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Abstract
We present a framework for designing cheap control architectures for embodied agents. Our deriva-
tion is guided by the classical problem of universal approximation, whereby we explore the possi-
bility of exploiting the agent’s embodiment for a new and more efficient universal approximation of
behaviors generated by sensorimotor control. This embodied universal approximation is compared
with the classical non-embodied universal approximation. To exemplify our approach, we present
a detailed quantitative case study for policy models defined in terms of conditional restricted Boltz-
mann machines. In contrast to non-embodied universal approximation, which requires an exponen-
tial number of parameters, in the embodied setting we are able to generate all possible behaviors
with a drastically smaller model, thus obtaining cheap universal approximation. We test and cor-
roborate the theory experimentally with a six-legged walking machine. The experiments show that
the sufficient controller complexity predicted by our theory is tight, which means that the theory
has direct practical implications.
Keywords: cheap design, embodiment, sensorimotor loop, universal approximation, conditional
restricted Boltzmann machine

1 Introduction

In artificial intelligence, learning is one of the central fields of interest. Crucial for the success of
any learning method is the complexity of the underlying model, e.g. a neural network. If the model
is chosen too complex, the learning algorithm will likely require too much time and get stuck in
a suboptimal solution. If it is chosen too simple, it might not be able to solve the problem at all.
It is known from biological systems, that the exploitation of the body and environment allows a
reduction of the neural system’s complexity (Pfeifer and Bongard 2006).

The goal of this article is to provide a framework that allows to determine the complexity of
a control architecture in accordance with the cheap design principle from embodied artificial in-
telligence (Pfeifer and Bongard 2006). Cheap design in this context refers to the relatively low
complexity of the brain or controller in comparison with the complexity of an observed behavior. A
classical example is given by the Braitenberg vehicles (Braitenberg 1984), which are Gedankenex-
periments designed to show how a seemingly complex behavior can result from very simple control
structures. Braitenberg discusses several artificial creatures with simple wirings between sensors
and actuators. He then describes how these systems produce a behavior that an external observer
would classify as complex if the internal wirings were not revealed. Most interestingly, he then re-
lates the wiring of his vehicles to various neural structures in the human brain. The idea of a simple
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wiring that leads to complex behaviors is also discussed by Pfeifer and Bongard (2006), who present
the walking behavior of an ant as an example. Without taking the embodiment and, in particular, the
sensorimotor loop into account, the complex behavior (of a complex morphology) seems to require
a complex control structure (Pfeifer and Bongard 2006; p. 79). A strong indication that cheap design
is a common principle in biological systems is given by the fact that the human brain accounts for
only 2% of the body mass but is responsible for 20% of the entire energy consumption (Clark and
Sokoloff 1999), which is also remarkably constant (Sokoloff et al. 1955). Further support for cheap
design as a common principle is given by a recent study on the brain sizes of migrating birds. It
is known that migrating birds have a reduced brain size compared with their resident relatives. Sol
et al. (2010) have studied various species and the affected brain regions and point out that the re-
duced brain sizes could be a direct result from the need to reduce energetic, metabolic and cognitive
costs for migrating birds.

One way to achieve cheap design in this context is described as compliance in the embodied
artificial intelligence community. A system is described as compliant, if it not only copes with the
hard physical constraints it is subject to, but if it exploits them in order to minimize the required
control effort. An illustrative example is the human walking behavior, which only needs to be
actively controlled during the stance phase. The swing phase results mainly from the interaction of
the physical properties of the leg with the environment (gravity). This is demonstrated by the Passive
Dynamic Walker (McGeer 1990), which is a purely mechanical system that resembles the physical
properties of human legs. The human walking behavior is emulated as a result of the interaction of
the mechanical system with its environment (gravity and a slope). It is an impressive example of
cheap design that requires no active control at all.

We are interested in quantifying to what extent a control structure can be reduced if the physical
constraints are taken into account. Above, we referred to a system as cheaply designed, if it has a
control structure of low complexity produces behaviors which an external observer would classify
as complex. In this work, we are not concerned with the complexity of the behavior. Instead,
we present an approach to determine the minimal complexity of a control structure that is able to
produce a given set of desired behaviors (which can also be all theoretically possible behaviors) with
a given morphology in a given environment. In other words, rather than comparing the complexities
of the control structure and the behavior, we ask: what is the minimal brain complexity (or size)
that can control all (desired) behaviors that are possible with the body and environment in which it
is embedded?

There are various different complexity measures available in literature, of which the predic-
tive information (Bialek and Tishby 1999), relevant information (Polani et al. 2006), and the Kol-
mogorov complexity (Schmidhuber 2009), are just a few examples. All these approaches have their
specific strengths. However, they do not explicitly quantify how much the controller complexity
can be reduced as a result of the agents embodiment, which is the focus of this work.

We follow a bottom-up, understanding by building approach (Brooks 1991a) to cognitive sci-
ence, which is also known as behavior-based robotics (Brooks 1991b) and embodied artificial in-
telligence (Pfeifer and Bongard 2006). The core concept is that cognitive systems are considered
as embedded and situated agents which cannot be understood if they are detached from the senso-
rimotor loop. This implicitly means that we assume sensor state sparsity and continuity of physical
constraints. Consider the human retina as an example. We do not see random images but structured
patterns and the sequence of these patterns is also highly dependent on our behavior. This behavior-
dependent structuring of information is also know as information self-structuring and it has been
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identified as one of the key principles of learning and development (Lungarella and Sporns 2005,
Pfeifer et al. 2007). The second implication from the sensorimotor loop is continuity, e.g. natu-
ral systems are unable to teleport themselves from one place to another. Therefore, we can safely
assume that the world around us will not be too different from the recent past and the recent future.

The sensorimotor loop (SML) (Klyubin et al. 2004, Ay and Zahedi 2014) is described by a type
of partially observable Markov decision process (POMDP) where an embodied agent chooses ac-
tions based on noisy partial observations of its environment. An illustration of this causal structure is
given in Figure 2. We aim at optimizing the design of policy models for controlling these processes.
One aspect of the optimal design problem is addressed by working out the optimal complexity of the
policy model. In particular, we are interested in the minimal number of units or parameters needed
in order to obtain a network that can represent or approximate a desired set of behaviors within
a given degree of accuracy. A first step towards resolving this problem is to address the minimal
size of a universal approximator. In realistic scenarios, universal approximation is out of question,
since it demands an enormous number of parameters – many more than actually needed. In this pa-
per we reconsider the universal approximation problem by exploiting embodiment constraints and
restrictions in the desired behavioral patterns.

We introduce the notions of embodied behavior dimension and embodied universal approxima-
tion, which quantify the effective dimension of a system that is subject to sensorimotor constraints
(embodiment) and formalize the minimal control paradigm of cheap design in the context of the
sensorimotor loop. We substantiate these ideas with theoretical results on the representational ca-
pabilities of conditional restricted Boltzmann machines (CRBMs) as policy models for embodied
systems. CRBMs are artificial stochastic neural networks where the input and output units are con-
nected bipartitely and undirectedly to a set of hidden units. Given the embodied behavior dimension,
we derive bounds on the number of hidden units of CRBMs, that suffices to generate all possible
behaviors by appropriate tuning of interaction weights and biases. In order to test our theory, we
present an experimental study with a six-legged walking robot, and find a clear corroboration of our
theorems. The experiments show that the sufficient controller complexity predicted by our theory is
tight, which means that the theory has direct practical implications.

CRBMs are defined by clamping an input subset of the visible units of a Restricted Boltzmann
machine (RBM) (Smolensky 1986, Freund and Haussler 1994). Conditional models of this kind
have found a wide range of applications, e.g., in classification, collaborative filtering, and motion
modeling (see Larochelle and Bengio 2008, Salakhutdinov et al. 2007, Sutskever and Hinton 2007,
Taylor et al. 2007), and have proven useful as policy models in reinforcement learning settings (Sal-
lans and Hinton 2004). These networks can be trained efficiently (Hinton 2002; 2012) and are well
known in the context of learning representations and deep learning (see Bengio 2009). Although
estimating the probability distributions represented by RBMs is hard (Long and Servedio 2010),
approximate samples can be generated easily from a finite Gibbs sampling procedure. The theory
and in particular the expressive power of RBM probability models has been studied in numerous
papers (e.g., Le Roux and Bengio 2008, Montúfar and Ay 2011, Montúfar et al. 2011, Martens et al.
2013). Recently the representational power of CRBMs has been studied in detail (Montúfar et al.
2014). CRBMs can model non-trivial conditional distributions on high-dimensional input-output
spaces using relatively few parameters, and their complexity can be adjusted by simply increasing
or decreasing the number of hidden units. Hence we chose this model class for illustrating our
discussion about the complexity of SML control problems.
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This paper is organized as follows. Section 2 contains definitions around the SML. Section 3
presents the notions of embodied behavior dimension and embodied universal approximation, which
we use to quantify and enforce dimensionality reduction. Section 4 contains our theoretical discus-
sion on the representational power of CRBM models, comparing the non-embodied and the embod-
ied settings, and pointing the role of the embodied behavior dimension. Section 5 puts the theory
to the test in a robot control problem. Section 6 offers our conclusions and outlook. The Appendix
contains technical proofs and details about possible generalizations of the discussion presented in
the main part of the paper.

2 The Causal Structure of the Sensorimotor Loop

What is an embodied agent? In order to develop a theory of embodied agents that allows us to cast
the core principles of the field of embodied intelligence into rigorous theoretical and quantitative
statements, we need an appropriate formal model. Such a model should be general enough to be
applicable to all kinds of embodied agents, including natural as well as artificial ones, and specific
enough to capture the essential aspects of embodiment. How should such a model look like? First
of all, obviously, an embodied agent has a body. This body is situated in an environment with
which the agent can interact, thereby generating some behavior. In order to be useful, this behavior
has to be guided or controlled by the agent’s brain or controller. Drawing the boundary between
the brain on one side and the body, together with the environment, on the other side suggests a
black box perspective of the brain. The brain receives sensor signals from and sends effector or
actuator signals to the outside world. All it knows from the world is based on this closed loop of
signal transmission. In other words, the world is a black box for the brain with which it interacts
through sensing and acting. In particular, the boundary between the body and the environment is

 Cognitive System

 World

Motor
signal 

Sensory
feedback 

Internal stimulation

Movement
and feedback 

External
stimulation

Sensors  Actuators

Controller

Environment

Figure 1: Sensorimotor loop

not directly “visible” for the brain. Both are parts of that black box and interact with the brain in
an entangled way. Therefore, we consider them as being one entity, the outside world or simply the
world. The brain is causally independent of the world, given the sensor signals, and the world is
causally independent of the brain, given the actuator signals. This is the black box perspective.
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Let us now develop a formal description of this sensorimotor loop. We denote the set of world
states by W . This set can be, for instance, the position of a robot in a static 3D environment.
Information from the world is transmitted to the brain through sensors. Denoting the set of sensor
states by S , we can consider the sensor to be an information transmission channel from W to S
as it is defined within information theory. Given a world state w ∈ W , the response of the sensor
can be characterized by a probability distribution of possible sensor states s ∈ S as result of w.
For instance, if the sensor is noisy, then its response will not be uniquely determined. If the sensor
is noiseless, that is, deterministic, then there will be only one sensor state as possible response to
the world state w. In any case, the response of the sensor given w can be described in the following
way: for a set S of sensor states we simply say how likely it is that the sensor will respond with a
sensor state s that is contained in S. Formally, we can express this likelihood by a number β(w;S)
between zero and one, which is the probability of S given w. Collecting these numbers for all world
states w ∈ W and sets S leads to the mathematical definition of a channel, also called a Markov
kernel. It can be summarized as a map

β : W −→ ∆S ,

where ∆S denotes the set of probability distributions on the set S of sensor states. The set of all
such sensor channels is denoted by ∆W

S . Given a sensor channel β, there is another way to represent
the probability distribution that is assigned to a world state w. Instead of providing a list β(w;S)
for all sets S of interest, we can restrict attention to infinitesimally small sets ds, leading to the
notation β(w; ds). In order to represent β(w;S) in this notation, we have to integrate over all the
infinitesimal ds in a set S, that is

β(w; S) =

∫
S
β(w; ds) .

Whenever the base set S is discrete, we simply replace ds by s and use β(w; s) instead of β(s; ds).
Note that, as a Markov kernel, β has to satisfy various conditions. In order to provide a mathemati-
cally rigorous treatment, we assume that these conditions are satisfied. However, in order to improve
the readability of the paper, we will not be very explicit with this (for the technical definitions see,
e.g., Bauer 1996).

After having described in detail the mathematical model of a sensor, it is now straightforward
to consider corresponding formalization of the other components of the sensorimotor loop. We
continue with the notion of a policy. The agent can generate an effect in the world in terms of its
actuators. Since we consider the body as part of the world, this can lead, for instance, to some body
movement of the agent. In order guide this movement, it is beneficial for the agent to choose its
actuator state based on the information about the world received through its sensors. Denoting the
state set of the actuators by A , we can again consider a channel from S to A as formal model of a
policy, which we denote by π. Being more precise, with a sensor state s and a subset A of actuator
states, π(s;A) denotes the probability that the agent chooses an actuator state in A, given that its
sensor state is s. Again, we have a Markov kernel

π : S −→ ∆A ,

where ∆A denotes the set of probability distributions on A . We also use the notation π(s; da) for
an infinitesimal set da as we already introduced above in the context of β. Note that this definition
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of a policy allows us to also consider a random choice of actions, so-called non-deterministic poli-
cies. The set of policies is denoted by ∆S

A .

Finally, we consider the change of the world state from w to w′ in the context of an actuator
state a as a channel which we denote by α. More precisely, given a world state w, an actuator state
a, and a set W′ of world states, α(w, a;W′) denotes the probability that the actuator state a will
generate a transition from w to a new world state that is in W′. As for the other channels, we use
also in this case the notation α(w, a; dw′) for infinitesimally small sets dw′. With the set ∆W of
probability distributions on W , we have

α : W ×A −→ ∆W .

We refer to α as world channel and denote the set of all world channels by ∆W ×A
W .

We have defined three mechanisms that are involved in a (reactive) sensorimotor loop of an
embodied agent. Clearly, the agent’s embodiment poses constraints to this loop, which we attribute
to the mechanisms β and α. The agent is equipped with these mechanisms, but they are both
considered to be determined and not modifiable by the agent. On the other hand, the policy π can be
modified by the agent in terms of learning processes. In order to describe the process of interaction
of the agent with the world, we have to sequentially apply the individual mechanisms in the right
order. Starting with an initial world state wt at time t, first the sensor state st is generated in terms
of the channel β. Then, based on the state of the sensor, an actuator state at is chosen according
to the policy π. Finally, the world makes a transition, governed by α, from the state w to a new
state wt+1, which is influenced by the actuator state at of the agent. Altogether, this defines the
combined mechanism

Pπ(wt; dst, dat, dwt+1) := β(wt; dst)π(st; dat)α(wt, at; dwt+1) . (1)

Note that we consider β and α fixed and therefore emphasise only the dependence on π. Now, with
the new statewt+1 of the world, the three steps are iterated. This generates a process which is shown
in Figure 2. Formally, the process is a probability distribution over trajectories that start with w0:

w0, s0, a0, w1, s1, a1, w2, s2, a2, w3, . . . , sT−1, aT−1, wT . (2)

In order to describe this probability distribution, we have to iterate the mechanism (1) by multipli-
cation:

Pπ(w0; ds0, da0, dw1, . . . , dsT−1, daT−1, dwT ) :=

T−1∏
t=0

Pπ(wt; dst, dat, dwt+1) .

Now, what aspects of the sequence (2) represent the behavior of the agent? Let us consider, for
instance, a walking behavior. It is given as a movement of the agent’s body in physical space,
which is completely determined by the world process. Remember that the body is part of the
world. Clearly, the particular sequence of sensor and actuator states does not matter as long as
they contribute to the generation of the same body movement. Therefore, we consider the world
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W t

St At

W t+1

St+1 At+1

W t+2W t

St At

W t+1

St+1 At+1

W t+2

β β

α α

π π

Figure 2: Causal structure of the reactive SML. The gray nuance groups the variables in one time
step.

process wt as the one in which behavior takes place and integrate out the other processes:

Pπ(w0; dw1, . . . , dwT ) =

∫
A

∫
S
· · ·
∫

A

∫
S︸ ︷︷ ︸

T times

Pπ(w0; ds0, da0, dw1, . . . , dsT−1, daT−1, dwT )

=

T−1∏
t=0

Pπ(wt; dwt+1) . (3)

One can show that, with weak assumptions, the limit for T →∞ exists, so that we can write

Pπ(w0; dw1, dw2, . . . ) ,

which is a Markov kernel from an initial world state w0 to the space of all infinite future sequences
w1, w2, . . . . We denote the set of these Markov kernels by ∆W

W ∞ . This allows us to formalize the
map that assigns to each policy the corresponding behavior:

ψ∞ : ∆S
A −→ ∆W

W ∞ , π 7−→ Pπ(w0; dw1, dw2, . . . ) . (4)

We refer to this map as the policy-behavior map. Two policies π1 and π2 will be considered equiv-
alent, if they generate the same behavior, that is,

ψ∞(π1) = ψ∞(π2) . (5)

We argue that embodiment constraints render many equivalent policies. We can exploit this fact
in order to design a concise control architecture. This will lead to a quantitative treatment of the
notion of cheap design within the field of embodied intelligence. Let us treat this systems design
problem in a more rigorous way. As we pointed out, the agent is equipped with the mechanisms β
and α which constitute the embodiment of the agent. In a biological system these mechanisms will
change due to developmental processes. However, we want to restrict our attention to the learning
processes and disentangle them from developmental processes by assuming that the latter ones have
already converged and therefore consider them as fixed. Learning refers to a process in which the
policy is changing in time. Clearly, in order to model this change the agent has to be equipped with
a family of possible policies, which we denote byM, and refer to as policy model. For instance,
we can consider neural networks as policy models that are parametrized by synaptic weights and
threshold values for the individual neurons. Changing the weights and the thresholds will lead to a
change of the policy (although there may be degeneracies, in general). In any case, going through
all the possible parameter values will generate a setM of policies with which the agent is equipped
for its behavior.
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We argue that, if the embodiment constraints lead to many equivalent policies, then it is possible
to find a concise model M that is capable of generating all behaviors. More precisely, we will
require from a model

ψ∞(M) = ψ∞(∆S
A ) ,

or, more precisely, a slight modification by taking limit points ofM into account. We refer to this
property ofM as being an embodied universal approximator. In order to highlight the exploitation
of embodiment constraints for cheap design, we compare this kind of universal approximation to
the standard notion of universal approximation, which we refer to as non-embodied universal ap-
proximation.

3 Cheap Representation of Embodied Behaviors

Intuitively it is clear that the embodiment constraints cause restrictions in the set of behaviors that an
agent can realize. For example, inertia restricts the pace at which an embodied system can change
its direction of motion (imagine a train switching the traveling direction instantaneously). In turn,
not all world-state transitions may be possible in a single time step, regardless of what the policy
specifies as a desirable action to take. These restrictions create a bottleneck between the set of
policies on the one side and the set of possible behaviors on the other. The consequence is that,
generically, infinitely many policies parametrize the same behavior. If we understand the way in
which different policies are mapped to the same, or to different, behaviors, then we can parametrize
all the behaviors that can possibly emerge in the SML by a low-dimensional (or low-complexity) set
of policies. We develop the necessary tools in this section. For clarity we will focus on the reactive
SML with finite sensor and actuator state spaces but allowing the possibility of a continuous world
state. In particular we will use β(w; s) instead of β(w; ds) and π(s; a) instead of π(s; da). Possible
generalizations of these settings are discussed in Appendix C.

The condition (5) is clearly the same as

Pπ1(w0; dw1, . . . , dwT ) = Pπ2(w0; dw1, . . . , dwT ), for all T = 1, 2, . . . ,

and with equation (3), this is satisfied if and only if

Pπ1(w; dw′) = Pπ2(w; dw′) .

Therefore, the mechanism Pπ(w; dw′) will play an important role in our analysis, and we consider
the one-step formulation of the policy-behavior map:

ψ : ∆S
A −→ ∆W

W , π 7−→ Pπ(w; dw′) , (6)

where
Pπ(w; dw′) =

∑
s∈S

∑
a∈A

β(w; s)π(s; a)α(a,w; dw′). (7)

This is an affine map from the convex set ∆S
A to the convex set ∆W

W . The image of this map
represents the set of all possible behaviors that the SML can generate. We denote this set by Beh
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Figure 3: Locality of world-state transitions. This hexapod will be used in the experimental evalua-
tion of our theory in Section 5.

and refer to its dimension the embodied behavior dimension d = dim(ψ(∆S
A )). This is given by

the number linearly independent vectors

β(w; s)(α(w, a0; dw
′)− α(w, a; dw′)) (8)

in aff(ψ(∆S
A )), where (s, a) are sensor-actuator states with a 6= a0, for some fixed a0 ∈ A . These

vectors are namely the images of a basis of aff(∆S
A ). See Appendix A for more details about this.

This allows us to formulate a simple upper bound for the embodied behavior dimension d in terms
of the image dimension of the maps β and α. Writing rank for the image dimension and regarding
β as a linear map RS → RW (operating on the columns of π) and α as an affine map ∆A → ∆W

W
(operating on the rows of π), we have

d = rank(ψ) ≤ rank(β) · rank(α). (9)

For example, if W is finite, rank(β) is the rank of the matrix with entries (β(w; s))w∈W ,s∈S and
rank(α) is the rank of the matrix with entries (α(w, a0;w

′) − α(w, a;w′))a∈A ,(w,w′)∈W ×W , for
some fixed a0 ∈ A . Even though the upper bound (9) does not necessarily hold with equality (the
rank of the combined map ψ, where β and α share the same w, can be significantly smaller than
the product of the individual ranks), it gives us a clear picture of how the embodiment constraints,
represented by β and α, can lead to an embodied behavior dimension d that is much smaller than
|S |(|A | − 1), the dimension of the set of all policies ∆S

A .
In an embodied system the sensors are usually insensitive to a large number of variations of

the world-state w and, therefore, β is piece-wise constant with respect to w. Also, the sensors
implement a certain degree of redundancy, meaning that, for each w, the probability distribution
β(w; ·) ∈ ∆S has certain types of symmetries. This means that rank(β) is much smaller than |S |
(the maximum theoretically possible rank). In the case of α, usually several actions a produce the
same world-state transition, such that, for any fixed world state w, α(w, ·; ·) is piece-wise constant
with respect to a. Furthermore, for any given w, only very few states w′ ∈ W are possible at the
next time step, regardless of a, such that α(w, a; ·) assigns positive probability only to a very small
subset of W . This means that rank(α) is usually much smaller than (|A | − 1) (the maximum the-
oretically possible rank). An example for this kind of constraints on α is a robot’s knee, which in a
time step can only be moved to adjacent positions, as the one shown in Figure 3.

9
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∆S
A

ES
A

Figure 4: Illustration of the exponential family of policies described in Example 1. Here |S | = 3
and |A | = 2, such that the polytope ∆S

A is the three-dimensional cube of 3 × 2 row stochastic
matrices. The curved surface is the exponential family ES

A from the example for some specific β
and α with embodied behavior dimension d = 2. In the SML defined by β and α, the policies from
ES

A generate the same behaviors as the set of all policies ∆S
A .

So far we have discussed the embodied behavior dimension of an embodied system d = dim(Beh)
and why this can be much smaller than the dimension of the policy space dim(∆S

A ) = |S |(|A |−1).
Since the policy-behavior map ψ is affine, for any generic behavior that can possibly emerge in the
SML, there is a (|S |(|A | − 1)− d)-dimensional set (in fact a polytope) of equivalent policies gen-
erating that same behavior. By selecting representatives from each set of equivalent policies, we can
define low-dimensional policy models which are just as expressive as the much higher dimensional
set ∆S

A of all possible policies, in terms of the representable behaviors. The following example
shows that it is possible to define a smooth manifold of policies which translate in a one-to-one
fashion to the set of all possible behaviors in the SML.

Example 1. Consider the matrix E ∈ Rd×(S×A ) that represents the policy-behavior map ψ with
respect to some basis. Then the exponential family ES

A of policies defined by

πθ(s; a) =
exp(θ>E(s, a))∑

a′∈A exp(θ>E(s, a′))
, for all a ∈ A and s ∈ S , for all θ ∈ Rd, (10)

is an embodied universal approximator of dimension d. In fact, each behavior from the set Beh is
realized by exactly one policy from the set ES

A . See Figure 4 for an illustration and Appendix A for
technical details.

The previous discussion shows that the set of behaviors that can possibly emerge in the SML
usually has a much lower dimension than the set of all possible policies. Furthermore, it shows that
it is possible to construct low-dimensional embodied universal approximators. Nonetheless, among
all behaviors that are possible in the SML, we can expect that only a smaller subset B ⊂ Beh is
actually relevant to the agent. For instance, among all locomotion gaits that an agent could possibly
realize with its body in a given environment, we can expect that it will only utilize those which
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are most successful (with respect to different tasks). The embodied behavior dimension can be
directly generalized in order to capture such behavioral restrictions, in addition to the embodiment
constraints α and β. We note that specifying a set B of potentially interesting behaviors is in general
not an easy task. For instance, one could be interested in behaviors that maximize the expected
reward of an agent (besides from implicit definitions, say as the maximizers of a given objective
function). As the main focus of this paper is not to find a good definition of interesting or natural
behaviors, here we will consider a very simple but general classification of behaviors, in terms of
their supports.

In relation to the information self-structuring mentioned in the introduction, for specific be-
haviors usually only a relatively small subset S ⊆ S of sensor values emerges. In such situa-
tions, the policy only needs to be specified for the sensor values in the subset S. Consider a set
of behaviors B that take place within a restricted set of world states W ⊆ W and consider the
set of sensor states that can be possibly measured from these world states, S := {s ∈ S : s ∈
supp(β(w; ·)) for some w ∈ W}. For the world statesW , the measurement by β always produces
sensor values in S, and the policy for states not in S does not play any role. We denote by ψS the
restriction of the policy-behavior map to w ∈ W . This is given by the natural restriction of the
kernels β and α to the domainW ⊆ W . In this case, the embodied behavior dimension is given by
dS := dim(ψS(∆S

A )). We will denote a modelM⊆ ∆S
A an embodied universal approximator on

S if ψS(M) = ψS(∆S
A ). This definition means that the model is powerful enough to control any

behavior onW just as well as the entire policy polytope. Given any set of behaviors B, e.g., as the
one described above, we are interested in the following problem.

Problem 1. For a given set of possible behaviors B ⊆ Beh = ψ(∆S
A ) and a class of policy models

M, what is the smallest modelM∈M that can generate all these behaviors, such that B ⊆ ψ(M)?

Of particular interest are classes of policy models M defined in terms of neural networks. In
Section 4 we will consider a class of policy models defined in terms of CRBMs. The following
result gives us a simple and powerful combinatorial tool for addressing Problem 1.

Lemma 1. Any modelM⊆ ∆S
A with the following property is an embodied universal approxima-

tor on S: for every policy π ∈ ∆S
A whose S-rows have a total of |S|+ dS or less non-zero entries,

there exists a policy π∗ ∈M with π(s; ·) = π∗(s; ·) for all s ∈ S.

This lemma states that for universal approximation of embodied behaviors it suffices to ap-
proximate the policies which, for a relevant set of sensor values, assign positive probability only
to a limited number of actions. The number of actions is determined by the embodied behavior
dimension.

It is worthwhile mentioning that Example 1 and Lemma 1 describe two complementary types of
universal approximators of embodied behaviors. The first type, described in the example, is com-
posed of maximum entropy policies, whereas the second type, described in the lemma, is composed
of minimum entropy policies. If we consider the set of equivalent policies that map to a given be-
havior, Example 1 selects the one with the most random state-action assignments that are possible
for generating that behavior. On the other hand, Lemma 1 selects the ones with the most deter-
ministic state-action assignments that are possible for generating that behavior. Geometrically, the
set of equivalent policies of a given behavior is the convex hull of the minimum entropy policies,
with the maximum entropy policy lying in the center. The exponential family has nice geometric
properties, but it is very specific to the kernels β and α, which define the sufficient statistics. The set
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Figure 5: Illustration of a CRBM policy in the SML.

described in Lemma 1 can also be considered as a policy model. It offers several advantages that we
will exploit latter on. First, it has a very simple combinatorial description. Second, it only depends
on the embodied behavior dimension d, irrespective of the specific kernels β and α (which are not
directly accessible to the agent). Third, it selects policies with the minimum possible number of
positive-probability actions, which seems natural from a concise controller.

4 A Case Study with Conditional Restricted Boltzmann Machines

4.1 Definitions

A Boltzmann machine (BM) is an undirected stochastic network with binary units, some of which
may be hidden. It defines probabilities for the joint states of its visible units, given by the rel-
ative frequencies at which these states are observed, asymptotically, depending on the network
parameters (interaction weights and biases). The probability of each joint state x = (xV , xH)
of the network’s visible and hidden units can be described by the Gibbs-Boltzmann distribution
p(x) = 1

Z exp(−H(x)) with energy function H(x) =
∑

i,j xiWijxj +
∑

i bixi and normalization
partition function Z(W, b) =

∑
x′ exp(−H(x′)). The probabilities of the visible states are given by

marginalizing out the states of the hidden units, p(xV ) =
∑

xH
p(xV , xH).

An RBM is a BM with the restriction that there are no interactions between the visible units
nor between the hidden units, such that Wij 6= 0 only when unit i is visible and j hidden. As any
multivariate model of probability distributions, RBMs define models of conditional distributions,
given by clamping the state of some of the visible units:

Definition 1. The conditional restricted Boltzmann machine model with k input, n output, and m
hidden units, denoted RBMk

n,m, is the set of all conditional distributions in ∆S
A , S = {0, 1}k,

A = {0, 1}n, that can be written as

p(x|y) =
1

Z(W, b, V y + c)

∑
z∈{0,1}m

exp(z>Wx+z>V y+b>x+c>z), ∀x ∈ {0, 1}n, y ∈ {0, 1}k,

where Z(W, b, V y + c) normalizes the probability distribution p(·|y) ∈ ∆A , for each y ∈ {0, 1}k.
Here, y, x, and z are state vectors of the input, output, and hidden units, respectively. Furthermore,
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V ∈ Rm×k is a matrix of interaction weights between hidden and input units, W ∈ Rm×n is a
matrix of interaction weights between hidden and output units, c ∈ Rm is a vector of biases for
the hidden units, and b ∈ Rn is a vector of biases for the output units. Here > denotes vector
transposition.

The model RBMk
n,m has mk + mn + m + n parameters (the interaction weights and biases).

A bias term a>y for the input units does not appear in the definition, as it would cancel out with the
normalization function Z(W, b, V y + c). When there are no input units, i.e., k = 0, the conditional
probability model RBMk

n,m reduces to the restricted Boltzmann machine probability model with n
visible and m hidden units, which we denote by RBMn,m.

4.2 Non-Embodied Universal Approximation

In this section we ask for the minimal number of hidden units m for which the model RBMk
n,m can

approximate every conditional distribution from the set ∆S
A with S = {0, 1}k and A = {0, 1}n,

denoted ∆k
n, arbitrarily well. Later we will contrast this non-embodied universal approximation

with the embodied case.
Note that each conditional distribution p(x|y) can be identified with the set of joint distributions

of the form r(x, y) = q(y)p(x|y), with strictly positive marginals q(y). By fixing q(y) equal to
the uniform distribution over S , we obtain an identification of ∆S

A with 1
|S |∆

S
A ⊆ ∆S×A . In

particular, we have that universal approximators of joint probability distributions define universal
approximators of conditional distributions. This observation allows us to translate results on the
representational power of RBMs to corresponding results for CRBMs. For example, we know
that RBMk+n,m is a universal approximator of probability distributions on {0, 1}k+n whenever
m ≥ 1

22k+n − 1 (see Montúfar and Ay 2011), and therefore:

Proposition 1. The model RBMk
n,m can approximate every conditional distribution from ∆k

n arbi-
trarily well whenever m ≥ 1

22k+n − 1.

Now, since conditional models do not need to model the input-state distributions, in principle it
is possible that RBMk

n,m is a universal approximator of conditional distributions even if RBMn+k,m

is not a universal approximator of probability distributions. Therefore, we also consider a result
by Montúfar et al. (2014), which improves Proposition 1 and does not follow from corresponding
results for RBM probability models:

Theorem 1. The model RBMk
n,m can approximate every conditional distribution from ∆k

n arbi-
trarily well whenever m ≥ 1

22k(2n − 1) = 1
22k+n − 1

22k.

Theorem 1 represents a substantial improvement of Proposition 1 in that it reflects the structure
of ∆k

n as a 2k-fold Cartesian product of the (2n−1)-dimensional probability simplex ∆n, in contrast
to the proposition’s bound, which rather reflects the structure of the (2k+n − 1)-dimensional joint
probability simplex ∆k+n. The full statement of the theorem is quite technical, and thus we refer
the interested reader to (Montúfar et al. 2014). At this point let it suffice to say that some terms
appearing in the bound on m decrease with increasing k, such that approximately the prefactor 1

2
decreases to 1

4 when k is large enough.
As expected, the asymptotic behavior of this result is exponential in the number of input and

output units. We believe that the result is reasonably tight, although some improvements may still
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be possible. A crude lower bound can be obtained by comparing the number of parameters with the
dimension of the policy polytope (see details in Montúfar et al. 2014):

Proposition 2. If the model RBMk
n,m can approximate every policy from ∆k

n arbitrarily well, then
necessarily m ≥ 1

(n+k+1)(2
k(2n − 1)− n).

4.3 Embodied Universal Approximation

By Theorem 1, we can achieve embodied universal approximation by approximating only policies
with a limited number of non-zero entries. Furthermore, as mentioned earlier, if we only care about
a subset S ⊆ S of sensor values, we can restrict the policy space ∆S

A to ∆SA . This means that the
number of policy entries that we need to model is given by the number of interesting sensor values
plus the corresponding embodied behavior dimension. On the other hand, we can use each hidden
unit of a CRBM to model each relevant non-zero entry of the policy.

Theorem 2. The model RBMk
n,m is an embodied universal approximator on S whenever m ≥

|S|+ dS − 1.

Proof. We use Lemma 1. The joint probability model RBMk+n,m can approximate any probability
distribution with support of cardinality m+ 1 arbitrarily well (see Montúfar and Ay 2011). Hence,
with m ≥ |S|+ dS − 1, RBMn+k,m can approximate any joint distribution with |S|+ dS non-zero
entries within the set {(s, a) : s ∈ S, a ∈ A } arbitrarily well. These joint distributions represent a
setM of conditional distributions of a given s such that, for any policy π whose S-rows have a total
of |S|+dS or less non-zero entries, there is a conditional distribution π∗ ∈Mwith π∗(·|s) = π(·|s)
for all s ∈ S.

This theorem gives a bound for the number of hidden units of CRBMs that suffices to obtain
embodied universal approximation. The bound depends on the embodiment and behavioral con-
straints of the system, captured in the embodied behavior dimension dS . In general, this bound will
be much smaller than the exponential bound from Theorem 1. We will test this result in the context
of particular behavioral constraint on a hexapod in the next section.

5 Experiments with a Hexapod

In the previous sections we have derived a theoretical bound for the complexity of a CRBM based
policy. In this section, we want to evaluate that bound experimentally. For this purpose, we chose a
six-legged walking machine (hexapod) as our experimental platform (see Figure 6), because it is a
well-studied morphology in the context of artificial intelligence, with one of its first appearances as
Ghengis (Brooks 1989). The purpose of this section is not to develop an optimal walking strategy
for this system. Contrary, this morphology was chosen, because the tripod gait (see Figure 6) is
known to be one of the optimal locomotion behaviors, which can be implemented efficiently in
various ways. This said, learning a control for this gait is not trivial, and hence, a good test bed to
evaluate our complexity bound for CRBM based policies.

This section is organized in three parts. The first part presents the experimental set-up as far
as is it required to understand the results. The second part describes how the CRBM complexity
parameter m was estimated form the data. The third part presents the results of the experiment and
compares them with the theoretical bound.
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Figure 6: Hexapod set-up. Left-hand side: The simulated hexapod with a display of the joint
configurations. For a detailed discussion, see Section 5.1. Right-hand side: Visualization of the
target walking pattern. The plot shows which leg touched the ground at which point in time. Blue
areas refer to a contact with a the ground, while orange areas refer to points in time during which
the correspond leg did not touch the ground. The different legs are plotted over the y-axis, while
each point on the x-axis refers to a single point in time.

5.1 Simulation

The hexapod was simulated with YARS (Zahedi et al. 2008), which is a mobile robot simulator
based on the bullet physics engine (Coumans 2012). Each segment of the hexapod is defined by its
physical properties (dimension, weight, etc.) and each actuator is defined by its force, velocity and
its angular range. In the case of the hexapod shown in Figure 6 (left-hand side), the main body’s
dimension (bounding box) is 4.4m length, 0.7m width, 0.5m height, and the weight is 2kg. Each leg
consists of three segments (femur, tarsus, tibia), of which the two lower segments (tarus, tibia) are
connected by a fixed joint. The leg segments were freely modeled with respect to the dimensions of
an insect leg. The actuator which connects the femur and tarsus (knee actuator) only allows rotations
around the local y-axis of the femur segment (see Figure 6). The maximal deviation for the femur-
tarsus actuator is limited to ωfe−ta ∈ [−15◦, 25◦]. For actuators which connect the main body with
the femur (ma-fe), the maximal deviation is limited to ωma−fe ∈ [±35◦]. The rotation axis of the
ma-fe actuator is limited to the local z-axis of the main body. In bullet, an actuator is defined by its
impulse (set to 1Ns for both actuators) and its maximal velocity (set to 0.75rad/s ≈ 42◦/s for both
actuators). It must be noted here, that the sensors and actuators are all mapped onto the interval
[−1, 1], which means that a sensor value of S̃ti = 1 refers to the maximal current deviation of the
corresponding joint. In the same sense, an actuator value Ãtj = 1 refers to the motor command to
deviate the corresponding joint to its maximal position. For simplicity, we refer to the two types of
joints as shoulder (main body-femur) and knee (femur-tarus).

The policy update frequency was set to 10Hz, i.e., the controller received ten sensor values and
generated ten actuator values per second. The target behavior of the hexapod (a tripod walking
gait, see Figure 6) was generated by an open-loop controller which applied phase shifted sinus
oscillations to the actuators. For each leg, the sinus oscillations were discretized into 50 pairs
of actuator values, which means that one locomotion step requires 50 time steps (5 seconds) to
complete.

For the training and analysis, the sensor and actuator value data was discretized into 16 equidis-
tant bins for each sensor and actuator. This corresponds to four binary input units for each sen-
sor and four binary output units for each actuator. Combined into two random variables S =
(S1, S2, . . . , S12), A = (A1, A2, . . . , A12), this leads to a total of 1612 possible values (|S | =
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|A | = 1612) corresponding to a total of 48 binary input and 48 binary output units. In the following
sections, we only refer to this pre-processed data, which means that calculations and the training of
the CRBMs described in the remainder of this section refer to the two random variables S,A.

The next section will discuss the estimation of the sufficient controller complexity that is able
to reproduce the desired tripod walking gait.

5.2 Estimation of the Sufficient Complexity

Before the estimation procedure and results are presented, we restate the inequality given in Theo-
rem 2, which is given by

m ≥ |S|+ dS − 1. (11)

This means that a CRBM should not require more hidden units (m) than the sum of the support set
cardinality |S| and embodied behavior dimension d (minus 1). The following paragraphs explain
how these two values were calculated from the recorded data.

The first step in estimating the sufficient controller complexity m of the CRBM policy model is
the estimation of the support’s cardinality |S|. It was mentioned above that there are 1612 possible
sensor values. The necessary complexity of a CRBM policy for a specific behavior depends on the
actually used number of sensor values, which is also known as the sensor support set. By estimating
the cardinality of the support set, we know how many relevant sensor values the CRBM needs to
handle to reproduce the behavior of interest.

The estimation of the support set cardinality depends on the quality of the sample. Therefore,
we sampled 105 sensor values to ensure a sufficient convergence of the relative frequencies of the
sensor values. The upper left plot in Figure 7 shows the histogram for all recorded sensor values.
The orange vertical line shows where we have pruned the data so that 80% of the recorded data was
kept. The lower left plot in Figure 7 shows the remaining data. With this procedure (recording,
estimating relative frequencies, pruning the data to 80%), we estimated the cardinality of the sensor
support set at |S| = 63. The pruning threshold of 80% might appear arbitrary here. To clarify,
estimating the support from data is an interesting research topic by itself, which, however, goes
beyond the scope of this work. Our underlying assumption for the pruning is that the sampling is
noisy. We estimated the noise empirically by analyzing the histogram and decided for a threshold
that seemed reasonable to us. We want to point out that the threshold was estimated before the
results of the experiments (see next section) were available.

The next step is to estimate the embodied behavior dimension, which is done here based on the
affine rank of the empirically estimated internal world model γ(s, a; s′). For the sake of readability,
we defer the justification for the replacement of the embodiment-behavior dimension by the affine
rank of the internal world model to the appendix (see Appendix B).

Given the internal world model γ, the affine rank is calculated in the following way:

dS =
∑
s∈S

rank((γ(s, a0; s
′)− γ(s, a; s′))s′∈S,a∈A ). (12)

To estimate the internal world model γ(s, a; s′), we pruned the data in accordance with the estimated
support set cardinality. This means that we removed all pairs of S,A for which S is not the in
pruned support set S. For the remaining data, we counted the occurrences of st+1, st, at and filled
the matrix γ(st, at; st+1). The matrix is initialized with zero and each row is normalized by the row
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Figure 7: Experimental results. Left-hand side: Estimation of the support set cardinality (before and
after pruning). Right-hand side: Performance of the best CRBM for different complexity parameters
m in comparison to the performance of the target behavior (horizontal orange line). The vertical
blue line indicates the m estimated from the data (see Section 5.2).

sum. The resulting matrix does not model a conditional probability distribution, because many rows
have row sum zero. As we are only interested in the affine rank of the matrix, this is of no matter to
us. The resulting value is dS = 3.

Resulting estimation of the model complexity: It follows that the CRBM is able to represent the
target behavior whenever the number of hidden units satisfies

m ≥ |S|+ dS − 1 = 63 + 3− 1 = 65. (13)

To evaluate the tightness of this bound, we conducted a series of experiments, which are ex-
plained in the following section.

5.3 Experiments to Evaluate the Tightness of the Complexity Estimation

Before the experiments can be described, there is an important note to make. This work is concerned
with the minimally required complexity that is sufficient to control an embodied agent, such that
it is able to produce a set of desirable behaviors (which also includes all behaviors as well as one
specific behavior). Here, we are not concerned with the question how these CRBMs should be
trained optimally. This is why we used a standard training algorithm for RBMs (Hinton 2002; 2012)
and conducted a large scan over different complexity parameters m. For each m = 1, 2, 3, . . . , 100
we trained 100 CRBMs with the following learning parameters: epochs = 20000, batch size = 50,
learning rate α = 1.0, momentum = 0.1, Gaussian distributed noise on sensor data = 0.01, weight cost
= 0.001, bins = 16, CRBM update iterations = 10, on a data set of 104 pairs of sensor and actuator
values. Each trained CRBM was evaluated ten times, by applying it to the hexapod and recording
the covered distance for 30 seconds. The performance of the CRBMs is measured against the target
tripod walking gait, which achieves 20.6 meters during the same time. As we are not concerned
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with the training of the CRBMs in this work but instead with the best performance of a CRBM for a
given m, we choose to take the maximally covered distance over all 1000 evaluations (100 CRBMs,
10 evaluation runs for each CRBM) to estimate the quality of a CRBM with a given complexity m.
The plot on the right-hand side of Figure 7 shows the resulting performance for all scanned values of
m. The results show that our estimation is fairly tight, which means the performance of the CRBMs
converges to the optimal behavior close to the estimated value of m = 65.

6 Conclusions

We presented an approach for studying and implementing cheap design in the context of embodied
artificial intelligence. In this context, we referred to cheap design as the reduction of the controller
complexity that is possible through an exploitation of the agent’s body and environment. We devel-
oped a theory to determine the minimal controller complexity that is sufficient to generate a given
set of desired behaviors. Being more precise, we studied the way in which embodiment constraints
induce equivalent policies in the sense that they generate the same observable behaviors. This led to
the definition of the effective dimension of an embodied system, the embodied behavior dimension.
In this way, we were able to define low-dimensional policy models that can generate all possible
behaviors. Such policy models are related to the classical notion of universal approximation.

We used CRBMs as a platform of study, for which we presented non-trivial universal approx-
imation results in both the non-embodied and the embodied settings. While the non-embodied
universal approximation requires an enormous number of hidden units (exponentially many in the
number of input and output units), embodied universal approximation can be achieved using essen-
tially only as many hidden units as the effective dimension of the system. Notably, our construction
depends only on the embodied behavior dimension and, therefore, is independent of the specific
embodiment constraints.

Experiments conducted on a walking machine demonstrate the tightness of the estimated num-
ber of hidden units for a CRBM controller. This shows the practical utility of our theoretical analy-
sis. To the best of our knowledge, the presented formalism and results are amongst the first quanti-
tative contributions to cheap design in embodied artificial intelligence.

Appendix

A Technical Proofs

Details of Equation (9). In order to obtain the dimension of the image Beh = ψ(∆S
A ), we first

look at the affine space aff(∆S
A ). A basis of this space can be obtained by building differences of

vertices of ∆S
A . The vertices are the deterministic policies πf (s; a) := δf(s)(a), for all s ∈ S and

a ∈ A , each of which is characterized by a function f : S → A . We fix a deterministic policy πf ,
with f(s) = a0 for all s, for some a0 ∈ A , and consider the differences e(s,a) := πf − πf(s,a) for
all possible pairs (s, a) with a 6= a0, where f(s,a) is the function that differs from f only at s, where
it takes value f(s,a)(s) = a. This set of e(s,a)’s is a basis of aff(∆S

A ). There are |S |(|A | − 1) of
these vectors, which corresponds with the dimension of ∆S

A .
Now, the image Beh = ψ(∆S

A ) has the dimension of aff(ψ(∆S
A )) = ψ(aff ∆S

A ), which is
the vector space spanned by ψ(e(s,a)) = β(w; s)(α(w, a0; dw

′) − α(w, a; dw′)) for all possible
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pairs (s, a) with a 6= a0. Therefore, the dimension is given by the number of linearly independent
ψ(e(s,a))’s (the rank of the matrix with rows e(s,a)).

Details of Example 1. We consider an exponential family E of probability distributions on the set
A S of functions f : S → A . Let this exponential family be specified by the sufficient statistic
F := ψ ◦ η, where η : A S → ∆S

A ; f 7→ πf , πf (s; a) := δf(s)(a) for all s ∈ S and a ∈ A , and
ψ is the policy-behavior map, represented by the matrix E ∈ Rd×(S×A ). Note that, given a basis
of aff(ψ(∆S

A )), composed of d vectors in aff(ψ(∆S
A )), we can represent each e(s,a) and ψ(π) with

respect to this basis by a vector of length d ≤ |S |(|A | − 1). The exponential family E consists of
all probability distributions of the form

pθ(f) =
exp(θ>F (f))∑
f ′ exp(θ>F (f ′))

, for all f ∈ A S , for all θ ∈ Rd.

The moment map µ maps probability distributions to the corresponding expectation value of the
sufficient statistic,

µ : ∆A S → Rd; p 7→
∑
f

F (f)p(f) =
∑
f

ψ(η(f))p(f) = ψ(
∑
f

η(f)p(f)) = ψ(πp),

where πp := η(p) =
∑

f π
fp(f) ∈ ∆S

A . A key property of the moment map is that it maps the
closure E of E bijectively to the set µ(∆A S ) of all possible expectation values. We have

ψ(η(E)) = µ(E) = µ(∆A S ) = ψ(∆S
A ).

Now we only need to show that the set η(E) = {πp =
∑

f π
fp(f) : p ∈ E} is contained in ES

A .
That this is true can be seen from

πpθ(s; a) =
∑
f

πf (s; a)pθ(f) =
∑

f : f(s)=a

pθ(f) = pθ({f : f(s) = a}) =
exp(θ>E(s, a))∑
a′ exp(θ>E(s, a′))

=πθ(s; a), for all a ∈ A and s ∈ S , for all θ ∈ Rd,

where we used

pθ(f) =
exp(θ>E(πf ))∑
f ′ exp(θ>E(πf ′))

=
exp(θ>

∑
sE(s, f(s)))∑

f ′ exp(θ>
∑

s′ E(s′, f ′(s′)))
=
∏
s

exp(θ>E(s, f(s)))∑
a exp(θ>E(s, a))

=
∏
s

pθ({f ′ : f ′(s) = f(s)}).

In fact, since µ is a bijection between E and µ(∆A S ) = ψ(∆S
A ), we have that ψ is a bijection

between ES
A = η(E) and ψ(∆S

A ).

Proof of Lemma 1. Assume first that S = S . Geometrically, the policy-behavior map ψ projects
the policy polytope linearly into a polytope of dimension d. A d-dimensional projection of a poly-
tope is equal to the projection of its d-dimensional faces. This implies that the result of applying
any given policy from ∆S

A can be achieved equally well by applying a policy from a d-dimensional
face of ∆S

A . See Figure 8 for an illustration of what we mean.
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Figure 8: Illustration of the projection of the set of policies ∆S
A into a lower dimensional polytope.

In this example |S | = 3 and |A | = 2, such that the policy polytope ∆S
A is a cube. The set

of all kernels ∆W
A , |W | = 3, is also a cube. The set of all realizable kernels within that set,

p(w; a) =
∑

s β(w; s)π(s; a), for all choices of the policy π, is the projection of ∆S
A by β. In this

example rank(β) = 2 and the projection of the policy polytope is two-dimensional polygon (the
blue hexagon). This projection by β represents one part of the projection by the policy-behavior
map. The two-dimensional faces of the policy polytope (one of them highlighted in dashed yellow)
have the same image as the entire policy polytope.

Now, the d-dimensional faces of the policy polytope ∆S
A consist of those policies with at most

|S | + d non-zero entries. The arguments for this are as follows. The policy polytope is a prod-
uct of simplices ∆S

A = ×s∈S ∆A , where the s-th factor corresponds to the set of all possible
probability distributions π(s; ·). The faces of ∆S

A are products of faces of its factors and have the
form ×s∈S ∆As , where As ⊆ A for all s ∈ S . Each face of ∆S

A corresponds to a choice of
positions As ⊆ A of the non-zero entries of π(s; ·) for all s ∈ S . The d-dimensional faces are
those for which

∑
s∈S (|As| − 1) = d, meaning that they consist of policies which have at most∑

s∈S |As| = |S |+ d non-zero entries.
Consider now S ⊆ S . The projection of the policy polytope by the S embodiment matrix can

be regarded as a composition which first projects ∆S
A to ∆SA and then projects ∆SA by ψS . Now

we can use the same arguments as above, with the difference that now only need to represent the
dS-dimensional faces of the polytope ∆SA .

B Estimation of the Embodied Behavior Dimension based on the In-
ternal World Model

In many situations, the embodied behavior dimension is not available from a perspective that is
intrinsic to the agent, as the agent does not have direct access to the sensor kernel β nor to the world
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kernel α. From that perspective, only an internal version of the world model is accessible, which
we refer to as internal world model. It is defined as a kernel γ ∈ ∆S×A

S , assigning to each sensor
state s with positive probability and each actuator state a the next sensor state s′, that is,

γ(s, a; s′) =

∫
W

{∫
W
β(w′; s′)α(w, a; dw′)

}
P(s; dw) , (14)

where

P(s; dw) :=
β(w; s)∫

W β(w′′; s)P(dw′′)
P(dw) .

Note that the internal world model is not completely determined by β and α. It also depends on
the distribution P(dw) of the world states w. If we choose this distribution to be a fixed reference
distribution of world states, then the world model will be determined by α and β only. However, in
order to describe the actual distribution of world states, we have to take into account the contribution
of the agent’s policy π. This implies that, if the policy is subject to changes in terms of a learning
process, then, in general, the world model will also be time dependent.

On the other hand, γ is the only information about world dynamics that is intrinsically available
to the agent. The extent to which γ is not a good replacement for α depends on how much the agent
can “see” from the world with its sensors. If the agent has direct access to the world state, that
is W t = St, then α and γ coincide. However, this is not very realistic. Generically, only partial
observation of the world is possible. Now the question arises whether it is possible to determine
the embodied behavior dimension d in terms of γ even in cases where the agent has only partial
access to the world state. This is indeed possible under specific conditions which are satisfied in our
experimental setup. We first present these conditions in general terms, before we then relate them to
our experiment at the end of this section. Let the world state w consist of two parts s and r, where
s is directly accessible to the agent and r is the remaining part of the world, which is hidden to the
agent. The situation is illustrated in Figure 9.

R

S

S A

S′

R′

S′

W W ′

R

S S′

R′

π

β

αR

αS β

Figure 9: Special causal structure of the sensorimotor loop. The dashed arrows are the ones that we
omit within our assumptions.

In this interpretation of the world state, the sensor kernel β is simply the identity map s 7→ s.
Furthermore, this interpretation sets structural constraints on the world transition kernel α, which
assigns a probability distribution of the next world state w′ = (s′, r′) given the current world state
w = (s, r) and an actuator value a. As r is assumed to be hidden to the agent, s′ should not depend
on r. This leads to the following natural factorization of α:

α(s, r, a; s′, dr′) = αS(s, a; s′) · αR(r, s, s′; dr′). (15)
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With this assumption, we obtain as internal world model

γ(s, a; s′) = αS(s, a; s′), whenever P(s) > 0, (16)

and the following transition probabilities from a world state w = (s, r) with positive probability to
a world states w′ = (s′, r′):

Pπ(s, r; s′, dr′) =
∑
s′′,a

β(s, r; s′′)π(s′′; a)α(s, r, a; s′, dr′)

=
∑
a

π(s; a)αS(s, a; s′)αR(r, s, s′; dr′) (17)

= αR(r, s, s′; dr′)
∑
a

π(s; a)αS(s, a; s′)︸ ︷︷ ︸
=: Qπ(s;s′)

.

This shows that Pπ = Pπ∗ if and only if Qπ = Qπ∗ , and therefore the embodied behavior dimension
is given by the dimension of the image of π 7→ Qπ. This is given by the affine rank of the kernel
αS , which coincides with the affine rank of γ:

d =
∑
s

rank((γ(s, a0; s
′)− γ(s, a; s′))s′∈S ,a∈A ), (18)

where a0 is any fixed value in A , for all s.
This applies to our hexapod experiment discussed in Section 5 for the following reason. In the

special case of the tripod gait of a hexapod on an even and otherwise featureless plane, the next joint
angles St+1 are only determined by the current joint angles St and the current action At. The rest
of the world, here denoted by R, contains information such the contact points of the legs with the
ground. This information is carried from one time step to the next, as it determines how the hexapod
walks along the plane. Nevertheless, the contact points of the legs do not influence the joint angles.
Hence, in our experiment, S′ is conditionally independent of R given S and A. Furthermore, R′ is
conditionally independent of A given R, S and S′ as the contact points of the legs with the ground
are only determined by the relative joint angles, and not by the current action. Therefore, we can
estimate the embodied behavior dimension by the rank of the internal world model.

C Generalizations

C.1 SML with Internal State

In the main part of the paper we considered reactive SMLs. In a more general setting, the agent may
be equipped with some sort of memory or internal representation of the world. In this case, besides
from the world state, the sensor state, and the actuator state, the SML also includes an internal
state variable. As in the reactive SML, the dynamics of these variables are governed by Markov
transition kernels, but the causality structure is slightly different. Let W , S , C , and A denote
the sets of possible states of the world, the sensors, the internal state, and the actuators. Then the
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Markov kernels are

β : W → ∆S ,

ϕ : C ×S → ∆C ,

π : C → ∆A ,

α : W ×A → ∆W .

(19)

See Figure 10 for an illustration of this causality structure.

W t

St

Ct

At

W t+1

St+1

Ct+1

At+1

W t+2W t

St

Ct

At

W t+1

St+1

Ct+1

At+1

W t+2

β β

α α

ϕ ϕπ π

Figure 10: Causal structure of a SML with internal state. Here W t, St, Ct, At are the states of the
world, sensors, internal variable, and actuators at the discrete time t.

As in the reactive case discussed in the main text, here we also want to consider the (extrinsic)
behavior of the agent, which is described in terms of the stochastic process of world states. In this
case, however, we condition these processes not only on an initial world state but also on an initial
internal state. The difficulty arising here is that, in general, in the presence of an internal state
the stochastic process over the world states is not Markovian. The world state transition at each
time step does not only depend on the previous world state but it also depends on a longer history,
encoded in the internal state.

For example, when navigating a territory, a robot endowed with an internal state could operate
in the following way. If at a given time step the robot detects an obstacle ahead, s = “obstacle”,
then, in conjunction with a current internal state c = “safe”, the new internal state could become
c′ = “attentive”, in which case the policy would choose a = “maintain direction”. However, if
the current internal state was c = “attentive”, the new internal state could become c′ = “alert”, in
which case the policy would choose between the actions a′ = “turn left” and a′ = “turn right” with
probability 1

2 . This example shows that the internal state may contain information about the history
of world and sensor states, which is not available from the current world and sensor states alone.

Nonetheless, for any fixed choice of the kernels β, ϕ, π, α and a starting value (w0, c0) at time
t = 0, the SML defines a (discrete-time homogeneous) Markov chain with state space W ×S ×
C ×A . The transition probabilities of this chain are given by

Pπ(w0, s0, c0, a0; dw1, s1, c1, a1) = α(w0, a0; dw1)β(w1; ds1)ϕ(c0, s1; dc1)π(c1; da1).

Furthermore, the process with state space W ×C is also Markovian. The transition probabilities of
this chain are given by

ψ(w, c; dw′, dc′) =

∫
S ′

∫
A
π(c; da)α(w, a; dw′)β(w′; ds′)ϕ(c, s′; dc′).
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The process on W (extrinsic behavior) is the marginal of the process on W × C (extrinsic-
intrinsic behavior). We can study some properties of the extrinsic behavior in terms of the properties
of the extrinsic-intrinsic behavior. The latter is easier to analyze, since it is Markovian. In particular,
we can study it in the same way we studied the extrinsic behavior in the reactive SML.

More explicitly we have the following. Writing ξ(w, c; dw′) =
∫
A π(c; da)α(w, a; dw′) and

φ(w′, c; dc′) =
∫
S ′ β(w′; ds′)ϕ(c, s′; dc′), the transition probabilities for the process on W ×C are

given by
ψ(w, c; dw′, dc′) = ξ(w, c; dw′)φ(w′, c; dc′). (20)

For each (w, c), the probability distribution ξ(w, c; ·) ∈ ∆W is the projection of π(c; ·) ∈ ∆A by
the linear map defined by α(w, ·; ·). If the intersection of the null-spaces of α(w, ·; ·) for all w has
a positive dimension, then there is a positive dimensional set of policies π that are mapped to the
same ξ and hence to the same behavior. In order to obtain that behavior, it is sufficient to represent
one of the policies that map to ξ, in contrast to the potentially much larger set of all policies that
map to the same ξ. A similar observation applies to ϕ. This shows that already when considering
the process on W × C (the combined extrinsic-intrinsic behavior of the agent), many policies may
be identified. Embodiment constraints restrict the possible behaviors. When considering only the
process over W (the extrinsic behavior of the agent), many more policies may be identified with the
same behavior. The detailed study of projections from combined behaviors to extrinsic behaviors is
left for future work.

C.2 Continuous Sensor and Actuator State Spaces

We have considered systems where S and A are finite sets. In some case it can be more natural
to consider continuous sensor and actuator spaces. The continuous case brings some subtleties with
it. In particular, the set of policies with continuous state spaces is infinite dimensional. In this case
one has to depart from linear algebra and use functional analysis. Furthermore, in the setting of
continuous sensor and actuator spaces usually it is not possible to achieve universal approximation
by one fixed model. Rather, one says that a class of models has the universal approximation property,
meaning that for each given error tolerance, there is a model in that class, that can approximate to
within that error tolerance. Nonetheless, one can measure the approximation performance in terms
of the (finite) number of parameters or hidden variables that a model needs in order to satisfy a given
error tolerance. Continuous policy models can be defined in terms of stochastic feedforward neural
networks with continuous variables or also in terms of CRBMs with Gaussian output units. Here,
the complexity of a model can be measured in terms of the number of hidden variables.
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