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1. Introduction

Dirac-harmonic maps have been introduced in [3, 4]. They couple a harmonic map type
field with a spinor field [20]. This model originated in the supersymmetric σ-model of
quantum field theory, the only difference being that in the supersymmetric σ-model the
(anticommuting) spinor fields take values in a Grassmanian algebra, making the model
supersymmetric, while in Dirac-harmonic maps, the spinors are commuting as in spin
geometry, keeping the model within the category of the geometric calculus of variations.

Let us recall the terminology and setting for Dirac-harmonic maps. Let (Mm, g) be
a Riemannian spin manifold of dimension m ≥ 2 with a fixed spin structure, and ΣM
the spinor bundle over M , on which we chose a Hermitian metric 〈·, ·〉. The Levi-Civita
connection ∇ on ΣM is compatible with 〈·, ·〉. Let (Nn, h) be a Riemannian manifold
of dimension n, Φ a map from M to N , and Φ−1TN the pull-back bundle of TN by Φ.
On the twisted bundle ΣM ⊗ Φ−1TN there is a metric (still denoted by 〈·, ·〉) induced
from the metrics on ΣM and Φ−1TN . There is also a connection, still denoted by ∇, on
ΣM ⊗ Φ−1TN naturally induced from those on ΣM and Φ−1TN .

Locally, we can write a cross-section Ψ of ΣM ⊗ Φ−1TN as Ψ = ψα ⊗ θα, where {ψα}
are local cross-sections of ΣM , {θα} are local cross-sections of Φ−1TN . Here and in the
sequel, we use the usual summation convention.

The Dirac operator along the map Φ is defined as

D/Ψ := ei · ∇eiΨ

= ∂/ψα ⊗ θα + ψα ⊗∇eiθα,

The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 267087.
The research of QC is also partially supported by NSFC and RFDP of China. The authors thank the Max
Planck Institute for Mathematics in the Sciences for good working conditions when this work was carried
out.

1



2 CHEN, JOST, AND SUN

where {ei} is a local orthonormal basis on M , ∂/ := ei · ∇ei is the usual Dirac operator on
M and “X·” stands for the Clifford multiplication by the vector field X on M .

Consider the functional

L(Φ,Ψ) =
1

2

∫
M

(‖dΦ‖2 + 〈Ψ, D/Ψ〉).

The critical points (Φ,Ψ) satisfy the Euler-Lagrange equations for L(Φ,Ψ) are (c.f. [3])

(1.1)


τ(Φ) =

1

2
〈ψα, ei · ψβ〉RN(θα, θβ)Φ∗(ei),

D/Ψ = 0,

where RN(X, Y ) := [∇N
X ,∇N

Y ]−∇N
[X,Y ], ∀X, Y ∈ Γ(TN) stands for the curvature operator

of N , and τ(Φ) := (∇T ∗M⊗Φ−1TN
ei

dΦ)(ei) is the tension field of Φ. Therefore, solutions of
(1.1) are called Dirac-harmonic maps from M to N .

Dirac-harmonic maps have been investigated under various aspects, see the recent article
[2] and the references therein. In [2], a maximum principle of Jäger-Kaul type [11] was
established for Dirac-harmonic maps from compact Riemannian spin manifolds with mean
convex boundaries and positive scalar curvatures into certain geodesic balls of the target
manifolds, based on which a general existence and uniqueness theorem for boundary value
problems was proved through the continuity method. Most recently, the space of Dirac-
harmonic maps was analyzed by B.Ammann and N.Ginoux in [1] by using tools from index
theory, and the existence of uncoupled solutions (i.e., Φ is a harmonic map) was proved.

Most of the previous works deal with Dirac-harmonic maps from compact manifolds.
It is the main aim of the present paper to derive properties of Dirac-harmonic maps on
complete noncompact manifolds M .

In the classical works of S.T.Yau [18] and others on harmonic functions on noncompact
manifolds, the gradient estimate method plays a key role. On one hand, these estimates
may directly give rise to Liouville type results, on the other hand, they may also lead to
fundamental analytic properties such as Harnack inequalities, and furthermore, they are
very useful for establishing existence results. This method has been extended to the case
of harmonic maps. In [6], S.Y.Cheng established gradient estimates and derived Liouville
theorem for harmonic maps from a noncompact manifold M into a nonpositively curved
manifold N . In [7] H.I.Choi proved a similar result for harmonic maps into a regular ball,
namely, a geodesic ball By0(R) with radius R that lies within the cut locus of its center
y0 ∈ N and satisfies R < π/2

√
KN , where the sectional curvature of N is bounded above

by KN > 0. The gradient estimates turn out to be a powerful tool for proving existence
results of harmonic maps and their heat flows on noncompact manifolds. For example, in
[13], J.Y.Li used it to improve the result of P.Li and L.F.Tam [14] with a different method.

In this paper, we will first derive a gradient estimate for Dirac-harmonic maps from
complete Riemannian spin manifolds into regular balls in the target manifolds, which
generalizes the result for harmonic maps in [7]. As an application, we then prove a Liouville
theorem for Dirac-harmonic maps under curvature conditions. We also obtain Liouville
theorems under energy conditions.

When the target has nonpositive curvature, the size of the target ball is arbitrary (topo-
logical issues can be avoided by lifting to universal covers). In the presence of positive



DIRAC-HARMONIC MAP 3

target curvature, however, we know since [10] that a restriction on the radius of the target
ball is needed in order to obtain estimates. The optimal size of such a ball corresponds
to an open hemisphere in the case of the standard sphere, as shown in [10]. Remark-
ably, we can achieve the same optimal condition on the radius R < π/2

√
KN as in [7] for

Dirac-harmonic maps as in the original work for harmonic maps.
We can now state our gradient estimate.

Theorem 1 (Gradient estimate). Suppose the Ricci curvature of M satisfies RicM ≥ −κ
for some non-negative constant κ, the sectional curvature secN and the curvature tensor
RN of N satisfy −b2 ≤ secN ≤ b1 and

∥∥∇RN
∥∥ ≤ b3 respectively, where bi are constants

with b2 ≥ b1 > 0, b3 ≥ 0. Denote

b = b3
2 + b4

2 + b2
3.

If (Φ,Ψ) is Dirac-harmonic and Φ : Mm −→ By0(R) ⊂ Nn, R < π/(2
√
b1), then, for any

x0 ∈M and any positive constant a, we have

(1.2) sup
Bx0 (a/2)

‖dΦ‖ ≤ C(m,n)√
b1 cos2(

√
b1R)

(
1 +
√
κa

a
+

√
b

b1

sup
Bx0 (a)

‖Ψ‖2

)
,

where C(m,n) > 0 is a constant depending only on the dimensions m and n.

Remark 1. Under the hypothesis of Theorem 1, if Φ is a harmonic map and we choose
Ψ ≡ 0, then in fact we can obtain the following global estimate for dΦ:

sup
M
‖dΦ‖ ≤

√
min {m,n}κ√
b1 cos (

√
b1R)

.

As the upper bound in our estimate is given by an explicit expression in terms of the
geometric quantities involved such as the bounds on the curvatures of M and N or the
radius of the regular ball, it becomes clear that and how these geometric quantities control
the behavior of the map.

We can then apply this gradient estimate to obtain a Liouville type theorem for Dirac-
harmonic maps:

Theorem 2 (Liouville theorem). Assume that M is complete with nonnegative Ricci
curvature and the scalar curvature is bounded below by a positive constant ε, suppose the
sectional curvature secN and curvature tensor RN of N satisfy −b2 ≤ secN ≤ b1 and∥∥∇RN

∥∥ ≤ b3 respectively, where bi are constants with b2 ≥ b1 > 0, b3 ≥ 0. Then there is
a constant δ > 0 such that for any Dirac-harmonic (Φ,Ψ) satisfying Φ(M) ⊂ By0(R) ⊂
N, R < π/(2

√
b1) and ‖Ψ‖ < δ, we have Φ ≡ constant and Ψ ≡ 0.

Remark 2. (1) The constant δ can be chosen as

δ =
C(m,n)(b3

1ε)
1/4 cos (

√
b1R)√

b
,

for some suitable constant C(m,n) > 0, where b = b3
2 + b4

2 + b2
3.
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(2) The condition on the positive lower bound for the scalar curvature of M cannot be
removed. For instance, there are Dirac-harmonic maps (Φ0,Ψ) : Rm → N , with Φ0

constant maps and the components of Ψ nontrivial harmonic spinors, namely, ∂/ψα ≡ 0,
α = 1, · · · , n.

When the domain manifold M is compact, H.C.Sealey studied harmonic maps with small
energy in [17], and derived some Liouville theorems for such harmonic maps. For Dirac-
harmonic maps, we also have the following Liouville theorem which includes the result of
Sealey by letting Ψ ≡ 0:

Theorem 3 (Liouville theorem). Let M be a compact spin manifold. Suppose RicM ≥ a
for some positive constant a, and −b2 ≤ secN ≤ b1 for some positive constants b1, b2 such
that b2 ≥ b1. Let (Φ,Ψ) be a Dirac-harmonic map such that max rank Φ ≤ q. If for some
δ > 0,

(1.3)
q − 1

q
b1 ‖dΦ‖2 +

m− 1 + δ

4(m+ δ)
(n− 1)2 qb2

2 ‖Ψ‖
4 ≤ a,

and the equality is not valid at least at one point, then Φ must be constant and Ψ ≡ 0.
In particular, if

(1.4) b1 ‖dΦ‖2 +
min {m,n}

4
(n− 1)2 b2

2 ‖Ψ‖
4 ≤ a,

then Φ must be constant and Ψ ≡ 0.

For complete noncompact manifolds M , we can prove the following Liouville theorem
for Dirac-harmonic maps under an energy hypothesis, which extends a result of R.Schoen
and S.T.Yau in [16]:

Theorem 4 (Liouville theorem). Let M be a complete noncompact spin manifold. Sup-
pose the Ricci curvature of M is bounded below by a nonnegative function a, the sec-
tional curvature of N is bounded above by a nonnegative function b1 and bounded below
by a nonpositive functioin −b2, b2 ≥ b1. Let (Φ,Ψ) be a Dirac-harmonic map such that
max rank Φ ≤ q. If for some constant δ ∈ (0, 1),

(1.5)
q − 1

q
b1 ‖dΦ‖2 +

1 + δ

4δ
(n− 1)2 qb2

2 ‖Ψ‖
4 ≤ a,

and

(1.6)

∫
M

‖dΦ‖2 + ‖Ψ‖4 <∞,

then Φ must be constant and Ψ ≡ 0.

The paper is organized as follows: In section 2, we establish basic estimates for Dirac-
harmonic maps including Kato-Yau inequalities and give the proof of Theorem 1. In section
3 we prove Liouville theorems for Dirac-harmonic maps, Theorems 2, 3 and 4.
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2. Gradient Estimates for Dirac-harmonic maps

2.1. Preliminaries. We first recall the following Weitzenböck formula [12].

Proposition 1. For a smooth map Φ : M → N ,

1

2
∆ ‖dΦ‖2 − div (〈τ(Φ),Φ∗(ei)〉ei)

= ‖∇dΦ‖2 − ‖τ(Φ)‖2 + 〈Φ∗(RicM(ei)),Φ∗(ei)〉
−RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej)),

(2.1)

where {ei} is a local orthonormal frame on M . 2

It follows from (2.1) that

1

2
∆ ‖dΦ‖2 = ‖∇dΦ‖2 + 〈∇eiτ(Φ),Φ∗(ei)〉+ 〈Φ∗(RicM(ei)),Φ∗(ei)〉

−RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej)).
(2.2)

By direct computations, one has

Lemma 1. If (Φ,Ψ) is Dirac-harmonic, then

〈∇eiτ(Φ),Φ∗(ei)〉 =− 1

2
〈Ψ, ei · ψα ⊗

(
∇Φ∗(ej)R

N
)

(Φ∗(ei),Φ∗(ej))θα〉

+
1

2
〈Ψ, ej · ψα ⊗RN(Φ∗(ei), (∇eidΦ)(ej))θα〉

− 〈∇ejΨ, ei · ψα ⊗RN(Φ∗(ei),Φ∗(ej))θα〉.

(2.3)

2

It is then easy to derive the following estimates:

‖τ(Φ)‖ ≤ 1

2
(n− 1)

√
min {m,n}

∥∥RN
∥∥ ‖Ψ‖2 ‖dΦ‖ ,(2.4)

and

|〈∇eiτ(Φ),Φ∗(ei)〉|

≤1

2
(n− 1) (min {m,n} − 1)

∥∥∇RN
∥∥ ‖Ψ‖2 ‖dΦ‖3

+
1

2
(n− 1)

√
min {m,n}

∥∥RN
∥∥ ‖Ψ‖2 ‖dΦ‖ ‖∇dΦ‖

+ (min {m,n} − 1)
√
n
∥∥RN

∥∥ ‖Ψ‖ ‖∇Ψ‖ ‖dΦ‖2 .

(2.5)

In fact, firstly choose {ei} such that 〈Φ∗(ei),Φ∗(ej)〉 = λ2
i δij where λ1 ≥ λ2 ≥ · · · ≥ λq >

0 = λq+1 = · · · = λm. Secondly, choose θα be a local orthonormal frame on N along

the map Φ, such that Φ∗(ei) = λiθi for i = 1, 2, . . . , q, then ‖Ψ‖2 =
∑

α ‖ψα‖
2. By the
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definition of Dirac-harmonic map (1.1), one can get that

‖τ(Φ)‖ =
1

2

∣∣∣∣∣∑
i,α,β

〈ψα, ei · ψβ〉RN(θα, θβ)Φ∗(ei)

∣∣∣∣∣
≤1

2

∣∣∣∣∣ ∑
0<i≤q,α6=β

‖ψα‖
∥∥ψβ∥∥∥∥RN

∥∥λi
∣∣∣∣∣

≤1

2
q(n− 1)

∥∥RN
∥∥ ‖dΦ‖

∑
α

‖ψα‖2

≤1

2
(n− 1)

√
min {m,n}

∥∥RN
∥∥ ‖Ψ‖2 ‖dΦ‖ .

Similarly, one can get the estimate (2.5).
In order to estimate ‖∇dΦ‖2 and ‖∇Ψ‖2, we need to establish some Kato-Yau inequal-

ities. We first recall that for any Riemannian vector bundle E and any cross-section Ψ of
E,

(2.6) ‖∇Ψ‖ ≥ ‖∇‖Ψ‖‖ ,
provided that Ψ 6= 0. We can prove the following Kato-Yau inequalities for Dirac-harmonic
maps which generalize both the result for harmonic maps in [16] and the result for harmonic
spinors in [8].

Proposition 2 (Kato-Yau inequalities). Let E be any Dirac bundle on M with dimen-
sion m. Then for any cross-section Ψ ∈ Γ(E) and δ > 0, we have

(2.7) ‖∇Ψ‖2 ≥
(

1 +
1

m− 1 + δ

)
‖∇‖Ψ‖‖2 − 1

δ
‖D/Ψ‖2 ,

provided that Ψ 6= 0. More generally, for any ε ≥ 1/m, we have

(2.8) ‖∇Ψ‖2 ≥ 1− ε
m− 1

‖D/Ψ‖2 +

(
1 +

1− 1/ε

m− 1

)
‖∇‖Ψ‖‖2 ,

provided Ψ 6= 0.
In particular, when (Φ,Ψ) is a Dirac-harmonic map, we have

‖∇dΦ‖2 ≥
(

1 +
1

m− 1 + δ

)
‖∇‖dΦ‖‖2

− 1

4δ
(n− 1)2 min {m,n}

∥∥RN
∥∥2 ‖Ψ‖4 ‖dΦ‖2 ,

(2.9)

and

‖∇Ψ‖2 ≥
(

1 +
1

m− 1

)
‖∇‖Ψ‖‖2 ,(2.10)

provided dΦ 6= 0 and Ψ 6= 0.

Proof. If ∇‖Ψ‖ = 0, (2.7) is obvious and (2.8) holds since

‖∇Ψ‖2 ≥ 1

m
‖D/Ψ‖2 ,
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and ε ≥ 1/m. Now suppose that Ψ 6= 0 and ∇‖Ψ‖ 6= 0 at the considered point. Then we
can choose an orthonormal frame {ei} such that at the considered point

e1 = ‖∇‖Ψ‖‖−1∇‖Ψ‖

and

‖∇‖Ψ‖‖ = ∇e1 ‖Ψ‖ ≤ ‖∇e1Ψ‖ .

Note that the Cauchy-Schwarz inequality implies that for it follows from every positive
number ε, the flowing inequality

2ab ≤ εa2 +
1

ε
b2

holds for all real number a, b. Hence, for any ε ≥ 1/m > 0, at the considered point,
applying this Cauchy-Schwarz inequality and the well-know triangle inequality, one gets
that

‖∇Ψ‖2 =
1

m
‖D/Ψ‖2 +

∑
j

∥∥∥∥∇ejΨ +
1

m
ej ·D/Ψ

∥∥∥∥2

=
1

m
‖D/Ψ‖2 +

∥∥∥∥e1 · ∇e1Ψ−
1

m
D/Ψ

∥∥∥∥2

+
∑
j>1

∥∥∥∥ej · ∇ejΨ−
1

m
D/Ψ

∥∥∥∥2

≥ 1

m
‖D/Ψ‖2 +

∥∥∥∥e1 · ∇e1Ψ−
1

m
D/Ψ

∥∥∥∥2

+
1

m− 1

∣∣∣∣∣∑
j>1

∥∥∥∥ej · ∇ejΨ−
1

m
D/Ψ

∥∥∥∥
∣∣∣∣∣
2

≥ 1

m
‖D/Ψ‖2 +

∥∥∥∥e1 · ∇e1Ψ−
1

m
D/Ψ

∥∥∥∥2

+
1

m− 1

∥∥∥∥∥∑
j>1

(
ej · ∇ejΨ−

1

m
D/Ψ

)∥∥∥∥∥
2

=
1

m
‖D/Ψ‖2 +

∥∥∥∥e1 · ∇e1Ψ−
1

m
D/Ψ

∥∥∥∥2

+
1

m− 1

∥∥∥∥ 1

m
D/Ψ− e1 · ∇e1Ψ

∥∥∥∥2

=
1

m
‖D/Ψ‖2 +

m

m− 1

∥∥∥∥e1 · ∇e1Ψ−
1

m
D/Ψ

∥∥∥∥2

=
1

m− 1
‖D/Ψ‖2 +

m

m− 1
‖∇e1Ψ‖

2 − 2

m− 1
<〈D/Ψ, e1 · ∇e1Ψ〉

≥ 1− ε
m− 1

‖D/Ψ‖2 +

(
1 +

1− 1/ε

m− 1

)
‖∇e1Ψ‖

2

≥ 1− ε
m− 1

‖D/Ψ‖2 +

(
1 +

1− 1/ε

m− 1

)
‖∇‖Ψ‖‖2 ,

where the first inequality follows by the mean value inequality. Choose ε > 1 ≥ 1/m such
that

δ =
m− 1

ε− 1
,

then

‖∇Ψ‖2 ≥
(

1 +
1

m− 1 + δ

)
‖∇‖Ψ‖‖2 − 1

δ
‖D/Ψ‖2 .
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Now we consider dΦ as a cross-section of the Dirac bundle
∧∗ T ∗M ⊗ Φ−1TN . The

Clifford multiplication is defined by

X · (ηα ⊗ Eα) = X] ∧ ηα ⊗ Eα − ιXηα ⊗ Eα,

and the associated Dirac operator D/ is defined by D/ = D + D∗, where D = ηi ∧ ∇ei and
D∗ is the dual of D. In particular, D/dΦ = D∗dΦ = −τ(Φ). Thus, when (Φ,Ψ) is a
Dirac-harmonic map, it follows from (2.4) and (2.7) that

‖∇dΦ‖2 ≥
(

1 +
1

m− 1 + δ

)
‖∇‖dΦ‖‖2 − 1

δ
‖τ(Φ)‖2

≥
(

1 +
1

m− 1 + δ

)
‖∇‖dΦ‖‖2

− 1

4δ
(n− 1)2 min {m,n}

∥∥RN
∥∥2 ‖Ψ‖4 ‖dΦ‖2 .

(2.11)

provided dΦ 6= 0 and Ψ 6= 0. (2.10) follows from (2.7) by using the Dirac-harmonicity and
letting δ → 0. �

Remark 3. One can prove (2.9) directly. Indeed, let dΦ = φαi η
i ⊗ θα where {ηi} is the

dual of {ei}, and choose e1 as in the proof of Proposition 2, then for any ε > 0,

‖∇dΦ‖2 =
∑
α,i,j

(φαij)
2 ≥

∑
α

(φα11)2 + 2
∑
α,j>1

(φα1j)
2 +

∑
α,j>1

(φαjj)
2

≥
∑
α

(φα11)2 + 2
∑
α,j>1

(φα1j)
2 +

1

m− 1

∑
α

(∑
j>1

φαjj

)2

=
∑
α

(φα11)2 + 2
∑
α,j>1

(φα1j)
2 +

1

m− 1

∑
α

(τ(Φ)α − φα11)2

≥ m

m− 1

∑
α,j

(φα1j)
2 +

1

m− 1
‖τ(Φ)‖2 − 2

m− 1
φα11τ(Φ)α

≥ 1− ε
m− 1

‖τ(Φ)‖2 +

(
1 +

1− 1/ε

m− 1

)∑
α,j

(φα1j)
2.

Choosing ε > 1 such that δ = (m−1)/(ε−1) > 0 and noting that
∑

α,j(φ
α
1j)

2 ≥ ‖∇‖dΦ‖‖2,
we deduce that

‖∇dΦ‖2 ≥
(

1 +
1

m− 1 + δ

)
‖∇‖dΦ‖‖2 − 1

δ
‖τ(Φ)‖2 ;

consequently, (2.9 ) follows.
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2.2. Gradient Estimates. Now we consider the gradient estimates for Dirac-harmonic
maps. By using (2.2) and (2.5), one gets that that

1

2
∆ ‖dΦ‖2 ≥‖∇dΦ‖2 − b3C(m,n) ‖Ψ‖2 ‖dΦ‖3

− b2C(m,n) ‖Ψ‖2 ‖dΦ‖ ‖∇dΦ‖
− b2C(m,n) ‖Ψ‖ ‖∇Ψ‖ ‖dΦ‖2

− κ ‖dΦ‖2 − b1

(
1− 1

p

)
‖dΦ‖4

for some constant C(m,n) > 0 depending only on m and n. Applying the Cauchy-Schwarz
inequality, one gets that, for any δ1 > 0,

1

2
∆ ‖dΦ‖2 ≥(1− δ1) ‖∇dΦ‖2 − b2

2

δ1

C(m,n) ‖Ψ‖4 ‖dΦ‖2

− b2
3

b1

C(m,n)2p(p+ 1) ‖Ψ‖4 ‖dΦ‖2 − b1

2p(p+ 1)
‖dΦ‖4

− b2
2

b1

C(m,n)2p(p+ 1) ‖Ψ‖2 ‖∇Ψ‖2 − b1

2p(p+ 1)
‖dΦ‖4

− κ ‖dΦ‖2 − b1

(
1− 1

p

)
‖dΦ‖4

≥(1− δ1) ‖∇dΦ‖2 −
(
b2

2

δ1

+
b2

3

b1

)
C(m,n) ‖Ψ‖4 ‖dΦ‖2

− b2
2

b1

C(m,n) ‖Ψ‖2 ‖∇Ψ‖2 − κ ‖dΦ‖2 −
(

1− 1

p+ 1

)
b1 ‖dΦ‖4 ,

for some C(m,n) > 0. Let δ = 1 and choose δ1 such that

(1− δ1)

(
1 +

1

m− 1 + δ

)
= 1 +

1

m− 1 + 2δ
,

i.e.,

δ1 =
1

(m+ 1)2
,
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then according to the Kato-Yau inequality for the map (2.9) when δ = 1, one gets that

1

2
∆ ‖dΦ‖2 ≥

(
1 +

1

m+ 1

)
‖∇‖dΦ‖‖2

− m2 + 2m

4(m+ 1)2
(n− 1)2 min {m,n} b2

2 ‖Ψ‖
4 ‖dΦ‖2

−
(
b2

2 +
b2

3

b1

)
C(m,n) ‖Ψ‖4 ‖dΦ‖2

− b2
2

b1

C(m,n) ‖Ψ‖2 ‖∇Ψ‖2 − κ ‖dΦ‖2 −
(

1− 1

p+ 1

)
b1 ‖dΦ‖4

≥
(

1 +
1

m+ 1

)
‖∇‖dΦ‖‖2 −

(
b2

2 +
b2

3

b1

)
C(m,n) ‖Ψ‖4 ‖dΦ‖2

− b2
2

b1

C(m,n) ‖Ψ‖2 ‖∇Ψ‖2 − κ ‖dΦ‖2 −
(

1− 1

p+ 1

)
b1 ‖dΦ‖4 .

(2.12)

Since (Φ,Ψ) is Dirac-harmonic, by the Weitzenböck formula (3.10) in [4] and the Kato-
Yau inequality (2.10), we have

1

2
∆ ‖Ψ‖4 = ‖Ψ‖2 ∆ ‖Ψ‖2 +

∥∥∇‖Ψ‖2
∥∥2

≥2 ‖Ψ‖2 ‖∇Ψ‖2 +
∥∥∇‖Ψ‖2

∥∥2
+
SM
2
‖Ψ‖4 − (p− 1)(n− 1)b2

2 ‖Ψ‖
4 ‖dΦ‖2

≥‖Ψ‖2 ‖∇Ψ‖2 +

(
1 +

1

m+ 1

)∥∥∇‖Ψ‖2
∥∥2 − m

2
κ ‖Ψ‖4 − b2

2C(m,n) ‖Ψ‖4 ‖dΦ‖2 .

(2.13)

Now we fix the constant

C0 := C(m,n)

in the above two inequalities (2.12) and (2.13), and set

ẽ :=
√
C0b2√
b1
‖Ψ‖2 , C1 :=

√
C0b2√
b1
, e :=

√
‖dΦ‖2 + ẽ =

√
‖dΦ‖2 + C2

1 ‖Ψ‖
4.

We have the following

Lemma 2. Suppose RicM ≥ −κ,−b2 ≤ secN ≤ b1 and
∥∥∇RN

∥∥ ≤ b3, where b2 ≥ b1 > 0.
Denote

b0 :=
b3

2 + b4
2 + b2

3

b1

and

and p = min {m,n} ≥ max rank dΦ. Then we have the following inequality

∆e ≥ 1

m+ 1

‖∇e‖2

e
− m

2
κe− C(m,n)b0 ‖Ψ‖4 e−

(
1− 1

p+ 1

)
b1 ‖dΦ‖2 e,(2.14)

where C(m,n) > 0 is a constant depending only on m and n.
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Proof. Denote µ := 1
m+1

, then by (2.12) and (2.13), we have

1

2
∆e2 ≥(1 + µ)

(
‖∇‖dΦ‖‖2 + ‖∇ẽ‖2)− m

2
κe2

−
(
b2

2 +
b4

2 + b2
3

b1

)
C(m,n) ‖Ψ‖4 ‖dΦ‖2

−
(

1− 1

p+ 1

)
b1 ‖dΦ‖4 .

Independently,

‖∇e‖2 =
‖∇e2‖2

4e2
= e−2 (‖dΦ‖∇‖dΦ‖+ ẽ∇ẽ)2

≤e−2
(
‖dΦ‖2 ‖∇‖dΦ‖‖2 + ẽ2 ‖∇ẽ‖2 + 2 ‖dΦ‖ ‖∇‖dΦ‖‖ ẽ ‖∇ẽ‖

)
≤e−2

(
‖dΦ‖2 ‖∇‖dΦ‖‖2 + ẽ2 ‖∇ẽ‖2 + ‖dΦ‖2 ‖∇ẽ‖2 + ‖∇‖dΦ‖‖2 ẽ2

)
= ‖∇‖dΦ‖‖2 + ‖∇ẽ‖2 .

Therefore,

∆e ≥µ‖∇e‖
2

e
− m

2
κe− C(m,n)b0 ‖Ψ‖4 e−

(
1− 1

p+ 1

)
b1 ‖dΦ‖2 e.

�

Denote by B : N −→ R+ a function which will be defined later, and denote f = e/(B◦Φ).
For any point x0 ∈M , we define a function on Ba(x0) by

(2.15) F =
(
a2 − r2

)
f =

(
a2 − r2

) e

B ◦ Φ
,

where r(x) = dist (x0, x). It is easy to see that if e 6= 0, then F must achieve its maximum
at some interior point x∗. We may assume that r is twice differentiable near x∗ (c.f. [5]).
By the maximum principle, we have

(2.16) ∇F (x∗) = 0,

(2.17) ∆F (x∗) ≤ 0.

We recall the Laplace Comparison Theorem [9], for some constant C(m) > 0 depending
only on m,

(2.18) ∆r2 ≤ C(m)(1 +
√
κr),

where the constant C(m) can be chosen as 2m.

Lemma 3. Set

A =
m

2
κ+

C(m)(1 +
√
κr)

a2 − r2
+

8r2

(a2 − r2)2 ,

then at the point x∗, we have the following estimate

1

m+ 1

‖∇(B ◦ Φ)‖2

(B ◦ Φ)2
− ∆(B ◦ Φ)

B ◦ Φ
− 4r

‖∇(B ◦ Φ)‖
(a2 − r2)B ◦ Φ

−
(

1− 1

p+ 1

)
b1 ‖dΦ‖2 − A− C(m,n)b0 ‖Ψ‖4 ≤ 0.

(2.19)
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Proof. We first have

∇f =
∇e
B ◦ Φ

− e∇(B ◦ Φ)

(B ◦ Φ)2
,

and

∆f =
∆e

B ◦ Φ
− f∆(B ◦ Φ)

B ◦ Φ
− 2〈∇(B ◦ Φ),∇f)〉

B ◦ Φ
.

By using (2.14) and setting µ = 1/(m+ 1), we get

∆f ≥µ ‖∇e‖
2

eB ◦ Φ
− m

2
κf − C(m,n)b ‖Ψ‖4 f

−
(

1− 1

p+ 1

)
b1 ‖dΦ‖2 f

− f∆(B ◦ Φ)

B ◦ Φ
− 2〈∇(B ◦ Φ),∇f)〉

B ◦ Φ
.

(2.20)

We also have that

− 2〈∇(B ◦ Φ),∇f〉
B ◦ Φ

= −(2− 2µ)
〈∇(B ◦ Φ),∇f〉

B ◦ Φ
− 2µ

〈∇(B ◦ Φ),∇f〉
B ◦ Φ

=− (2− 2µ)
〈∇(B ◦ Φ),∇f〉

B ◦ Φ
− 2µ

〈∇(B ◦ Φ),∇e〉
(B ◦ Φ)2

+ 2µ
f ‖∇(B ◦ Φ)‖2

(B ◦ Φ)2

≥− (2− 2µ)
〈∇(B ◦ Φ),∇f〉

B ◦ Φ
− µ ‖∇e‖

2

eB ◦ Φ
+ µ

f ‖∇(B ◦ Φ)‖2

(B ◦ Φ)2
.

Therefore,

∆f

f
≥− (2− 2µ)

〈∇(B ◦ Φ),∇f〉
fB ◦ Φ

+ µ
‖∇(B ◦ Φ)‖2

(B ◦ Φ)2
− ∆(B ◦ Φ)

B ◦ Φ

− m

2
κ− C(m,n)b0 ‖Ψ‖4 −

(
1− 1

p+ 1

)
b1 ‖dΦ‖2 .

At the point x∗, since F achieves its maximum, as a consequence ∇F (x∗) = 0 and
∆F (x∗) ≤ 0. By the definition of F , one has that

∇r2

a2 − r2
=
∇f
f
,

and

− ∆r2

a2 − r2
+

∆f

f
− 2〈∇r2,∇f〉

f(a2 − r2)
≤ 0.

It follows that

∆f

f
− ∆r2

a2 − r2
− 2 ‖∇r2‖2

(a2 − r2)2 ≤ 0.
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Using ‖∇r2‖ = 2r and (2.18), we then have

0 ≥∆f

f
− C(m)(1 +

√
κr)

a2 − r2
− 8r2

(a2 − r2)2

≥− (2− 2µ)
〈∇(B ◦ Φ),∇f〉

fB ◦ Φ
+ µ
‖∇(B ◦ Φ)‖2

(B ◦ Φ)2
− ∆(B ◦ Φ)

B ◦ Φ

− m

2
κ− C(m,n)b0 ‖Ψ‖4 −

(
1− 1

p+ 1

)
b1 ‖dΦ‖2

− C(m)(1 +
√
κr)

a2 − r2
− 8r2

(a2 − r2)2 .

However,

−(2− 2µ)
〈∇(B ◦ Φ),∇f〉

fB ◦ Φ
=− (2− 2µ)2r

〈∇(B ◦ Φ),∇r〉
(a2 − r2)B ◦ Φ

≥− (2− 2µ)2r
‖∇(B ◦ Φ)‖

(a2 − r2)B ◦ Φ
,

and we conclude that

µ
‖∇(B ◦ Φ)‖2

(B ◦ Φ)2
− ∆(B ◦ Φ)

B ◦ Φ
− 4r

‖∇(B ◦ Φ)‖
(a2 − r2)B ◦ Φ

−
(

1− 1

p+ 1

)
b1 ‖dΦ‖2 − A− C(m,n)b0 ‖Ψ‖4 ≤ 0.

�

Now we are in the position to give the

Proof of Theorem 1. We use the key Lemma 3 to prove this theorem. Choose

B(y) =
√
b1 cos (

√
b1ρ(y)),

where ρ is the distance function from the fixed point y0 on N . Since Φ(M) ⊂ By0(R), one
gets that B ◦ Φ > 0. From the Hessian Comparison Theorem [9] and ‖∇ρ‖ = 1 we have

(2.21) HessB ≤ −b3/2
1 cos (

√
b1ρ),

(2.22) ‖∇B‖ = b1 sin (
√
b1ρ).

It then follows that

‖∇(B ◦ Φ)‖ ≤ ‖(∇B) ◦ Φ‖ ‖dΦ‖ = b1 sin (
√
b1ρ ◦ Φ) ‖dΦ‖ ,

and

∆(B ◦ Φ) ≤ (HessB) ◦ Φ ‖dΦ‖2 + ‖(∇B) ◦ Φ‖ ‖τ(Φ)‖

≤ − b3/2
1 cos (

√
b1ρ ◦ Φ) ‖dΦ‖2 + b1b2C(m,n) ‖Ψ‖2 ‖dΦ‖

≤ − b3/2
1 cos (

√
b1ρ ◦ Φ) ‖dΦ‖2 +

1

(p+ 1)(p+ 2)
b1B ◦ Φ ‖dΦ‖2

+
1

B ◦ Φ
(p+ 1)2C(m,n)b1b

2
2 ‖Ψ‖

4 .
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Inserting this into (2.19), we have at x∗,

b1

p+ 2
‖dΦ‖2 − 4rb1

(a2 − r2)B ◦ Φ
‖dΦ‖ ≤ A+

1

(B ◦ Φ)2
C(m,n)b ‖Ψ‖4 ,

where b := b1b0 = b3
2 + b4

2 + b2
3. In other words,

b1

p+ 2
e2 − 4rb1

(a2 − r2)B ◦ Φ
e ≤ A+

1

(B ◦ Φ)2
C(m,n)b ‖Ψ‖4 .

Therefore,

(2.23)
b1(B ◦ Φ)2

p+ 2
F 2(x∗)− 4rb1F (x∗) ≤

(
A+

1

(B ◦ Φ)2
C(m,n)b ‖Ψ‖4

)(
a2 − r2

)2
.

For the RHS of the above inequality, we have the following estimate:(
a2 − r2

)2
(
A+

1

(B ◦ Φ)2
C(m,n)b ‖Ψ‖4

)
≤a2

((
m

2
κ+

1

(B ◦ Φ)2
C(m,n)b ‖Ψ‖4

)
a2 + C(m)(1 +

√
κa) + 8

)
≤C(m,n)b1

(B ◦ Φ)2
a2

(
1 +
√
κa+

√
b

b1

‖Ψ‖2 a

)2

.

It is elementary that if Ax2 −Bx− C ≤ 0 with A, B, C all positive, then

x ≤ B

A
+

√
C

A
.

From this and (2.23) we conclude that

(2.24) F (x∗) ≤ C(m,n)a

b1 cos2(
√
b1R)

(
1 +
√
κa+

√
b

b1

sup
Bx0 (a)

‖Ψ‖2 a

)
,

from which (1.2) follows. This proves Theorem 1. �

3. Liouville theorems for Dirac-harmonic maps

Using the gradient estimate for Dirac-harmonic maps, we can prove the Liouville prop-
erty for Dirac-harmonic maps, Theorem 2.

Proof of Theorem 2. Since (Φ,Ψ) is Dirac harmonic, we can get from the Weitzenböck
formula that

∆ ‖Ψ‖ ≥
(
ε

4
− 1

2
(min {m,n} − 1) (n− 1)b2

2 ‖dΦ‖2

)
‖Ψ‖ .

It is obvious that this theorem is valid ifM is compact. Now, we supposeM is non-compact.
Suppose ‖Ψ‖ ≤ δ, then according to Theorem 1,

‖dΦ‖ ≤ C(m,n)
√
bδ2

b1 cos2(
√
b1R)

.
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Thus,

∆ ‖Ψ‖ ≥
(
ε

4
− C(m,n)b2

b3
1 cos4 (

√
b1R)

δ4

)
‖Ψ‖

for some constant C(m,n) > 0 depending only on m,n.
If one choose δ such that

ε

4
− C(m,n)b2

b3
1 cos4 (

√
b1R)

δ4 = 0,

then ‖Ψ‖ is a bounded subharmonic function on M .

Now we prove that Ψ ≡ 0. For every positive number c, let u = (‖Ψ‖+ c)−
1
2 , then

∆u =− 1

2
(‖Ψ‖+ c)−

3
2 ∆ ‖Ψ‖+ 3(‖Ψ‖+ c)

1
2 ‖∇u‖2

≤− C0

2
(‖Ψ‖+ c)−

3
2 ‖Ψ‖+ 3(‖Ψ‖+ c)

1
2 ‖∇u‖2 .

(3.3)

Since the Ricci curvature of M is nonnegative, the Omori-Yau maximum principle holds
[5, 18], that is, for every η > 0, there exists a point p ∈M such that at p,

u < inf u+ η, ‖∇u‖ < η, ∆u > −η.

It follows from (3.3) and ‖Ψ‖ ≤ δ that

C0

2
‖Ψ‖ < η

(
inf(‖Ψ‖+ c)−

1
2 + 4η

)
(‖Ψ‖+ c)2 < η

(
δ−

1
2 + 4η

)
(δ + c)2.

Let η → 0, we obtain

sup ‖Ψ‖ = 0.

Hence, dΦ = 0 since (1.2), and Φ must be constant. �

Proof of Theorem 3. Choose a local orthonormal frame field {ei} such that Φ∗gN is a
diagonal matrix at the considered point, i.e. 〈Φ∗(ei),Φ∗(ej)〉 = λiδij. Let q be the rank
of Φ at the point, we may suppose that λ1 ≥ λ2 ≥ . . . ≥ λq′ > 0 and q′ ≤ q. By using
Newton’s inequality, we have

RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej)) ≤ 2b1

∑
1≤i<j≤q′

λ2
iλ

2
j

≤2b1

(
q′

2

)(
q′

1

)−2
(

q′∑
i=1

λ2
i

)2

=
q′ − 1

q′
b1 ‖dΦ‖4 ≤ q − 1

q
b1 ‖dΦ‖4 .

Applying the Kato-Yau inequality (2.8), i.e., choose ε = (δ + 1)/(m+ δ) ≥ 1/m, we have

‖∇dΦ‖2 ≥ δ

1 + δ
‖∇‖dΦ‖‖2 +

1

m+ δ
‖τ(Φ)‖2 ,

Then according to (2.1), we obtain

1

2
∆ ‖dΦ‖2 − div (〈τ(Φ),Φ∗(ei)〉ei)

≥ δ

1 + δ
‖∇‖dΦ‖‖2 − m− 1 + δ

m+ δ
‖τ(Φ)‖2 + a ‖dΦ‖2 − q − 1

q
b1 ‖dΦ‖4 .
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On the other hand, we have the following estimate

‖τ(Φ)‖ =
1

2

∥∥∥∥∥∑
α 6=β,i

〈ψα, ei · ψβ〉RN(θα, θβ)Φ∗(ei)

∥∥∥∥∥
≤1

2
b2

∑
α 6=β

|ψα|
∣∣ψβ∣∣ |θα| |θβ| q∑

i=1

λi

≤1

2
b2 (n− 1) ‖Ψ‖2√q ‖dΦ‖ .

(3.4)

Hence, if for some δ > 0 such that (1.3) holds, then

1

2
∆ ‖dΦ‖2 − div (〈τ(Φ),Φ∗(ei)〉ei)

≥ δ

1 + δ
‖∇‖dΦ‖‖2 + ‖dΦ‖2

(
a− q − 1

q
b1 ‖dΦ‖2 − m− 1 + δ

4(m+ δ)
(n− 1)2 qb2

2 ‖Ψ‖
4

)
≥ δ

1 + δ
‖∇‖dΦ‖‖2 .

The above inequality implies ‖dΦ‖ is constant, and consequently dΦ ≡ 0. So, Φ is constant
and Ψ is a harmonic spionor. It is obvious that the scalar curvature of M SM ≥ ma. Thus,

∆ ‖Ψ‖2 ≥ 1

2
SM ‖Ψ‖2 ≥ ma

2
‖Ψ‖2 ,

which implies Ψ ≡ 0 since M is compact. �

Now we give the

Proof of Theorem 4. We first show that Φ must be constant. Firstly, we have the
following Kato inequality:

(3.5) ‖∇dΦ‖2 ≥ ‖∇‖dΦ‖‖2 .

For any ε > 0, we let u =
√
‖dΦ‖2 + ε, then (2.1) and (3.5) imply that

u∆u− div (〈τ(Φ),Φ∗(ei)〉ei)

=
1

2
∆ ‖dΦ‖2 −

(
‖dΦ‖2 + ε

)−1 ‖dΦ‖2 ‖∇‖dΦ‖‖2 − div (〈τ(Φ),Φ∗(ei)〉ei)

≥ε
(
‖dΦ‖2 + ε

)−1 ‖∇‖dΦ‖‖2 − ‖τ(Φ)‖2 + 〈Φ∗(RicM(ei)),Φ∗(ei)〉
−RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej))

≥− ‖τ(Φ)‖2 + 〈Φ∗(RicM(ei)),Φ∗(ei)〉 −RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej)).

(3.6)

Secondly, for any smooth function with compact support η, we have

div (η2u∇u) = η2u∆u+ 2ηu〈∇η,∇u〉+ η2 ‖∇u‖2 .
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By integrating on M , we have∫
M

η2u∆u− η2 div (〈τ(Φ),Φ∗(ei)〉ei)

=− 2

∫
M

ηu〈∇η,∇u〉 −
∫
M

η2 ‖∇u‖2 + 2

∫
M

η〈τ(Φ),Φ∗(∇η)〉.
(3.7)

Fix x0 ∈M , and choose η such that

η(x) =

{
1, x ∈ BR(x0);

0, x /∈ B2R(x0),

and 0 ≤ η ≤ 1, ‖∇η‖ ≤ C/R, where C is a positive constant. We have the following
estimate

− 2

∫
M

ηu〈∇η,∇u〉 −
∫
M

η2 ‖∇u‖2

≤2

(∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2

)1
2
(∫

B2R(x0)\BR(x0)

u2 ‖∇η‖2

)1
2

−
∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2 −
∫
BR(x0)

η2 ‖∇u‖2 ,

(3.8)

and for any δ ∈ (0, 1),

2

∫
M

η〈τ(Φ),Φ∗(∇η)〉 ≤ 1

δ

∫
B2R(x0)

η2 ‖τ(Φ)‖2 + δ

∫
B2R(x0)\BR(x0)

u2 ‖∇η‖2 .(3.9)

From (3.6), (3.7), (3.8) and (3.9), we have

2

(∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2

)1
2
(∫

B2R(x0)\BR(x0)

u2 ‖∇η‖2

)1
2

− (1− δ)
∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2 −
∫
BR(x0)

η2 ‖∇u‖2

≥− (1 +
1

δ
)

∫
B2R(x0)

η2 ‖τ(Φ)‖2

+

∫
B2R(x0)

η2〈Φ∗(RicM(ei)),Φ∗(ei)〉

−
∫
B2R(x0)

η2RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej))

(3.10)

Independently, for δ > 0 in (1.5), we have

− (1 +
1

δ
) ‖τ(Φ)‖2 + 〈Φ∗(RicM(ei)),Φ∗(ei)〉

−RN(Φ∗(ei),Φ∗(ej),Φ∗(ei),Φ∗(ej))

≥‖dΦ‖2

(
a− q − 1

q
b1 ‖dΦ‖2 − 1 + δ

4δ
(n− 1)2 qb2

2 ‖Ψ‖
4

)
≥ 0.
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Thus,

2

(∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2

)1
2
(∫

B2R(x0)\BR(x0)

u2 ‖∇η‖2

)1
2

− (1− δ)
∫
B2R(x0)\BR(x0)

η2 ‖∇u‖2 −
∫
BR(x0)

η2 ‖∇u‖2

≥0.

This inequality implies

(3.11) (1− δ)
∫
BR(x0)

‖∇u‖2 ≤
∫
B2R(x0)\BR(x0)

u2 ‖∇η‖2 ≤ C2

R2

∫
BR(x0)

u2

Let ε go to 0,

(1− δ)
∫
BR(x0)

‖∇‖dΦ‖‖ ≤ C2

R2

∫
BR(x0)

‖dΦ‖2 .

Since
∫
M
‖dΦ‖2 <∞, consequently, letting R go to infinity, we get that∫

M

‖∇‖dΦ‖‖ ≤ 0.

Thus, ‖dΦ‖ must be constant. Since
∫
M
‖dΦ‖2 < ∞, and any complete noncompact

manifold with nonnegative Ricci curvature has infinite volume [19], Φ must be constant.
Next, we show that Ψ ≡ 0. Since Φ is constant, according to the Weitzenböck formula

in [4],
1

2
∆ ‖Ψ‖2 = ‖∇Ψ‖2 +

1

4
SM ‖Ψ‖2 ≥ 0.

Then ‖Ψ‖ must be constant since there is no nonconstant nonnegative L2 subharmonic
function on any complete manifold M [19]. Thus Ψ ≡ 0 since

∫
M
‖Ψ‖4 < ∞ and M has

infinite volume. �
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