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EQUIDIMENSIONAL ISOMETRIC MAPS

BERND KIRCHHEIM, EMANUELE SPADARO, LÁSZLÓ SZÉKELYHIDI JR.

Abstract. In Gromov’s treatise (Partial differential relation, volume 9 of

Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 1986), a continuous
map between Riemannian manifolds is called isometric if it preserves the length

of rectifiable curves. In this note we develop a method using the Baire category

theorem for constructing such isometries. We show that a typical 1-Lipschitz
map is isometric in canonically formulated extension and restriction problems.
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1. Introduction

Since the fundamental works of Nash [15] and Kuiper [12] it is well known that
isometric maps with low regularity can be surprisingly flexible objects. In particu-
lar, any short immersion of an n-dimensional Riemannian manifold with continuous
metric into Rn+1 can be uniformly approximated by isometric immersions of class
C1. One of the main ideas introduced by Nash, and revisited by Kuiper, is an
iterative scheme, whereby in each stage the short map is perturbed by a rapidly os-
cillating “corrugation” (or “spiral” in higher codimensions) such that the resulting
maps converge in C1 to an isometric immersion.

On the contrary, in the equidimensional case, that is, for maps from a n-
dimensional manifold into Rn, isometries of class C1 are rigid. Namely, if f :
Rn → Rn is a C1 map with Df ∈ O(n) for every x ∈ Rn, then f is globally ori-
entation preserving or reversing and, by a classical Liouville theorem, is an affine
map, i.e. a rigid motion.

Therefore, in order to see some flexibility, one needs to relax the C1 condition.
A natural choice is to consider Lipschitz maps instead. To fix ideas consider maps
f : Rn → Rn. There are several ways in which one can define what it means to be
an isometry: either look at changes in the metric under f (a local condition), or
look at the effect on the length of curves (a global condition). For f ∈ C1 the two
conditions lead to the same notion - this can be seen as a simple example of the local-
to-global principle in geometry. If f is merely Lipschitz, by Rademacher’s theorem
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the derivative Df(x) exists for almost every x ∈ Rn, hence a weak preservation of
the metric amounts to the condition

(1.1) (Df)T Df = Id Ln- a.e. in Rn.
Here we denote by Ln the Lebesgue measure on Rn. We will call such maps weak
isometries. As pointed out by Gromov on p. 218 of his treatise [9], such maps
might collapse whole submanifolds to a single point and thus are very far from a
truly geometric notion of isometry. For instance, it is possible to solve the Dirichlet
problem DfT Df = Id a.e. in Ω = [0, 1]n and f |∂Ω = 0 – see e.g. [5, 6]. By
extending f periodically on the whole Rn, one can then find a solutions to (1.1)
such that f(Rn−1 × {0}) = {0}.

The more geometric definition of isometry therefore is the following: a Lipschitz
map between Riemannian manifolds f : M → N is isometric if it preserves the
length of any rectifiable curve (c.f. [9, §2.4.10]):

(1.2) `M (γ) = `N (f ◦ γ) for every γ : [0, 1]→M rectifiable.

It is not difficult to see that any isometry is a weak isometry, but the converse is
in general false. To compare with (1.1), notice that an isometric map f : Rn → Rn
satisfies

(1.3) (DMf)T DMf = Id Hm-a.e. on M,

for everym-dimensional submanifoldM ⊂ Rn, m = 1, . . . , n, whereDM denotes the
tangential derivative and Hm is the m-dimensional Hausdorff measure. Actually, it
is not difficult to see that in condition (1.3) it suffices to check the lowest dimensional
case m = 1, i.e.

(1.4) |∇τf | = 1 H1-a.e. on γ

for every rectifiable curve γ ⊂ Rn, where ∇τf denotes the tangential derivative.

For constructing isometries one might imagine a “folding up” pattern as the
analogous perturbations to corrugations in an iterative scheme à la Nash and prove
results similar in spirit to the Nash-Kuiper theorem. Indeed, in [9] Gromov shows
that every strictly short map between Riemannian manifolds admits an arbitrarily
close uniform approximation by isometries. More generally, Gromov’s convex inte-
gration is a powerful generalization of the Nash technique, that applies to a large
class of differential relations. A version for differential inclusions of Lipschitz maps
has been developed in [13, 14], where also the system (1.1) is treated as a particular
case.

On the other hand it was noticed by several authors [4, 6, 10], that the Baire
category method, introduced in [7, 3] for ordinary differential inclusions, can be
applied to problems such as (1.1) (which can be written as the differential inclu-
sion Du(x) ∈ O(n) a.e. x). This approach leads not only to the density of weak
isometries but also to genericity in the sense of Baire category.

Our contribution in this paper is twofold. First of all we develop a version of the
Baire category method for isometric maps satisfying (1.2) in the sense considered
by Gromov and prove several residuality results. Our method allows one to reduce
the problem of Baire-residuality to the density of certain approximate isometries,
see § 3 below.

Secondly, we give a self-contained proof of the density of (approximate) isome-
tries that follows the general philosophy of Baire category techniques for differential
inclusions. To explain this, recall that the density of Lipschitz isometries between
Riemannian manifolds follows from Gromov’s result [9, §2.4.11] concerning the fine
approximability of isometries. Alternatively, in Rn one can use the following result
of Brehm [2] concerning the extension of isometries:
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Theorem 1.1 (Brehm [2]). Let H ⊂ Rn be a finite set and f : H → Rm be a
short map, with n ≤ m. Then, there exists an extension of f to a piecewise affine
isometric map of the whole Rn.

Both Gromov’s and Brehm’s proof rely on the (global) geometric property of
being an isometry, in particular special piecewise affine isometries (called normally
folded maps in [9]) are used as the basic building block and it is not clear how to
generalize this notion to other differential inclusions. In contrast, our approach is
to treat isometries as solutions to a fine differential inclusion as in (1.3), where the
tangential derivative on lower-dimensional objects is prescribed. As in the usual
Baire category method, we use an explicit oscillating perturbation to show the
perturbation property for the (tangential) gradient of the map f . The new key
point however is to use a calibration to control the underlying curves. We expect
our method to find applicability in a more general class of such fine differential
inclusions.

To conclude this introduction we mention that there is yet another, stronger
notion of isometry. In [9, §2.4.10] a map f : M → N between Riemannian manifolds
is called a strong isometry if for any x, y ∈M

distM (x, y) = lim
ε→0

inf
{k−1∑
i=0

distN (f(xi), f(xi+1))
}
,

where the infimum is taken over all ε-chains between x and y, that is, sequence of
points x0 = x, x1, . . . , xk = y with distM (xi, xi+1) ≤ ε. The same notion is called
an intrinsic isometry in [16]. It is not difficult to see that a strong isometry is an
isometry. Moreover, strong isometries preserve the length of any curve (not just
rectifiable). Now, using Gromov’s theorem (or our Theorem 2.2 below) it is possible
to construct an isometry f : R2 → R2, which maps the Koch curve (or any purely
unrectifiable curve) to a single point. Such a map will obviously not be a strong
isometry. We note in passing that in [9, §2.4.10] this construction is described with
a curve C with the property that dimH(C ∩ C0) < 1 for all rectifiable curves C0.
This property is stronger than being purely unrectifiable, and in fact it turns out
that such a curve C does not exist - see [1]. Our main results and techniques in
this paper, in particular in §5, do not extend to strong isometries.
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2. Statement of the main results

We first consider the problem of extending a map defined on an arbitrary compact
set K ⊂ Rn. This is a generalization of the Dirichlet problem on a bounded domain
Ω ⊂ Rn, if we take K = ∂Ω.

It is clear that an isometric extension need not always exist. For example,
consider the following map: K = ∂[0, 1]2 ⊂ R2 and f : K → R2 given by f(x, y) =
(x, 0). Clearly, f is a short map admitting a unique 1-Lipschitz extension to [0, 1]2

(namely f(x, y) = (x, 0)), which is not an isometric map because, for instance,
vertical line segments are mapped to single points.

In order to deal with this issue, we need to characterize the set C(f,K) where
the map f has a unique 1-Lipschitz extension. It is clear that f extends uniquely
as a 1-Lipschitz map on the set

C(f,K) :=
⋃
H∈S

conv(H),
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where S := {H ⊂ K : f |H is an affine isometry}. As seen in the example above, if
the unique 1-Lipschitz extension on C(f,K) is not isometric, there is no chance to
solve the extension problem. On the other hand, if C(f,K) = K, the map f does
admit extensions which are locally strictly short outside K. This is the content of
the following proposition:

Proposition 2.1. A function f : K → Rn admits an 1-Lipschitz extension h :
Rn → Rn such that

• h|K = f ;
• Lip(h|A) < 1 for every A ⊂⊂ Rn \K

if and only if

(2.1) C(f,K) = K.

Moreover, (2.1) is a generic property in the sense that a typical 1-Lipschitz map
f : K → Rn satisfies it.

The proof of Proposition 2.1 (restated as Proposition 4.4 and 7.1) is contained
in Sections 4 and 7. As a consequence, we prove that the solutions to the Dirichlet
problem which are isometric in Rn \ C(f,K) are in fact residual:

Theorem 2.2 (Typical extension). Let K ⊂ Rn be a compact set and f : K → Rn a
short map. Then, the typical 1-Lipschitz extension of f to the whole Rn is isometric
on Rn \ C(f,K).

We then consider the problem of Dirichlet data f : K → Rn which extend to a
global isometric map F : Rn → Rn (not just of Rn \ C(f,K)). We prove that also
this is a generic property.

Theorem 2.3 (Typical restriction). Let K ⊂ Rn be a compact set. The typical
short map f : K → Rn is the restriction of an isometric map of the whole Rn.

Finally, we address the problem of isometric maps from a Riemannian manifold
Mn into Rn. We show that such maps are residual in the space of short maps.

Theorem 2.4 (Typical isometries). Let M be a n-dimensional Riemannian man-
ifold with continuous metric. Then, the isometric maps of M into Rn are residual
in the space of short maps.

3. Approximate isometric maps

In what follows M is a connected n-dimensional smooth manifold with or without
boundary. We assume that M is endowed with a continuous Riemannian metric g;
we denote by dM and | · |g the induced Riemannian distance on M and the norm on
each tangent space TxM , respectively. In the case of subsets of Rn, we use the usual
notation |x| and x · y for the norm and the scalar product of vectors, respectively.

Given a path-connected subset S ⊆M we introduce the following notation.

(a) The space of short maps from M into Rn is denoted by Lip1(M,Rn), i. e.

Lip1(M,Rn) :=
{
f : M → Rn : Lipg(f) ≤ 1

}
,

where

Lipg(f) := sup
x6=y∈M

|f(x)− f(y)|
dM (x, y)

.

(b) ΓS(x, y) is the set of rectifiable curves from x to y contained in S:

ΓS(x, y) :=
{
γ : [0, 1]→ S : γ rectifiable, γ(0) = x, γ(1) = y

}
.

We denote by dS the induced metric, i.e.

dS(x, y) := inf
γ∈ΓS(x,y)

`g(γ).
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(c) We denote by I(S) the set of all short maps f ∈ Lip1(M,Rn) which are
isometric in S, i. e. `(f ◦γ) = `g(γ) for every rectifiable curve γ : [0, 1]→ S,
where

`(f ◦ γ) =

∫ 1

0

|(f ◦ γ)′(t)| dt and `g(γ) =

∫ 1

0

|γ′(t)|g(γ(t)) dt.

Equivalently, f ∈ I(S) if for every γ as above

|(f ◦ γ)′(t)| = |γ′(t)|g(γ(t)) for a.e. t ∈ [0, 1].

(d) For every ε > 0 and x, y ∈ S, we denote by Fε(x, y, S) ⊂ Lip1(M,Rn) the
mappings satisfying

Fε(x, y, S) :=
{
f ∈ Lip1(M,Rn) : `(f ◦ γ) + ε `g(γ) > (1− ε) dS(x, y)

∀γ ∈ ΓS(x, y)
}
.

Note that in general the maps in Lip1(M,Rn) are not bounded (except when M
itself is bounded). For this reason, we use the following metric on Lip1(M,Rn):

D(f, g) := sup
x∈M

min
{

1, |f(x)− g(x)|
}

= min

{
1, sup
x∈M
|f(x)− g(x)|

}
.

It is easy to verify that (Lip1(M,Rn), D) is a complete metric space and that D
induces the uniform convergence, i.e.

lim
l→+∞

D(fl, f) = 0 ⇐⇒ lim
l→+∞

‖fl − f‖C0(M) = 0.

Definition 3.1. Let S ⊂M be path-connected. We define the set of ε-approximate
isometric maps in S by:

Iε(S) :=
⋂

x 6=y∈S

Fε(x, y, S).(3.1)

The name is justified by the following result.

Lemma 3.2. Let S ⊂M be path-connected. Then

(3.2)
⋂
ε>0

Iε(S) = I(S).

Proof. Note first that I(S) ⊂ Fε(x, y, S) for every ε > 0 and x 6= y ∈ S. Indeed,
every f ∈ I(S) satisfies

`(f ◦ γ) + ε `g(γ) = (1 + ε) `g(γ) > (1− ε) dM (x, y) ∀ γ ∈ ΓS(x, y).

In order to prove the converse inclusion, assume f ∈ Iε(S) for every ε > 0 and let
γ : [0, 1]→ S be a rectifiable curve. Then, for every partition 0 = t0 < . . . < tm = 1,
setting γj := γ|[tj ,tj+1], we have

`(f ◦ γ) =

m−1∑
j=0

`(f ◦ γj) ≥
m−1∑
j=0

dM (γ(tj), γ(tj+1)).

Since this holds for any partition, `(f ◦ γ) ≥ `g(γ) and, hence, f ∈ I(S). �
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3.1. Separability. We show next that it suffices to take a countable intersection
in order to obtain a subset of approximate isometric maps.

Lemma 3.3. Let S be path-connected and S0 ⊂ S be a countable dense subset for
the induced metric dS. Then,⋂

x 6=y∈S0

Fε(x, y, S) ⊂ I2 ε(S).

Proof. We may assume without loss of generality that ε < 1/2, otherwise the
statement is trivial. Let f ∈ Fε(x0, y0, S) for all x0, y0 ∈ S0. For x, y ∈ S, we
choose η > 0 and x0, y0 ∈ S0 such that

η <
ε

4
dS(x, y),

and
dS(x, x0) + dS(y, y0) < η.

We can find two curves γ1 ∈ ΓS(x0, x) and γ2 ∈ ΓS(y, y0) such that

`g(γ1) + `g(γ2) ≤ dS(x, x0) + dS(y, y0) + η.

Observe that

(1− 2ε)dS(x, y) ≤ (1− ε)dS(x0, y0)− εdS(x, y) + (1− ε)η
≤ (1− ε)dS(x0, y0)− 2η(1 + ε),

since
(3 + ε)η ≤ εdS(x, y).

Then we consider the concatenation γ̃ := γ2 · γ · γ1 (i.e., the curve obtained by
joining, in the order, the curves γ1, γ and γ2), and note that γ̃ ∈ ΓS(x0, y0). Using
that

`g(γ̃) ≤ `g(γ) + 2η

and that f ∈ Fε(x0, y0, S), we obtain

`(f ◦ γ) ≥ `(f ◦ γ̃)− 2 η

> (1− ε) dS(x0, y0)− ε(`g(γ) + 2η)− 2 η

≥ (1− 2ε) dS(x, y)− ε`g(γ)

> (1− 2 ε) dS(x, y)− 2ε`g(γ).

This shows that f ∈ F2ε(x, y, S). Since this holds for every x, y ∈ S, we conclude
f ∈ I2ε(S). �

3.2. Closedness. The following lemma shows that the sets of approximate isomet-
ric maps are Gδ sets.

Lemma 3.4. Let S ⊂ M be compact. Then, for every x, y ∈ S and ε > 0,
Fε(x, y, S) is open in Lip1(M,Rn).

Proof. We show that Lip1(M,Rn) \ Fε(x, y, S) is closed under the uniform con-
vergence induced by D. To this aim, assume that fk ∈ Lip1(M,Rn) \ Fε(x, y, S)
converges to f uniformly in M . By assumption, there exist γk ∈ ΓS(x, y) with

`(fk ◦ γk) + ε `g(γk) ≤ (1− ε) dS(x, y).

In particular, the lengths `g(γk) are uniformly bounded. Therefore, since we are
considering curves in the compact set S, we may extract a subsequence such that
γkj → γ ∈ ΓS(x, y) uniformly. This implies that also fkj ◦ γkj converges uniformly
to f ◦γ. Now, since the length is lower semicontinuous under uniform convergence,
we deduce that

`(f ◦ γ) + ε `g(γ) ≤ (1− ε) dS(x, y).
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This implies that f ∈ Lip1(M,Rn) \ Fε(x, y, S), hence Lip1(M,Rn) \ Fε(x, y, S) is
closed. �

3.3. Locality. The notion of isometric map is local in the following sense.

Lemma 3.5. Let {Uα}α∈A be an open covering of M such that every Uα is path-
connected. Let f ∈ Lip1(M,Rn) be such that f |Uα ∈ I(Uα). Then f ∈ I(M).

Proof. We need to prove that, for a given curve γ : [0, 1]→M ,

`(f ◦ γ) = `g(γ).

Since γ([0, 1]) is compact, we begin fixing a finite covering of γ([0, 1]) by sets Uαj ,
j = 1, . . . ,m. Using the uniform continuity of γ, we infer the existence of η > 0
such that

∀ t ∈ [0, 1] ∃ j ∈ {1, . . . ,m} such that γ([t, t+ η]) ⊂ Uαj .
We then choose any partition 0 = t0 ≤ . . . ≤ tm = 1 such that |ti−ti+1| ≤ η. By the
choice of η, for every i = 1, . . .m−1 there exists j(i) such that γ([ti, ti+1]) ⊂ Uαj(i) .
Therefore, from f |Uα ∈ I(Uα) we deduce that

`(f ◦ γ|[ti,ti+1]) = `g(γ|[ti,ti+1]) ∀ i = 1, . . . ,m− 1,

and therefore

`(f ◦ γ) =

m−1∑
i=0

`(f ◦ γ|[ti,ti+1]) =

m−1∑
i=0

`g(γ[ti,ti+1]) = `g(γ). �

4. Locally strictly short extensions

As mentioned in the introduction, given a short map f : K ⊂ Rn → Rn on a
compact set K, f will have a unique 1-Lipschitz extension f̄ to a possibly larger
set containing K, namely

C(f,K) :=
⋃
H∈S

conv(H),

where S := {H ⊂ K : f |H is an affine isometry}. Here ”f |H affine” is understood
in the sense that f |H(x) = Ax + b for some A ∈ O(n) and b ∈ Rn. Then f
extends uniquely as a 1-Lipschitz map on C(f,K) and in particular K ⊂ C(f,K).
In the following lemmas we prove two simple properties of C(f,K), namely its
compactness and a hull-type property.

Lemma 4.1. For every K ⊂ Rn compact and f : K → Rn short, C(f,K) ⊂ Rn is
compact.

Proof. We notice first that C(f,K) is a bounded set. Therefore, we need only to
show that it is closed. Assume that zl ∈ conv(Hl) → z. Using Carathéodory’s
Theorem, we may assume without loss of generality that Hl = {yl0, . . . , yln} and

zl =

n∑
i=0

λliy
l
i, with

n∑
i=0

λli = 1, λli ≥ 0.

By compactness (up to extracting subsequences which are not relabelled) we may
infer that there exist yi ∈ Rn and λi ∈ [0, 1] for i = 0, . . . , n such that

lim
l→+∞

yli = yi and lim
l→+∞

λli = λi.

Then, z ∈ conv(H) for H := {y0, . . . , yn}. Moreover, H ∈ S because

|g(yi)− g(yj)| = lim
l→+∞

|g(yli)− g(ylj)| = lim
l→+∞

|yli − ylj | = |yi − yj | ∀ i, j.

This shows that z ∈ C(f,K), i.e. C(f,K) is closed. �
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Lemma 4.2. Let f : K → Rn be a short map, with K ⊂ Rn compact and let
f̄ : C(f,K)→ Rn be the unique 1-Lipschitz extension of f to C(f,K). Then,

C(f̄ , C(f,K)) = C(f,K).

Proof. It is enough to show that, for every x, y ∈ C(f,K) such that |f̄(x)− f̄(y)| =
|x− y|, it holds

[x, y] :=
{
λx+ (1− λ) y : λ ∈ [0, 1]

}
⊂ C(f,K).

Without loss of generality, we may assume that

(4.1) y = f̄(y) = 0.

Set H :=
{
x0, . . . , xl

}
⊂ K, l ≤ n, such that f |H is an affine isometry and x =∑

i αi xi for positive αi with
∑
i αi = 1. Note that in general l may be different

from n, because we assumed that αi > 0 for every i. Since f |H is affine and (4.1)
holds, we have ∣∣∣∣∣∑

i

αi xi

∣∣∣∣∣ =

∣∣∣∣∣∑
i

αi f(xi)

∣∣∣∣∣ .
Squaring we get

(4.2)
∑
i

α2
i |xi|2 +

∑
i6=j

αi αj xi · xj =
∑
i

α2
i |f(xi)|2 +

∑
i 6=j

αi αj f(xi) · f(xj).

From (4.1) and Lip(f̄) ≤ 1, it follows that |f(z)| ≤ |z| for every z ∈ K. Recalling
that |f(xi)− f(xj)| = |xi − xj | for xi, xj ∈ H, this implies

f(xi) · f(xj) =
1

2

(
|f(xi)|2 + |f(xj)|2 − |f(xi)− f(xj)|2

)
≤ 1

2

(
|xi|2 + |xj |2 − |xi − xj |2

)
= xi · xj .(4.3)

Using (4.2) and (4.3) together (recall that |f(z)| ≤ |z| for every z ∈ K), we deduce
that |f(xi)| = |xi| for every xi ∈ H. In particular, {0} ∪H ∈ S and by definition

[0, x] ⊂ conv
(
{0} ∪H

)
⊂ C(f,K). �

We now turn to the proof of Proposition 2.1. We start with a definition.

Definition 4.3 (LSSE). Let K ⊂ Rn be a compact set and f : K → Rn a short
map. We say that f is locally strict short extendable, or briefly f is LSSE, if there
exists h ∈ Lip1(Rn,Rn) such that h|K = f and Lip(h|A) < 1 for every A ⊂⊂ Rn\K.

Clearly, if f : K → Rn is LSSE, then C(f,K) = K. We show that this is also a
sufficient condition for f to be LSSE.

Proposition 4.4. For a short function f : K → Rn the following are equivalent

(a) f is LSSE;
(b) for every x /∈ K there exists px ∈ Rn such that

(4.4) |px − f(y)| < |x− y| ∀ y ∈ K;

(c) for every x /∈ K, there exist at least two different 1-Lipschitz extensions f1,
f2 of f to K ∪ {x}.

(d)

(4.5) x, y ∈ K : |f(x)− f(y)| = |x− y| ⇒ [x, y] ⊂ K.

In particular, f is LSSE if and only if C(f,K) = K.
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Proof. To prove the equivalence between (a) and (b), assume that h is a locally
strictly short extension of f . Then, it follows from Definition 4.3 that px := h(x)
fulfills (4.4). Conversely, if (4.4) holds, for every x /∈ K there exists δx > 0 such
that

(4.6) |px − f(y)| < |z − y| ∀ y ∈ K and ∀ z ∈ Bδx(x) ⊂ Rn \K.

For every x /∈ K, we define the functions fx by

fx(w) :=

{
f(w) if w ∈ K,
px if w ∈ Bδx(x),

and consider Fx an arbitrary 1-Lipschitz extensions to the whole Rn given by
Kirszbraun’s Theorem [8, 2.10.43]. Since Rn \ K is locally compact, there exist
countably many xi such that

Rn \K =

∞⋃
i=1

Bδxi (xi).

Setting h :=
∑
i 2−iFxi , it is immediate to verify from (4.6) that h is a locally

strictly short extension of g.
To show the equivalence between (b) and (c), note that, if the maps x 7→ q and

x 7→ q′ are two different extensions to K ∪{x}, then px := q+q′

2 satisfies (4.4). Vice
versa, if (4.4) holds, then the continuous function

Φ(y) :=
|px − f(y)|
|x− y|

satisfies maxK Φ = 1 − η for some η > 0. Then, for every z ∈ Bδ(px) with
δ ≤ η

2 dist(x,K), the extension of f given by x 7→ z is a 1-Lipschitz extension of f :

|z − f(y)|
|x− y|

≤ |px − f(y)|+ δ

|x− y|
≤ 1− η +

δ

|x− y|
< 1 ∀ y ∈ K.

Note that, we have actually proven that (b) fails in a point x if and only if (c) fails
in the same point x.

So far we have proved the equivalence of (a), (b) and (c). Next, it is clear that
(b) implies (d).

To show the converse, we argue by contradiction and assume that (d) holds but
(c) not, i.e. there exists x /∈ K such that f admits a unique extension f̄ : K∪{x} →
Rn. Let f̄(x) = px and set

H := {y ∈ K : |f(y)− px| = |y − x|}.

Note that H is compact and, by the failure of (b) in x, H 6= ∅. Two cases can
occur:

(i) px /∈ conv(f(H));
(ii) px ∈ conv(f(H)).

In case (i), since conv(f(H)) is compact, there exists ε, τ > 0, and ν ∈ Sn−1 such
that

px · ν > 2 ε+ f(y) · ν ∀ y ∈ Hτ ∩K,

where Hτ denotes an open τ -neighborhood of H. Moreover, by compactness of
K \Hτ , there exists a δ > 0 such that

|f(y)− px|+ δ ≤ |x− y| ∀ y ∈ K \Hτ .
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An elementary computation shows that x 7→ qx := px − η ν is a new 1-Lipschitz
extension of f to K ∪ {x} if η is chosen accordingly. Indeed, we have

|f(y)− px + η ν|2 = |f(y)− px|2 + η2 + 2 η (f(y)− px) · ν
≤ |f(y)− px|2 + η2 − 4 η ε

≤ |y − x|2 + η2 − 4 η ε ∀ y ∈ Hτ ∩K,

and

|f(y)− px + η ν| ≤ |x− y| − δ + η ∀ y /∈ Hτ .

Hence, it suffices to choose

η < max
{
δ, 4 ε

}
.

This contradicts the assumption that f̄ is the only 1-Lipschitz extension to K∪{x}
and gives the desired conclusion in case (i).

In case (ii), let l ∈ N be the minimum integer with the following property: there
exist l points {y1, . . . , yl} =: H ′ ⊂ H such that px ⊂ conv(f(H ′)). We claim that

(4.7) |f(yi)− f(yj)| < |yi − yj | ∀ yi, yj ∈ H ′.

Indeed, assume this is not the case, e.g. |f(y1) − f(y2)| = |y1 − y2|. Then, since
px =

∑
i αi f(yi) for positive αi with

∑
i αi = 1 and f |[y1,y2] is affine, we can set

z :=
α1 y1 + α2 y2

α1 + α2
.

By (4.5), [y1, y2] ⊂ K, thus implying in particular that z ∈ K. Moreover, by
comparing the congruent triangles {y1, y2, x} and {f(y1), f(y2), px} we deduce that
z ∈ H. Since it is moreover easy to see that px ∈ conv(f({z, y3, . . . , yl})), we
obtain a contradiction with the assumption that l was the least number satisfying
the above property.

To conclude we note that (4.7) implies that there exists a strictly short extension
of f |H′ to H ′ ∪ {x}, denoted by F : H ′ ∪ {x} → Rn. Clearly, F (x) 6= px by the
definition of H. This leads to a contradiction and concludes the proof. Indeed, set
F (x) =: qx and ν := qx−px

|qx−px| . Since px ∈ conv(f(H ′)), there exists y ∈ H ′ such that

px · ν ≥ f(y) · ν,

which in turns implies

|f(y)− qx| ≥ |f(y)− px| = |y − x|,

against Lip(F ) < 1. �

5. Density

In this section we set, referring to the notation of Section 3,

M = Rn,

and define, for every x, y ∈ K and ε > 0, Eε(x, y,K) to be the restriction of maps
from Fε(x, y,K) to K, i.e.

Eε(x, y,K) := {h ∈ Lip1(K,Rn) : ∃ f ∈ Fε(x, y,K) s.t. f |K = h}.

Our aim is to prove the following density result.

Proposition 5.1. Let K ⊂ Rn be a compact set. Then, for every x, y ∈ K and
ε > 0, the set Eε(x, y,K) is dense in Lip1(K,Rn).
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5.1. Single lamination. In this section we show the basic lamination construction
which will be used to increase distances in one direction. We consider functions of
the following form:

w(x) = Ax+ ζ h(x · ξ),
where A ∈ Rn×n, ξ, ζ ∈ Rn and h : R → R is the 1-periodic extension of the
following piecewise linear function with slopes λ1 < 0 < λ2,

(5.1) h(t) =

{
λ1 t for 0 ≤ t ≤ λ2

λ2−λ1
,

λ2 (t− 1) for λ2

λ2−λ1
< t ≤ 1.

Note that w is Lipschitz and piecewise affine in parallel strips, with

(5.2) ∇w(x) =

{
A+ λ1 ζ ⊗ ξ for k < x · ξ < k + λ2

λ2−λ1
,

A+ λ2 ζ ⊗ ξ for k + λ2

λ2−λ1
< x · ξ < k + 1,

for all k ∈ Z.

In what follows, a simplex is defined to be the closed convex hull of n+1 affinely
independent points in Rn, T := co{x0, . . . , xn}, and its barycenter is the point
x̄ := 1

n+1

∑n
j=0 xj .

Proposition 5.2. Let T be a simplex and u be a strictly short affine map on T ,
with ∇u ≡ A and ATA ≤ (1−θ0) I for some 0 < θ0 < 1. Then, for every 0 < θ < θ0

and η > 0, there exists v ∈ Lip(T,Rn) such that:

(i) v = u on ∂T ;
(ii) ‖u− v‖C0(T ) ≤ η;

(iii) Lip(v) ≤ 1− θ
4 ;

(iv) (1− 2θ)
∫ 1

0
|γ̇(t) · e1|dt ≤ `(v ◦ γ) for every rectifiable γ : [0, 1]→ Tη, where

Tη is the (1− η)-rescaled simplex with the same barycenter as T .

For the proof of the proposition we need the following elementary linear algebra
lemma.

Lemma 5.3. Let A ∈ Rn×n and θ > 0 be such that ATA ≤ (1− θ) I. Then, there
exists ξ ∈ Rn such that

(5.3) (1− θ) |ζ · e1|2 ≤
(
ATA+ ξ ⊗ ξ

)
ζ · ζ ≤ (1− θ) |ζ|2 ∀ ζ ∈ Rn.

Proof. Let B = (1− θ)I −ATA, so that, by assumption, B ≥ 0. First consider the
case B11 > 0 and set ξ := 1√

B11
Be1. We claim that

(B − ξ ⊗ ξ)e1 = 0,(5.4)

(B − ξ ⊗ ξ)w · w ≥ 0 ∀ w ∈ Rn.(5.5)

Indeed, (5.4) follows directly from the definition of ξ. To see (5.5), notice that
B ≥ 0 implies, for any t ∈ R and any w ∈ Rn,

(5.6) B(w + te1) · (w + te1) = t2(Be1 · e1) + 2 t (Be1 · w) + (Bw · w) ≥ 0.

The fact that the above quadratic expression in t is nonnegative is equivalent to

(Bw · w)(Be1 · e1)− (Be1 · w)2 ≥ 0.

On the other hand, by direct calculation

(B − ξ ⊗ ξ)w · w = B−1
11

(
(Bw · w)(Be1 · e1)− (Be1 · w)2

)
,

thus leading to (5.5). Similarly, if B11 = 0, we set ξ = 0. Then, (5.4) and (5.5) still
hold: indeed, the latter is trivially true by the assumption on A and the former
follows from (5.6) being w and t arbitrary.
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To conclude the proof of the lemma, note that (5.4) and (5.5) are equivalent to(
ATA+ ξ ⊗ ξ

)
e1 = (1− θ) e1,(

ATA+ ξ ⊗ ξ
)
w · w ≤ (1− θ) |w|2 ∀ w ∈ Rn.

Therefore, for a general ζ = t e1 + w with w ⊥ e1, (5.3) follows:

(1−θ) t2 ≤
(
ATA+ξ⊗ξ

)
ζ ·ζ = (1−θ) t2 +

(
ATA+ξ⊗ξ

)
w ·w ≤ (1−θ) (t2 + |w|2).

�

Proof of Proposition 5.2. We show that a suitable truncation of a single lamination
satisfies the conclusion of the proposition. Fix 0 < θ < θ0 and η > 0, and note
that ATA ≤ (1− θ) I. We split into two cases, depending on whether detA = 0 or
detA 6= 0.

The case detA 6= 0. Let ξ be the vector given by Lemma 5.3 and consider
ζ ∈ Rn and λ1 < 0 < λ2 such that

ζ = A−T ξ and 2λi + λ2
i |ζ|2 = 1, if detA 6= 0,

Choose a cut-off function ψ : T → [0, 1], ψ ∈ C∞c (T ), such that ψ ≡ 1 on Tη and fix
a periodic piecewise affine functions h with slopes λ1 and λ2 as in (5.1). We claim
that, for µ large enough, the map

v(x) = u(x) +
ζ

µ
h(µx · ξ)ψ(x)

satisfies the conclusions of the lemma.
Clearly, (i) follows from ψ ∈ C∞c (T ). Moreover, since ‖u − v‖C0 ≤ ‖h‖C0 |ζ|

µ ,

choosing µ >
‖h‖C0 |ζ|

θ , also (ii) follows. Next, notice that, by the choice of ζ, for
almost every x ∈ T ,

∇v(x)T ∇v(x) =ATA+
(
h′(µx · ξ)ψ(x)

)
AT ζ ⊗ ξ +

(
h′(µx · ξ)ψ(x)

)
ξ ⊗AT ζ+

+
(
h′(µx · ξ)ψ(x)

)2 |ζ|2 ξ ⊗ ξ + Eµ(x)

=ATA+
(

2h′(µx · ξ)ψ(x) +
(
h′(µx · ξ)ψ(x) |ζ|

)2)
ξ ⊗ ξ + Eµ(x),

where Eµ(x) is an error satisfying ‖Eµ‖C0 ≤ C0

µ , for some C0 depending on h, ψ, ζ.

Hence, since h′ = λi and 0 ≤ ψ ≤ 1,

2h′(λx · ξ)ψ(x) +
(
h′(λx · ξ)ψ(x) |ζ|

)2 ≤ 1 for a.e. x ∈ T.

Then, for C0

µ < θ/2, (iii) follows from the convexity of T , since

Lip(v)2 = ess sup
x∈T

sup
|η|=1

|∇v(x) η|2 = ess sup
x∈T

sup
|η|=1

(
∇v(x)T∇v(x) η · η

)
≤ sup
|η|=1

(
(ATA+ ξ ⊗ ξ)η · η

)
+ sup
x∈T
|Eµ(x)| ≤ 1− θ +

C0

µ
< 1− θ

2

≤
(

1− θ

4

)2

.

To prove (iv), let γ : [0, 1]→ Tθ be a rectifiable curve and let

0 = t0 < t1 < · · · < tN = 1

be any partition of the interval [0, 1]. By adding more points if necessary, since
v is a single lamination in Tη, we may assume that the restriction of v onto each
interval [γ(tj), γ(tj+1)] is affine. Moreover, by the explicit formula (5.2),

v(γ(tj+1))− v(γ(tj)) =
(
A+ λi ζ ⊗ ξ

)(
γ(tj+1)− γ(tj)

)
,
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where λi is chosen depending on which strip the segment lies in and, in case the
segment lies on the boundary of a strip, i.e. ξ ·

(
γ(tj+1)− γ(tj)

)
= 0, any value can

be taken. Therefore, in both cases, using (5.3) and

(A+ λi ζ ⊗ ξ)T (A+ λi ζ ⊗ ξ) = ATA+ λiA
T ζ ⊗ ξ + λi ξ ⊗AT ζ + λ2

i |ζ|2 ξ ⊗ ξ
= ATA+ ξ ⊗ ξ,

we have

|v(γ(tj+1))− v(γ(tj))| ≥
√

1− θ |(γ(tj+1)− γ(tj)) · e1|
≥ (1− 2 θ) |(γ(tj+1)− γ(tj)) · e1| .

Summing and refining the partition ad infinitum, since the integral in (iv) is the
total variation of the curve γ · e1, we conclude the proof in the case detA 6= 0.

The case detA = 0. In this case we consider

ζ ∈ Ker(AT) and − λ1 = λ2 = |ζ| = 1.

Then, for h, ψ and v as above, we have for almost every x ∈ T ,

∇v(x)T ∇v(x) =ATA+
(
h′(µx · ξ)ψ(x)

)
AT ζ ⊗ ξ +

(
h′(µx · ξ)ψ(x)

)
ξ ⊗AT ζ+

+
(
h′(µx · ξ)ψ(x)

)2 |ζ|2 ξ ⊗ ξ + Eµ(x)

= ATA+ ψ(x)2 ξ ⊗ ξ + Eµ(x),

where Eµ(x) is again an error satisfying ‖Eµ‖C0 ≤ C0

µ , for some C0 depending on

h, ψ, ζ. Since 0 ≤ ψ ≤ 1 and ψ ≡ 1 in Tη, the estimates (i)-(iv) follows in the same
way as before. �

5.2. Triangulation and approximation of short maps. In this subsection we
construct a calibration in order to obtain sufficient control on curves in ΓK(x, y).
We start by proving an elementary result on piecewise affine approximations on
triangulations.

Let T = co{x0, . . . , xn} be a simplex and x̄ its barycenter. Given u : T → Rn,
the affine interpolation of u in T is the function

ū(x) = u(x0) +A (x− x0),

where A ∈ Rn is such that ū(xi) = u(xi) for every i (A always exists and is
unique because the points xi are affinely independent). Note that not every affine
interpolation of a short map is short. Consider, for example, the map u : R2 → R2,

u(x) = (|x|, 0), and the simplex T of vertices x0 = 0, x1 = (1,
√

3)
2 and x2 = (1,−

√
3)

2 .
It turns out that the affine interpolation of u in T is given by

ū(x) =

(
2 0
0 0

)
x,

so that Lip(ū) = 2, although u is short.
The following lemma provides a bound for the Lipschitz constant of u− ū.

Lemma 5.4. Let T be a simplex and r1, r2 > 0 be such that Br1(x̄) ⊂ T ⊂ Br2(x̄).
For every u ∈ C2(T,Rn), the affine interpolation ū in T satisfies

(5.7) Lip(u− ū) ≤ 4 r2
2

r1
‖∇2u‖C0(T ),

where

‖∇2u‖C0(T ) = max
x∈T

√√√√ n∑
i,j,l=1

(
∂2ul
∂xi∂xj

(x)

)2

.
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Proof. Let A = ∇ū. For every B ∈ Rn×n, denote by LB the linear map given by
LB(x) = B x and denote by |B| = max|η|=1 |B η| the operator norm. We claim that

(5.8) |B −A| ≤ 2 r2

r1
Lip(u− LB).

Indeed, let η ∈ Sn−1 be such that |B − A| = (B − A) η and consider the line
lη = {x̄+ t η : t ∈ R}. Clearly, by the convexity of T , lη intersects ∂T in two points,

p =
∑
i

λi xi and q =
∑
i

µi xi,

with λi, µi ≥ 0 and
∑
i λi =

∑
i µi = 1. Then, since |p− q| ≥ 2 r1, it follows that

|B −A| = |(B −A) (p− q)|
|p− q|

≤
|
∑
i(λi − µi) (B −A)(xi − x0)|

2 r1

=
|
∑
i(λi − µi)

{
(B xi − u(xi))− (B x0 − u(x0)

}
|

2 r1

≤
Lip(u− LB)

∑
i(λi + µi)|xi − x0|
2 r1

≤ 2 Lip(u− LB) diam(T )

2 r1

≤ 2 r2

r1
Lip(u− LB).

By convexity, for every f ∈ C1(T,Rn),

(5.9) Lip(f) = max
x∈T
|∇f(x)|.

Set B = ∇u(y) such that

Lip(u− ū) = max
x∈T
|∇(u− ū)| = |B −A|.

From (5.9) and (5.8), we deduce (5.7):

Lip(u− ū) = |B −A|
(5.8)

≤ 2 r2

r1
Lip(u− LB)

(5.9)

≤ 2 r2

r1
max
x∈T
|∇u(x)−∇u(y)|

≤ 2 r2

r1
‖∇2u‖C0(T ) max

x∈T
|x− y| ≤ 4 r2

2

r1
‖∇2u‖C0(T ).

�

Remark 5.5. Actually, increasing the angle in x0 in the example given above
shows that estimate (5.8) is optimal up to a multiplicative constant.

In what follows, a triangulation T = {Ti}i∈N of Rn is defined as a family of
simplices such that ∪iTi = Rn and, for every i 6= j, Ti ∩ Tj is a common face when
not empty. We call a triangulation periodic if there exist finitely many simplices
T1, . . . , TN such that T = ∪Ni=1{Ti + v : v ∈ Zn}.

Given a simplex T = co{x0, . . . , xn}, we consider the (n − 1)-dimensional sup-
porting linear subspaces of its faces defined as follows: for α = (α1, . . . , αn) with
0 ≤ α1 < . . . < αn ≤ n, the corresponding supporting hyperplane is given by

V Tα = Span{xα2
− xα1

, . . . , xαn − xα1
}.

We denote by NT the set of all unit normals to the supporting hyperplanes of
simplices T in T ,

NT =
{
ν ∈ Sn−1 : ν ⊥ V Tα for some α and T ∈ T

}
.
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Proposition 5.6. For every θ > 0, there exist 0 < δ < 1, a periodic triangulation
T and a function ϕ ∈ C∞(Rn) such that:

ϕ(l, x̄) = l ∀ x̄ ∈ Rn−1, ∀ l ∈ Z;(5.10)

0 ≤ ∂ϕ

∂xj
(x) ≤ θ ∀ x ∈ Rn, j 6= 1;(5.11)

0 ≤ ∂ϕ

∂x1
(x) ≤ 1

1− θ
∀ x ∈ Rn and

∂ϕ

∂x1
(x) = 0 ∀ x ∈ Fδ,(5.12)

where F = ∪T∈T ∂T is the union of the faces of the simplices of T and Fδ denotes
its open δ-neighborhood.

Proof. Step 1: The existence of a transversal triangulation. We start
showing the existence of a periodic triangulation S such that every orthogonal
vector ν ∈ NS satisfies ν · e1 6= 0, i.e. such that e1 is transversal to any supporting
hyperplane.

To this aim, consider {T1, . . . , TM}, a triangulation of [0, 1/2]n which can be
extended to the whole Rn by periodicity (that such triangulation does exist is a
simple exercise), and set

R =

M⋃
j=1

{Tj + v/2 : v ∈ Zn} = {Ri}i∈N.

For w ∈ Rn with w · e1 = 0, let fw : Rn → Rn be the piecewise affine map given by,
for every x = (x1, x̄) ∈ R× Rn−1,

fw(x) = x+ h(x1)w,

where h : R→ R is the 1-periodic extension of

h(t) =

{
t if 0 ≤ t ≤ 1

2 ,

1− t if 1
2 < t < 1.

Note that, fw|Ri is linear for every simplex Ri of R, so that Si = fw(Ri) are also
simplices. Moreover, since w · e1 = 0, fw : Rn → Rn is a periodic homeomorphism:
for every integer vector v ∈ Zn, fw(x + v) = fw(x) + v. Hence, fw(Ri + v) =
fw(Ri) + v implies that S = {Si}i∈N is a periodic triangulation of Rn as well.

We claim that there exists w ⊥ e1 such that S is transversal to e1. Indeed, for
every simplex Ri, ∇(fw|Ri) = L±w, where L±wv = v±(v · e1)w and the sign is
chosen depending on the sign of h′(x1) for x ∈ Ri. By simple linear algebra, using
L−1
w = L−w as w ⊥ e1, we infer that

NS =
{
LT±wν

′ : ν′ ∈ NR
}
.

Hence, ν ∈ NS is orthogonal to e1 if and only if there exists ν′ ∈ NR such that

(5.13) 0 =
〈
LT±wν

′, e1

〉
= 〈ν′, L±we1〉 = 〈ν′, e1〉 ± 〈ν′, w〉 .

Now notice that, for a fixed ν′ either the solutions w ⊥ e1 satisfying (5.13) are
affine (n − 2)-dimensional subspaces or, in the case ν′ = e1, there are no solution.
Hence, relying on the fact that NR is finite, R being periodic, one infers that for
Hn−1-a.e. w ⊥ e1 no ν ∈ NS is orthogonal to e1.

Step 2: Construction of a calibration. From now on we fix a periodic transver-
sal triangulation S = {Si}i∈N. For every γ > 0, we denote by Fγ the open γ-
neighborhood of union of all faces of S. Consider the C∞ function g : Rn → [0, 1],

g = ργ/2 ∗ χ(Rn\F3γ/2),
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where ρ ∈ C∞c (B1) is such that ρ ≥ 0,
∫
ρ = 1 and, as usual ρr = r−nρ(xr ). Note

that, since F is periodic, also g is periodic and

g ≡ 0 on Fγ and g ≡ 1 on Rn \ F2γ .

Set, for x = (x1, x̄) ∈ R× Rn−1,

f(x1, x̄) :=

∫ x1

0

g(t, x̄) dt.

Clearly f is smooth and, by the periodicity of g, for t ∈ [0, 1) and l ∈ Z, (below the
computation for l ∈ N, the other case being analogous), we have

f(t+ l, x̄) =

∫ t+l

0

g(s, x̄) ds =

l−1∑
i=0

∫ i+1

i

g(s, x̄) ds+

∫ t+l

l

g(s, x̄) ds

= l f(1, x̄) + f(t, x̄).(5.14)

For every x̄ ∈ Rn−1, setting lx̄ = {(t, x̄) : 0 ≤ t ≤ 1}, it holds

(5.15) f(1, x̄) ≥ 1−H1(lx̄ ∩ F2γ).

Since no ν ∈ NS is orthogonal to e1, each lx̄ intersects transversally a bounded
number of faces, so that there exists a constant C > 0 such that H1(lx̄∩F2γ) ≤ Cγ
for every γ > 0. By (5.15), for γ small enough, the function

ψ(x1, x̄) :=
f(x1, x̄)

f(1, x̄)

is well defined and smooth. From (5.14) it follows that

ψ(l + t, x̄) = l + ψ(t, x̄).

In particular, ψ(l, x̄) = l and ∇ψ is Zn-periodic with ∂ψ
∂x1

(x) = f(1, x̄)−1g(x).
Therefore, from the choice of g, we have

(5.16) 0 ≤ ∂ψ

∂x1
≤ 1

1− C γ
∀ x ∈ Rn and

∂ψ

∂x1
(x) = 0 for x ∈ Fγ .

Now, for every k ∈ N, consider the horizontal rescaling τk : Rn → Rn given by
τk(x1, x̄) =

(
x1

k , x̄
)
. We claim that, for sufficiently large k,

ϕ(x) := k−1ψ(k x1, x̄) and T = {Ti}, with Ti := τk(Si),

satisfy the conclusions of the proposition for a suitable δ. Indeed, T is clearly
periodic and ϕ(l, x̄) = k−1ψ(k l, x̄) = l, thus proving (5.12). Setting F ′ = ∪i∂Ti,
from (5.16) we deduce that ∂ϕ

∂x1
(x) = ∂ψ

∂x1
(k x1, x̄) satisfy

(5.17)

0 ≤ ∂ϕ

∂x1
≤ 1

1− C γ
∀ x ∈ Rn and

∂ϕ

∂x1
(x) = 0 for x ∈ F ′γ/k = τk(Fγ).

Moreover, using the periodicity of ∇ψ,

(5.18)

∣∣∣∣ ∂ϕ∂xj
∣∣∣∣ ≤ k−1‖∇ψ‖C0 , ∀ j 6= 1.

Given now θ > 0, we can choose γ, k and δ in the following way:

γ ≤ θ

C
, k ≥ ‖∇ψ‖C

0

θ
and δ ≤ γ

k
,

so that, from (5.17) and (5.18), the lemma follows. �
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Remark 5.7. We note here that, given T and ϕ as in Proposition 5.6, for every
k ∈ N, the following functions and triangulations,

ϕk(x) := k−1ϕ(kx) and T k = {T ki }i∈N,

where T ki = k−1Ti, satisfy the same conclusions as in Proposition 5.6 with δk = δ/k:

ϕk(l, x̄) = l ∀ x̄ ∈ Rn−1, ∀ l ∈ Z;(5.19) ∣∣∣∣∂ϕk∂xj

∣∣∣∣ ≤ θ ∀ x ∈ Rn, j 6= 1;(5.20)

0 ≤ ∂ϕk
∂x1

(x) ≤ 1

1− θ
∀ x ∈ Rn and

∂ϕk
∂x1

(x) = 0 ∀ x ∈ Fδk .(5.21)

5.3. Proof of Proposition 5.1. In light of the Kirszbraun extension theorem, it
suffices to show that, given a short map f : Rn → Rn and η > 0, there exists
h ∈ Fε(x, y,K) such that ‖f − h‖C0(K) ≤ η.

There is no loss of generality in assuming that x = 0, y = e1 and K ⊂ BR for
some R > 0. We construct h as the result of successive approximations.
Step 1: Mollification. We consider first the map f1 = (1 − 2 θ) ρθ ∗ f , where
θ > 0 is a real number to be fixed later. Clearly,

f1 ∈ C∞(Rn), Lip(f1) ≤ 1− 2 θ,

and

‖f − f1‖C0(B2R) ≤ ‖f − ρθ ∗ f‖C0(Rn) + 2 θ ‖ρθ ∗ f‖C0(B2R)

≤ θ
(
1 + 2 ‖f‖C0(B2R+θ)

)
.(5.22)

Step 2: Piecewise affine approximation. Next, we approximate f1 uniformly
by a piecewise affine map f2. To this aim, consider the periodic triangulation T
given by Proposition 5.6. Note that, by periodicity, there exist σ, r > 0 such that,
for every Ti ∈ T ,

Br(x̄i) ⊂ Ti ⊂ Bσr(x̄i), with x̄i barycenter of Ti.

Choose k ∈ N such that

(5.23)
4 r σ2 ‖∇2f1‖C0(B2R)

k
< θ and

4 r σ

k
≤ θ,

and consider f2 the piecewise affine approximation of f1 subordinated to the rescaled
triangulation T k in Remark 5.7. From Lemma 5.4, it follows that f2|Tki is short for

every T ki ⊂ B2R because

Lip(f2|Tki ) ≤ Lip(f1)+Lip((f2−f1)|Tki ) ≤ 1−2 θ+
4 r σ2 ‖∇2f1‖C0(B2R)

k

(5.23)

≤ 1−θ.

Moreover, always for T ki ⊂ B2R,

(5.24) ‖f2 − f1‖C0(Tki ) ≤
(
Lip(f2) + Lip(f1)

)
diam(T ki ) ≤ 4 r σ

k

(5.23)

≤ θ.

Step 3: Laminations. Finally, in every T ki ⊂ B2R we replace f2 by the single
lamination construction in Proposition 5.2. Since the boundary data for each sim-
plex is the same of f2, gluing all the constructions together, we obtain a short map
f3 defined on the union of the T ki ⊂ B2R. Moreover, we take θ small enough in
order to assure that the boundary of the rescaled simplices T kiθ by a factor (1− θ)
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and with the same barycenter of T ki belongs to the δk-neighborhood of the faces of
T k, i.e. (notation as in Remark 5.7)

∂T kiθ ⊂ Fδk .

With this assumption, by Proposition 5.2, the function f3 satisfies:
(5.25)

‖f3 − f2‖C0(BR) ≤ θ, Lip(f3) ≤ 1− θ

2
and (1− θ)

∫ 1

0

|γ̇1(t)|dt ≤ `(f3 ◦ γ),

for every rectifiable γ = (γ1, . . . , γn) : [0, 1]→ Rn \ Fδk .
We set h := f3|K . Clearly, from (5.22), (5.24) and (5.25), it follows that

(5.26) ‖h̄− f̄‖C0(K) ≤ θ(3 + 2 ‖f̄‖C0(B2R+θ)).

So, up to choosing θ suitably small, we need only to show that h ∈ Fε(x, y,K).
Let γ ∈ ΓK(x, y). We start noticing that there exist finitely many pairwise disjoint
open intervals Il, Jm ⊂ [0, 1] such that

γ(Il) ⊂ Rn \ Fδk and γ(Jm) ⊂ Fδk ,

and

(5.27)
∑
l

`(γ|Il) +
∑
m

`(γ|Jm) ≥ `(γ)− θ.

Therefore, we can estimate the length of h◦γ as follows: letting ϕk be the function
in Remark 5.7,

`
(
h ◦ γ

)
≥
∑
l

`
(
h ◦ γ|Il

) (5.25)

≥ (1− θ)
∑
l

∫
Il

|γ′1|
(5.21)

≥ (1− θ)2
∑
l

∫
Il

∣∣∣∣∂ϕk∂x1
(γ) γ′1

∣∣∣∣
(5.21)

= (1− θ)2
∑
l

∫
Il

∣∣∣∣∂ϕk∂x1
(γ) γ′1

∣∣∣∣+ (1− θ)2
∑
m

∫
Jm

∣∣∣∣∂ϕk∂x1
(γ) γ′1

∣∣∣∣
(5.21)+(5.27)

≥ (1− θ)2

∫ 1

0

∣∣∣∣∂ϕk∂x1
(γ) γ′1

∣∣∣∣− θ (1− θ)

≥ (1− θ)2

∫ 1

0

|(ϕk ◦ γ)′| −
n∑
j=2

∣∣∣∣∂ϕk∂xj
(γ) γ′j

∣∣∣∣
− θ (1− θ)

(5.20)

≥ (1− θ)2
(
ϕk(γ(1))− ϕk(γ(0))

)
− (n− 1) `(γ) θ (1− θ)2 − θ (1− θ)

= (1− θ)2 − θ (1− θ)
[
(n− 1) `(γ) (1− θ) + 1

]
.(5.28)

Therefore, from (5.28) we deduce that there exists θ = θ(ε) > 0 such that `(h◦γ) ≥
(1− ε) if `(γ) ≤ ε−1. Since the condition defining Fε(x, y,K) is always satisfied if
`(γ) > ε−1, this implies that h ∈ Fε(x, y,K) and finishes the proof.

6. Typical extensions

In this section we prove Theorem 2.2 which we restate for convenience.

Theorem 6.1. Let f : K → Rn be a short map, with K ⊂ Rn compact. Set

Xf :=
{
F ∈ Lip1(Rn,Rn) : F |C(f,K) = f̄

}
,

where f̄ denotes the unique short extension of f to C(f,K). Then

Xf ∩ I(Rn \ C(f,K)) is residual in Xf .



EQUIDIMENSIONAL ISOMETRIC MAPS 19

Proof. Let {Bi}i∈N be a countable family of closed balls Bi ⊂ Rn \ C(f,K) whose
interiors cover Rn \ C(f,K). By Lemmas 3.2, 3.3 and 3.5, we have that

I(Rn \ C(f,K)) ∩Xf ⊃
⋂
k∈N

⋂
i∈N

⋂
x,y∈Bi∩Qn

F1/k(x, y,Bi) ∩Xf .

Therefore, in view of Lemma 3.4, it is enough to prove that Xf ∩ F1/k(x, y,Bi) is
dense in Xf . For simplicity of notation we drop the subscript i, Bi = B and show
that, for every F ∈ Xf , η > 0 and ε > 0, there exists a map G ∈ Xf ∩ Fε(x, y,B)
such that

(6.1) ‖F −G‖C0(Rn) ≤ η.
We divide the proof in several steps.

Step 1: local strictly short approximation. By Lemma 4.2 and Proposition 4.4
we can fix a locally strictly short extension h : Rn → Rn of f̄ . Let R > 0 be such
that C(f,K) ∪B ⊂ BR and η1 > 0 to be fixed later.

If F |B2R
≡ 0, set F1 := F . Otherwise, assuming that F |B2R

6≡ 0, fix t > 0
arbitrary such that

t <
η1

‖h‖C0(B2R) + ‖F‖C0(B2R)
,

and define the function F1 : B2R → Rn given by F1 = (1 − t)F + t h: clearly in
either case

F1|C(f,K) = f̄ ,(6.2)

‖F − F1‖C0(B2R) ≤ η1,(6.3)

Lip(F1|B) ≤ (1− t) Lip(F ) + tLip(h|B) ≤ 1− α,(6.4)

for some 0 < α < 1, because h is strictly short in B.

Step 2: global extension. Next we extend F1 to the entire Rn keeping close to
F . To this aim, consider the function F ′ : Rn \B2R → Rn given by

F ′(x) := F

(
x

(
1− τ

1 + |x|

))
,

for some τ > 0 to be fixed momentarily. It is simple to verify that

(6.5) ‖F − F ′‖C0(Rn\B2R) ≤ τ.
Moreover, F ′ is locally strictly short: indeed,

|F ′(x)− F ′(y)| ≤
∣∣∣∣x(1− τ

1 + |x|

)
− y

(
1− τ

1 + |y|

)∣∣∣∣
=

∣∣∣∣∣(x− y)

(
1−

τ
(
1 + |x|

)(
1 + |x|

)(
1 + |y|

))+
τ x
(
|x| − |y|

)(
1 + |x|

)(
1 + |y|

) ∣∣∣∣∣
≤ |x− y|

(
1−

τ
(
1 + |x|

)(
1 + |x|

)(
1 + |y|

))+ |x− y| τ |x|(
1 + |x|

)(
1 + |y|

)
= |x− y|

(
1− τ(

1 + |x|
)(

1 + |y|
)) < |x− y|.

Next, consider the map given by

F ′′ :=

{
F1 in B2R− 2τR

1+2R
,

F ′ in Rn \B2R.

We claim that F ′′ is locally strictly short outside C(f,K). Since F1 and F ′ are
locally strictly short, it is enough to consider z ∈ ∂B2R− 2τ R

1+2R
and w ∈ ∂B2R and
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estimate |F ′′(z)−F ′′(w)|. To this aim, we set w̃ := w
|w| (2R−

2 τ R
1+2R ) and note that

there exists β(τ,R) > 0 such that

(6.6)
|z − w̃|
|z − w|

≤ 1− β ∀ z ∈ ∂B2R− 2τ R
1+2R

, ∀ w ∈ ∂B2R.

Indeed, for every fixed w ∈ ∂B2R, one can consider the function Φ(z) := |z−w̃|
|z−w| and

notice that Φ is continuous on ∂B2R− 2τ R
1+2R

and Φ(z) < 1 for every z. Therefore,

by compactness of the sphere, Φ has a maximum which is strictly less then 1 and
is independent of w because of rotational invariance. We can, hence, estimate as
follows:

|F ′′(z)− F ′′(w)| ≤ |F1(z)− F1(w̃)|+ |F1(w̃)− F ′(w)|
= |F1(z)− F1(w̃)|+ |F1(w̃)− F (w̃)|
(6.3)

≤ |z − w̃|+ η1

(6.6)

≤
(

1− β

2

)
|z − w|,

provided η1 ≤ β τ R
1+2R . In particular, this implies that there exists θ > 0 such that

Lip

(
F ′′|(B3R\B2R)∪B

2R− 2τR
1+2R

)
≤ 1− θ.

Using the Kirszbraun extension theorem, we can hence extend F ′′ to a strictly short
map F ′′′ on B3R, and finally set

F2 :=

{
F ′′′ in B3R,

F ′ in Rn \B3R.

Observe that, by construction,

(6.7) Lip (F2|B3R
) ≤ 1− θ.

Moreover, for every z ∈ B2R \B2R− 2τR
1+2R

, setting z̃ := z
|z| (2R−

2 τ R
1+2R ), we have

|F2(z)− F1(z)| ≤ |F2(z)− F2(z̃)|+ |F1(z̃)− F1(z)| ≤ 2 |z − z̃| ≤ 4 τ R

1 + 2R
< 2 τ.

It follows, then, that

‖F2 − F‖C0(Rn) = max
{

2 τ + ‖F1 − F‖C0(B2R), ‖F ′ − F‖C0(Rn\B2R)

}
≤ 2 τ + η1.(6.8)

Step 3: almost isometric approximation. Using Proposition 5.1, we find
F iv ∈ Lip1(B2R,Rn) ∩ Fε(x, y,B) such that

(6.9) ‖F iv − F2‖C0(B2R) ≤ θ η2,

for some η2 > 0 to be fixed soon. For now we merely assume that η2 satisfies the
following: setting B = Br(x), we require B′ = Br+η2(x) ⊂ B2R \ C(f,K).

Next, we verify that the map

F v :=

{
F iv in B,

F2 in B2R \B′,
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is Lipschitz continuous with Lip(F v) ≤ 1. Indeed, arguing as before, it is enough
to consider the case of z ∈ B and w ∈ B2R \B′ and estimate as follows:

|F v(z)− F v(w)| ≤ |F2(z)− F2(w)|+ |F2(z)− F iv(z)|
(6.7)+(6.9)

≤ (1− θ) |w − z|+ θ η2

≤ (1− θ) |w − z|+ θ |w − z| ≤ |w − z|.
Using Kirszbraun’s Theorem, we extend F v to a short map F3 on the whole Rn.
As before, for every z ∈ B′ \B, taking w ∈ ∂B′ with |w − z| ≤ η2, we get

|F3(z)− F2(z)| ≤ |F3(z)− F3(w)|+ |F2(w)− F2(z)| ≤ 2 |w − z| ≤ 2 η2.

It follows, then, from (6.9) that

(6.10) ‖F2 − F3‖C0(Rn) = max
{
‖F iv − F2‖C0(B), 2 η2

}
≤ 2 η2.

We can now conclude that the function G := F3 is an approximation for our
initial function F . Indeed, G ∈ Xf since by (6.2) G|C(f,K) = F1|C(f,K) = f̄
and Lip(G) ≤ 1. Moreover, G ∈ Fε(x, y,B) because G|B = F3|B and F3 ∈
Lip(B2R,Rn) ∩ Fε(x, y,B). Finally, putting together (6.8) and (6.10), we conclude
(6.1) by choosing suitably τ, η1 and η2 in this order. �

For later use we state the following immediate corollary of Theorem 2.2.

Corollary 6.2. Let Ω ⊂ Rn be an open and bounded set, and let h : Ω→ Rn be a
given Lipschitz map with Lip(h) ≤ L for some L > 0. Then, for every η > 0 and
M > L, there exists a map g : Ω → Rn such that g|∂Ω = h, ‖g − h‖C0(Ω) ≤ η and
every rectifiable curve γ : [0, 1]→ Ω satisfies `(g ◦ γ) = M `(γ).

Proof. The proof follows easily applying Theorem 2.2 to K := ∂Ω and f = g/M
(note that from the condition Lip(h) ≤ L < M it follows that C(f,K) = K). �

7. Generic restrictions

In this section we prove Theorem 2.3. We start with the following proposition
on the genericity of LSSE maps.

Proposition 7.1. Let K ⊂ Rn be a compact set. Then, the typical short map in
Lip1(K,Rn) admits an extension to the whole Rn, which is locally strictly short on
Rn \K.

Proof. We construct a residual set of LSSE maps in Lip1(K,Rn). For every ε > 0,
let Kε denote the open ε-neighborhood of K. Let moreover Gε ⊂ Lip1(K,Rn) be
the set of short maps f : K → Rn with this property: there exists L < 1 and there
exists h : Rn \Kε → Rn such that Lip(h) ≤ L and

(7.1) |h(z)− f(y)| ≤ L |z − y| ∀ z ∈ Rn \Kε, ∀ y ∈ K.

Note that Gε is open in Lip1(K,Rn): indeed, if ‖f ′ − f‖C0(K) ≤ (1−L)ε
2 , then, for

z /∈ Kε and y ∈ K, we have

|h(z)− f ′(y)| ≤ |h(z)− f(y)|+ |f(y)− f ′(y)|

≤ L |z − y|+ 1− L
2

ε ≤ 1 + L

2
|z − y|,

thus implying that f ′ ∈ Gε because 1+L
2 < 1. On the other hand, Gε is also dense.

Indeed, as a consequence of Kirszbraun’s theorem all strictly short maps from K
to Rn belong to Gε, and the set of strictly short maps on a compact set is dense
in the set of short maps (indeed, given f ∈ Lip1(K,Rn), λ f with λ < 1 is strictly
short and converges uniformly to f as λ tends to 1).
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We show that the residual set

G :=
⋂

Q3ε>0

Gε

is made of LSSE maps, thus proving the proposition. Indeed, let g ∈ G. By
definition, for every εk = 2−k there exists a function hk : Rn \Kεk → Rn satisfying
(7.1). Let Hk be the Kirszbraun extension (i.e. with optimal Lipschitz constant) of
the map

K ∪ (Rn \Kεk) 3 x 7→

{
hk(x) if x ∈ (Rn \Kεk),

g(x) if x ∈ K.
Note that by (7.1) the maps Hk are short. Set

f :=
∑
k

2−kHk.

The function f is a locally strictly short extension of g. Indeed, by construction
Lip(f) ≤ 1 and f |K = g. Moreover, for every open set B with B ∩ K = ∅,
Lip(f |B) < 1 because Lip(hk) < 1 for every k such that B ⊂ (Rn \Kεk). �

Proof of Theorem 2.3. Recall from Section 5 that for every xi 6= xj ∈ Qn and
ε,R > 0 the set Eε(xi, xj , B̄R) is defined as

Eε(xi, xj , B̄R) := {h ∈ Lip1(K,Rn) : ∃ f ∈ Fε(xi, xj , B̄R) s.t. f |K = h}.
By Lemma 3.4 and the openness of the restriction map (see [11, Theorem 2.2]),
Eε(xi, xj , B̄R) are open subsets of Lip1(K,Rn). Moreover, by Proposition 5.1,
these sets are also dense.

Let L be the set of LSSE maps g : K → Rn and recall that L is residual in
Lip1(K,Rn) by Proposition 7.1. We claim that every map in the residual set

F := L ∩
⋂

xi 6=xj∈Qn

⋂
Q3ε>0

⋂
R∈N\{0}

Eε(xi, xj , B̄R)

satisfies the conclusion of the theorem, i.e. is the restriction of an isometric map of
the entire space.

To show this, let f ∈ F . In view of Theorem 2.2 and Proposition 4.4, there
exists an extension F : Rn → Rn of f such that F |Rn\K ∈ I(Rn \K). We want to
prove that actually F ∈ I(Rn).

Fix any curve γ : [0, 1] → Rn. We can assume without loss of generality that γ
is parametrized by arc-length. Set

U := γ−1(Rn \K) and V := γ−1(K).

Since F |Rn\K ∈ I(Rn \K), it follows that |(F ◦ γ)′| = 1 for a.e. t ∈ U . We need
only to show that |(F ◦ γ)′| = 1 for a.e. t ∈ V .

We argue by contradiction. Assuming the above claim is false: there exists a
compact set W ⊂ V and 0 < η < 1 such that

L1(W ) > 2 η and |(F ◦ γ)′| = |(f ◦ γ)′| < 1− 2 η for a.e. t ∈W.
It then follows that

(7.2)

∫ 1

0

|(F ◦ γ)′(t)| dt ≤ 1− 2 η + (1− 2 η) 2 η = 1− 4 η2.

Consider next a partition t0 = 0 < t1 < . . . < tm = 1 such that

γ(ti) 6= γ(ti−1) ∀ i ∈ {1, . . . ,m}(7.3)
m∑
i=1

|γ(ti)− γ(ti−1)| > 1− η2.(7.4)
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Then, by elementary algebra, from (7.2), (7.3) and (7.4) it follows that

min
i∈{1,...,m}

`(F ◦ γ|[ti−1,ti])

|γ(ti)− γ(ti−1)|
≤
∑m
i=1 `(F ◦ γ|[ti−1,ti])∑m
i=1 |γ(ti)− γ(ti−1)|

≤ 1− 4 η2

1− η2
< 1− 3 η2.

Let j ∈ {1, . . . ,m} be such that

(7.5)
`(F ◦ γ|[tj ,tj−1])

|γ(tj)− γ(tj−1)|
< 1− 3 η2.

Fix next ε > 0 satisfying the following conditions:

ε ≤ η2|γ(tj)− γ(tj−1)|(7.6)

ε

(
1 +

`(γ) + ε

|xj − xj−1|

)
≤ η2.(7.7)

Consider two points xj and xj−1 ∈ Qn such that

(7.8) |γ(tj)− xj |+ |γ(tj−1)− xj−1| ≤ ε
and, since f ∈ F , a function F̄ ∈ Fε(xj , xj−1, B̄R) such that F̄ |K = f . Then, since
F̄ |K = F |K and |(F̄ ◦ γ)′|U | ≤ 1 = |(F ◦ γ)′|U |, we deduce from (7.5) that

(7.9)
`(F̄ ◦ γ|[tj−1,tj ])

|γ(tj)− γ(tj−1)|
< 1− 3 η2

Let γ̄ be the curve obtained concatenating the straight segment from xj−1 to
γ(tj−1), γ|[tj−1,tj ] and the straight segment from γ(tj) to xj , i.e.

γ̄ := [γ(tj−1), xj−1] · γ|[tj−1,tj ] · [xj , γ(tj)].

Then we calculate:

`(F̄ ◦ γ̄)

|xj − xj−1|
(7.8)

≤
`(F̄ ◦ γ|[tj−1,tj ] + ε)

|γ(tj)− γ(tj−1)|−ε

≤

(
`(F̄ ◦ γ|[tj−1,tj ])

|γ(tj)− γ(tj−1)|
+

ε

|γ(tj)− γ(tj−1)|

)(
|γ(tj)− γ(tj−1)|
|γ(tj)− γ(tj−1)| − ε

)
(7.5)+(7.6)

≤
(
1− 3 η2 + η2

) 1

1− η2
< 1− η2

(7.7)

≤ 1− ε
(

1 +
`(γ|[tj−1,tj ]) + ε

|xj − xj−1|

)
(7.8)

≤ 1− ε− ε `(γ̄)

|xj − xj−1|
.(7.10)

On the other hand (7.10) implies that F̄ /∈ Fε(xj , xj−1, B̄R), which is the desired
contradiction. �

8. Isometric embedding of Riemannian manifolds

Now we proceed with the proof of Theorem 2.4. In this section M is a smooth
manifold of dimension n (with or without boundary) and g ∈ T 2(M) is a continuous
Riemannian metric (i.e. a symmetric and positive definite 2-tensor field).

8.1. Locally strictly short maps. The following general density result is used in
the proof of Theorem 2.4. Denote by Lip<1,loc(M,Rn) the space of locally strictly
short maps:

Lip<1,loc(M,Rn) =
{
f ∈ Lip1(M,Rn) : Lip(f |A) < 1 ∀A ⊂⊂M

}
.

Lemma 8.1. The set of locally strictly short maps Lip<1,loc(M,Rn) is dense in
Lip1(M,Rn).
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Proof. For every short map f ∈ Lip1(M,Rn) and every ε > 0, we show that there
exists h ∈ Lip<1,loc(M,Rn) such that D(f, h) ≤ ε. Fix a point p0 ∈ M . Without
loss of generality, we may assume that f(p0) = 0. We claim that the map

h(p) = f(p)

(
1− ε

1 + dM (p, p0)

)
fulfills the requirements. Observe first that

D(h, f) = sup
p∈M

ε |f(p)|
1 + dM (p, p0)

= sup
p∈Mn

ε |f(p)− f(p0)|
1 + dM (p, p0)

≤ ε dM (p, p0)

1 + dM (p, p0)
≤ ε.

Therefore, we need only to show that h ∈ Lip<1,loc(M,Rn). To this end, setting
for brevity of notation d(p) = dM (p, p0), we notice that for any p, q ∈M ,

h(p)− h(q) = (f(p)− f(q))

(
1− ε

1 + d(p)

)
− f(q)

(
ε

1 + d(p)
− ε

1 + d(q)

)
= (f(p)− f(q))

(
1− ε

1 + d(p)

)
− f(q)

ε (d(q)− d(p))

(1 + d(p)) (1 + d(q))
.

Hence, it follows that

|h(p)− h(q)| ≤ dM (p, q)

(
1− ε

1 + d(p)
+

ε d(q)

(1 + d(p)) (1 + d(q))

)
= dM (p, q)

(
1− ε

(1 + d(p)) (1 + d(q))

)
.(8.1)

Given any compact set A ⊂⊂M , there exists C > 0 such that supp∈A dM (p, p0) ≤
C. It follows from (8.1) applied to p, q ∈ A that

Lip(h|A) ≤ 1− ε

(1 + C)2
< 1

thus implying h ∈ Lip<1,loc(M,Rn). �

8.2. Local bi-Lipschitz approximations. For the proof of Theorem 2.4 we need
also the following simple technical lemma.

Lemma 8.2. Let (B, h) be a Riemannian manifold with continuous metric tensor
h, where B ⊂ Rn denotes either the ball B2 centered at the origin or the half ball
B2 ∩ {xn ≥ 0}. For every β > 0 there exists r ∈ (0, 1) with this property: for every
p ∈ B̄1 ∩B there exists a diffeomorphism Φ : Br(p)→ U for some convex open set
U ⊂ Rn such that Φ∗g0 = h(p) with g0 the standard flat Euclidean metric of Rn
and Φ is bi-Lipschitz with

(8.2) Lip(Φ) ≤ 1 + β and Lip(Φ−1) ≤ 1 + β.

Proof. Let G : B → Rn×nsym,+ be the matrix-field corresponding to the metric tensor

h: namely, Rn×nsym,+ denotes the positive definite symmetric n×n matrices such that

h(v, w) = (Gv) · w

where we recall · is the standard scalar product in Rn. By the continuity of G and
the compactness of B̄1 ∩B, there exists r ∈ (0, 1) such that

(8.3)
G(y)

(1 + β)2
≤ G(x) ≤ (1 + β)2G(y) ∀ x, y ∈ B̄1 ∩B, dh(x, y) ≤ 4 r

where the above inequalities are meant in the sense of quadratic forms.
Fix now any p ∈ B̄1 ∩ B. By the spectral theorem we can find R ∈ O(n) and

D ∈ Rn×n a positive definite diagonal matrix such that G(p) = RTD2R. We can
then define Φ to be the linear map Φ(x) := L(x − p) where L = RTD−1. Clearly
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U := Φ(Br(p)) is convex and it is very simple to verify that Φ∗g0 = h(p): indeed
for every v, w ∈ Rn

h(p)
(
DΦ(p)v,DΦ(p)w

)
= G(p)RTD−1v ·RTD−1w = v · w.

In order to estimate the Lipschitz constant of Φ, consider two points x, y ∈ Br(p),
0 < η < r arbitrary and γ ∈ Γ(x, y,B) such that `h(γ) ≤ dh(x, y) + η. Then for
every t ∈ [0, 1] we have

dh(p, γ(t)) ≤ dh(p, γ(0)) + dh(γ(0), γ(t)) ≤ dh(p, x) + `h(γ)

≤ dh(p, x) + dh(x, y) + η ≤ 4 r.

Hence (8.3) is applicable and implies that h(p) ≤ (1+β)2h(γ(t)) as quadratic forms,
or equivalently g0 ≤ (1 + β)2(Φ−1)∗h(γ(t)). One can therefore estimate

|Φ(x)− Φ(y)| ≤ `g0(Φ ◦ γ) =

∫ 1

0

|(Φ ◦ γ)′(t)| dt

≤ (1 + β)

∫ 1

0

|γ′(t)|h(γ(t)) dt = (1 + β)`h(γ)

≤ (1 + β)
(
dh(x, y) + η

)
.(8.4)

Since η > 0 arbitrary, we conclude that Lip(Φ) ≤ 1 +β. Vice versa we can consider
two points z, w ∈ U and the straight line σ : [0, 1] → U connecting z to w (note
σ([0, 1]) ⊂ U). Arguing as before, from (8.3) we have that h(γ(t)) ≤ (1 + β)(Φ)∗g0

from which

dh(z, w) ≤ `h(Φ−1 ◦ σ) =

∫ 1

0

|(Φ−1 ◦ σ)′(t)|h(Φ−1◦σ(t)) dt

≤ (1 + β)

∫ 1

0

|σ′(t)| dt = (1 + β)|z − w|(8.5)

i.e. Lip(Φ−1) ≤ 1 + β. �

8.3. Proof of Theorem 2.4. We fix a smooth atlas {(Ai, ϕi)}i∈N of M with the
following properties:

(a) Ai ⊂⊂M ;
(b1) ϕi(Ai) = B2 ⊂ Rn if Ai ∩ ∂M = ∅;
(b2) ϕi(Ai) = B2 ∩ {xn ≥ 0} ⊂ Rn if Ai ∩ ∂M 6= ∅;

(c) ∪i∈Nϕ−1
i (B1) = M .

Set Ci = ϕ−1
i (B̄1) and note that Ci is compact in M . By Lemmas 3.2, 3.3, 3.4 and

3.5 we have that

IM =
⋂
i∈N

⋂
k∈N

⋂
x 6=y∈Di

F 1
k

(x, y, Ci)

where Di = ϕ−1
i (Qn ∩ B̄1). It is then enough to show that Fε(x, y, Ci) is dense in

Lip1(M,Rn) for every ε > 0 and every x, y ∈ Ci. To simplify the notation, since
from now on the subindex i is fixed, we drop it and, moreover, we write B for either
B2 or B2 ∩ {xn ≥ 0}, according to the case occurring in (b1) or (b2).

We have then fixed the following notation:

A ⊂M, ϕ : A→ B and ϕ−1(B̄1 ∩B) = C.

We have to show that, given f ∈ Lip1(M,Rn) and η > 0, there exists F ∈
Fε(x, y, C) such that D(F, f) ≤ η. We divide the proof in different steps.

Step 1: locally strictly short approximation. Recalling that by Lemma 8.1
the inclusion

Lip<1,loc(M,Rn) ⊂ Lip1(M,Rn)
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is dense, we then find f0 ∈ Lip<1,loc(M,Rn) such that D(f0, f) ≤ η
2 . By the

definition of Lip<1,loc(M,Rn), there exists α > 0 such that Lip(f0|C) ≤ 1 − α.
Clearly, there is no loss of generality in assuming that α < ε.

Step 2: local bi-Lipschitz approximations. Let β > 0 be a parameter to be
fixed later and h := (ϕ−1)∗g the pull-back metric. One can then apply Lemma 8.2
to (B, h) and find r > 0 which satisfies the conclusion therein. By a simple volume
argument (recall that B is either B2 or the half ball B2 ∩ {xn ≥ 0}) there exists
a constant N = N(n) depending only on the dimension n, in particular not on r,
such that we can cover B by N families of pairwise disjoint open balls of radius r.

More precisely, for l = 1, . . . , N there exists Fl = {Br(pl,i)}m(l)
i=1 for some m(l) ∈ N

and pl,i ∈ B̄1 ∩B, such that

Br(pl,i) ∩Br(pl,j) = ∅ ∀ i 6= j and B ⊂
N⋃
l=1

m(l)⋃
i=1

Bl,i.

For every pair (l, i) above we let Φl,i : Br(pl,i) → Ul,i ⊂ Rn be the bi-Lipschitz
diffeomorphism given in Lemma 8.2, and we set Al,i := ϕ−1(Br(pl,i)).

Step 3: iterative procedure. We construct the map F : M → Rn as the result of
an iterative procedure which leads to a sequence of maps f0, f1, . . . , fN : M → Rn
(where N is the number of the families of the covering in the previous step) such
that F = fN ∈ Fε(x, y, C).

We set θ = η
2N and f0 given in Step 1, and construct the functions f1, . . . , fN

recursively satisfing the following:

Lipg(fk) ≤ (1 + β)3k(1− α)(8.6)

D(fk, f0) ≤ k θ(8.7)

`(fk ◦ γ) ≥ (1 + β) (1− α) `g(γ)(8.8)

for every k ≥ 1 and every rectifiable curve γ : [0, 1]→ ∪l≤k ∪i Al,i ⊂ C.
Note that (8.6) and (8.7) are clearly satisfied by f0. Given fk−1 satisfying (8.6),

(8.7) and (8.8) (only if k ≥ 1), we construct fk in the following way. We consider
the balls Br(pk,i) of Step 2 and set ψk,i : Uk,i → Rn given by

ψk,i = fk−1 ◦ Φ−1
k,i .

Using the bound on the Lipschitz constant of Φ−1
k,i in (8.2) and (8.6), one can verify

that

Lip(ψk,i) ≤ (1 + β)3k−2(1− α).

Hence we can use Corollary 6.2 and construct a map χk,i : Uk,i → Rn such that

Lip(χk,i) ≤ (1 + β) Lip(ψk,i) = (1 + β)3k−1(1− α),(8.9)

χk,i|∂Uk,i = ψk,i|∂Uk,i , ‖χk,i − ψk,i‖C0(Uk,i) ≤ θ,(8.10)

and for every rectifiable curve γ̃ : [0, 1]→ Uk,i

(8.11) `(χk,i ◦ γ̃) = (1 + β)3k−1(1− α) `(γ̃).

Then, we set fk : M → Rn,

fk(x) =

{
fk−1(x) if x ∈M \ ∪m(k)

i=1 Ak,i,

χk,i ◦ Φl,i(x) if x ∈ Ak,i for some i = 1, . . . ,m(k).

By (8.10) and the fact that the {Ak,i}i are disjoint open sets, fk is well-defined
and satisfies (8.7) by triangular inequality. Moreover (8.6) follows from (8.2) and
(8.9) straightforwardly. For what concerns (8.8) we argue as follows. Consider
γ : [0, 1]→ ∪l≤k∪iAl,i rectifiable. Set I = γ−1(∪iAk,i). Since the sets Al,i are open
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and disjoint, I is relatively open in [0, 1] and we can write I = ∪iJi with Ji disjoint
relatively open sets such that γ(Ji) ⊂ Ak,i for every i. Setting γ̃i = Φk,i ◦ γ|Ji , it
follows from the definition of fk that

`(fk ◦ γ|Ji) = `(χi ◦ γ̃i)
(8.11)

= (1 + β)3k−1(1− α) `(γ̃i)

(8.2)

≥ (1 + β)3k−2(1− α) `g(γi).

On the other hand, let H ⊂ [0, 1] \ I denote the set of points t such that I has
Lebesgue density 0 at t and there exist (fk ◦ γ)′(t), (fk−1 ◦ γ)′(t) with

|(fk−1 ◦ γ)′(t)| ≥ (1 + β)(1− α)|γ′(t)|g.
Note that H has full measure in [0, 1]\I thanks to the assumption of (8.8) for fk−1.
Since fk ◦ γ|H = fk−1 ◦ γ|H , it follows easily that, for every t ∈ H,

|(fk ◦ γ)′(t)| = |(fk−1 ◦ γ)′(t)| ≥ (1 + β) (1− α) |γ′(t)|g.
Therefore, (8.8) for fk follows from

`(fk ◦ γ) =
∑
i

`(fk ◦ γ|Ji) +

∫
[0,1]\I

|(fk ◦ γ)′(t)| dt

≥ (1 + β)3k−2 (1− α)
∑
i

`g(γi) + (1 + β) (1− α)

∫
H

|γ′(t)|g dt

≥ (1 + β) (1− α)

(∑
i

`g(γi) +

∫
H

|γ′(t)|g dt

)
= (1 + β) (1− α) `g(γ).

Clearly F = fN concludes the proof for

0 < β < 3N

√
1

1− α
− 1.

Indeed, Step 1, (8.7) and (8.6) imply D(F, f) ≤ η and Lip(F ) ≤ 1. Moreover Step
2, α < ε and (8.8) lead easily to F ∈ Fε(x, y, C). �
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[1] Richárd Balka and Viktor Harangi. Intersection of continua and rectifiable curves. Proceedings

of the Edinburgh Mathematical Society (Series 2), 57:339–345, 6 2014.
[2] Ulrich Brehm. Extensions of distance reducing mappings to piecewise congruent mappings

on Rm. J. Geom., 16(2):187–193, 1981.

[3] Alberto Bressan and Fabián Flores. On total differential inclusions. Rend. Sem. Mat. Univ.
Padova, 92:9–16, 1994.

[4] Arrigo Cellina. A view on differential inclusions. Rend. Semin. Mat. Univ. Politec. Torino,

63(3), 2005.
[5] Arrigo Cellina and Stefania Perrotta. On a problem of potential wells. J. Convex Analysis,

1995.

[6] Bernard Dacorogna and Paolo Marcellini. General existence theorems for Hamilton-Jacobi
equations in the scalar and vectorial cases. Acta Math., 178(1):1–37, 1997.

[7] Francesco Saverio De Blasi and Giulio Pianigiani. A Baire category approach to the existence
of solutions of multivalued differential equations in Banach spaces. Funkcial Ekvac, 1982.

[8] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-

senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[9] Mikhael Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik und

ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag,
Berlin, 1986.

[10] Bernd Kirchheim. Rigidity and Geometry of Microstructures. Habilitation Thesis, Univ.
Leipzig, 2003.
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[13] Stefan Müller and Vladimir Šverák. Attainment results for the two-well problem by convex

integration. In Geometric analysis and the calculus of variations, pages 239–251. Int. Press,

Cambridge, MA, 1996.
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