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Abstract

We calculate analytically the one-way deficit for systems consisting spin-j and spin-1
2
subsystems

with SU(2) symmetry. Comparing our results with the quantum discord of SU(2) invariant states,

we show that the one-way deficit is equal to the quantum discord for half-integer j, and is larger

than the quantum discord for integer j. Moreover, we also compare the one-way deficit with

entanglement of formation. The quantum entanglement tends to zero as j increases, while the

one-way deficit can remain significantly large.
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I. INTRODUCTION

Quantum entanglement has played significant roles in the field of quantum informa-

tion and quantum computation such as super-dense coding [1], teleportation [2], quantum

cryptography [3], remote-state preparation [4]. Quantum correlations other than quantum

entanglement have also attracted much attention recently [5–11]. Among of them, quantum

discord introduced by Oliver and Zurek and independently by Henderson and Vedral [6] is

a widely accepted quantity. Quantum discord, a measure which quantifies the discrepancy

between the quantum mutual information and the maximal classical information, can be

present in separable mixed quantum states. Following this discovery, much work has been

done in investigating the properties and behavior of quantum discord in various systems.

Since complicated optimization procedure involved in calculating quantum discord, one has

no analytical formulae of quantum discord even for two-qubit quantum systems [12–17].

Other significant nonclassical correlations besides entanglement and quantum discord,

for example, the quantum deficit [18, 19], measurement-induced disturbance [12], symmetric

discord [20, 21], relative entropy of discord and dissonance [22], geometric discord [23, 24],

and continuous-variable discord [25, 26] have been studied recently. The work deficit [18]

proposed to characterize quantum correlations in terms of entropy production and work

extraction by Oppenheim et al is the first operational approach to connect the quantum

correlations theory with quantum thermodynamics. Recently, Alexander Streltsov et al

[27, 28] reveals that the one-way deficit plays an important role in quantum correlations as

a resource for the distribution of entanglement. The one-way deficit of a bipartite quantum

state ρ is defined by [29]:

∆→(ρ) = min
{Πk}

S(
∑

i

ΠkρΠk)− S(ρ), (1)

where {Πk} is the projective measurements and S is the von Neumann entropy.

The one-way deficit and quantum discord have similar minimum form but they are differ-

ent kinds of quantum correlations. We have obtained analytical formula of one-way deficit

for some well known states such as Bell-diagonal states [30]. In this paper, we endeavored

to calculate the one-way deficit of bipartite SU(2) invariant states consisting of a spin-j and

a spin-1
2
subsystems.

SU(2)-invariant density matrices of two spins ~S1 and ~S2 are defined to be invariant

under U1 ⊗ U2, U1 ⊗ U2ρU
†
1 ⊗ U †

2 = ρ, where Ua = exp(i~η · ~Sa), a ∈ {1, 2}, are the usual

2



rotation operator representation of SU(2) with real parameter ~η and ~ = 1 [31, 32]. Those

SU(2)-invariant states ρ commute with all the components of the total spin ~J = ~S1 + ~S2.

In real physical systems, SU(2)-invariant states arise from thermal equilibrium states of

spin systems described by SU(2) invariant Hamiltonian [33]. The state space structure

and entanglement of SO(3)-invariant bipartite quantum systems have been analyzed in the

literature [34, 35]. For SU(2) invariant quantum spin systems, negativity is shown to be

necessary and sufficient for separability [31, 32], and the relative entropy of entanglement

has been analytically calculated [36] for (2j + 1)⊗ 2 and (2j + 1)⊗ 3 dimensional systems.

Furthermore, the entanglement of formation (EoF), I-concurrence, I-tangle and convex-

roof-extended negativity of the SU(2)-invariant states of a spin-j and spin-1
2
[37] have been

analytically calculated by using the approach in [38]. Quantum discord for SU(2)-invariant

states composed of spin-j and spin-1
2
systems has been analytically calculated in [39].

As an SU(2)-invariant state commutes with all the components of ~J , ρ has the general

from [31],

ρ =

S1+S2
∑

J=|S1−S2|

A(J)

2J + 1

J
∑

Jz=−J

|J, Jz〉00〈J, Jz| , (2)

where the constants A(J) ≥ 0,
∑

J A(J) = 1, |J, Jz〉0 denotes a state of total spin J and

z-component Jz. We consider the case with ~S1 of arbitrary length S and ~S2 of length
1

2
[31].

Let S = j, Jz = m. A general SU(2)-invariant density matrix has the form,

ρab =
F

2j

j−1/2
∑

m=−j+ 1

2

|j − 1

2
, m〉〈j − 1

2
, m|+ 1− F

2(j + 1)

j+1/2
∑

m=−j− 1

2

|j + 1

2
, m〉〈j + 1

2
, m|, (3)

where F ∈ [0, 1] is a function of temperature in thermal equilibrium. ρab is a (2j+1)⊗2 bi-

partite state. It has two eigenvalues λ1 = F/2j and λ2 = (1− F )/(2j + 2) with degeneracies

2j and 2j + 2, respectively [39]. The entropy of ρab is given by

S(ρab) = −F log(
F

2j
)− (1− F ) log(

1− F

2j + 2
). (4)

As the eigenstates of the total spin can be given by the Clebsch-Gordon coefficients [40] in

coupling a spin-j to spin-1
2
,

|j ± 1

2
, m〉 = ±

√

j + 1

2
±m

2j + 1
|j,m− 1

2
〉 ⊗ |1

2
,
1

2
〉+

√

j + 1

2
∓m

2j + 1
|j,m+

1

2
〉 ⊗ |1

2
,−1

2
〉, (5)
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the density matrix (3) can be written in product basis form [39],

ρab =
F

2j

j− 1

2
∑

m=−j+ 1

2

(a2−|m− 1

2
〉〈m− 1

2
| ⊗ |1

2
〉〈1
2
|

+ a−b−(|m− 1

2
〉〈m+

1

2
| ⊗ |1

2
〉〈−1

2
|

+ |m+
1

2
〉〈m− 1

2
| ⊗ | − 1

2
〉〈1
2
|)

+ b2−|m+
1

2
〉〈m+

1

2
| ⊗ | − 1

2
〉〈−1

2
|)

+
1− F

2(j + 1)

j+ 1

2
∑

m=−j− 1

2

(a2+|m− 1

2
〉〈m− 1

2
| ⊗ |1

2
〉〈1
2
|

+ a+b+(|m− 1

2
〉〈m+

1

2
| ⊗ |1

2
〉〈−1

2
|

+ |m+
1

2
〉〈m− 1

2
| ⊗ | − 1

2
〉〈1
2
|)

+ b2+|m+
1

2
〉〈m+

1

2
| ⊗ | − 1

2
〉〈−1

2
|),

where a± = ±
√

j+ 1

2
±m

2j+1
and b± =

√

j+ 1

2
∓m

2j+1
.

When j = 1

2
, the state ρab turns out to be the 2⊗ 2 Werner state:

ρ = (1− c)
I

4
+ c|ψ−〉〈ψ−|, c =

4F − 1

3
, (6)

with |ψ−〉 = 1√
2
(|01〉 − |10〉).

II. MAIN RESULT

Any von Neumann measurement on the spin-1
2
subsystem can be written as [12]:

Bk = V ΠkV
†, k = 0, 1, (7)

where Πk = |k〉〈k|, |k〉 is the computational basis, V = tI + i~y · ~σ ∈ SU(2), ~σ = (σ1, σ2, σ3)

are Pauli matrices, t and ~y are real, t2 + y21 + y22 + y23 = 1. Set

M =

j
∑

m=−j

(z3
m(2Fj + F − j)

j(j + 1)(2j + 1)
|m〉〈m|

+(z1 + iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m〉〈m+ 1|

+(z1 − iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m+ 1〉〈m|).
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After the measurement, one has the ensemble of post-measurement states {ρk, pk} with

p0 = p1 =
1

2
and the corresponding post-measurement states [39],

ρ0 = [
1

2j + 1

j
∑

m=−j

|m〉〈m| −
j

∑

m=−j

(z3
m(2Fj + F − j)

j(j + 1)(2j + 1)
|m〉〈m| (8)

+(z1 + iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m〉〈m+ 1|

+(z1 − iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m+ 1〉〈m|)]⊗ V Π0V

†,

= [
1

2j + 1
I −M ]⊗ V Π0V

†,

and

ρ1 = [
1

2j + 1

j
∑

m=−j

|m〉〈m|+
j

∑

m=−j

(z3
m(2Fj + F − j)

j(j + 1)(2j + 1)
|m〉〈m| (9)

+(z1 + iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m〉〈m+ 1|

+(z1 − iz2)

√

j(j + 1)−m(m+ 1)(2Fj + F − j)

2j(j + 1)(2j + 1)
|m+ 1〉〈m|)]⊗ V Π1V

†,

= [
1

2j + 1
I +M ]⊗ VΠ1V

†,

where z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3), z3 = t2 + y23 − y21 − y22 with z21 + z22 + z23 = 1.

The eigenvalues of the post-measurement states [39] are the same:

λ±n =
1

2j + 1
± j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|, (10)

where n = 0, · · · , ⌊j⌋, ⌊j⌋ denotes the largest integer that is less or equal to j. Obviously

the eigenvalues are independent of the measurement. Due to this fact, analytical expression

for quantum discord of ρab has been obtained in [39],

D(ρab) = F log2(
F

2j
) + (1− F )log2(

1− F

2j + 2
) + 1 (11)

−
⌊j⌋
∑

n=0

(
1

2j + 1
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

·log2(
1

2j + 1
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

−
⌊j⌋
∑

n=0

(
1

2j + 1
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

·log2(
1

2j + 1
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|).
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To evaluate the one-way deficit of ρab, we calculate the eigenvalues of
∑

i

Πkρ
abΠk =

p0ρ0 + p1ρ1. From (8) and (9), since 1

2j+1
I −M commutes with 1

2j+1
I +M , by using (19)

and (20) in [30], we have the eigenvalues of
∑

i

Πkρ
abΠk,

λ
±
n =

1

2
λ±n , (12)

with each algebraic multiplicity two. As the eigenvalues do not depend on the measurement

parameters, the minimum of the entropy of the post-measurement states do not require any

optimization over the projective measurements,

min
{Πk}

S(
∑

i

Πkρ
abΠk) = −

⌊j⌋
∑

n=0

(
1

(2j + 1)
± j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

· log( 1

2(2j + 1)
± j − n

2j(j + 1)(2j + 1)
|(F (2j + 1)− j)|). (13)
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From Eqs. (1), (4) and (13), the one-way deficit of the state is given by

∆→(ρab) = min
{Πk}

S(
∑

i

Πkρ
abΠk)− S(ρab)

= F log(
F

2j
) + (1− F ) log(

1− F

2j + 2
)

−
⌊j⌋
∑

n=0

(
1

(2j + 1)
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

· log 1

2
(

1

(2j + 1)
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

−
⌊j⌋
∑

n=0

(
1

(2j + 1)
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

· log 1

2
(

1

(2j + 1)
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

= F log2(
F

2j
) + (1− F )log2(

1− F

2j + 2
) +

2

2j + 1
(⌊j⌋ + 1) (14)

−
⌊j⌋
∑

n=0

(
1

2j + 1
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

·log2(
1

2j + 1
+

j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

−
⌊j⌋
∑

n=0

(
1

2j + 1
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

·log2(
1

2j + 1
− j − n

j(j + 1)(2j + 1)
|(F (2j + 1)− j)|)

=







D(ρab), j ∈ half − integer

D(ρab) + 1

d
, j ∈ integer.

where d = 2j + 1. Especially, when j = 1

2
, the state becomes the 2 ⊗ 2 Werner state, and

the one-way deficit is equal to the quantum discord, which is in consistent with the result

obtained in [30].

In Fig. 1 we show that quantum correlations as a function of F for different spin j. For

half-integer j, we observe that as j increases, the one-way deficit increases for small F and

decreases for large F . But for integer j, the one-way deficit decreases as j increases, see

Fig.1(a). For high dimensional system (large j), the one-way deficit becomes symmetric

around the point F = 1

2
where ∆→(ρab) vanishes, see Fig.1(b). Maximum of the one-way

deficit is attained at F = 1 and at F = 0 for all dimensional systems.

From Eq.(14), one can see an interesting fact: for half-integer j, the one-way deficit is

equal to the quantum discord, see Fig.1(c). For integer j, the difference between the one-
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FIG. 1: (Color online) quantum correlations of the bipartite state composed of a spin-j and a

spin-1
2
vs F . (a) one-way deficit of j = 1, j = 2, j = 3 and j = 1

2
, j = 3

2
, j = 5

2
, (b) one-way deficit

of j = 300 and j = 599
2
, (c) comparison of one-way deficit (solid) and quantum discord(dotted)

of j = 1, j = 2 and j = 1
2
, j = 3

2
, (d) comparison of one-way deficit(solid) and quantum discord

(dotted) of j = 50.

way deficit and the quantum discord is 1

d
, see Fig.1(c), and the difference tends to be small

for large j, see Fig.1(d).

We now compare the one-way deficit with the entanglement of formation (EoF). The
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EoF for a spin-1
2
and a spin-j SU(2) invariant state ρab is given by [35],

EoF =















0, F ∈ [0, 2j
2j+1

]

H

(

1

2j+1

(√
F −

√

2j(1− F )
)2
)

, F ∈ [ 2j
2j+1

, 1],
(15)

where H(x) = −xlogx−(1−x)log(1−x) is the binary entropy. It is shown that EoF becomes

a upper bound for quantum discord in d⊗dWerner states [41]. However, we can see that the

one-way deficit always remains larger than EoF for half-integer j. The difference between

EoF and ∆→(ρab) increases as j → ∞ [39]]. But for integer j, the difference decreases as

j → ∞, see Fig.2 (a) and (b). It should be noted that as j → ∞, the state ρab becomes

separable while its one-way deficit remains finite. In the region in of zero EoF, the one-way

deficit survives.
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FIG. 2: (Color online) one-way deficit (solid line) and EoF (dotted line) vs. F : (a) j = 1, (b)

j = 5.

III. CONCLUSION

We have analytically calculated the one-way deficit of SU(2) invariant states consisting of

a spin-j and a spin-1
2
subsystems, with measurement on the spin-1

2
subsystem. By comparing

the one-way deficit with the quantum discord of these states we have shown that the one-way
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deficit is equal to the quantum discord for half-integer j, and the one-way deficit is larger

than the quantum discord for integer j. We have also compared our results on one-way

deficit with the quantum entanglement EoF . It is shown that in the large j limit, one-way

deficit remains significantly larger than EoF. Moreover, the maximal value of one-way deficit

decreases with the increasing system size. As there are abundance of SU(2) invariant states

in real physical systems, our results can be used in quantum protocols that rely on one-way

deficit.
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