:

(1) C is negatively curved (i.e. such that #vQ ≥ 4, for all vertices

v,where #vQ denotes the number of cubes incident to the vertex v;

(2) The link lk(v) of any vertex is a flag complex, i.e. a simplicial com-

plex such that any 3-arcs closed curve bounds a triangle (2-simplex),

i.e. no such curve separates without being a boundary.21

Question 1. Does there exist a Riemannian metric g (on C) such that

Kg ≡ K, where K denotes the comparison (Alexandrov) curvature of C?

In other words: Does there exist a smoothing of (M,g) (i.e. Riemannian

manifold) of a given cube complex C (that has a manifold structure), such

that K ≡ Kg? Evidently, an important particular case would be that “cu-

bical version of PL approximations”), i.e. that of “cubulations” of a (given)

Riemannian manifold.

Remark 6.10. The similar problem can be also posed, of course, for positively

curved complexes (i.e. such that #vQ ≤ 4). However, we address here only

the negatively curved case. The similar results for polyhedral manifolds of

non-negative curvature was also proved recently – see [52].22

Evidently, the answer to Question 1 above is “No”, even if C is actually

a manifold, since it is not always possible to recover the Riemannian metric

from the discrete (“cubical”) one. (Recall that each edge is supposed to be

of length 1.) However, in the special case of 3-dimensional cube complexes

the question has a positive answer.

We sketch below the proof:

(1) Away from the vertices, i.e. around the edges,23 one can use a method

developed by Gromov and Thurston [33] to produce a generalized

20For a formal definition and more details see, e.g. [86].
21Alternatively, this condition may be expressed either as lk(v) “has no missing sim-

plices (M. Sageev, [86]), or as “a nonsimplex contains a non edge” (W. Dicks, see [12]).
22The author would like to thank the anonymous reviewer for bringing to his attention

this paper.
23obviously, in the interiors of the faces the metric is already smooth.
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type of branched cover (in any dimension). More precisely, (a) con-

struct negatively curved conical surfaces of revolution, with vertex

at a vertex v and with apex angle α = 2π/n, where n = #vQ. Each

such cone can be canonically mapped upon a Euclidean cone of apex

angles π/2 ; then (b) glue the outcome of this process to the result

of Step (2) below.

(2) Around the vertices excise an ε-ball neighbourhood Bε of v. On the

boundary of Bε, i.e. on the sphere Sε one has the natural triangula-

tion by the intersections of Sε with the cubes of C incident with v.

Moreover, the curvature of the vertices of this triangulation will be

Kε ≡ c/ε2, where c is some constant.

However, while the gluing itself is trivial, one still has to ensure

that the result is indeed endowed with a Riemannian metric. For

this one has to go through Step 3 of the construction:

(3) Smoothen the ball Bε. In general dimension this represents a daunt-

ing problem. Indeed, even in dimension 3, Ricci flow – who repre-

sents a natural candidate for smoothing with control of curvature –is

yet not attainable, since we can offer, at this point in time, no PL

(metric) Ricci flow. However, due to Perelman’s resolution of the

Poincarè conjecture, in dimension 3 suffices to smoothen the bound-

ary Sε. It is at this point where the method described in Section 3

is applied, producing the required smooth ball S̃ε, that has the same

curvature as the PL24 one Sε.

6.2. PL Ricci for Cell Complexes. Following [38], we briefly review here

a definition of a metric Ricci curvature for PLmanifolds in dimension higher

than 2, as well as its immediate consequence, a method that does not make

appeal to smoothings, as we did in the previous section.

6.2.1. The Definition. While the results in the preceding sections might be

encouraging, one would still like to recover in the metric setting a “full” Ricci

curvature, namely one that holds for 3− and higher dimensional manifolds,

and not just in the degenerate case of surfaces. Our approach (as developed

in [38]) is to start from the following classical formula:

24but not piecewise Euclidean.
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(6.7) Ric(e1) = Ric(e1, e1) =

n∑

i=2

K(e1, ei) .

for any orthonormal basis {e1, · · · , en}, and where K(e1, ej) denotes the

sectional curvature of the 2-sections containing the directions e1.

To adapt this expression for the Ricci curvature to the PL case, we first

have to be able to define (variational) Jacobi fields. In this we heavily rely

upon Stones’s work [110], [111]. Note, however, that we do not need the full

strength of Stone’s technical apparatus, only the capability determine the

relevant two sections and, of course, to decide what a direction at a vertex

of a PL manifold is.

We start from noting that, in Stone’s work, combinatorial Ricci curvature

is defined both for the given simplicial complex T , and for its dual complex

T ∗ (see, e.g. [72], pp. 55-56). For the dual complex, cells – playing here

the role of the planes in the classical setting of which sectional curvatures

are to be averaged – are considered. Unfortunately, Stone’s approach for

the given complex, where one computes the Ricci curvature Ric(σ, τ1 − τ2)

of an n-simplex σ in the direction of two adjacent (n−1)-faces, τ1, τ2, is not

natural in a geometric context (even if useful in his purely combinatorial

one), except for the 2-dimensional case, where it coincides with the notion

of Ricci curvature in a direction. However, passing to the dual complex

will not restrict us, since (T ∗)∗ = T and, moreover – and more importantly

– considering thick triangulations enables us to compute the more natural

metric curvature for the dual complex and use the fact that the dual of a

thick triangulation is thick (for details, see [38]). Recall that thick (also

called fat) triangulations are defined as follows:

Definition 6.11. Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The

thickness (or fatness) ϕ of τ is defined as being:

(6.8) ϕ(τ) =
dist(b, ∂σ)

diamσ
,

where b denotes the barycenter of σ and ∂σ represents the standard notation

for the boundary of σ (i.e the union of the (n − 1)-dimensional faces of σ).

A simplex τ is ϕ0-thick, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of

a submanifold of Rn) T = {σi}i∈I is ϕ0-thick if all its simplices are ϕ0-thick.
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A triangulation T = {σi}i∈I is thick if there exists ϕ0 ≥ 0 such that all its

simplices are ϕ0-thick.

Keeping in mind the notions and facts above, we can now return to the

definition of Ricci curvature for simplicial complexes: Given a vertex v0 in

the dual complex, corresponding to a n-dimensional simplicial complex, a

direction at v0 is just an oriented edge e1 = v0v1. Since there exist precisely

n 2-cells, c1, . . . , cn , having e1 as an edge and, moreover, these cells form

part of n relevant variational (Jacobi) fields (see [110]), the Ricci curvature

at the vertex v, in the direction e1 is simply

(6.9) Ric(v) =
n∑

i=1

K(ci) ,

where we define the sectional curvature of a cell c in the following manner:

Definition 6.12. Let c be a cell with vertex set Vc = {v1, . . . , vp}. The

embedding curvature K(c) of c is defined as:

(6.10) K(c) = min
{i,j,k,l}⊆{1,...,p}

κ(vi, vj , vk, vl) .

Remark 6.13. Note that by choosing to work with the dual complex we

have restricted ourselves largely to considering solely submanifolds of RN ,

for some N sufficiently large. However, in the case of 2-dimensional PL

manifolds this does nor represent restriction, since, by a result of Burago

and Zalgaller [20] (see also [93]) such manifolds admit isometric embeddings

in R3.

Remark 6.14. Evidently, the definition above presumes that cells in the

dual complex have at least 4 vertices. However, except for some utterly

degenerate (planar) cases, this condition always holds. Still, even in this

case Ricci curvature can be computed using a slightly different approach –

see the following remark.

Remark 6.15. It is still possible (by dualization) to compute Ricci curvature

according, more or less, to Stone’s ideas, at least for the 2-dimensional case.

Indeed, according to [111],

(6.11) Ric(σ, τ1−τ2) = 8n−
2n−1∑

j=1

{|βj | | βj < τ1 or βj < τ2; dimβj = n−2} .
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For details and implications of this alternative approach, see [38].

6.2.2. Main Results. The first results one wants to ascertain are those en-

suring the convergence of the newly defined Ricci curvature. These are quite

straightforward, so here we content ourselves with simply stating them (for

further details, see [38]).

Theorem 6.16. Let T be a thick simplicial complex, and let T ∗ denote his

dual. Then

(6.12) lim
mesh(T )→0

Ric(σ) = lim
mesh(T ∗)→0

C · Ric∗(σ∗) ,

where σ ∈ T and where σ∗ ∈ T ∗ is (as suggested by the notation) the dual

of σ.

Theorem 6.17. Let Mn be a (smooth) Riemannian manifold and let T be

a thick triangulation of Mn. Then

(6.13) RicT → C1 ·RicMn , as mesh(T ) → 0 ,

where the convergence is the weak convergence (of measures).

Beyond these convergence and approximations results, one would like to

address deeper issues. Indeed, having introduced a metric Ricci curvature

for PLmanifolds, one naturally wishes to verify that this represents a proper

notion of Ricci curvature, and not just an approximation of the classical no-

tion. According to the synthetic approach to Differential Geometry, a proper

notion of Ricci curvature should satisfy adapted versions of the main, es-

sential theorems that hold for the classical notions. The first and foremost

among such theorems is the Bonnet-Myers Theorem and, as expected, fit-

ting versions for combinatorial cell complexes and weighted cell complexes

were proven by Stone [110], [111], [112]. and Forman [27]. Moreover, the

Bonnet part of the Bonnet-Myers theorem, that is the one appertaining to

the sectional curvature, was also proven for PL manifolds, again by Stone

– see [112], [109].

In [38] we proved a series of increasingly more general variants of the

Bonnet-Myers Theorem, with proofs adapted to the various settings and/or

notions of curvature (metric, combinatorial, Alexandrov comparison). Here

we bring only two more representative ones.
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Theorem 6.18 (PL Bonnet-Myers – metric). Let Mn
PL be a complete, n-

dimensional PL, smoothable manifold without boundary, such that

(i) There exists d0 > 0, such that mesh(Mn
PL) ≤ d0;

(ii) KW (Mn
PL) ≥ K0 > 0 ,

where KW (Mn
PL) denotes the sectional curvature of the “combinatorial

2-sections”.

Then Mn
PL is compact and, moreover

(6.14) diam(Mn
PL) ≤

π√
K0

.

Unfortunately, determining whether a general PL complex has Wald cur-

vature bounded from below can be, in practice, a daunting task. However,

in the special case of thick complexes in RN , for some N one can determine

a simple criterion as follows:

Theorem 6.19 (PL Bonnet-Myers – Thick Complexes). Let M = Mn
PL be

a complete, connected PL manifold thickly embedded in some RN , such that

KW (M2) ≥ K0 > 0, where M2 denotes the 2-skeleton of M . Then Mn
PL is

compact and, moreover

(6.15) diam(M2
PL) ≤

π√
K0

.

Remark 6.20. The embedding condition in the theorem above necessitates,

perhaps, further elaboration. One can, for instance, start with a (PL-

)submanifold of RN , endowed with a thick triangulation (as it is the case in

Graphics and Imaging, for instance). Alternatively, one can begin with an

abstract metric PL manifold (recall that thickness is a purely metric con-

cept — see Definition 6.11 above and embed it isometrically, or even just

quasi-isometrically in RN . Moreover, one can be given a combinatorial PL

manifold, i.e. such that the lengths of all the edges equals 1, and consider a

quasi-conformal embedding of this object.

6.2.3. Scalar Curvature and a Comparison Theorem. Up to this point of we

were concerned, in this section, solely with Ricci curvature. However, since

Ricci curvature is the mean of sectional curvatures we had to consider them

too (and, in fact, even more so in view of our definition of Ricci curvature

for PL complexes). We did not discuss, however, scalar curvature. It is

only fitting, therefore, for us to add a number of observation regarding this
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invariant, in particular since a immediate, but significant result presents

itself.

Of course, we first have to define the scalar curvature KW (M) of a PL

manifold M . In light of our preceding discussion and results, the following

definition is quite natural:

Definition 6.21. LetM = Mn
PL be an n-dimensional PLmanifold (without

boundary). The scalar metric curvature scalW of M is defined as

(6.16) scalW (v) =
∑

c

KW (c),

the sum being taken over all the cells of M∗ incident to the vertex v of M∗.

Remark 6.22. Observe that the definition of scalar curvature ofM is defined,

somewhat counterintuitively, by passing to its dual M∗. However, this is

consistent with our approach to Ricci curvature (and also similar to Stone’s

original approach – see the discussion in 4.1 above).

From this definition and our previous results (see [38]), we immediately25

obtain, the following generalization of the classical curvature bounds com-

parison in Riemannian geometry:

Theorem 6.23 (Comparison theorem). Let M = Mn
PL be an n-dimensional

PL manifold (without boundary), such that KW (M) ≥ K0 > 0, i.e. K(c) ≥
K0, for any 2-cell of the dual manifold (cell complex) M∗. Then

(6.17) KW S K0 ⇒ RicW S nK0 .

Moreover

(6.18) KW S K0 ⇒ scalW S n(n+ 1)K0 .

Remark 6.24. (1) Inequality (6.18) can be formulated in the seemingly

weaker form:

(6.19) RicW S nK0 ⇒ scalW S n(n+ 1)K0 .

25and, in truth rather trivially, since the result holds, regardless of the specific definition

for the curvature of a cell.
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(2) Note that in all the inequalities above, the dimension n appears,

rather then n − 1 as in the smooth, Riemannian case (hence, for

instance one has in (6.18), n(n+1)K0, instead of n(n− 1)K0
26 as in

the classical case). This is due to our definition (6.9) of Ricci (and

scalar) curvature, via the dual complex of the given triangulation,

hence imposing standard and simple combinatorics, at the price of

allowing only for such weaker bounds.27

7. Metric Curvatures for Metric Measure Spaces

While divagating somewhat from our professed goal, namely that of study-

ing metric curvatures, it is impossible, especially in the context of this vol-

ume, not to mention the Ricci curvature for metric measure spaces, either

as it was developed by Lott, Sturm and Villani [58], [113]28 (and its further

elaborations [15]), or in the form pioneered by Ollivier [73] (and its further

developments, mostly for graphs – due to Yau, Jost and their collaborators

[54], [48], but also for polyhedral surfaces [57]29.).

Let us begin with the following observation: However simple and alluring

the probabilistic approach may appear, to the geometer it seems somewhat

unnatural, and even more so to those whose interest is drove mainly by pos-

sible implementations, e.g. people working in information geometry, image

processing, manifold learning, etc.

Therefore, without diminishing whatsoever, the extensive theoretical mer-

its of the Lott-Sturm-Villani approach, it still is a natural desire to find a

new metric that encapsulates the behaviors of both the original metric and

of the given measure. Here the accent should be understood as being placed

on “simple”, and by simple, we mean a “(geo-)metric”, that is a metric that,

while incorporating the measure, can still be investigated with very direct

geometric methods, such as the ones discussed in detail above, or like the

more analytic ones that we shall describe below. This is in some contrast to

other means of “coalescing” metric-and-measure into a unique metric, such

26but, on the other hand, this holds even if n = 3!...
27without affecting the analogue of the Bonnet-Myers Theorem – see Section 2 above.
28See also [114]
29When mentioning generalized curvatures for surfaces, one can not fail to mention

Morgan’s [63] and his students’ [26] work on “weighted” surfaces and curves.
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as the Gromov-Prokhorov and Gromov-Hausdorff-Prokhorov distances (see,

e.g. [114] for these and also for some variations, as well as their “practical”

versions (such as those in [60], [61]).

7.1. The Basic Idea: The Snowflaking Operator. We begin by intro-

ducing a number of definitions and facts required in the sequel. (As general

bibliographical references for the material in this subsection, including miss-

ing proofs, we have used [44], [105], [106].)

7.1.1. Quasimetrics. We begin with the following basic definition:

Definition 7.1. Let X be a nonempty set. q : X × X → R+ is called a

K-quasimetric iff

(1) q(x, y) = 0 iff x = y;

(2) q(x, y) = q(y, x), for any x, y ∈ X;

(3) q(x, y) ≤ K(q(x, z) + q(z, y)), for any x, y, z ∈ X .

Remark 7.2. Some authors replace condition (2) above by the following

weaker one: There exists C0 ≥ 1 such that q(x, y) ≤ C0q(y, x), for any

x, y ∈ X.

Remark 7.3. A number of brief comments:

• A quasimetric is not necessarily a metric (while obviously, any metric

is a quasimetric with K = 1).

Counterexample 7.4. The following counterexample is not only the

basic one, it is – as we shall shortly see – very important to us in

the sequel:

(7.1) qs(x, y) = (d(x, y))s ,

where d is a metric, is a quasimetric for any s > 0, but not, in

general, a metric, for s > 1 (but it still is for 0 < s < 1).

• Quasimetric balls can be defined precisely like metric balls, and the

constitute the basis for a topology on X.

• For the next remark we need a definition that may appear a bit

superfluous at this point, but it will prove to be highly relevant later

on:
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Definition 7.5. Let (X, q) and (Y, ρ) be quasimetric spaces, and

let f : X → Y be an injection. f is called η-quasisymmetric, where

η : [0,∞) → [0,∞) is a homeomorphism iff

(7.2)
ρ(f(x), f(a))

ρ(f(x), f(b))
≤ η

(
q(x, a)

q(x, b)

)
,

for any distinct points x, a, b ∈ X.

Intuitively, while quasisymmetric mappings may change the size of

balls quite dramatically, they do not change very much their shape.

This fact is important in the next proposition (see, e.g. [105] for

its proof), that shows that whereas, as we noted above, qs is not a

metric, the canonical injection (X, d) →֒ (X, qs) is quasisymmetric.

Proposition 7.6. Let q be a K-quasimetric on X. Then, there

exists s0 = s0(K) such that, for any 0 < s ≤ s0 there exists a metric

ds on X, and a constant C = C(s,K) ≥ 1, such that

(7.3)
1

C
qs(x, y) ≤ ds(x, y) ≤ Cqs(x, y) ,

where qs is as in (7.1), i.e. qs(x, y) = (q(x, y))s .

Remark 7.7. If q is a K-quasimetric (K ≥ 1), then qs is bilipschitz

equivalent to ds, for any s > 0, such that (2K)2s ≤ 2, that is for any

s > 0 such that

s ≤ 1

2
(log2K + 1) .

Moreover, the bilipschitz constant can be chosen to be

C = (2K)2s .

The importance of the proposition above (augmented by the pre-

cise estimates in its succeeding remark) is quite evident, but we

would still like to emphasize its relevance for our goal, namely that

of combining the metric and measure into a new metric, that is sim-

ple yet unifying of the metric and measure properties. What we have

succeeded to show so far is that given a quasimetric qd obtained by

snowflaking from a metric d, one can find a metric quantifiable close

to it. Therefore, such metric curvatures as, say, Haantjes curvature,

can be defined for (curves in) quasimetric spaces via those of the
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new metric ds. The properties of the new metric curvature κH,ds are

clearly close to those of κH,d (where the notation is, we hope, self-

explanatory). However, we postpone a more detailed comparative

analysis for future work. Also, instead of choosing to incorporate the

new metric in the Haantjes curvature (that functions as geodesic cur-

vature), one can as well use it to compute a fitting Wald curvature

(as a metric analogue of sectional curvature).

We still have, however, to be able to produce enough expressive

quasimetrics. Here, by “expressive”, we mean quasimetrics that not

only approximate the original metric, but also incorporate, according

the our goal detailed above, as faithful (or significantly) as possible

the given measure as well. It turns out that, again, this is quite

standard and easy, as we shall see in the next subsection.

7.1.2. From doubling measures to quasimetrics. We first remind the reader

the following basic definition:

Definition 7.8. Let (X, d, µ) be a metric measure spaceX is called doubling

iff the measure µ itself is doubling, i.e. iff there exists a constant D such

that, for any x ∈ X and any r > 0,

(7.4) µ (Bd[x, 2r]) ≤ Dµ (Bd[x, r]) .

(Here Bd[x, r] denotes – as it standardly does – the closed ball of radius r,

in the metric d.) A metric measure space (X, d, µ), where µ is doubling is

sometimes called of homogeneous type.

For the record, a metric measure space is a triple X = (X, d, µ) where

(X, d) is a metric Polish space30 (i.e. complete and having a countable

base), and µ is a Borel measure on X.

Remark 7.9. If (X, d, µ) is doubling, then it admits atoms, i.e. points of

positive mass, only at isolated points.

Remark 7.10. The notion of doubling measures is, in fact, intrinsically re-

lated to that of curvature, more precisely with that of Ricci curvature: Any

Riemannian manifold of nonnegative Ricci curvature is doubling (with re-

spect to the volume measure) – see, e.g. [77]. (Indeed, it may be that this

30at least, this is the usual convention
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case represents one of the original motivations for studying doubling spaces.)

Moreover, this implication is also preserved for the generalized Ricci curva-

ture of Lott-Villani and Sturm (see, [114]).

We have now the necessary ingredient that allows us to construct the

desired quasimetric, starting from a metric and a doubling measure: For

any s > 0, we define the quasimetric qµ,s as

(7.5) qµ,s(x, y) =
(
µ (B[x, d(x, y)]) + µ (B[y, d(x, y)])

)s
.

(This can be written in compact form as qµ,s(x, y) = (µ(Bx,y))
s, where

Bx,y = B[x, d(x, y)] ∪B[y, d(x, y)].)

Example 7.11. If X = Rn, with µ ≡ V oln, and if s = 1/n, then qµ,s ≡
const · dEucl. (In particular, for n = 2, qµ,s =

√
π
2 dEucl .)

Remark 7.12. For X = Rn, one can define qµ,s(x, y) simply by qµ,s(x, y) =(
µ
(
B[m, x+y

2 ]
))s

, where m denotes the midpoint of the segment xy. How-

ever, in the general case, and in particular for graphs, one has to use the

more general expression (7.5).

Note that, if K is the quasimetric constant of qµ,s, then K = K(µ, s).

Also, by Proposition 7.6, there exists s0 = s0(µ) > 0, such that qµ,s is

bilipschitz equivalent to a metric dµ,s, for any 0 < s ≤ s0. This fact will

play a crucial role in the sequel, as already hinted.

Remark 7.13. Obviously, the geometry induced by the quasimetric qµ,s, and

a fortiori by the metric dµ,s, will diverge widely from the geometry given by

the original metric d. This is most evident in the properties of the “new”

geodesics, in comparison with the “old” ones (e.g. when X = Rn equipped

with the standard Euclidean metric and with µ being the volume element.)

However, the deformation of the geometry produced by (7.5) is controlled,

and many essential properties are preserved. (For further details, see [105],

[106].)

Remark 7.14. To be certain, one would like to explore the relevance of

the “snowflaking” above to Imaging, etc. While further applications will

be discussed below (see Theorems 7.23 and 7.27), even the very definition

might prove to be useful, for instance in texture analysis and segmentation.
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In the case of images the substrate distance d can be chosen to be the

preferred discrete distance (Euclidean, L1, etc.) For the measure of the balls

B[x, d(x, y)] one can settle, of course, just for the d-area. However, more

interesting and relevant for textures measures present themselves, such as

the Hausdorff measure (texture are viewed as fractals, sometimes) or the

energy (of a texton).

As far as the choice of the points x and y is concerned, one possible

(typical) choice would be the centers of adjacent neighbourhoods or textons.

Clearly, in this case, one take qµ,s(x, y) to be
(
µ
(
B[m, x+y

2 ]
))s

, where

m denotes the midpoint of the segment xy, even if d is not the Euclidean

distance. However, this will not be true when working with (communication)

networks.

Also, the relevant parameters s have to be chosen such that s ≤ s0, where

s0 should be determined from the proof of Proposition 7.6, as restricted to

the given specific, concrete context.

Unfortunately, the existence of the doubling measure required in produc-

ing the snowflaked quasimetrics may prove to be a quite daunting task (to

say nothing about the lesser degree of geometric intuitiveness we are en-

dowed with, in comparison with our grasp of the distance). Luckily enough,

a simpler, purely metric condition exists that is, essentially, equivalent to

that of doubling measure, at least as far as compete spaces are concerned.

More precisely, we have the following

Definition 7.15. A metric space (X, d) is called doubling iff there exists

D1 ≥ 1, such that any ball in X, of radius r, can be covered by at most D1

balls of radius r/2.

(Obviously, there is nothing special about r/2, and the metric doubling

condition can be formulated in terms of general sets of bounded diameter.)

Remark 7.16. Clearly, the metric and measures arising in Imaging and Vi-

sion are (quite trivially) doubling.

As expected (and alluded to above), there exists a connection between

the notions of doubling metric and doubling measure. More precisely, we

have the following
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Lemma 7.17. Let (X, d) be a metric space such that there exists a doubling

measure µ on X. Then (X, d) is doubling (as a metric space).

(A proof of this fact can be found in [44] or [105].)

The converse statement does not hold in general, a counterexample being

(Q, deucl) (see [44], p. 103). However, it does hold for the important case of

complete spaces:

Theorem 7.18 (Luukkainen-Saksman [59]). Let (X, d) be a doubling, com-

plete metric space. Then X carries a doubling measure.

The following consequence since it obviously includes the important par-

ticular case of finite graphs:

Corollary 7.19. Any compact, doubling metric spaces carries a doubling

measure µ.

The corollary above obviously holds for finite graphs.

Before we formulate the important theorem below, we give, for conve-

nience, the following definition:

Definition 7.20. If (X, d) is a metric space, then the metric space (X, dε), 0 <

ε < 1, is called a snowflaked version of (X, d).

Theorem 7.21 (Assouad [5], [6]). Let (X, d) be a doubling metric space.

Then, for each 0 < ε < 1, there exists N , such that its ε-snowflaked version

is bilipschitz equivalent to a subset of RN , quantitatively.

Here, quantitatively means that the embedding dimensionN and the bilip-

schitz constant L depend solely on the doubling constant D of X and on

the “snowflaking” factor ε, i.e.

N = N(D, ε), L = L(D, ε) .

Remark 7.22. Assouad’s result does not hold, in general, for ε = 1. (For a

counterexample, see [44], p. 99).

From a practical, applicative point of view Assouad’s theorem above al-

lows us to “translate” the highly nonintuitive geometry of metric measure

spaces to that of the familiar setting of subsets in (some) Euclidean space. In

particular, in combination with our geometric, curvature based approach to
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sampling of images and higher dimensional signals (see [99], [100]), enables

us to enunciate the following sampling “meta-theorem”:

Theorem 7.23. Sampling of Ahlfors regular metric measure spaces is qua-

sisymmetrically equivalent, quantitatively, to the sampling of sets in RN , for

some N .

Before passing further on, let us mention briefly here that the sampling

density is, roughly formulated, proportional to 1/K (or 1/Ric. (For the full

details see, for instance, [99], [100], [36] and the references therein.)

Unfortunately, while the theorem above grants the desired framework for

geometric sampling of metric measure spaces and, even more, it provides

with numerical control over the distortion/error during the embedding in

RN , the constants involved are far from being ideal - see the remark below

for a more detailed discussion.

Remark 7.24. The beauty of Assouad’s Theorem – and even more so its

applicability in the sampling of real data – is marred by the “course of

dimensionality”: Given that N = N(D, ε), the fear exist that, as in the

case of Nash’s Embedding Theorem [67], [68], the embedding dimension is

prohibitively high for general manifolds (i.e. data). Obviously, this is even

more important if low distortion – i.e. (bi-)lipschitz constant – is an im-

perative (as it usually is), that is for ε close to 0. And, indeed, Assouad’s

original construction provides limε→0N(D, ε) = ∞. So it would seem that,

the price to pay for low distortion is a high embedding dimension. It is a

quite recent result of Naor and Neiman [66] (itself based on ideas of Abra-

ham, Bartal and Neiman [1]), that, in fact, given a (separable) D-doubling

metric space, there exist N = N(D) ∈ N and L = L(D, ε), such that for

any ε ∈ (0, 1/2), the (1 − ε)-snowflaked version of X admits a bilipschitz

embedding in RN , with distortion L. Moreover, specific upper bounds for N

and L are given: N ≤ a logD,L ≤ b
(
logK

ε

)2
, where a and b are constants.

So it appears that, at least as far as Assouad’s Theorem is concerned, the

snowflaking-based embedding is feasible.

At this point, one has to ask oneself whether this result can be improved.

The belief in the possibility of such an improvement rests upon the following

two facts: One one hand, Assouad’s Theorem assures the existence of a



LECTURENOTES-LUMINY 55

bilipschitz embedding, which represents a much stronger condition then mere

quasisymmetry31. On the other hand, as we have seen, Ahlfors rigidity is not

the most easy property to check directly on a metric measure space, therefore

one naturally would wish to find a sampling result similar to Theorem 7.23,

that would hold for general doubling spaces. Such a result does exist, and

it makes appeal again to the quasimetric qµ,s as defined by (3.3). However,

we have to make an additional assumption, that ensures that qµ,s-lengths of

curves in RN do not “shrink” too much, due to the presence of the measure

µ in the definition of qµ,s (see [105]). We encode this restriction via

Definition 7.25. A doubling measure µ on RN is called a metric doubling

measure iff there exist a constant C6, and a metric δ, such that

1

C6
δ(x, y) ≤ qµ, 1

n
≤ C6δ(x, y) ,

for any x, y ∈ X, where qµ, 1
n
is associated to µ as in (3.3), with s = 1/n.

We can now formulate the desired result, in terms of metric doubling

measures:

Theorem 7.26 (Semmes [101] Theorem 1.15, [105], Proposition B. 20.2).

Let (X, d) be a doubling metric space. Then there exists a natural number N

and a metric doubling measure µ, such that (X, d) is bilipschitz equivalent

to a subset of (RN , qµ, 1
N
), where qµ, 1

N
is as above.

Clearly PL surfaces (a.k.a. in Graphics as triangular meshes), endowed

with a specific additional measure (e.g. luminosity), as well as images sat-

isfy the metric doubling condition. (Even if modelled as fractals, certain

textures are not truly such objects, due to the inherent discreteness, hence

finiteness, therefore they also can be viewed as metric doubling measure

spaces.) Again, this implies, in view of the theorem above, that, at least

theoretically, images and meshes can be sampled as “weighted” manifolds,

but using classical by now, geometric means of sampling subsets (hypersur-

faces) of Euclidean space. The theorem is also relevant for sampling weighted

31However, quasisymmetry represents a much more flexible analytic tool, than the rigid

bilipschitz condition – see [44], [105], [106] for a deeper and far more detailed discussion.
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networks, such as communication networks, for instance for choosing posi-

tions for routers/sensors [31], load balancing [87], or in-network sensor data

storage [88].

Theorem 7.26 above represents a most encouraging result, and the idea

of the proof is quite simple: By Assouad’s Theorem, (M,d
1
2 ) is bilipschitz

equivalent to a subset Y of some RN . The sought for measure on RN will

be define as µ = dist(x, Y n)dx – for details of the proof see [101].

One would naturally would hope that (Rn, qµ, 1
n
) can be bilipschitzly em-

bedded in some RN , for any doubling measure µ. This is a quite ambitious

wish and, unfortunately, it is not true in general (see [101]). However, such

an embedding exists for “most” metric doubling measures – for a precis for-

mulation and the proof see [101]. Still, in view of the discussion proceeding

Theorem 7.23 above, we can formulate the fitting sampling result (recall that

given the quasimetric qµ,s , there exists a metric ds bilipschitz equivalent to

it):

Theorem 7.27. Sampling of doubling metric spaces is bilipschitz equiva-

lent quantitatively to the sampling of sets in (RN , d 1
N
), for some N , where

d 1
N

represents the snowflaked version of d, associated to a certain metric

doubling measure µ.

How relevant this approach to metric curvature for metric measure spaces

will turn prove itself to be, besides providing a sound, intuitive and conve-

nient theoretical setting for a wide range of signals is, unfortunately, to

early to ascertain. However, in view of the success of the basic snowflak-

ing approach (and related ideas) in solving such problems as the existence

of (“enough”) Lipschitz functions and Poincaré and Sobolev inequalities

(i.e. that of “novel types” of “decent calculus” – see [105], [106]), as well

as the existence of fitting versions on metric measure spaces satisfying the

CD(K,N) condition (see, for instance, [114]), one can display at least a

moderate amount of optimism. For a different approach to sampling spaces

satisfying a CD(K,N) condition, as well as an application of the approach

exposed in this section to the sampling of weighted graphs/networks, see

[92]. Moreover, it turns out that the particular case of N = +∞, when the

CD(K,N) condition reduces to the generalized Ricci curvature of Bakry,

Emery and Ledoux it is natural and easy to implement of grayscale images,
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Figure 6. A standard rest image (above, left) as a grayscale

surface (above, right). One can compare the geometric sam-

pling methods: The Gaussian curvature based one (bottom,

left) and one using the generalized Ricci curvature (bottom,

right).

where the density function appearing in the formula of generalized Ricci

curvature is nothing the grayscale level – see [55] for further details. We il-

lustrate this new approach to sampling of grayscale images (natural images,

but also range images, as well as cartoons) in Figure 6. This is approach is

even more natural and having far higher potential benefits in the context of

medical images, such as CT and MRI images since, for instance, the density

of many types of MRI images is equal to the proton density. A further ap-

plication of the geenarlized Ricci curvature is in Graphics, where the density
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can be taken as, e.g. luminosity or shading of a mesh model. (This rep-

resents work in progress.) We should also note that while the generalized

Ricci curvature (of metric measure spaces) might appear, prima facie, as an

unnecessary complication, it allows not only for the sampling of wider range

of images and signals, but it is also an intrinsic curvature, i.e. independent

of the specific embedding considered. This is not a purely theoretical advan-

tage, for it allows us to dispense with the need to compute the embedding

curvature (e.g. tubular radius, reach, etc.), a task that is, in general, both

non-trivial and cumbersome.
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