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Abstract

We introduce the Tucker tensor method for the grid-based assembled summation
of long-range interaction potentials over large 3D lattices in a box. This method is a
generalization of our previous approach on the low-rank canonical tensor summation
of electrostatic potentials on a rectangular 3D lattice. In the new technique we first
approximate (with a guaranteed precision) the single kernel function represented on
large N x N x N 3D grid in a bounding box by a low-rank reference Tucker tensor. Then
each 3D singular kernel function involved in the summation is approximated on the same
grid by the shift of the reference Tucker tensor. Directional vectors of the Tucker tensor
representing a full lattice sum are assembled by the 1D summation of the corresponding
Tucker vectors for shifted potentials, while the core tensor remains unchanged. The
Tucker ranks of the resultant tensor sum on the 3D rectangular L x L x L lattice are
proven to be the same as for the single kernel function. The required storage scales
linearly in the 1D grid-size, O(NN), while the numerical cost is estimated by O(NL).
With the slight modifications our approach applies in the presence of defects, such as
vacancies, impurities and non-rectangular geometries of a set of active lattice points,
as well as for the case of hexagonal lattices. For potential sums with defects the Tucker
rank of the resultant tensor may increase, so that we apply the e-rank truncation
procedure based on the generalized reduced HOSVD approximation combined with
the ALS iteration. We prove the error bounds and stability for the HOSVD Tucker
approximation to a sum of canonical/Tucker tensors. Numerical tests confirm the
efficiency of the presented tensor summation method. In particular, we show that
a sum of millions of Newton kernels on a 3D lattice with defects/impurities can be
computed in about a minute in Matlab implementation. The approach is beneficial for
functional calculus with the lattice potential sum represented on large 3D grids in the
Tucker /canonical formats. Indeed, the interpolation, scalar product with a function,
integration or differentiation can be performed easily in tensor arithmetics with 1D
complexity.
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1 Introduction

Summation of classical long-range potentials on a 3D lattice, or, more generally, of arbitrar-
ily distributed potentials in a volume, is one of the challenges in the numerical treatment of
many-body systems in molecular dynamics, quantum chemical computations, simulations of
large solvated biological systems and other applications, see for example [43, 36, 6, 37, 14, 38|,
[42, 21, 10], and [12]. Beginning with the widely spread Ewald summation techniques [15],
the development of lattice-sum methods has led to well established algorithms for numerical
evaluation of long-range interaction potentials of large multiparticle systems, see for example
8, 40, 42, 21, 10] and references therein. The numerical complexity of the respective compu-
tational schemes scales at least linearly in the full volume size of the lattice. These methods
usually combine the original Ewald summation approach with the fast Fourier transform
(FFT) or fast multipole methods [18]. The fast multipole method is widely used for summa-
tion of non-uniformly distributed potentials, that combines direct approximation of closely
positioned potentials and clustered summation of far fields.

The new generation of grid-based lattice summation techniques applied to long-range
interaction potentials on a rectangular 3D lattices is based on the idea of assembled directional
summation in the low-rank canonical tensor format [25]. This approach allows the efficient
treatment of large 3D sums with linear complexity scaling in the 1D lattice-size.

In this paper, we introduce the new and more general Tucker tensor method for the grid-
based assembled summation of classical potentials on 3D lattices in a box, which remains
efficient in the presence of vacations, impurities and in the case of some non-rectangular
lattices. In particular, it is applicable to the calculation of electrostatic potential in the
case of non-rectangular geometry of the active set of lattice points with multilevel step-type
boundaries with holes, etc., see §5.

In the new approach, we first approximate (with a guaranteed precision) the single kernel
function represented on large N x N x N 3D grid in a bounding box by a low-rank reference
Tucker tensor. This tensor provides the values of the discretized potential at any point of the
fine N x N x N grid, but needs only O(N) storage in both the canonical and Tucker tensor
formats. Then each 3D singular kernel function involved in the summation is approximated
on the same grid by a shift of the reference Tucker tensor. Directional vectors of the Tucker
tensor representing a full lattice sum are assembled by the 1D summation of the corresponding
Tucker vectors for shifted potentials, while the core tensor remains unchanged. The Tucker
ranks of the resultant tensor sum on the 3D rectangular L x L x L lattice are proven to be
the same as for the single kernel function. The required storage scales linearly in the 1D
grid-size, O(N), while the numerical cost is estimated by O(NL). Though the lattice nodes
are not required to exactly coincide with the grid points of the global N x N x N grid, the
resulting accuracy of the representation is nevertheless well controlled due to easy availability
of large grid size N.

The formatted tensor approximation of the spherically symmetric reference potential is
based on the low-rank representation of the analytic kernel functions by using the integral
Laplace transform and its quadrature approximation. In particular, the algorithm based on
the sinc-quadrature approximation to the Laplace transform of the Newton kernel function %
developed in [1] (see also [5, 19, 16]), can be adapted. Literature surveys addressing the most
commonly used in computational practice tensor formats like canonical, Tucker and matrix



product states (or tensor train) representations, as well as basics of multilinear algebra and
the recent tensor numerical methods for solving PDEs, can be found in [34, 32, 17, 33] (see
also Dissertations [22] and [11]).

The presented approach yields enormous reduction in storage and computing time. Our
numerical results show that summation of two millions of potentials on a 3D lattice on a
grid of size 10'° takes about 15 seconds in Matlab implementation. Similar to the case of
canonical decompositions, ranks of the resulting Tucker tensor representing the total sum of
a large number of potentials remains the same as for the Tucker tensor representation of a
single potential. This concept was boiled up based on numerical tests in [30, 22|, where it
was observed that the Tucker tensor rank of the 3D lattice sum of discretized Slater functions
is close to the rank of a single Slater function.

In the case of sums with defects, we generalize the reduced HOSVD (RHOSVD) rank re-
duction scheme applied to the canonical format [31] (see [9] concerning the notion of HOSVD
scheme) to the cases of Tucker input tensors. The RHOSVD scheme was applied, in partic-
ular, to the direct summation of the electrostatic potentials of nuclei in a molecule [23] for
calculation of the one-electron integrals in the framework of 3D grid-based Hartree-Fock solver
by tensor-structured methods [24]. In general, the direct summation of canonical/ Tucker ten-
sors with RHOSVD-type rank reduction proves to be efficient in the case of rather arbitrary
positions of a moderate number of potentials (like nuclei in a single molecule).

Notice that the canonical/Tucker tensor representation of the lattice sum of interaction
potentials can be computed with high accuracy, and in a completely algebraic way. In the
presence of defects, the rank bounds for the tensor representation of a sum of potentials can be
easily estimated. The grid-based tensor approach is beneficial in applications requiring further
functional calculus with the lattice potential sums, for example, interpolation, scalar product
with a function, integration or differentiation (computation of energies or forces), which can
be performed on large 3D grids using tensor arithmetics of sub-linear cost [22, 31]. The
summation cost in the Tucker/canonical formats, O(L N), can be reduced to the logarithmic
scale in the lattice size, O(Llog N), by using the low-rank quantized tensor approximation
(QTT), see [29], of long canonical/Tucker vectors as suggested and analyzed in [25].

The rest of the paper is structured as following. §2 discusses the rank bounds for 3D
grid-based canonical/Tucker tensor representations to a single kernel based on the general
approximation properties of tensor decompositions to a class of analytic kernel functions.
Section §3 describes the idea of the direct calculation of a sum of the shifted single potentials
on a lattice focusing on the main topic of the paper, the construction and analysis of the
algorithms of assembled Tucker tensor summation of the non-local potentials on a rectangular
3D lattice. §4 generalizes the Tucker representation with the rank optimization to 3D lattice
sums with defects, while §5 outlines the extension of the tensor-based lattice summation
techniques to the class of non-rectangular lattices or rather general shape of the set of active
lattice points (say, multilevel step-type boundaries).



2 Tensor decomposition for analytic potentials

2.1 Grid-based canonical/Tucker representation of a single kernel

Methods of separable approximation to the 3D Newton kernel (electrostatic potential) using
the Gaussian sums have been addressed in the chemical and mathematical literature since
[3] and [4, 5], respectively.

In this section, we discuss the grid-based method for the low-rank canonical and Tucker
tensor representations of a spherically symmetric kernel function p(||z]), » € R ford = 1,2,3
(for example, for the 3D Newton we have p(||z||) = IIIII’ r € R3) by its projection onto the set
of piecewise constant basis functions, see [1] for more details. For the readers convenience,
we now recall the main ingredients of this tensor approximation scheme.

In the computational domain Q = [—b/2,b/2]3, let us introduce the uniform n x n x n
rectangular Cartesian grid 2, with the mesh size h = b/n. Let {1;} be a set of tensor-product
piecewise constant basis functions, 1;(x) = []r, Q/Ji(f) (x¢), for the 3-tuple index i = (iy, is, i3),
ip € {1,...,n}, £ = 1,2, 3. The kernel p(||z||) can be discretized by its projection onto the
basis set {¢;} in the form of a third order tensor of size n X n x n, defined point-wise as

P .= [p] € R, / a@)p(lz]) d (2.1)

The low-rank canonical decomposition of the 3rd order tensor P is based on using expo-
nentially convergent sinc-quadratures for approximation of the Laplace-Gauss transform to
the analytic function p(z) specified by certain weight a(t) > 0,

2,2 2
pz:/a Ye P dt ~ age "% for z| > 0, 2.2
(2) R+( Z b 2| (2.2)

where the quadrature points and weights are given by
ity = k’[]M, ap = a(tk)bM, bM = CO log(M)/M, CO > 0. (23)

Under the assumption 0 < a < |[|z]|| < oo this quadrature can be proven to provide the
exponential convergence rate in M for a class of analytic functions p(z), see [41, 19, 28]. We
proceed with further discussion of this issue in §2.2.

For example, in the particular case p(z) = 1/z we apply the Laplace-Gauss transform

1 2 2,2
-=— e tdt,
z T Ry

which can be adapted to the Newton kernel by substitution z = /2% + z3 + 2.
Now for any fixed x = (x1, T2, z3) € R?, such that ||z|| > 0, we apply the sinc-quadrature
approximation to obtain the separable expansion

M M 3

p(||z]) = / a(t)e 1 at 7 ape el = N7 g T e e (2.4)
Ry (=1

k=—M k=—M
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Under the assumption 0 < a < ||z]| < A < oo this approximation provides the exponential
convergence rate in M,

Combining (2.1) and (2.4), and taking into account the separability of the Gaussian basis
functions, we arrive at the low-rank approximation to each entry of the tensor P,

M M 3
Y a | di(x)e e = Y akH/?/fi(f)(W)@_tiﬁdw-
k=—M RS k=—M ¢=1"R

Define the vector (recall that a, > 0)

< 9 e \ﬁ, with some C, 3 > 0. (2.5)

pl = !/? [bg?(tk)] b CeR™ with  b)(t) = / 0O (x)e i da,
ip= R

then the 3rd order tensor P can be approximated by the R-term (R = 2M + 1) canonical

representation

P~Pp= Z ak®b (ty) = Zp ®pq ®pé) Rrxmxn (2.6)

where R = 2M + 1. For the given threshold € > 0, M is chosen as the minimal number such
that in the max-norm
[P —Pg| <e[[P].

The canonical vectors are renumbered by £k — ¢ =k + M + 1, p(e) = pff) eR" (=1,2,3.
The canonical tensor Pg in (2.6) approximates the discretized 3D symmetric kernel function
p(||z]]) (z € Q), centered at the origin, such that pi) =p¥ = p{ (¢g=1,..,R).

In the following we also consider a Tucker approximation of the 3rd order tensor P. Given
rank parameters r = (11,72, 73), the set of rank-r Tucker tensors, 7, (the Tucker format) is
defined by the following parametrization

= [tirinis] Zb t) @t @t =B x; TW %, T x3 T®, iy € {1,...,n},

3

where the side-matrices T = [tgg)...t%)] € R™m, ¢ = 1,2,3, defining the set of Tucker
vectors, can be assumed orthogonal. Here B € R™*™*"3 is the core coefficients tensor.
Choose the truncation error € > 0 for the canonical approximation Pg, then compute the
best orthogonal Tucker approximation of P with tolerance O(g) by applying the canonical-
to-Tucker algorithm [31] to the canonical tensor Pg +— T,. The latter algorithm is based
on the rank optimization via ALS iteration. The rank parameters r of the resultant Tucker
approximand T, is minimized subject to the e-error control,

IPr — Tyl| < e|Pg.
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Figure 2.1: Vectors of the canonical {pél)}le (left) and Tucker {tg) v, (right) tensor rep-
resentations for the single Newton kernel displayed along x-axis.

Remark 2.1 Since the maximal Tucker rank does not exceed the canonical one we apply the
approzimation results for canonical tensor to derive the exponential convergence in Tucker
rank for the wide class of functions p. This implies the relation max{r,} = O(|loge|?) which
can be observed in all numerical test implemented so far.

Figure 2.1 displays several vectors of the canonical and Tucker tensor representations for
a single Newton kernel along z-axis from a set {Pq(l)}le. Symmetry of the tensor P g implies

that the canonical vectors ng) and p((lg)

same shape as p((ll). It is clearly seen that there are canonical /Tucker vectors representing the
long-, intermediate- and short-range contributions to the total electrostatic potential. This
interesting feature will be also recognized for the low-rank lattice sum of potentials (see §3.2).
Table 2.1 presents CPU times (sec) for generating a canonical rank-R tensor approxima-
tion of the single Newton kernel over n x n x n 3D Cartesian grid, corresponding to Matlab
implementation on a terminal of the 8 AMD Opteron Dual-Core processor. The correspond-
ing mesh sizes are given in Angstroms. We observe a logarithmic scaling of the canonical
rank R in the grid size n, while the maximal Tucker rank has the tendency to decrease for
larger n. The compression rate for the grid 737683, that is the ratio n®/(nR) for the canonical
format and n3/(3r3n) for the Tucker format are of the order of 10® and 107, respectively.

corresponding to y and z-axes, respectively, are of the

grid size n® | 4608° | 9216% | 18432 | 368643 | 73768
mesh size i (A) | 0.0019 | 0.001 | 4.9-10~% [ 2.8-10% | 1.2-10

Time (Canon.) 2. 2.7 8.1 38 164
Canonical rank R 34 37 39 41 43
Time (C2T) 17 38 85 200 435
Tucker rank 12 11 10 8 6

Table 2.1: CPU times (Matlab) to compute with tolerance e = 107° canonical and Tucker
vectors of P for the single Newton kernel in a box.



Notice that the low-rank canonical/Tucker approximation of the tensor P is the problem
independent task, hence the respective canonical /Tucker vectors can be precomputed at once
on large enough 3D n x n x n grid, and then stored for the multiple use. The storage size is
bounded by Rn or 3rn + r3.

2.2 Low-rank representation for the general class of kernels

Along with Coulombic systems corresponding to p(||z||) = ﬁ, the tensor approximation
described above can be also applied to a wide class of commonly used long-range kernels
p(||lz|]) in R?, for example, to the Slater, Yukawa, Lennard-Jones or Van der Waals and
dipole-dipole interactions potentials defined as follows.

Slater function: p(||z||) = exp(=A||z||), A >0,

—-A
Yukawa kernel:  p(||z||) = eXp(H ”HxH), A >0,
x
12 6
: o o
Lennard-Jones potential: p(||z||) = 4e [(W) - (W) ] )
T T

The simplified version of the Lennard-Jones potential is the so-called Buckingham function

6
Buckingham potential: p(||z||) = 4e [ellml/ro _ (HJ—H) ] .
x

The electrostatic potential energy for the dipole-dipole interaction due to Van der Waals
forces is defined by

Dipole-dipole interaction energy: p(||z||) = ||S|0|3
The quasi-optimal low-rank decompositions based on the sinc-quadrature approximation to
the Laplace transforms of the above mentioned functions can be rigorously proven foe a wide
class of generating kernels. In particular, the following Laplace (or Laplace-Gauss) integral
transforms [45] with a parameter p > 0 can be applied for the sinc-quadrature approximation
of the above mentioned functions,

P ﬁ 173278/t et gy, (2.7)
VT Jr,

7'1{\/5

¢ _ 2 eI e gt (2.8)

VT Jr,

2 2
— e P dt (2.9)
VT Jr, ’
1
= ——— | " e tdt, n=1,2,.. (2.10)
(n _ 1>' /]R;Jr ’ »

NP



combined with the subsequent substitution of a parameter p by the appropriate function
p(x) = p(x1, 2, x3) with commonly used additive representation p = 2§ + x4 + 25. The
convergence rate for the sinc-quadrature approximations of type (2.3) for the cases (2.10)
(n =1) and (2.9) has been considered in [4, 5] and later analyzed in more detail in [16, 19].
The case of the Yukawa and Slater kernel has been investigated in [27, 28]. The exponential
error bound for the general transform (2.10) can be derived by minor modifications of the
above mentioned results.

For example, in the particular representation (2.8) with x = 0, given by (2.9), we set
up p = 23 + 23 + 23, i.e. p(z) = 1/z, for 1 < x; < oo and consider the sinc-quadrature
approximation as in (2.3),

2
p(z) = ﬁ -

M
e dt & Z are % for |z| > 0. (2.11)
ke=—M

Now the the lattice sum for some b > 0,

S = Y !

o V(@ + i) + (2 + i9h)? + (w3 + i3b)?

can be represented by the integral transform

9 L

Sp(e)=—= [ [ Y eletnttrlratir bt g
ﬁ Ry 11,19,i3=1
2 (2.12)
2 i (z1+k1b)%t i (wa+hob)2t i (25 +sb)t
R~ e T e\ e~ (T3 +hksb)*t 1y
ﬁ R4 k1=1 ky—1 P’

with a separable integrand. Representation (2.12) indicates that applying the same quadra-
ture approximation to the lattice sum integral (2.12) as that for the single kernel (2.11) will
lead to the decomposition of the total sum of potentials with the same canonical rank as for
the single one.

In the following sections we construct such low-rank canonical and Tucker decompositions
of the lattice sum of interaction potentials applied to the general class of kernel functions.

3 Tucker decomposition for lattice sum of potentials

3.1 Direct tensor sum for a moderate number of arbitrarily dis-
tributed potentials

Here, we recall the direct tensor summation of the electrostatic potentials for a moderate
number of arbitrarily distributed sources introduced in [23, 24]. The basic example in elec-
tronic structure calculations is concerned with the nuclear potential operator describing the
Coulombic interaction of electrons with the nuclei in a molecular system in a box correspond-
ing to the choice p(||z]|) = ﬁ



We consider a function v.(x) describing the interaction potential of several nuclei in a box

= [-0/2,b/2F,
0
:ZZ,,p(Hx—a,,H), Z,>0, z,a, € QCR (3.1)

where M, is the number of nuclei in €2, and a,, Z, > 0, represent their coordinates and
“charges”, respectively. We are interested in the low-lank representation of the projected
tensor V. along the line of §2.1.

Similar to [24, 25], we first approximate the non-shifted kernel p(||z||) on the auxiliary
extended box (2 = [—b, b]? in the canonical format by its projection onto the basis set {¢;} of
piecewise constant functions as described in Section 2.1, and defined on a 2n x 2n x 2n uniform
tensor grid €2y, with the mesh size h, embedding €2,, C €25,,. This defines the " master “ rank-R
canonical tensor as above

PR _ Zp ® pq ® pé ) € R2nx2nx2n (32)

For ease of exposition, we assume that each nuclei coordinate a,, is located exactly® at a
grid-point a, = (i,h — b/2, j,h — b/2,k,h — b/2), with some 1 < i,,j,,k, < n. Now we are
able to introduce the rank-1 shift-and-windowing operator

W, = W @ WP @ W) R2nx2nx2n _y grxnxn - fon =1 M,
by
Wyf’R = f’R(il,Jrn/Z S, +3/2n55,+n/2 5, +3/2n,k,+n/2  k,+3/2n) € RV (3.3)

With this notation, the projected tensor V. approximating the total electrostatic poten-
tials v.(x) in Q is represented by a direct sum of canonical tensors

My
Ve Po=> ZW,Py

v=1

Mo R (3.4)
_ Z Z, Z W,El)ﬁ((ll) ® W1E2) W(B E Rnxnxn

where every rank-R canonical tensor W, P r € R™™*™ is thought as a sub-tensor of the

master tensor Pp € R**27%2% ohtained by its shifting and restriction (windowing) onto the
n xn xn grid in the box €2, C €2y,. Here a shift from the origin is specified according to the
coordinates of the corresponding nuclei, a,, counted in the h-units.

LOur approximate numerical scheme is designed for nuclei positioned arbitrarily in the computational box
where approximation error of order O(h) is controlled by choosing large enough grid size n. Indeed, 1D
computational cost enables usage of fine grids of size n® ~ 10'°, yielding mesh size h ~ 10=* = 107> A in
Matlab implementation (h is of the order of the atomic radii). This grid-based tensor calculatlon scheme for
the nuclear potential operator was tested numerically in molecular calculations [23], where it was compared
with the results of analytical evaluation of the same operator from benchmark quantum chemical packages.



For example, the electrostatic potential centered at the origin, i.e. with a, = 0, corre-
sponds to the restriction of P € R?"*27X2" onto the initial computational box €,, i.e. to
the index set (assume that n is even)

{([In/2+1],[n/2+j],[n/2+k])}, 4,4,k e{l,..,n}.

The projected tensor V. for the function in (3.1) is represented as a canonical tensor P,
with the trivial bound on its rank R. = rank(P.) < MyR, where R = rank(Pg). However,
our numerical tests for moderate size molecules indicate that the tensor ranks of the (MyR)-
term canonical sum representing Pr_ can be considerably reduced, such that R. ~ R. This
rank optimization can be implemented, for example, by the multigrid version of the canonical
rank reduction algorithm, canonical-Tucker-canonical [31]. The resultant canonical tensor
will be denoted by Pg..

Along the same line, the direct sum in the Tucker format can be represented by using
shift-and-windowing projection of the ”master“ rank-r Tucker tensor T, € R?7x2nx2n

My
VC = Tc - Z Z]/WyTr
v=1
My o (3.5)
= Z Zy Z kaS)t,(jl) X Wl(/2)t§€22) ® Wl(/3)t§i) € Rvxnxn
v=1 k=1

As in the case of canonical decomposition, the rank reduction procedure based on ALS-
type e-approximation applies to the sum of Tucker tensors, T, resulting in the Tucker tensor
T, with the reduced rank r. ~ r.

Summary 3.1 We summarize that a sum of arbitrarily located potentials in a box can be
calculated by a shift-and-windowing tensor operation applied to the low-rank canonical/Tucker
representations for the "master“ tensor. Usually in electronic structure calculations the c-
rank of the resultant tensor sum can be reduced to the quasi-optimal level of the same order
as the rank of a single "master“ tensor.

The proposed grid-based representation of a sum of electrostatic potentials v.(x) in a form
of a tensor in the canonical or Tucker formats enables its easy projection to some separable
basis set, like GTO-type atomic orbital basis, polynomials or plane waves. The following
example illustrates calculation of the Galerkin matrix in tensor format (cf. [23, 24] for the
case of electrostatic potential). We show that computing the projection of a sum of potentials
onto a given set of basis functions is reduced to a combination of 1D Hadamard and scalar
products [31].

Given the set of continuous basis functions, {g,(z)}, ¢ =1, ..., Vs, then each of them can
be discretized by a third order tensor,

G,u = [gp(x1(i),x2(j), x?’(k))]:tj,k:l c Ranxn’

obtained by sampling of g,(x) at the midpoints (z1(¢), z2(j), z3(k)) of the grid-cells indexed
by (7,7, k). Suppose, for simplicity, that it is a rank-1 canonical tensor, rank(G,) = 1, i.e.

Gu _ g;(}) ® g;(f) ® g;(;’) c Rnxnxn’
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with the canonical vectors gff) € R", associated with mode ¢ =1, 2, 3.

Suppose that a sum of potentials in a box, v.(x), given by (3.1), is considered as a
multiplicative potential in certain operator (say, the Hartree-Fock /Kohn-Sham Hamiltonian).
Following [23, 24], we describe its representation in the given basis set by the Galerkin matrix,
Ve = {vpm} € R¥*M whose entries are calculated (approximated) by the simple tensor
operations,

Vo, = / V() g () gm(2)dr = (G © Gy, Pr.), 1 <k,m<N,. (3.6)
R3

Here Pp, is a sum of shifted/windowed canonical tensors P. representing the total electro-
static potential of atoms in a molecule, and

Gr0G, = (g ogM)eE og?) g og?)

denotes the Hadamard (entrywise) product of rank-1 tensors, represented in terms of 1D
Hadamard products. The similar calculations are performed by substitution of tensor Pg,
to the Tucker approximation T, .

The scalar product (-,-) in (3.6) is also reduced to 1D scalar products in case of both
canonical and Tucker tensors.

Similar to the case of Galerkin projection, many other tensor operations on the canoni-
cal/Tucker representations of V. can be calculated with the linear cost O(n).

To conclude this section, we notice that the approximation error ¢ > 0 caused by
a separable representation of the nuclear potential is controlled by the rank parameter
R. = rank(Pg,) =~ C R, where C' mildly depends on the number of nuclei M, in a sum
(as mentioned above). Now letting rank(G,,) = 1 implies that each matrix element is to be
computed with linear complexity in n, O(Rn). The exponential convergence of the canonical
approximation in the rank parameter R allows us the optimal choice R = O(] loge|) adjusting
the overall complexity bound O(]loge|n), independent on M. Similar argument applies to
the Tucker approximation.

3.2 Assembled lattice sums in a box by using the Tucker format

In this section, we introduce the efficient scheme for fast agglomerated tensor summation on
a lattice in a box in the Tucker format applied to the general interaction potentials.

Given the potential sum v, in the unit reference cell Q = [-b/2,b/2]%, d = 3, of size
b x b x b, we consider an interaction potential in a bounded box

QL:Bl><BQ><Bg,

consisting of a union of L X Ly X L3 unit cells {2, obtained by a shift of {2 that is a multiple of b
in each variable, and specified by the lattice vector bk, k = (k1, ko, k3) € Z¢, 0 < ky < L, — 1
for L, € N, (¢ = 1,2,3). Here B, = [-b/2,b/2 + (L, — 1)b] , such that the case L, = 1
corresponds to one-layer systems in the variable x,. Recall that by the construction b = nh,
where h > 0 is the mesh-size (same for all spacial variables).

In the case of an lattice-type atomic/molecular system in a box the summation problem
for the total potential v, (z) is formulated in the rectangular volume 2, = Ui;,;’,%:o Qy,

11



where for ease of exposition we consider a lattice of equal sizes Iy = Ly, = L3 = L. Figure
3.1 illustrates an example of a 3D lattice structure in a box. In general, the volume box for
calculations is larger than )7, say with a factor of 2.

Figure 3.1: Rectangular 6 x 6 x 4 lattice in a box.

Now the potential v, (z), for x € Q, is obtained by summation over all unit cells Qy in

QLu

Mo L-1

ve, (@)=Y _Z, > p(le—a, —0k|), ze€Q. (3.7)

v=1  ki,ko,k3=0

Note that conventionally this calculation is performed at each of L3 unit cells O C Qp,
which presupposes substantial numerical costs at least of the order of O(L?). The approach
presented in this paper applies to L x L x L lattices allows to essentially reduce these costs
to linear scaling in L.

Let Qy, be the Ni x Np x Ny uniform grid on 2;, with the same mesh-size h as above,
and introduce the corresponding space of piecewise constant basis functions of the dimension
N3. In this construction we have N = Ln. In the case of canonical sums we follow [25],
and employ, similar to (3.2), the rank-R ”master“ tensor defined on the auxiliary box Qr by
scaling €2y with a factor of 2,

R
PL,R _ Zﬁ((}l) ® 51(12) ® 5((13) e R2NL><2NL><2NL. (38)
q=1

Along the same line, we introduce the rank-r "master* Tucker tensor T Ly € RPVLX2NLX2NL,

The next theorem generalizes Theorem 3.1 in [25] to the case of general function p(||z)
in (3.7) as well as to the case of Tucker tensor decompositions. It proves the storage and
numerical costs for the lattice sum of single potentials (corresponding to the choice My = 1,
and a; = 0 in (3.7)), each represented by a rank-R canonical or rank-r Tucker tensors. In
this case the windowing operator W = W) = Wi,y ® Wii,) ® Wi,) specifies a shift by the
lattice vector bk.

Theorem 3.2 (A) Given the rank-R canonical "master” tensor, (3.8), approximating the
potential p(||x||). The projected tensor of the interaction potential, V., , representing the full
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lattice sum over L charges can be presented by the rank-R canonical tensor P.,,

R L-1 L-1 L—-1
= > O WuB") @ (D WiyB?) @ (D Wiy B (3.9)
q:1 k1=0 k2=0 k3=0

The numerical cost and storage size are estimated by O(RLNL) and O(RNyL), respectively,
where N, = nL s the univariate grid size. B

(B) Given the rank-r "master Tucker tensor Tp, € , approxrimating the
potential p(||z||). The rank-r Tucker approximation of a lattice-sum tensor V., can be com-
puted in the form

RQNLXQNL ><2NL

L—1
Z bm Z W(lﬁ)tml Z t(2 Z W(k3 m3 (3.10)
m=1 k2=0 k3=0

The numerical cost and storage size are estimated by O(3rLNy) and O(3rNyp), respectively.

Proof. For the moment, we fix index v = 1 in (3.7), set a,, = 0, and consider only the second
sum defined on the complete domain €2,

L-1

ve (1) =20 Y plle—bk]), =€y (3.11)

k1,k2,ks=0

Then the projected tensor representation of v., (z) takes the form (omitting factor 2)

L—1
PcL = Z Wy(k)PL,R = Z ZW(k p ® pq (2) ® p(3)) e RNLXNLXNL

k1,k2,k3=0 k1,k2,k3=0 q=1

where the 3D shift vector is defined by k € Z**I*L Taking into account the separable
representation of the {2, -windowing operator (tracing onto Ny, X N x N window),

_ @) (2) 3)
W(k) - W(kl) ® W(kg) ® W(kg)’
we reduce the above summation to
Z Z Wi By @ Wik By @ Wiy B, (3.12)
q=1 k1,ko,k3=0

To reduce the large sum over the full 3D lattice, we use the following property of a sum of
canonical tensors with equal ranks R, C = A + B, and with two coinciding factor matrices,
say for £ = 1, 2: the concatenation in the remaining mode ¢ = 3 can be reduced to a pointwise
summation of the respective canonical vectors,

C® =[a® +b? ... af + b, (3.13)

while the first two mode vectors remain unchanged, C(V = AW (O = A This preserves
the same rank parameter R for the resulting sum. Notice that for each fixed ¢ the inner sum

13



in (3.12) satisfies the above property. Repeatedly applying this property to a large number
of canonical tensors, the 3D-sum (3.12) can be simplified to a rank-R tensor obtained by 1D
summations only,

R L-1
P., = Z( WiePL) Z Wik Py © Wiy BY)
=1 k1=0 ka,ka 0
R L-1 L1
=3 Wep) Z W) ® (3 Wi B,”).
a=1 k1=0 k3=0

The numerical cost are estimated using the standard properties of canonical tensors.
We apply the similar argument in the case of Tucker representation to obtain

T, = Z W(k)TL,r

kl,kg,k370
-1
-3t Z Wi & (3 W) @ (3 Wi i)
m=1 k2=0 k3=0
This completes the proof. [ ]

Figure 3.2: Assembled Tucker vectors by using jﬁ%i along the z-axis, for a sum over lattice
4 x4 x1.

Remark 3.3 For the general case My > 1, the weighted summation over My charges leads to
the canonical tensor representation on the "master” unit cell, which can be applied to obtain
the rank-R. representation on the whole L x L x L lattice

c

L-1 L-1 L-1
=Y O WP @ (D Wi B @ (Y WiyBy). (3.14)

qg=1 k;=0 ko=0 k3=0

Likewise, the rank-r. Tucker approzimation of a tensor V., can be computed in the form

Z ben Z Wint') @ Z Wikt 2) Z Wiy t2)) (3.15)
m=1

ko=0 k3=0
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The next remark generalizes the basic construction to the case of non-uniformly spaced
positions of the lattice points.

Remark 3.4 The previous construction was described for the uniformly spaced positions of
charges. However, the agglomerated tensor summation method in both canonical and Tucker
formats applies without modifications to a non-equidistant Ly x Ly x L3 tensor lattice. This
s mot possible for traditional Fwald summation methods based on FFT transform.

Figure 3.2 illustrates the shape of several Tucker vectors obtained from {'Eﬁ}g} along z-axis.
Note that the assembled Tucker vectors do not preserve the initial orthogonality of {'Eﬁ,?l .
It is seen that assembled Tucker vectors accumulate simultaneously the contributions of all
single potentials involved in the total sum.

Figure 3.3: Left: Sum of Newton potentials on a 8 x 4 x 1 lattice generated in a volume with
the 3D grid size 14336 x 10240 x 7168. Right: the absolute error for the Tucker approximation
(8-1078).

L3 | 4096 | 32768 | 262144 | 2097152
Time 1.8 0.8 3.1 15.8
N3 | 56323 | 97283 | 179203 | 343043

Table 3.1: Time in seconds vs. the total number of potentials L? in the the assembled Tucker
calculation of the lattice potential sum P.,. Mesh size (for all grids) is h = 0.0034 A.

Both the Tucker and canonical tensor representations (3.9) reduce dramatically the nu-
merical costs and storage consumptions. Table 3.1 illustrates complexity scaling O(NL) for
tensor lattice summation in a box of size L x L x L and with the grid-size N, x Ny x Ny,
where Ny, = n L. This complexity scaling confirms our theoretical estimates.

Figure 3.3 shows the sum of Newton kernels on a lattice 8 x 4 x 1 and the respective
Tucker summation error achieved for the Tucker rank r = (16, 16, 16) representation on the
large 3D grid. The spacial mesh size is about 0.002 atomic units (0.001 A).
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Figure 3.4 represents the Tucker vectors obtained from the canonical-to-Tucker decompo-
sition of the assembled canonical tensor sum of potentials on a 8 x 4 x 1 lattice. In this case
the Tucker vectors are orthogonal.

-10 -5 0 5 10 1o -5 0 5 10 h 6 -4 -2 0 2 4 6
atomic units atomic units atomic units

Figure 3.4: Several mode vectors from the C2T representation visualized along x,y- and
z-axis on a 8 x 4 x 1 lattice.

4 Tucker representation for lattice sums with defects

4.1 Problem setting

For the perfect lattice sums the resultant canonical and Tucker tensors are proven to inherit
exactly the same rank parameters as those for the single "master“ tensor.

In the case of lattice sums with defects, say, vacancies or impurities, counted in the
canonical format the canonical rank of the perturbed sum may be reduced by using the
RHOSVD algorithm, Can + Tuck +— Can, proposed in [31]. This approach basically provides
the compressed tensor with the canonical rank quadratically proportional to those of the
respective Tucker approximation to the sum with defects.

In the case of lattice sum in the Tucker format we propose the generalization to the
RHOSVD algorithm, now applicable directly to a large sum of Tucker tensors. In this way the
initial RHOSVD algorithm in [31] can be viewed as the special case of generalized RHOSVD
algorithm applied to a sum of rank-one Tucker tensors. The stability of the new rank re-
duction method can be proven under mild assumptions on the ”weak orthogonality “ of the
Tucker tensors representing defects in the lattice sum. The numerical complexity of the
generalized RHOSVD algorithm scales only linearly in the number of vacancies.

In the following we analyze the assembled Tucker summation of the lattice potentials
in the presence of vacancies and impurities. Let us introduce a set of k lattice indices,
S =: {ky, ..., kg}, where the respective Tucker tensor Ty for k € S initially given by (3.10)
is perturbed by the defect Tucker tensor Uy = U, (s = 1,...,5) given by,

U, = Z bs,muﬁfﬁnl ® ug)m ® ug’,)n?), s=1,..,8. (4.1)
m=1

Then the non-perturbed Tucker tensor T.,, further denoted by Uy (for ease of exposition),
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will be substituted by a sum of Tucker tensors,
T, —~»U=U,+) U, (4.2)

with the upper rank estimates for best Tucker approximation of ﬁ,
T <roe+ Z rse, for ¢=1,23.
s=1,...,58

Without loss of generality, all Tucker tensors Uy, (s = 0, 1, ...,.5), can be assumed orthogonal.
If the number of perturbed cells, 5, is large enough, the numerical computations with the
Tucker tensor of rank 7, becomes prohibitive.

4.2 Lattice sum of canonical tensors with defects: Use of the
canonical-to-Tucker approximation

We first consider a sum of canonical tensors with defects. For the readers convenience, we
recall the error estimate for RHOSVD approximation to sums of canonical tensors [31]. This
applies to arbitrary dimension d, though in our particular application we have d = 3. Given
a rank parameter R € N, we denote by

R
A=), &talo..wal ¢eR, (4.3)

the canonical tensor with normalized vectors a') € R™ (¢ = 1,...,d) that is a sum rank-1
canonical/ Tucker tensors. The minimal parameter R in (4.3) is called the rank (or canonical
rank) of a tensor. For the ease of constructions it is useful to represent this tensor in the
Tucker format. Indeed, introducing the side-matrices by concatenation of the corresponding
canonical vectors in (4.3),

A® = [agé)...a%)} , A® e RE

and the diagonal tensor (the Tucker core tensor) & := diag{&i,...,{g} € REXEXE guch that

vy = 0 except when vy = ... =g with &, , =&, (v =1,..., R), we obtain the equivalent
rank-(R, R, R) Tucker representation
A(R) :€ X1 A(l) X9 A(Q) Xd A(d) (44)

For the readers convenience, we recall (see [31]) the errorestimates for the reduced rank-r
HOSVD type Tucker approximation to the tensor in (4.3). We set n, = n and suppose for
definiteness that n < R, so that SVD of the side-matrix A® is given by

- T
AO — Z(f)ng(f)T = Zafv’le(f) vg) , z,(f) e R", v,(f) e R”,
k=1

with the orthogonal matrices Z() = [zge),...,z,(f)], and V = [vﬁ”,...,vﬁf)], ¢ =1,...4d.

Given rank parameters rq,...,r; < n, introduce the truncated SVD of the side-matrix A®),
T

ZéZ)D&OVO(E) , (¢ =1,..,d), where D,y = diag{o 1,002, ...,00,,} and Zée) e R, 1,0 ¢

REx7e represent the orthogonal factors being the respective sub-matrices in the SVD of A®).
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Definition 4.1 (/31]) The reduced HOSVD (RHOSVD) approximation of A, A(()r), is defined
as the rank-r Tucker tensor obtained by the projection of A onto the orthogonal matrices of
singular vectors Zéz), t=1,...4d).

In what follows, we denote by G, the Grassman manifold that is a factor space with
respect to all possible rotations to the Stiefel manifold M, of orthogonal n x r, matrices,

Mp={Y eR™ . Y'Y =1,,.,}, ({=1,..d).

Theorem 4.2 (Canonical to Tucker approximation, [31]).
(a) Let A = A gy be given by (4.3). Then the minimization problem

AeV,: Ay =argminger, [|A =Ty, (4.5)

s equivalent to the dual maximization problem over the Grassman manifolds Gy,
2

W W] = argmaxy (o cg, : (4.6)

R
S (Y<1>T a9>) ® .0 (W”T a§d>>
v=1

R!‘

where YO = [y\0 49 e Rrxre (0 =1,....d), and yOT 3P ¢ Rre.
(b) The compatibility conditionry < rank(A®) with A® = [agz)...ag)] € R ensures

the solvability of (4.6). The mazimizer is given by orthogonal matrices W = [W@...Wﬁ?] €

R™ " which can be computed by ALS Algorithm with the initial guess chosen as the reduced
HOSVD approximation of A, A(()r), see Definition 4.1.
(¢) The minimizer in (4.5) is then calculated by the orthogonal projection

1 d 1 d
A =D mwy @ ow, m=(w) o ow A)
k=1

where the core tensor p = x| can be represented in the rank-R canonical format

R
T T

v=1

(d) Let 041 > 049... > Opmin(n,r) be the singular values of the (-mode side-matriz U ¢
R™" (¢ =1,...,d). Then the reduced HOSVD approzimation A(()r) exhibits the error estimate

d min(n,R) R
JA = AL < IEID (D a2 where €7 =D& (4.7)
(=1 k=r;+1 v=1

The following assertion proves the stability of RHOSVD approximation.
Lemma 4.3 The stability condition for decomposition (4.3), i.e.
R
> & <ClAlR,, (4.8)
v=1

18



ensures the robust quasi-optimal RHOSVD approximation in the relative norm,

d min(n,R)

1A =A< CIAID (D ofn)>

fil k:Tg-f—l

The stability condition (4.8) is fulfilled, in particular, if (a) all vectors of the canonical de-
composition are non-negative that is the case for sinc-quadrature based decompositions to
Green’s kernels based on integral transforms (2.7) - (2.10); (b) The partial orthogonality of
the canonical vectors, i.e. rank-1 tensors al ... @a (v=1,..., R) are mutually orthog-
onal.

4.3 Summation of defects in the Tucker and canonical formats

In the case of Tucker sum (4.2) we define the agglomerated side matrices o by concatenation
of the directional side-matrices of individual tensors Uy, s = 0,1, ..., .5,

~ nx(r + Z Ts)
U = [u} O u® ugg)...u(g) .. ugg).. u ]eR R Z, (=1,..,.d. (4.9)

70,07 71,07 Tse

Given rank parameter r = (rq, ..., 74), introduce the truncated SVD of U @

~ T (roe+ X Tee)XT
U® QZSK)DAO‘/O([) , Zo(g) e R, Vo(f) cR 0T s Z’

where Dy = diag{o¢ 1,002, ..., 00r, }-

Items (a) - (d) in Theorem 4.2 can be generalized to the case of Tucker tensors. In
particular, the stability criteria for RHOSVD approximation as in Lemma 4.3 allows natural
extension to the case of generalized RHOSVD approximation applied to a sum of Tucker
tensors in (4.2).

Figure 4.1: Left: assembled Tucker summation of 3D grid-based Newton potentials on a
lattice 16 x 16 x 1, with an impurity, of size 2 x 2 x 1. Right: the corresponding Tucker
vectors along x-axis.
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The following theorem provides the error estimate for the generalized RHOSVD approxi-
mation converting a sum of Tucker tensors to a single term with fixed Tucker ranks or subject
to given tolerance € > (0. The resultant Tucker tensor can be considered as the initial guess
for the ALS iteration to compute best Tucker e-approximation of a sum of Tucker tensors.

Theorem 4.4 (Tucker Sum-to-Tucker)

Given a sum of Tucker tensors (4.2) and the rank truncation parameter r = (11, ...,7q).

(a) Let 001 > 0¢2... 2 Ogmin(n,r) be the singular values of the (-mode side-matriz U ¢ RrxR
(¢ =1,...,d) defined in (4.9). Then the generalized RHOSVD approximation U?r) obtained
by the projection of U onto the singular vectors Zée) of the Tucker side-matrices, U0 ~

T
ZSZ)D&OVO(Z) , exhibits the error estimate

d min(n,7y) S
U -UkI<BIDY (Y. 07" where |BPP=>_|B|*. (4.10)
/=1 k= T‘e-}—l s=0

(b) Assume that the stability condition for the sum (4.2),

S
> IBP < cfuy?,
s=0

is fulfilled, then the generalized RHOSVD approximation provides the quasi-optimal error
bound

d min(n,ry)
U —ULII<ITIY_C Y ot
/=1 k=7’g+1

Proof. Proof of item (a) is similar to those for Theorem 4.2, presented in [31]. Item (b) can
be justified by straightforward calculation. |

Figure 4.1 (left) visualizes result of assembled Tucker summation of 3D grid-based Newton
potentials on a 16 x 16 x 1 lattice, with a vacancy and impurity, each of 2 x 2 x 1 lattice
size. Figure 4.1 (right) shows the corresponding Tucker vectors along z-axis. These vectors
clearly represent the local shape of vacancies and impurities.

Notice that the case of lattice sum of canonical tensors considered in §4.2 can be inter-
preted as a special case of a sum of Tucker tensors with rank equals to 1, and the number of
term R = S.

5 Summation over non-rectangular lattices

In some practically interesting cases the physical lattice may have non-rectangular geometry
that does not fit exactly the tensor-product structure of the canonical/Tucker data arrays.
For example, the hexagonal or parallelepiped type lattices can be considered. The case
study of many particular classes of geometries is beyond the scope of our paper. Instead, we
formulate the main principles on how to apply tensor summation methods to non-rectangular
geometries and give a few examples demonstrating the required (minor) modifications of the
basic agglomerated summation schemes described above.
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Figure 5.1: Hexagonal lattice is a union of two Figure 5.2: Parallelogram-type lattice
rectangular lattices, "red“ and ”blue*
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It is worth to note that most of interesting lattice structures (say, arising in crystalline
modeling) inherit a number of spacial symmetries which allow, first, to classify and then
simplify the computational schemes for each particular case of symmetry. In this concern,
we consider the following classes of lattice topologies which can be efficiently treated by our
tensor summation techniques:

(A) The target lattice £ can be split into the union of several (few) sub-lattices, £ = |J L,,
such that each sub-lattice £, allows a 3D rectangular grid-structure.

(B) The 3D lattice points belong to the rectangular tensor grid in two spatial coordinates,
but they violate the tensor structure in the third variable (say, parallelogram type
grids).

(C) The 3D lattice points belong to the tensor grid in one of spatial coordinate, but they
may violate the rectangular tensor structure in the remaining couple of variables.

(D) Defects in the target lattice are distributed over rectangular sub-lattices on several
coarser scales (multi-level tensor lattice sum).

In case (A) the agglomerated tensor summation algorithms apply independently to each
rectangular sub-lattice £,, and then the target tensor is obtained as a direct sum of tensors
associated with £;, supplemented by the subsequent rank reduction procedure. The example
of such a geometry is given by hexagonal grid presented in Figure 5.1 ((z,y) section of the 3D
lattice, that is rectangular in z-direction), which can be split into a union of two rectangular
sub-lattices £; (red) and L5 (blue). Another example is a lattice with step-type boundary.
In this case the maximal rank does not exceed the multiple of log L and the rank of a single
reference Tucker tensor.

In case (B) the tensor summation applies only in two indices while a sum in the remaining
third index is treated directly. This leads to the increase of directional rank proportionally
to the 1D size of the lattice, L, hence requiring the subsequent rank reduction procedures.
This may lead to the higher computational complexity of the summation. The example of
such a structure is the parallelogram-type lattice shown in Figure 5.2 (orthogonal projection
onto (x,y) plane).
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Figure 5.3: Left: assembled canonical summation of 3D grid-based Newton potentials on a
lattice 12 x 12 x 1, with an impurity, of size 2 x 2 x 1. Right: the vertical projection.

In case (C) the agglomerated summation can be performed only in one index, supple-
mented by the direct summation in the remaining indices. The total rank then increases pro-
portionally to L?, making the subsequent rank optimization procedure indispensible. How-
ever, even in this worst case scenario, the asymptotic complexity of the direct summation
shall be reduced on the order of magnitude in L from O(L?), due to the benefits of ” one-way”
tensor summation.

Figure 5.4: Left: assembled canonical summation of 3D grid-based Newton potentials on a
lattice 24 x 24 x 1, with regular 6 x 6 x 6 vacancies.

Case (D) can be treated by successive application of the canonical/Tucker tensor sum-
mation algorithm at several levels of defects location. Figure 5.3 represent the result of
assembled canonical summation of 3D grid-based Newton potentials on a lattice 12 x 12 x 1,
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with an impurity of size 2 x 2 x 1 that does not fit the location of lattice points, but deter-
mined on the same fine Ny x N x Ny representation grid. In the case of many non-regularly
distributed defects the summation should be implemented in the Tucker format with the
subsequent rank truncation. Figure 5.4 visualizes the result of assembled canonical summa-
tion of 3D grid-based Newton potentials on a lattice 24 x 24 x 1, with regularly positioned
6 x 6 x 6 vacancies (two-level lattice). Figure 5.5 represents the result of assembled canonical
summation of the Newton potentials on L-shaped (left) and O-shaped (right) sub-lattices
of the 24 x 24 x 1 lattice (two-level step-type geometry). In all these cases the total tensor
rank does not exceed the double rank of the single reference potential since all vacancies are
located on tensor sub-lattice of the target lattice.

Figure 5.5: Assembled canonical summation of the Newton potentials on L-shaped (left) and
O-shaped (right) sub-lattices of the 24 x 24 x 1 lattice.

We summarize that in all cases (A) - (D) classified above the tensor summation approach
cab be gainfully applied. The overall numerical cost may depend on the geometric structure
and symmetries of the system under consideration since violation of the tensor-product rect-
angular structure of the lattice may lead to the increase in the Tucker/canonical rank. This
is clearly observed in the case of random distribution of the moderate number of defects. In
all such cases the RHOSVD approximation combined with the ALS iteration serves for the
robust rank reduction in the Tucker format.

6 Conclusions

We introduce the assembled Tucker tensor method for 3D grid-based summation of classical
interaction potentials placed onto a large 3D lattice in a box. Examples of such potentials
include the Newton, Slater, Yukawa, Lennard-Jones, Buckingham and dipole-dipole kernel
functions among others. With slight modifications, the approach also applies in the presence
of defects, such as vacancies, impurities or to lattices with non-rectangular set of active points,
as well as to the case of non-rectangular lattices.

The computational work for summation over L x L x L rectangular or type (A) lattices
scales linearly in L, that improves dramatically the cubic costs, O(L?), of the traditional
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Ewald type summation techniques. All data are presented on the common fine 3D N x N X
N grid by low-rank tensors in RY*¥*N that allows the simultaneous approximation with
guaranteed precision of all singular kernel functions involved in the summation.

In case of unperturbed lattice, both the canonical and Tucker ranks of the resultant
tensor sum remains the same as for the individual potential. In the situation with defects
or in the presence of non-rectangular lattice the Tucker ranks of the resultant tensor may
increase. Then the e-rank truncation procedure can be applied to a sum of canonical or
Tucker tensors.

Numerical examples illustrate the rank bounds and asymptotic complexity of the ten-
sor summation method in both canonical and Tucker data formats in the agreement with
theoretical predictions.

The assembled tensor summation approach is well suited for further application in elec-
tronic and molecular structure calculations of large lattice-structured compounds, see [26].
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