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Abstract

We generalize recent theoretical work on the minimal number of layers of narrow deep
belief networks that can approximate any probability distribution on the states of their
visible units arbitrarily well. We relax the setting of binary units (Sutskever and Hinton,
2008; Le Roux and Bengio, 2008, 2010; Montúfar and Ay, 2011) to units with arbitrary
finite state spaces, and the vanishing approximation error to an arbitrary approximation
error tolerance. For example, we show that a q-ary deep belief network with L ≥
2 + qdm−δe−1

q−1
layers of width n ≤ m + logq(m) + 1 for some m ∈ N can approximate

any probability distribution on {0, 1, . . . , q−1}n without exceeding a Kullback-Leibler
divergence of δ. Our analysis covers discrete restricted Boltzmann machines and naı̈ve
Bayes models as special cases.

1 Introduction
A deep belief network (DBN) (Hinton et al., 2006) is a layered stochastic network with
undirected bipartite interactions between the units in the top two layers, and directed
bipartite interactions between the units in all other subsequent pairs of layers, directed
towards the bottom layer. The top two layers form a restricted Boltzmann machine
(RBM) (Smolensky, 1986). The entire network defines a model of probability distribu-
tions on the states of the units in the bottom layer, the visible layer. When the number
of units in every layer has the same order of magnitude, the network is called narrow.
The depth refers to the number of layers. Deep network architectures are believed to
play a key role in information processing of intelligent agents, see (Bengio, 2009) for an
overview on this exciting topic. DBNs were the first deep architectures to be envisaged
together with an efficient unsupervised training algorithm (Hinton et al., 2006). Due to



their restricted connectivity, it is possible to greedily train their layers one at the time,
and in this way, identify remarkably good parameter initializations for solving specific
tasks (see Bengio et al., 2007). The ability to train deep architectures efficiently has
pioneered a great number of applications in machine learning and in the booming field
deep learning.

The representational power of neural networks has been studied for several decades,
whereby their universal approximation properties have received special attention. For
instance, a well known result (Hornik et al., 1989) shows that multilayer feedforward
networks with one exponentially large layer of hidden units are universal approximators
of Borel measurable functions. Although universal approximation has a limited impor-
tance for practical purposes,1 it plays an important role as warrant for consistency and
sufficiency of the complexity attainable by specific classes of learning systems. Besides
the universal approximation question, it is natural to ask “how well is a given network
able to approximate certain classes of probability distributions?” This note pursues an
account on the ability of DBNs to approximate probability distributions.

The first universal approximation result for deep and narrow sigmoid belief net-
works is due to Sutskever and Hinton (2008). They showed that a narrow sigmoid
belief network with 3(2n − 1) + 1 layers can represent probability distributions arbi-
trarily close to any probability distribution on the set of length n binary vectors. Their
result shows that not only exponentially wide and shallow networks are universal ap-
proximators (Hornik et al., 1989), but also exponentially deep and narrow ones are.
Subsequent work has studied the optimality question “how deep is deep enough?,” with
improved universal approximation depth bounds by Le Roux and Bengio (2010) and
later by Montúfar and Ay (2011), which we will discuss below in more detail. These
papers focus on the minimal depth of narrow DBN universal approximators with binary
units; that is, the number of layers that these networks must have in order to be able to
represent probability distributions arbitrarily close to any probability distribution on the
states of their visible units. The present note complements that analysis in two ways:

First, instead of asking for the minimal size of universal approximators, we ask for
the minimal size of networks that can approximate any distribution to a given error tol-
erance, treating the universal approximation problem as the special case of zero error
tolerance. This analysis gives a theoretical basis on which to balance model accuracy
and parameter count. For comparison, universal approximation is a binary property
which always requires an exponential number of parameters. As it turns out, our anal-
ysis also allows us to estimate the expected value of the model approximation errors
incurred when learning classes of distributions, say low-entropy distributions, with net-
works of given sizes.

Second, we consider networks with finite valued units, called discrete or multino-
mial DBNs, including binary DBNs as special cases. Non-binary units serve, obviously,
to encode non-binary features directly, which may be interesting in multi-channel per-
ception, e.g., color-temperature-distance sensory inputs. Additionally, the interactions
between discrete units can carry much richer relations that those between binary units.
In particular, within the non-binary discrete setting, DBNs, RBMs, and naı̈ve Bayes

1Where a more or less good approximation of a small set of target distributions is often sufficient, or
where the goal is not to model data directly but rather to obtain abstract representations of data.
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Figure 1: Graphical representation of a discrete DBN probability model. Each node
represents a unit with the indicated state space. The top two layers have undirected
connections; they correspond to the term pL−1,L described in eq. (2). All other layers
receive directed connections, corresponding to the terms pl, l ∈ [L − 2] described in
eq. (3). Only the bottom layer is visible.

models can be seen as representatives of the same class of probability models.

This paper is organized as follows. Section 2 gives formal definitions, before we
proceed to state our main result Theorem 2 in Section 3: a bound on the approximation
errors of discrete DBNs. A universal approximation depth bound follows directly. After
this, a discussion of the result is given, together with a sketch of the proof. The proof
entails several steps of independent interest, developed in the next sections. Section 4
addresses the representational power and approximation errors of RBMs with discrete
units. Section 5 studies the models of conditional distributions represented by feed-
forward discrete stochastic networks (DBN layers). Section 6 studies concatenations
of layers of feedforward networks and elaborates on the patterns of probability sharing
steps (transformations of probability distributions) that they can realize. Section 7 con-
cludes the proof of the main theorem and gives a corollary about the expectation value
of the approximation error of DBNs. Section A presents an empirical validation scheme
and tests the approximation error bounds numerically on small networks.
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2 Preliminaries
A few formal definitions are necessary before proceeding. Given a finite set X , we
denote ∆(X ) the set of all probability distributions on X . A model of probability dis-
tributions on X is a subsetM⊆ ∆(X ). Given a pair of distributions p, q ∈ ∆(X ), the
Kullback-Leibler divergence from p to q is defined as D(p‖q) :=

∑
x∈X p(x) log p(x)

q(x)

when supp(p) ⊆ supp(q), and D(p‖q) :=∞ otherwise. The divergence from a dis-
tribution p to a model M ⊆ ∆(X ) is defined as D(p‖M) := infq∈MD(p‖q). The
divergence of any distribution on X toM is bounded by

DM := sup
p∈∆(X )

D(p‖M).

We refer to DM as the universal or maximal approximation error ofM. The modelM
is called a universal approximator of probability distributions on X iff DM = 0.

A discrete DBN probability model is specified by a number of layers (the depth of
the network), the number of units in each layer (the width of each layer), and the state
space of each unit in each layer. Let L ∈ N, L ≥ 2 be the number of layers. We
imagine these layers arranged as a stack with layer 1 at the bottom (this will be the
visible layer) and layer L at the top (this will be the deepest layer). See Figure 1. For
each l ∈ {1, . . . , L} =: [L], let nl ∈ N be the number of units in layer l. For each
i ∈ [nl], let X l

i , |X l
i | < ∞ be the state space of unit i in layer l. We denote the joint

state space of the units in layer l by X l = X l
1 × · · · × X l

nl
, and write xl = (xl1, . . . , x

l
nl

)
for a state from X l. We call a unit q-valued or q-ary if its state space has cardinality q,
and assume that q is a finite integer larger than one.

In order to proceed with the definition of the DBN model, we consider the mixed
graphical model with undirected connections between the units in the top two layers L
and L − 1, and directed connections from the units in layer l + 1 to the units in layer l
for all l ∈ [L − 2]. This model consists of joint probability distributions on the states
X = X 1×· · · X L of all network units, parametrized by a collection of real matrices and
vectors Θ = {Θ1, . . . ,ΘL−1, θ1, . . . , θL}. For each l ∈ [L − 1], the matrix Θl contains
the interaction weights between units in layers l and l + 1. It consists of row blocks

Θl
i ∈ R(|X li |−1)×(

∑
j∈[nl+1]

(|X l+1
j |−1)) for all i ∈ [nl]. For each l ∈ [L], the row vector θl

contains the bias weights of the units in layer l. It consists of blocks θli ∈ R|X li |−1 for all
i ∈ [nl].

Note that the bias of a unit with state space X l
i is a vector with |X l

i | − 1 entries, and
the interaction of a pair of units with state spaces X l

i and X l+1
j is described by a matrix

of order (|X l
i | − 1) × (|X l+1

j | − 1). The number of interaction and bias parameters
in the entire network adds to

∑L−1
l=1 (

∑
i∈[nl]

(|X l
i | − 1))(1 +

∑
j∈[nl+1](|X

l+1
j | − 1)) +∑

i∈[nL](|X L
i | − 1).

For any choice Θ of these parameters, the corresponding probability distribution on
the states of all units is

p(x1, . . . , xL; Θ) = pL−1,L(xL−1, xL; ΘL−1, θL−1, θL)
L−2∏
l=1

pl(x
l|xl+1; Θl, θl)

for all (x1, . . . , xL) ∈ X 1 × · · · × X L; (1)
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where

pL−1,L(x, y; ΘL−1, θL−1, θL) =
exp(x>ΘL−1 y + θL−1 x + θL y)

Z(ΘL−1, θL−1, θL)

for all (x, y) ∈ X L−1 ×X L; (2)

and

pl(x|y; Θl, θl) =
∏
i∈[nl]

pl,i(xi|y; Θl
i, θ

l
i)

for all x ∈ X l and y ∈ X l+1; for each l ∈ [L− 2]; (3)

with factors given by

pl,i(xi|y; Θl
i, θ

l
i) =

exp(x>i Θl
i y + θli xi)

Z(Θl
i y, θ

l
i)

for all xi ∈ X l
i and y ∈ X l+1. (4)

Here we use following notation. Given a state vector x = (x1, . . . , xn) of n units with
joint state spaceX1×· · ·×Xn = {0, 1, . . . , q1−1}×· · ·×{0, 1, . . . , qn−1}, x denotes the
x-th column of a minimal matrix of sufficient statistics for the independent distributions
of these n units. To make this more concrete, we set x equal to a column vector with
blocks x1, . . . , xn, where xi = (δyi(xi))yi∈Xi\{0} is the one-hot representation of xi
without the first entry, for all i ∈ [n]. For example, if x = (x1, x2) = (1, 0) ∈ X1×X2 =
{0, 1, 2} × {0, 1, 2}, then x = [ x1

x2 ], with x1 = [ 1
0 ] and x2 = [ 0

0 ].
The function

Z(ΘL−1, θL−1, θL) =
∑

x∈XL−1,y∈XL
exp(x>ΘL−1 y + θL−1 x + θL y) (5)

normalizes the probability distribution pL−1,L(·; ΘL−1, θL−1, θL) ∈ ∆(X L−1 × X L)
from eq. (2). Likewise, the function

Z(Θl
iy, θ

l
i) =

∑
xi∈X li

exp(x>i Θl
i y + θli x) (6)

normalizes the probability distribution pl,i(·|y; Θl
i, θ

l
i) ∈ ∆(X l

i ) from eq. (4) for each
i ∈ [nl] and l ∈ [L− 2].

The marginal of the distribution p(·; Θ) ∈ ∆(X 1 × · · · × X L) from eq. (1) on the
states X 1 of the units in the first layer is given by

P (x1; Θ) =
∑

(x2,...,xL)∈X 2×···×XL
p(x1, . . . , xL; Θ) for all x1 ∈ X 1. (7)

The discrete DBN probability model withL layers of widths n1, . . . , nL and state spaces
X 1, . . . ,X L, is the set of probability distributions P (·; Θ) ∈ ∆(X 1) expressible by
eq. (7) for all possible choices of the parameter Θ. Intuitively, this set is a linear pro-
jection of a manifold parametrized by Θ, and may have self-intersections or other sin-
gularities.
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The discrete DBN probability model with L = 2 is a discrete RBM probability
model. This model consists of the marginal distributions on X L−1 of the distributions
pL−1,L(·; ΘL−1, θL−1, θL) from eq. (2) for all possible choices of ΘL−1, θL−1, and θL.

When L > 2, the distributions on X L−1 defined by the top two DBN layers can
be seen as the inputs of the stochastic maps defined by the conditional distributions
pL−2(·|·; ΘL−2, θL−2) from eq. (3). The outputs of these maps are probability distribu-
tions on X L−2 that can be seen as the inputs of the stochastic maps defined by the next
lower layer and so forth. The discrete DBN probability model can be seen as the set
of images of a discrete RBM probability model by a family of sequences of stochastic
maps.

The following simple class of probability models will be useful to study the approx-
imation capabilities of DBN models. Let % = {A1, . . . , AN} be a partition of a finite set
X . The partition model P with partition % is the set of probability distributions on X
which have constant value on each Ai. Geometrically, this is the simplex with vertices
1Ai/|Ai| for all i ∈ [N ], where 1Ai is the indicator function of Ai. The coarseness
of P is maxi |Ai|. Unlike many statistical models, partition models have a well un-
derstood Kullback-Leibler divergence. If P is a partition model of coarseness c, then
DP = log(c). Furthermore, partition models are known to be optimally approximating
exponential families, in the sense that they minimize the universal approximation error
among all closures of exponential families of a given dimension (see Rauh, 2013).

3 Main Result
The starting point of our considerations is the following result for binary DBNs:

Theorem 1. A deep belief network probability model with L layers of binary units of
width n = 2k−1 + k (for some k ∈ N) is a universal approximator of probability
distributions on {0, 1}n whenever L ≥ 1 + 22k−1

.

Note that
2n

2(n− log2(n))
≤ 22k−1 ≤ 2n

2(n− log2(n)− 1)
. (8)

This result is due to Montúfar and Ay (2011, Theorem 2). It is based on a refinement
of previous work by Le Roux and Bengio (2010), who obtained the bound L ≥ 1 + 2n

n

when n is a power of two.
The main result of this paper is following generalization of Theorem 1. Here we

make the simplifying assumption that all layers have the same width n and the same
state space. The result holds automatically for DBNs with wider hidden layers or hidden
units with larger state spaces.

Theorem 2. Let DBN be a deep belief network probability model with L ∈ N, L ≥ 2
layers of width n ∈ N. Let the i-th unit of each layer have state space {0, 1, . . . , qi−1},
qi ∈ N, 2 ≤ qi < ∞, for each i ∈ [n]. Let m be any integer with n ≥ m ≥∏n

j=m+2 qj , and let q = q1 ≥ · · · ≥ qm. If L ≥ 2 + qS−1
q−1

for some S ∈ {0, 1, . . . ,m},
then the probability model DBN can approximate each element of a partition model

6
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D

Figure 2: Qualitative illustration of Theorem 2. Shown is the large-scale behaviour
of the DBN universal approximation error upper-bound as a function D of the layer
width n and the logarithm of the number of layers logq(L). Here it is assumed that
the Kullback-Leibler divergence is computed in base q logarithm and that all units are
q-ary. The number of parameters of these DBNs scales with Ln2(q − 1)2.

of coarseness
∏

j∈[m−S] qj arbitrarily well. The Kullback-Leibler divergence from any
distribution on {0, 1, . . . , q1 − 1} × · · · × {0, 1, . . . , qn − 1} to DBN is bounded by

DDBN ≤ log(
∏

j∈[m−S]

qj).

In particular, this DBN probability model is a universal approximator whenever

L ≥ 2 +
qm − 1

q − 1
.

When all units are q-ary and the layer width is n = qk−1+k for some k ∈ N, then the
DBN probability model is a universal approximator of distributions on {0, 1, . . . , q−1}n

whenever L ≥ 2 + qq
k−1−1
q−1

. Note that

qn − 1

q(q − 1)(n− logq(n))
≤ qq

k−1 − 1

q − 1
≤ qn − 1

q(q − 1)(n− logq(n)− 1)
. (9)

The theorem is illustrated in Figure 2.

Remarks
The number of parameters of a q-ary DBN with L layers of width n is (L−1)(n(q−1)+
1)n(q−1)+n(q−1). Since the set of probability distributions on {0, 1, . . . , q−1}n has
dimension qn − 1, the DBN model is full dimensional only if L ≥ qn−1

n(q−1)(n(q−1)+2)
+ 1.

This is a parameter-counting lower bound for the universal approximation depth. Theo-
rem 2 gives an upper bound for the minimal universal approximation depth. The upper
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bound from the theorem surpasses the parameter-counting lower bound by roughly a
factor n. We think that the upper bound is tight, up to sub-linear factors, in consider-
ation of the following. Probability models with hidden variables can have dimension
strictly smaller than their parameter count (dimension defect). Moreover, in some cases
even full dimensional models represent only very restricted classes of distributions, as
has been observed, for example, in binary tree models with hidden variables. It is known
that for any prime power q, the smallest naı̈ve Bayes model universal approximator of
distributions on {0, 1, . . . , q−1}n has qn−1(n(q−1)+1)−1 parameters (see Montúfar,
2013, Theorem 13). Hence for these models the number of parameters needed to
achieve universal approximation surpasses the corresponding parameter-counting lower
bound qn/(n(q − 1) + 1) by a factor of order n.

Computing tight bounds for the maximum of the Kullback-Leibler divergence is a
notoriously challenging problem. This is even so for simple probability models without
hidden variables, like independence models with mixed discrete variables. The optimal-
ity of our DBN error bounds is not completely settled at this point, but we think that they
give a close description of the large-scale approximation error behaviour of DBNs. For
the limiting case of one single layer with n independent q-ary units, it is known that the
maximal divergence is equal to (n−1) log(q) (see Ay and Knauf, 2006), corresponding
to the line logq(L) = 0 in Figure 2. Furthermore, when our upper bounds vanish, they
obviously are tight (corresponding to the points with value zero in Figure 2).

Discrete DBNs have many hyperparameters (the layer widths and the state spaces
of the units), which makes their analysis combinatorially intricate. Some of these in-
tricacies are apparent from the floor and ceiling functions in our main theorem. This
theorem tries to balance accuracy, generality, and clarity. In some cases, the bounds can
be improved by exhausting the representational power gain per layer described in The-
orem 8. A more detailed and accurate account on the two-layer case (RBMs) is given in
Section 4. In Section 7 we give results describing probability distributions contained in
the DBN model (Proposition 9) and addressing the expectation value of the divergence
(Corollary 11). Section A contains an empirical discussion, together with the numerical
evaluation of small models.

Outline of the Proof
We will prove Theorem 2 by first studying the individual parts of the DBN: the RBM
formed by the top two layers (Section 4); the individual units with directed inputs (Sec-
tion 5); the probability sharing realized by stacks of layers (Section 6); and finally, the
sets of distributions of the units in the bottom layer (Section 7). The proof steps can be
summarized as follows:

• Show that the top RBM can approximate any probability distribution with support on
a set of the form X1 × · · · Xk × {0}

k+1

× · · · × {0}
n

arbitrarily well.

• For a unit with state space X1 receiving n directed inputs, show that there is a choice
of parameters for which the following holds for each state hn ∈ Xn of the n-th input
unit: If the input vector is (h1, h2, . . . , hn), then the unit outputs h′1 with probability
phn(h′1), where phn is an arbitrary distribution on X1 for all hn ∈ Xn.

8



• Show that there is a sequence of q
m−1
q−1

stochastic maps p(h) 7→ p(v) =
∑

h p(v|h)p(h)
each of which superposes nearly qn probability multi-sharing steps, which maps the
probability distributions represented by the top RBM to an arbitrary probability dis-
tribution on X1 × · · · × Xn.

• Show that the DBN approximates certain classes of tractable probability distributions
arbitrarily well, and estimate their maximal approximation errors.

The superposition of probability sharing steps is inspired by (Le Roux and Bengio,
2010), together with the refinements of that work devised in (Montúfar and Ay, 2011).
By probability sharing we refer to the process of transferring an arbitrary amount of
probability from a state vector x′ to another state vector x′′. In contrast to the binary
proofs, where each layer superposes about 2n sharing steps, here each layer super-
poses about qnmulti-sharing steps, whereby each multi-sharing step transfers probabil-
ity from one state to q − 1 states (when the units are q-ary). With this, a more general
treatment of models of conditional distributions is required. Further, additional consid-
erations are required in order to derive tractable submodels of probability distributions
which allow to bound the DBN model approximation errors.

4 Restricted Boltzmann Machines
We denote by RBMX ,Y the restricted Boltzmann machine probability model with hid-
den units Y1, . . . , Ym taking states in Y = Y1 × · · · × Ym and visible units X1, . . . , Xn

taking states in X = X1 × · · · × Xn. Recall the definitions made in pg. 6. In the litera-
ture RBMs are defined by default with binary units; however, RBMs with discrete units
have appeared in (Welling et al., 2005), and their representational power has been stud-
ied in (Montúfar and Morton, 2013). The results from this section are closely related to
the analysis given in (Montúfar and Morton, 2013).

Theorem 3. The model RBMX ,Y can approximate any mixture distribution p =
∑m

i=0 λipi
arbitrarily well, where p0 is any product distribution, and pi is any mixture of (|Yi|− 1)
product distributions for all i ∈ [m] satisfying supp(pi)∩ supp(pj) = ∅ for all 1 ≤ i <
j ≤ m.

Here, a product distribution p is a probability distribution on X = X1 × · · · × Xn
that factorizes as p(x1, . . . , xn) =

∏
j∈[n] pj(xj) for all x ∈ X , where pj is a distribution

on Xj for all j ∈ [n]. A mixture is a weighted sum with non-negative weights adding to
one. The support of a distribution p is supp(p) := {x ∈ X : p(x) > 0}.

Proof of Theorem 3. Let EX denote the set of strictly positive product distributions of
X1, . . . , Xn. Let Mk

X denote the set of all mixtures of k product distributions from
EX . The closureMk

X contains all mixtures of k product distributions, including those
which are not strictly positive. Let q ◦ q′ denote the renormalized entry-wise product
with (q◦q′)(x) = q(x)q′(x)/

∑
x′∈X q(x

′)q′(x′) for all x ∈ X . Let 1 denote the constant
function on X with value 1. The model RBMX ,Y can be written, up to normalization,
as the set

M|Y1|
X ◦ · · · ◦ M|Ym|

X = R+EX ◦ (1 + R+M|Y1|−1
X ) ◦ · · · ◦ (1 + R+M|Ym|−1

X ). (10)
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Now consider any probability distributions p0 ∈ EX , p′1 ∈M
|Y1|−1
X , . . . , p′m ∈M

|Ym|−1
X .

If supp(p′i)∩supp(p′j) = ∅ for all 1 ≤ i < j ≤ m, then the product (1+λ′1p
′
1)◦· · ·◦(1+

λ′mp
′
m) is equal to 1+

∑
i∈[m] λ

′
ip
′
i, up to normalization. Let λ′i = λi/λ0

∑
x p
′
i(x)p0(x)

and p′i(x) = pi(x)/p0(x). Then λ0p0 ◦ (1 +
∑

i∈[m] λip
′
i) =

∑m
i=0 λipi = p. Hence the

mixture distribution p is contained in the closure of the RBM model.

RBMs can approximate certain partition models arbitrarily well:

Lemma 4. Let P be the partition model with partition blocks {x1} × · · · × {xk} ×
Xk+1 × · · · × Xn for all (x1, . . . , xk) ∈ X1 × · · · × Xk. If 1 +

∑
j∈[m](|Yj| − 1) ≥

(
∏

i∈[k] |Xi|)/maxj∈[k] |Xj|, then each distribution contained in P can be approximated
arbitrarily well by distributions from RBMX ,Y .

Proof. Any point in P is a mixture of the uniform distributions on the partition blocks.
These mixture components have disjoint supports, since the partition blocks are disjoint.
They are product distributions, since they can be written as px1,...,xk =

∏
i∈[k] δxi

∏
i∈[n]\[k] ui,

where ui denotes the uniform distribution on Xi. For any j ∈ [k], any mixture of the
form

∑
xj∈Xj λxjpx1,...,xk is also a product distribution which factorizes as

(
∑
xj∈Xj

λxjδxj)
∏

i∈[k]\{j}

δxi
∏

i∈[n]\[k]

ui. (11)

Hence any point in P is a mixture of (
∏

i∈[k] |Xi|)/maxj∈[k] |Xj| product distributions
of the form given in eq. (11). The claim follows from Theorem 3.

Lemma 4, together with the divergence formula for partition models given in pg. 6,
implies:

Theorem 5. If 1 +
∑

j∈[m](|Yj| − 1) ≥
(∏

i∈Λ |Xi|
)
/maxi′∈Λ |Xi′ | for some Λ ⊆ [n],

then
DRBMX ,Y ≤ log

( ∏
i∈[n]\Λ

|Xi|
)
.

In particular, the model RBMX ,Y is a universal approximator whenever

1 +
∑
j∈[m]

(|Yj| − 1) ≥ |X |/max
i∈[n]
|Xi|.

When all units are q-ary, the RBM with (qn−1−1)/(q−1) hidden units is a universal
approximator of distributions on {0, 1, . . . , q − 1}n. Theorem 5 generalizes previous
results on binary RBMs (Montúfar and Ay, 2011, Theorem 1) and (Montúfar et al.,
2011, Theorem 5.1), where it is shown that a binary RBM with 2n−1−1 hidden units is a
universal approximator of distributions on {0, 1}n and that the maximal approximation
error of binary RBMs decreases at least logarithmically in the number of hidden units.
A previous result by Freund and Haussler (1991, Section 2.5) shows that a binary RBM
with 2n hidden units is a universal approximator of distributions on {0, 1}n. See also
the work by Le Roux and Bengio (2008, Theorem 2).
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5 The Internal Node of a Star
Consider an inwards directed star graph with leaf variables taking states in Y = Y1 ×
· · · × Ym and internal node variable taking states in V . Denote by SV,Y the set of
conditional distributions on V given the states y ∈ Y of the leaf units, defined by this
network. Each of these distributions can be written as

p(v|y; Θ) = exp(v>Θ
[

1
y

]
)/Z(Θ

[
1
y

]
), for all v ∈ V and y ∈ Y . (12)

The distributions from eq. (4) are of this form, with Θ corresponding to [(θli)
>|Θl

i].
A conditional distribution p(·|·) is naturally identified with the stochastic map de-

fined by the matrix (p(x|y))y,x. The following lemma describes some stochastic maps
that are representable by the model SV,Y , and which we will use to define a probability
sharing scheme in Section 6.

Lemma 6. Let Z = {y1} × · · · × {yk−1} × Yk × {yk+1} × · · · × {ym} ⊆ Y , k 6= m.
Furthermore, let V = Ym, and let {qz : z ∈ Z} be any distributions on V . Then there
is a choice of the parameters Θ of SV,Y for which

p(·|y; Θ) =

{
qy, if y ∈ Z
δym , otherwise

.

Proof. Let Yj = {0, 1, . . . , rj − 1} for all j ∈ [m], and r = |V| = rm. The set of
strictly positive probability distributions on V is an exponential family EV = {p(v; θ) =
exp(v> θ)/Z(θ) for all v ∈ V : θ ∈ Rd} with d = r − 1. For some v ∈ V let ϑv ∈ Rd

be the parameter vector of a distribution which attains a unique maximum at v. Then
for any fixed η ∈ Rd we have

lim
K→∞

p(x; η +Kϑv) = δv(x) for all x ∈ V . (13)

To see this, note that p(x;Kϑv) ∝ p(x;ϑv)
K and hence limK→∞ p(x;Kϑv) = δv.

Furthermore, p(x; η +Kϑv) ∝ p(x; η)p(x;Kϑv).
Without loss of generality letZ = Y1×{0}×· · ·×{0}. For each z = (z1, . . . , zm) ∈

Z let θz1 ∈ Rd be such that p(v; θz1) = qz(v) for all v ∈ V . The matrix Θ can be set as
follows:

Θ =
[
θ0 Θ1 Θ2 · · · Θm

]
; (14)

where Θj contains the columns corresponding to yj in eq. (12) and

Θ1 = [θ1 − θ0 | · · · | θr1−1 − θ0] ∈ Rd×r1 ;

Θj = [K0ϑ0 |K0ϑ0 | · · · |K0ϑ0] ∈ Rd×rj , for j = 2, . . . ,m− 1;

Θm = [K1ϑ1 |K2ϑ2 | · · · |Kr−1ϑr−1] ∈ Rd×r.

(15)

The matrix Θ maps {
[

1
y

]
: y ∈ Z} to the parameter vectors {θz1 : z1 ∈ Y1} with

corresponding distributions {qz : z ∈ Z}. When K0, . . . , Kr−1 ∈ R are chosen such
that ‖θ0‖, . . . , ‖θr1−1‖ � K0 � K1, . . . , Kr−1, then for each y ∈ Y \Z the vector

[
1
y

]
is mapped to a parameter vector Θ

[
1
y

]
with p(·|y; Θ

[
1
y

]
) arbitrarily close to δym .

11
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Figure 3: Three multi-sharing steps on {0, 1, 2} × {0, 1, 2, 3}.

Remark 7. In order to prove Lemma 6 for any subset Z ⊆ Y it is sufficient to show
that (i) the vectors {y : y ∈ Z} are affinely independent, and (ii) there is a linear map
Θ mapping {

[
1
y

]
: y ∈ Z} into the zero vector and

[
1
y

]
into the relative interior of the

normal cone of QV := conv{v : v ∈ V} at the vertex v = ym for all y ∈ Y \ Z .

6 Probability Sharing

A single directed layer
Consider an input layer of units Y1, . . . , Ym with bipartite connections directed towards
an output layer of units X1, . . . , Xn. Denote by LX ,Y the model of conditional distribu-
tions defined by this network. Recall the definition from eq. (3). Each conditional distri-
bution p(·|·; Θ) ∈ LX ,Y defines a linear stochastic map FΘ : q 7→

∑
y∈Y p(x|y; Θ)q(y)

from the simplex ∆(Y) of distributions on Y to the simplex ∆(X ) of distributions on
X . Here the parameter Θ corresponds to the parameters Θl, θl of the conditional distri-
butions from eq. (3) for a given l.

For any y ∈ Y and j ∈ [m], we denote by y[j] the one-dimensional cylinder set
{y1}×· · ·×{yj−1}×Yj×{yj+1}×· · ·×{ym}. Similarly, for any Λ ⊆ [m], we denote
by y[Λ] the cylinder set consisting of all arrays in Y with fixed values {yi}i∈[m]\Λ in the
entries [m] \ Λ.

Applying Lemma 6 to each output unit of LX ,Y shows:

Theorem 8. Consider some {y(s)}s∈[k] ⊆ Y . Let {js}s∈[k] be a multiset and {is}s∈[k]

a set of indices from [m]. If the cylinder sets y(s)[js] are disjoint and Z is a subset
of Y containing them, then the image of ∆(Z) by the family of stochastic maps LY,Y
contains ∆(Z ∪s∈[k] y

(s)[{js, is}]).

This result describes the image of a set of probability distributions by the collection
of stochastic maps defined by a DBN layer for all choices of its parameters. In turn, it
describes part of the DBN representational power contributed by a layer of units.

A stack of directed layers
In the case of binary units, sequences of probability sharing steps can be defined con-
veniently using Gray codes, as done in (Le Roux and Bengio, 2010). A Gray code is

12



an ordered list of vectors, where each two subsequent vectors differ in only one en-
try. A binary Gray code can be viewed as a sequence of one-dimensional cylinder sets.
In the non-binary case, this correspondence is no longer given. Instead, motivated by
Theorem 8, we will use one-dimensional cylinder sets in order to define sequences of
multi-sharing steps, as shown in Figure 3.

Let qi = |Yi| be the cardinality of Yi for i ∈ [n], and let m ≤ n. The set Z =
{0} × · · · × {0} × Ym+1 × · · · × Yn ⊆ Y can be written as the disjoint union of
k =

∏n
i=m+2 |Yi| one-dimensional cylinder sets, as Z = ·∪ks=1y

(s)[m+ 1], where y(s) =

(0, . . . , 0
m
| 0
m+1

, y
(s)
m+2, . . . , y

(s)
n ) and {(y(s)

m+2, . . . , y
(s)
n )}ks=1 = Ym+2 × · · · × Yn.

In the following, each set y(s)[m + 1] will be the starting point of a sequence of
sharing steps. By Theorem 8, a directed DBN layer maps the simplex of distributions
∆(y(1)[m+1]∪· · ·∪y(k)[m+1]) surjectively to the simplex of distributions ∆(y(1)[m+
1, 1] ∪ · · · ∪ y(k)[m + 1, k]). The latter can be mapped by a further DBN layer onto a
larger simplex and so forth. Starting with y(1)[m+ 1], consider the sequence

(0, 0, . . . , 0 | 0, y(1)
m+2, . . . , y

(1)
n )[m+ 1, 1]

(0, 0, . . . , 0 | 0, y(1)
m+2, . . . , y

(1)
n )[m+ 1, 2]

(1, 0, . . . , 0 | 0, y(1)
m+2, . . . , y

(1)
n )[m+ 1, 2]

(16)

continued as shown in Table 1. We denote this sequence of cylinder sets by G1, and its
l-th row (a cylinder set) by G1(l). The union ∪l∈[K]G

1(l) of the first K rows, with K =

1+q1 +q1q2 + · · ·+
∏m−1

j=1 qj , is equal to Y1×· · ·×Ym×Ym+1×{y(1)
m+2}×· · ·×{y

(1)
n }.

We define k sequences G1, . . . , Gk as follows: The first m coordinates of Gs are
equal to a permutation of the first m coordinates of G1, defined by shifting each of
these m columns cyclically s positions to the right. The last n −m coordinates of Gs

are equal to (Ym+1, y
(s)
m+2, . . . , y

(s)
n ).

We use the abbreviation {s+t} := (s+t−1) mod (m)+1. Within the firstm columns,
the free coordinate of the l-th row of Gs is s + κ, where κ is the least integer with
l ≤

∑κ
i=0

∏{s+i−1}
j=s qj . Here the empty product is defined as 1. Let q = maxj∈{1,...,m} qj .

We can modify each sequence Gs, by repeating rows if necessary, such that the free
coordinate of the l-th row of the resulting sequence G̃s is s + κ, where κ is the least
integer with l ≤

∑κ
t=0 q

t. This κ does not depend on s.
The sequences G̃s for s ∈ {1, . . . , k} are all different from each other in the last

n − m coordinates and have a different ‘sharing’ free-coordinate in each row. The
union of cylinder sets in all rows of these sequences is equal to Y1 × · · · × Yn.

7 Deep Belief Networks
Proposition 9. Consider a DBN with L ≥ 2 layers of width n, each layer containing
units with state spaces of cardinalities q1, . . . , qn. Let m be any integer with n ≥ m ≥∏n

j=m+2 qj =: k. The corresponding probability model can approximate a distribution
p on {0, 1, . . . , q1− 1}× · · · × {0, 1, . . . , qn− 1} arbitrarily well whenever the support
of p is contained in ∪s∈[k] ∪l∈[L−2] G̃

s(l).
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Y1 0 0 0 0

0 Y2 0 0 0

1 Y2 0 0 0
...

...
q1 − 1 Y2 0 0 0

0 0 Y3 0 0

0 1 Y3 0 0
...

...
...

0 q2 − 1 Y3 0 0

1 0 Y3 0 0

1 1 Y3 0 0
...

...
...

1 q2 − 1 Y3 0 0

...
...

q1 − 1 0 Y3 0 0

q1 − 1 1 Y3 0 0
...

...
...

q1 − 1 q2 − 1 Y3 0 0

0 0 0 Y4 0

0 0 1 Y4 0
...

...
...

...
0 0 q3 − 1 Y4 0

...
...

q1 − 1 q2 − 1 · · · qm−2 − 1 0 Ym
q1 − 1 q2 − 1 · · · qm−2 − 1 1 Ym

...
...

...
...

...
q1 − 1 q2 − 1 · · · qm−2 − 1 qm−1 − 1 Ym

Table 1: Sequence of one-dimensional cylinder sets.
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Proof. Note that
∏n

j=m+2 qj ≤ n ≤ 1+
∑

j∈[n](qj−1). By Theorem 3 the top RBM can
approximate each distribution in the probability simplex on {0}× · · · × {0}×Xm+1×
· · · × Xn arbitrarily well. By Theorem 8, this simplex can be mapped iteratively into
larger simplices, according to the sequences G̃s from Section 6.

Theorem 10. Consider a DBN with L layers of width n, each layer containing units
with state spaces of cardinalities q1, . . . , qn. Let m be any integer with n ≥ m ≥∏n

j=m+2 qj and q = q1 ≥ · · · ≥ qm. If L ≥ 2 + 1 + q + · · · + qS−1 = 2 + qS−1
q−1

, then
the DBN model can approximate each distribution in a partition model P of coarseness∏m−S

j=1 qj arbitrarily well.

Proof. When L ≤ 2 the result follows from Lemma 4. Assume therefore that L ≥
2+1+q+q2+· · ·+qr, r ≥ 0. We use the abbreviation {s+t} := (s+t−1) mod (m)+1.
Let k =

∏n
j=m+2 qj and {(y(s)

m+2, . . . , y
(s)
n ) : s ∈ [k]} = Ym+2×· · ·×Yn. The top RBM

can approximate each distribution from a partition modelP (on a subset ofY) arbitrarily
well, whose partition blocks are the cylinder sets with fixed coordinate values

ys = 0, y{s+1} = 0, . . . , y{s+r} = 0, ym+1, y
(s)
m+2, . . . , y

(s)
n ;

for all ym+1 ∈ Ym+1, for all s ∈ [k]. After L− 2 probability sharing steps starting from
P , the DBN can approximate the distributions from the partition model arbitrarily well,
whose partition blocks are the cylinder sets with fixed coordinate values

ys, y{s+1}, . . . , y{s+r}, ym+1, y
(s)
m+2, . . . , y

(s)
n ;

for all possible choices of ys, y{s+1}, . . . , y{s+r}, ym+1, for all s ∈ [k]. The maximal
cardinality of such a block is q1 · · · qm−r−1, and the union of all blocks equals Y .

Proof of Theorem 2. The claim follows bounding the divergence of the partition models
described in Theorem 10.

As a corollary we obtain the following bound for the expectation value of the diver-
gence from distributions drawn from a Dirichlet prior, to the DBN model.

Corollary 11. The expectation value of the divergence from a probability distribution
p drawn from the symmetric Dirichlet distribution Dir(a,...,a) to the model DBN from
Theorem 2 is bounded by∫

∆

D(p‖DBN) Dir(a,...,a)(p) dp ≤ (ψ(a+ 1)− ψ(ca+ 1) + ln(c)) log(e),

where c =
∏

j∈[m−S] qj , ψ is the digamma function, and e is Euler’s constant.

Proof. This is a consequence of analytical work (Montúfar and Rauh, 2012) on the ex-
pectation value of Kullback-Leibler divergences of standard probability models, applied
to the partition models described in Theorem 2.
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A Small Experiments
We run some computer experiments, not with the purpose of validating the quality
of our bounds in general, but with the purpose of giving a first empirical insight. It
is important to emphasize that numerical experiments evaluating the divergence from
probability models defined by neural networks are only feasible for small networks,
since otherwise the model distributions are too hard to compute (see, e.g., Long and
Servedio, 2010). For large models one still could try to sample the distributions and
replace the divergence by a proxy, like the discrepancy of low-level statistics, but here
we will focus on small networks.

We generate artificial data in the following natural way: For a given visible state
spaceX and the corresponding probability simplex ∆(X ), we draw a set of distributions
{pi ∈ ∆(X ) : i = 1, . . . , T} from the Dirichlet distribution Dir(a,...,a) on ∆(X ). For the
purpose of our experiments, we choose the concentration parameter a in such a way
that the Dirichlet density is higher for low-entropy distributions (most distributions in
practice have relatively few preferred states and hence a small entropy). Next, for each
i = 1, . . . , T , we generate N i.i.d. samples from pi, which results in a data vector
X i = (X i

1, . . . , X
i
N) ∈ XN with empirical distribution P i = 1

N

∑N
j=1 δXi

j
.

A networkN (with visible states X ) is then tested on all data sets X i, i = 1, . . . , T .
For each data set we train N using contrastive divergence (CD) (Hinton, 2002; Hinton
et al., 2006) and maximum likelihood (ML) gradient. This gives us a maximum likeli-
hood estimate pθi of P i withinN . Finally, we compute the Kullback-Leibler divergence
D(P i‖pθi), the maximum value over all data sets maxCD+ML = maxi=1,...,T D(P i‖pθi),
and the mean value over all data sets meanCD+ML = 1

T

∑T
i=1D(P i‖pθi). We do not

need cross validation, or D(pi‖pθi), because we are interested in the representational
power of N , rather than on its generalization properties.

We note that the number of distributions which have the largest divergence from
N is relatively small, and hence the random variable maxCD+ML has a large variance
(unless the number of data sets tends to infinity, T → ∞). Moreover, we note that it is
hard to find the best approximations of a given target P i. Since the likelihood function
LXi(θ) =

∏N
j=1 pθ(X

i
j) has many local maxima, the distribution pθi is often not a global

maximizer of LXi , even if training is arranged with many parameter initializations.
Many times the estimated value pθi is a good local minimizer of the divergence, but
sometimes it is relatively poor (especially for the larger networks). This contributes
again to the variance of maxCD+ML. The mean values meanCD+ML, on the other hand,
are more stable.

Figure 4 shows the results for small binary RBMs with 3 and 4 visible units, and
Figure 5 shows the results for small constant-width binary DBNs with 4 visible units.
In both figures the maximum and mean divergence is captured relatively well by our
theoretical bounds. The empirical maximum values have a well recognizable discrep-
ancy from the theoretical bound. This is explained by the large variance of maxCD+ML,
given the limited number of target distributions used in these experiments. Finding a
maximizer of the divergence (a data vector X ∈ XN that is hardest to represent) is
hard. Most target distributions can be approximated much better than the hardest distri-
butions. A second observation is that with increasing network complexity (more hidden
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Figure 4: Empirical evaluation of the representational power of small binary RBMs.
The gray shading indicates the frequency at which the target distribution P i had a given
divergence from the trained RBM distribution pθi (the darker a value, the more fre-
quent). The lines with round markers show the mean divergence (dashed) and maximal
divergence (solid) over all target distributions. The lines with square markers show
the theoretical upper bounds of the mean divergence (dashed) and maximal divergence
(solid) over the continuum of all possible target distributions drawn from the symmetric
Dirichlet distribution Dir(a,...,a).
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Figure 5: Empirical evaluation of the representational power of small binary DBNs.
The details are as in Figure 4, whereby the theoretical upper bounds shown here for the
maximal and mean divergence, maxth and meanth, are a combination of our results for
RBMs and DBNs.
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units), finding the best approximations of the target distributions becomes harder (even
increasing the training efforts). This causes the empirical maximum divergence to actu-
ally surpass the theoretical bounds. In other words, although the models are in principle
able to approximate the targets accurately, according to our theoretical bounds, in prac-
tice they may not, because of the difficult training, and their capacity remains wasted.
The empirical mean values, on the other hand, have a much lower variance and are
captured quite accurately by our theoretical bounds.
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