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Abstract

Based on the generators of SU(n) we present inequalities for detecting quantum entan-

glement for 2 ⊗ d and M ⊗ N systems. These inequalities provide a sufficient condition of

entanglement for bipartite mixed states and give rise to an experimental way of entanglement

detection.

I. INTRODUCTION

Quantum entanglement has played very important roles in quantum information pro-

cessing such as quantum teleportation, quantum cryptography, quantum dense coding and

parallel computing [1–3]. One of the important problems in the theory of quantum en-

tanglement is to detect the quantum entanglement by measuring some suitable quantum

mechanical observables. The Bell inequalities can be used to detect perfectly the entangle-

ment of pure bipartite states [4–8]. Besides Bell inequalities, the entanglement witness are

also useful in experimental detection of quantum entanglement for mixed states [9–15]. For

bipartite mixed states, a necessary and sufficient inequality has been derived for detecting

entanglement of two-qubit states [16]. The inequality in [17] is both necessary and sufficient

in detecting entanglement of qubit-qutrit states, and necessary for qubit-qudit states. In

Ref. [18] an inequality detecting entanglement for arbitrary dimensional bipartite states has

been presented.

In stead of particular construction of the quantum mechanical observables in [17, 18],

in this paper we use directly the generators of SU(n) and present new inequalities for

detecting entanglement of arbitrary dimensional bipartite mixed states. These inequalities

give a necessary condition of separability for general mixed states. Any violation of the

inequalities implies quantum entanglement. The paper is organized in the following way.

In Sec. 2, based on Pauli matrices and the generators of SU(d), we present inequalities for
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detecting entanglement of 2 ⊗ d systems. In Sec. 3, we present inequalities for detecting

entanglement of M ⊗N systems. Conclusions are given in Sec. 4.

II. INEQUALITIES DETECTING ENTANGLEMENT FOR 2⊗ d SYSTEMS

Let H be n-dimensional vector space with computational basis {|i⟩}ni=1. The generalized

Gell-Mann matrices (GGM) are the generators of SU(n) defined by [19]:

i) n(n−1)
2

symmetric GGM

λjks = |j⟩⟨k|+ |k⟩⟨j|, 1 ≤ j < k ≤ n; (1)

ii) n(n−1)
2

antisymmetric GGM

λjkα = −i|j⟩⟨k|+ i|k⟩⟨j|, 1 ≤ j < k ≤ n; (2)

iii) (n− 1) diagonal GGM

λl =

√
2

l(l + 1)
(

l∑
j=1

|j⟩⟨j| − l|l + 1⟩⟨l + 1|), 1 ≤ l ≤ n− 1. (3)

In total we have n2 − 1 GGM which are Hermitian and traceless. The operator |j⟩⟨k|

with j, k = 1, · · · , n can be also expressed in terms of GGM [19]

|j⟩⟨k| =



1

2
(λjks + iλjkα ), for j < k;

1

2
(λkjs − iλkjα ), for j > k;

−

√
j − 1

2j
λj−1 +

n−j−1∑
m=0

1√
2(j +m)(j +m+ 1)

λj+m +
1

n
I, for j=k.

(4)

As any 2 × 2 matrix can be expanded according to the Pauli matrices plus identity, for

the case of n = 2, opertors |j⟩⟨k|, j, k = 1, 2, can be written as

|1⟩⟨1| =
1

2
(I2 + σ1), |2⟩⟨2| = 1

2
(I2 − σ1),

|1⟩⟨2| =
1

2
(σ2 + iσ3), |2⟩⟨1| = 1

2
(σ2 − iσ3), (5)

where σi (i = 1, 2, 3) are the Pauli matrices. For the case of n = d, |j⟩⟨k|, j, k = 1, 2, can be
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written as

|1⟩⟨1| =
d−2∑
m=0

1√
2(m+ 1)(m+ 2)

λm+1 +
1

d
I,

|2⟩⟨2| = −1

2
λ1 +

d−3∑
m=0

1√
2(m+ 2)(m+ 3)

λm+2 +
1

d
I,

|1⟩⟨2| =
1

2
(λ12s + iλ12α ),

|2⟩⟨1| =
1

2
(λ12s − iλ12α ). (6)

Next we construct quantum mechanical operators for bipartite 2 ⊗ d systems A and B.

Set

Ŷ1 =
1

2
(σ2 + iσ3)⊗

1

2
(λ12s − iλ12α ) +

1

2
(σ2 − iσ3)⊗

1

2
(λ12s + iλ12α ),

Ŷ2 =
1

2
(I2 + σ1)⊗ (

d−2∑
m=0

1√
2(m+ 1)(m+ 2)

λm+1 +
1

d
Id)

−1

2
(I2 − σ1)⊗ (−1

2
λ1 +

d−3∑
m=0

1√
2(m+ 2)(m+ 3)

λm+2 +
1

d
Id),

Ŷ3 =
1

2
(I2 + σ1)⊗ (

d−2∑
m=0

1√
2(m+ 1)(m+ 2)

λm+1 +
1

d
Id)

+
1

2
(I2 − σ1)⊗ (−1

2
λ1 +

d−3∑
m=0

1√
2(m+ 2)(m+ 3)

λm+2 +
1

d
Id). (7)

Denote Yi = Tr(ρ(U⊗V )Ŷi(U⊗V )†), i = 1, 2, 3, where U and V are unitary transformations

on systems A and B, respectively. We have the following theorem:

Theorem 1: Any separable state ρ ∈ H2 ⊗Hd obeys the following inequality

Y 2
3 ≥ Y 2

1 + Y 2
2 . (8)

[Proof] First we prove that the inequality holds for product states. If ρ is separable,

its partial transposed matrix ρTB is non-negative, i.e. Tr(ρTBPAB) ≥ 0, where PAB is an

arbitrary projector to 2 ⊗ 2 subsystems. Or more generally Tr[ρTB(UA ⊗ UB)PAB(U
A ⊗

UB)†] ≥ 0, where UA and UB are local unitary operators. Any 2 ⊗ 2 pure state has the
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Schmidt decomposition,

|ϕ⟩ = sin θ|1⟩A ⊗ |1⟩B + cos θ|2⟩A ⊗ |2⟩B. (9)

Hence PAB can be written as

PAB = (U ⊗ V )|ϕ⟩⟨ϕ|(U ⊗ V )†, (10)

where U and V are unitary operators. We have

Tr[ρTB(UA ⊗ UB)PAB(U
A ⊗ UB)†] (11)

= Tr{ρ[(UA ⊗ UB)(U ⊗ V )|ϕ⟩⟨ϕ|(U ⊗ V )†(UA ⊗ UB)†]TB}

= Tr{ρ(UAU ⊗ (UBV )†TB)(|ϕ⟩⟨ϕ|)TB(UAU)† ⊗ (UBV )TB}

= Tr[ρ(U ⊗ V )(|ϕ⟩⟨ϕ|)TB(U ⊗ V )†], (12)

where the last equation is obtained by chossing UA = I and UB = (V V TB)†. Therefore we

get the following inequality,

Tr[ρTB(UA ⊗ UB)PAB(U
A ⊗ UB)†] = Tr[ρ(U ⊗ V )(|ϕ⟩⟨ϕ|)TB(U ⊗ V )†] ≥ 0. (13)

Using Eqs. (5), (6), (7) and (9), we have

(|ϕ⟩⟨ϕ|)TB = sin2 θ|11⟩⟨11|+ 1

2
sin 2θ(|12⟩⟨21|+ |21⟩⟨12|) + cos2 θ|22⟩⟨22|

=
1

2
(Ŷ1 sin 2θ − Ŷ2 cos 2θ + Ŷ3). (14)

Substituting Eq. (14) into inequality (13) and setting t = tan θ, we obtain

(Y2 + Y3)t
2 + 2Y1t+ (Y3 − Y2) ≥ 0. (15)

Since Y2 + Y3 = 2Tr(ρ(U ⊗ V )|11⟩⟨11|(U ⊗ V )†) ≥ 0 and (15) is valid for any t, we get

Y 2
1 + Y 2

2 − Y 2
3 ≤ 0. (16)

Therefore the inequality Y 2
3 ≥ Y 2

1 + Y 2
2 holds for any product states.

It has been proved that if the inequality a2i ≥ b2i + c2i holds for arbitrary real numbers bi

and ci and non-negative ai, i = 1, · · · , n, then

(
n∑

i=1

piai)
2 ≥ (

n∑
i=1

pibi)
2 + (

n∑
i=1

pici)
2, (17)
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for 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1 [17]. For general separable mixed states

ρ = Σipi|ϕi⟩⟨ϕi|, 0 ≤ pi ≤ 1,
∑
i

pi = 1, (18)

where |ϕi⟩ are all product states, using (17) one can verify that any mixed separable state

ρ also obeys the inequality (8).

Remark 1: If ρ is separable, the inequality Tr[ρTB(UA ⊗ UB)PAB(U
A ⊗ UB)†] ≥ 0 is valid

for any local unitary operators UA and UB. In proving the theorem, we have chosen UA = I

and UB = (V V TB)
†
, so that we can use the mean values of the set of quantum mechanical

observables (U ⊗ V )Ŷi(U ⊗ V )† to detect quantum entanglement.

Remark 2: The operators in (7) are so introduced in terms of the quantum mechanical

observables: the Pauli matrices and the SU(n) generators. In fact, due to the direct relations

between |j⟩⟨k| and the generators of SU(n), for bipartite quantum systems Ŷ1, Ŷ2 and Ŷ3 can

be simply written as Ŷ1 = |12⟩⟨21|+|21⟩⟨12|, Ŷ2 = |11⟩⟨11|−|22⟩⟨22|, Ŷ3 = |11⟩⟨11|+|22⟩⟨22|.

To show the advantage of our inequality, let us consider the following examples.

Example 1: The two-qubit Werner state is given by [20],

W (a) = a|Ψ−⟩⟨Ψ−|+ 1− a

4
I4. (19)

where 0 ≤ a ≤ 1, I4 denotes the 4 × 4 identity matrix. |Ψ−⟩ is the maximally entangled

two-qubit state,

|Ψ−⟩ = 1√
2
(|1⟩A|2⟩B − |2⟩A|1⟩B). (20)

W (a) is separable for 0 ≤ a ≤ 1
3
and entangled for 1

3
< a ≤ 1.

We may simply choose U = I2 and V = I2, then

Y 2
1 + Y 2

2 − Y 2
3 =

1 + a

4
(3a− 1) > 0.

ThereforeW (a) is entangled for 1
3
< a ≤ 1. Our inequalities can detect all the entanglement.

It is noted that the inequalities constructed in Ref. [17] can detect the entanglement ofW (a)

only for 1 ≤ a < −2+4
√
5

19
≈ 0.37 when the same U and V are used.

Example 2: Let us consider the 2⊗ 3 mixed state [17],

ρ = a|Ψ+⟩⟨Ψ+|+ 1− a

6
I6, (21)
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where |Ψ+⟩ = 1√
2
(|11⟩ + |22⟩). This state is entangled if and only if a > 1

4
. If we choose

U = cos p (|1⟩⟨1|+ |2⟩⟨2|) + sin p (|1⟩⟨2| − |2⟩⟨1|) and V = I3, then

F ≡ Y 2
1 + Y 2

2 − Y 2
3 =

1 + 2a

9
(6a sin2 p− 2a− 1).

For p = π
2
, we have Y 2

1 + Y 2
2 − Y 2

3 > 0. Therefore ρ is entangled for a > 1
4
. Our inequalities

can detect all the entanglement in ρ, see Fig. 1.

FIG. 1: U = cos p(|1⟩⟨1|+ |2⟩⟨2|) + sin p(|1⟩⟨2| − |2⟩⟨1|), V = I3. Left figure: F with respect to p

and a. Right figure: contour plot of the left figure.
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III. INEQUALITIES DETECTING ENTANGLEMENT FOR M ⊗N SYSTEMS

Now we consider general M ⊗ N systems. Let HM , HN be M , N -dimensional vector

spaces for systems A and B, respectively. For j < k, set

Ŷ1 =
1

2
(λjks + iλjkα )A ⊗ 1

2
(λjks − iλjkα )B +

1

2
(λjks − iλjkα )A ⊗ 1

2
(λjks + iλjkα )B,

Ŷ2 = (−

√
j − 1

2j
λj−1 +

M−j−1∑
m=0

1√
2(j +m)(j +m+ 1)

λj+m +
1

M
I)⊗ (−

√
j − 1

2j
λj−1

+

N−j−1∑
m=0

1√
2(j +m)(j +m+ 1)

λj+m +
1

N
I)

−[(−
√
k − 1

2k
λk−1 +

M−k−1∑
m=0

1√
2(k +m)(k +m+ 1)

λk+m +
1

M
I)⊗ (−

√
k − 1

2k
λk−1

+
N−k−1∑
m=0

1√
2(k +m)(k +m+ 1)

λk+m +
1

N
I)],

Ŷ3 = (−

√
j − 1

2j
λj−1 +

M−j−1∑
m=0

1√
2(j +m)(j +m+ 1)

λj+m +
1

M
I)⊗ (−

√
j − 1

2j
λj−1

+

N−j−1∑
m=0

1√
2(j +m)(j +m+ 1)

λj+m +
1

N
I)

+(−
√
k − 1

2k
λk−1 +

M−k−1∑
m=0

1√
2(k +m)(k +m+ 1)

λk+m +
1

M
I)⊗ (−

√
k − 1

2k
λk−1

+
N−k−1∑
m=0

1√
2(k +m)(k +m+ 1)

λk+m +
1

N
I), (22)

and Yi = Tr[ρ(U ⊗ V )Ŷi(U ⊗ V )†] with i = 1, 2, 3, where U and V are local unitary trans-

formations on systems A and B, respectively. We have the following theorem:

Theorem 2: Any separable state ρ ∈ HM ⊗HN obeys the following inequality

Y 2
3 ≥ Y 2

1 + Y 2
2 . (23)

[Proof] Any product states can be written as

|ξ⟩ =
M∑
i=1

N∑
l=1

aibl|il⟩, (24)
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with
∑M

i=1 |ai|2 =
∑N

l=1 |bl|2 = 1. Using Eqs. (22) and (24), we have

Y 2
3 − Y 2

1 − Y 2
2 = 4[|ajakbjbk|2 −Re2(aja

∗
kb

∗
jbk)]

= 4(ajbka
∗
kb

∗
j)(ajbka

∗
kb

∗
j)

∗ −Re2(ajbka
∗
kb

∗
j) ≥ 0. (25)

Therefore Y 2
3 ≥ Y 2

1 +Y 2
2 holds for any product states. Using the similar methods in proving

Theorem 1, we have that the inequality also holds for general separable mixed states.

To show the usefulness of our inequality, let us consider the Horodecki’s 3 ⊗ 3 state:

σα =
2

7
|ψ+⟩⟨ψ+|+ α

7
σ+ +

5− α

7
σ−, (26)

where σ+ = 1
3
(|12⟩⟨12|+ |23⟩⟨23|+ |31⟩⟨31|), σ− = 1

3
(|21⟩⟨21|+ |32⟩⟨32|+ |13⟩⟨13|), |ψ+⟩ =

1√
3
(|11⟩+|22⟩+|33⟩). σα is separable for 2 ≤ α ≤ 3, bound entangled for 3 < α ≤ 4, and free

entangled for 4 < α ≤ 5 [21]. If we choose U = cos p (|1⟩⟨1|+ |2⟩⟨2|) + sin p (|1⟩⟨2| − |2⟩⟨1|)

and V = I3, then

F = Y 2
1 + Y 2

2 − Y 2
3 = (

2

21
)2[(α2 − 5α+ 10) sin4 p− 2 sin2 p− 4].

For p = π
2
, we have Y 2

1 + Y 2
2 − Y 2

3 > 0. Therefore σα is entangled for α > 4.

In Ref. [18] an inequality for detecting entanglement of arbitrary dimensional bipartite

systems has been presented, which can also detect the entanglement of (26) for α > 4. The

quantum mechanical observables in our inequalities are constructed systematically accord-

ing to SU(n) generators, in contract to artificial constructions of observable operators in

Ref. [18]. The mean values can be easily calculated. In fact, due to the direct relations be-

tween |j⟩⟨k| and the generators of SU(n), for bipartite quantum systems Ŷ1, Ŷ2 and Ŷ3 can be

simply written as Ŷ1 = |jk⟩⟨kj|+ |kj⟩⟨jk|, Ŷ2 = |jj⟩⟨jj|− |kk⟩⟨kk|, Ŷ3 = |jj⟩⟨jj|+ |kk⟩⟨kk|,

where j = 1, 2, . . . ,M , k = 1, 2, . . . , N and j < k.

IV. CONCLUSIONS

We have presented inequalities for detecting quantum entanglement of 2 ⊗ d and M ⊗

N systems. These inequalities give necessary conditions of separability for mixed states.

Since these inequalities are given by quantum mechanical observables, namely, Hermitian

operators, they supply experimental ways of detecting entanglement by measuring the mean
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values of these local observables. For example, the state defined in Eq. (21) violates the

inequalities for quantum mechanical observables given by choosing U = |1⟩⟨2| − |2⟩⟨1| and

V = I. Any violation of the inequalities implies that the quantum states are entangled. As

for examples, it has been shown that our inequalities can detect entanglement well when

the measurement operators are suitably chosen. Our inequalities are complemental to the

existing ones. As the inequalities are directly given by the SU(n) generators acting on

local subsystems, the approach can be readily generalized to deal with the detection of

entanglement for multipartite systems.
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