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INTRODUCTION

In the regularity theory for higher codimension minimal surfaces (in the
sense of mass minimizing integer rectifiable currents) a fundamental role is
played by the multiple valued functions introduced by Almgren in [2], which
turn out to be the correct blowup limits for the analysis of singularities (see
also [9, 10, 11, 12, 13] for a simplified new proof of this result).

Following [9], a @-valued function u is a measurable map from a bounded
open subset  C R™ (for simplicity we always assume that the boundary of €2
is smooth) taking values in the space of positive atomic measures in R™ with
mass (), namely

Q
Qoz—u(r) e Ag(R™) = {Zﬂpz]] D pi € Rm}a
=1

where [p] denotes the Dirac delta at p. Almgren proves in [2] (cp. also [13]) that
the blowups of higher codimension mass minimizing integral currents are actu-
ally graphs of @-valued functions u in a suitable Sobolev class W12 (2, Ag(R™))
minimizing a generalized Dirichlet energy (cp. [9, Definition 0.5]):

[ 1Du < [ IDoP v o e W9, Ag(R™). vlan = ulon,

(explicit examples of Dir-minimizing @Q-valued functions are given in [20]).

In order to estimate the size of the singular set of a minimizing current it is
essential to bound the dimension of the set of points where the graph of a Dir-
minimizing @)-valued function has higher multiplicity. Almgren’s main result in
the analysis of multiple valued functions is in fact an estimate of the Hausdorff
dimension of the set of ) points, which turns out not to exceed n — 2 in the
case it does not coincide with €.
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In this paper we improve Almgren’s result by showing an estimate of the
Minkowski dimension of the set Ag of multiplicity @ points of a Dirichlet
minimizing @-valued function u, i.e. the set of points x € €2 such that u(z) =
Q [p] for some p € R™ (cp. [9, Proposition 3.22]). To this aim we denote by
T-(E) := {z € R" : dist(z, E) < r} the tubular neighborhood of a given set
E C R" of radius 7.

Theorem A. Let u : Q — AQ(R™) be a Dir-minimizing function, where
Q C R" is a bounded open set with smooth boundary. Then either Ag = €1, or
for every Q' CC Q the Minkowski dimension of Ag N &Y is less than or equal
ton — 2, i.e. for every ' CC Q and for every kg > 0 there exists a constant
C > 0 such that

T (AN < CrP V0 <r< dist(Q,00). (0.1)

We also obtain a stratification result for the whole set of singular points of
multiple valued functions that, even if known to the experts, we were not able
to find in the literature. To this aim we introduce the following notation. Given
a Q-valued function u : Q — Ag(R™), we denote by Sing, C (2 its singular set,
i.e. g € Sing,, if and only if there exists » > 0 such that

graph(ulp, (o)) = {(2,y) € R™*™ |z — 20| <1, y € supp (u(x))}
is a smooth n-dimensional embedded submanifold (not necessarily connected).
For every k € {0,...,n}, we define the subset Singﬁ of the singular set Sing,
made of those points having all tangent functions with at most k£ independent
directions of invariance (we refer to § 4.4 for the precise definition).

Theorem B. Let u : Q@ — AQ(R™) be a Dir-minimizing function, where
Q C R" is a bounded open set with smooth boundary, and let Singﬁ be the

singular strata defined in § 4.4. Then, Sing, = Sing” 2 and
Sing® s countable (0.2)
dimy(Sing®) <k Vke{l,...,n—2}. (0.3)

In the case () = 2 a more refined analysis by Krummel and Wickramasekera
[16] shows the rectifiability of the singular set, remarkably improving Almgren’s
work.

We prove Theorem A and B as a consequence of a general regularity result,
contained in Section 1 below, following the approach originally introduced by
Cheeger and Naber in [4] in a different framework. The results in Theorem 1.2
are indeed an abstraction of a quantitative stratification principle developed in
a series of papers by Cheeger and Naber [4, 5], Cheeger, Haslhofer and Naber
[6, 7] and Cheeger, Naber and Valtorta [8], in order to analyze the singular set
of solutions to several variational problems and to partial differential equations
arising mainly in geometric analysis.

There are a couple of examples of similar abstract formulations of stratifica-
tion principles: namely the general regularity result by Simon [18, Appendix
A] which generalizes the so called dimension reduction argument introduced by
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Federer in his pioneering work [15]; and the paper by White [22] which general-
izes the refinement of Federer’s reduction argument made by Almgren in his big
regularity paper [2]. The interest in finding general formulations of this kind
is driven by a number of important applications, such as those treated in the
present note and the ones considered in the above mentioned papers (note that
[6, 7] also concern with parabolic equations, a case that is not covered by our
abstract formulation). For this reason we also compare our abstract regularity
result to the one by White, showing how the latter follows from ours under very
natural hypotheses. In this respect, we stress that the stratification in [5] and
in our Theorem 1.4 can be applied to some cases not covered by the ideas in
[22], such as stationary harmonic maps (cp. [5, Corollary 2.6], § 1.7.2 and [22,
Section 6]).

Moreover in the final section we apply the abstract stratification principle to
varifolds with bounded mean curvature and almost mass minimizing currents
of codimension one, two relevant cases for applications which are not covered
by the results in [5].
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1. ABSTRACT STRATIFICATION

The general abstract approach we propose is based on two main sets of
quantities: namely, a family of density functions O, and an increasing family
of distance functions d.

1.0.1. Densities and distance functions. Let 2 C R™ be open and
bounded, and for every s > 0 set Q° := {x € Q : dist(x,00) > 2s}. We
assume the following.

(a) For every s such that Q° # (), there exist functions O5 € L (02%) such
that
0< @s(x) < @s’(x)a
for all 0 < s < s and for all € Q. Moreover, for every sy > 0 there
exists Ag = Ao(sp) > 0 such that

@s(x) < AOa

for every 0 < s < sy and for every x € 2%,
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(b) Setting U := {(z,s) : x € Q°, O¢(x) > 0}, there exist a positive integer
m < n and control functions dy : U — [0,400) for k € {0,...,m} such
that

do <dy <--- < dp.

1.0.2. Structural hypotheses. These two sets of quantities are then related
by the following structural hypotheses.

(i) For every sp > 0, &1 > 0 there exist 0 < A1(so,€1), m1(S0,€1) < /4 such
that if (x,s) € U, with € Q% and s < sg, then

Os(z) —Ors(z) <m = do(w,5) <er.

(ii) For every sg > 0, for every 9,7 € (0,1) there exists 0 < n2(sg,e2,7) <
g9 such that if (z,5s) € U, with z € 2% and 5s < sg, satisfies for some
ke{0,...,m—1}

dip(z,4s) <n2 and dpyq(x,45) > €2,
then there exists a k-dimensional linear subspace V for which
do(y,4s) >n2 Vy € Bg(x)\ Trs(x + V),

where Trs(x + V) := {2z : dist(z,2 + V) < 7s} is the tubular neighbor-
hood of x + V of radius 7s.

1.1. Volume of the neighborhoods of singular strata. The sets we con-
sider in our estimates are the following.

1.1.1. Definition (Singular Strata). For every 0 < 6 <1, 0 < r <1y and
for every k € {0,...,m — 1} we set

S,’f’m’(; ={zeQ:00(z) >0 and dppi(z,s)>6 Vr<s<re} (L1

and

Sfo’(; = ﬂ Sﬁ,ro,é and Sffo = U wa;. (1.2)

0<r<rg 0<o<1

Note that, by the monotonicity of the control functions, S¥ s C Sf,l g if 6" <0,
r<7 and k < k.

Our abstract stratification result relies on the following estimate for the tubu-
lar neighborhoods of the singular strata. Its proof is postponed to §2.

1.2. Theorem. Under the Structural Hypotheses 1.0.2, for every kg,d €
(0,1) and rg > 0 there exists C = C(ko,0,r9,m,Q) > 0 such that

I To(SEs) S Cr i vo<r<rg Vke{l,...,m—1} (1.3)

8790’5 is countable. (1.4)
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1.3. Hausdorff dimension of the singular strata. It is now an immediate
consequence of Theorem 1.2 the following stratification result.

1.4. Theorem. Under the Structural Hypotheses 1.0.2 for every ro > 0 the
estimate dimy (S ) < k holds for k € {1,...,m —1}. Moreover, SO, is count-
able.

PROOF. Indeed Theorem 1.2 implies that dimM(Sk ) < k, where dimp is
the Minkowski dimension. Since the Hausdorff dimensmn of a set is always less
than or equal to the Minkowski dimension, we also infer that

dimy (S ) < dimg, ( UES 5) <k
6>0

because, being the union monotone, it is enough to consider a countable set of
parameters. O

1.5. Minkowski dimension of the singular strata. The dependence of the
constant C'in (1.3) on 0 prevents the derivation of an estimate on the Minkowski
dimension of the singular strata Sfo. Nevertheless, if such dependence drops,
then Theorem 1.2 turns actually into an estimate on the Minkowski dimension of
the singular strata which is not implied by the Almgren’s stratification principle.

1.6. Theorem. Under the hypotheses of Theorem 1.2, if there exist k €
{0,...,m — 1} and 69 > 0 such that

Sk s=8F Ve (0,0), (1.5)

r0,0
then for every 0 < kg < 1 and ro > 0 there exists C = C(kg,d0,70,1,) > 0
such that
|7;(f)|<C'T”k”° VO<r<rg. (1.6)
k

In particular dimp (Sy) < k.

1.7. Examples. The meaning of the Structural Hypotheses 1.0.2 is very well
illustrated by the two familiar examples of area minimizing currents and sta-
tionary harmonic maps treated in [5] for which Theorem 1.2 and 1.4 hold.
Moreover for area minimizing currents of codimension one in R” Theorem 1.6
can be also applied for k =n — 8.

1.7.1. Area minimizing currents. Let T be an m-dimensional area minimizing
integral current in 2. Then we can set

Os(z) = ITI(B: () for s >0 and ©Og(z):= lim O,(z)

Wy 8™ rlo+
and for k € {0,...,m}
dj(z, s) := inf {F((Ty,s — C)LBy) : C is k-conical & area minimizing},

where
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e T, is the rescaling of the current around any point x € R" at scale

r>0:

T:Jc,r = (nx,r)#T (17)
and the push-forward is done via the proper map n,, given by y —
(v —2)/r;

e [ is the flat norm (see [18, § 31));
e an m-dimensional current C' in R" is k-conical for k € {0,...,m}, if

there exists a linear subspace V' C R™ of dimension bigger than or equal
to k such that

Tyr=Tforallr>0and x € V.

Note that a 0-conical current is simply a cone with respect to the origin.

One can choose Ag(rg) := M(T)/w,,rz>. Then (a) is a consequence of the Mono-
tonicity Formula (see [18, Theorem 17.6]) and (b) follows from the inclusion of
k-conical currents in the k’-conical ones when k' < k. With this choice, the
structural hypoteses in 1.0.2 are satisfied, indeed (i) is an other consequence
of the Monotonicity Formula and (ii) follows from a rigidity property of cones
sometimes called “cylindrical blowup” (see [18, Lemma 35.5]).

Then the quantitative stratification principle in Theorem 1.2 recovers the
corresponding result in [5]:

the set of points that are faraway from (k4 1)-conical area min-
imizing currents, at every scale in [r,ro], has Minkowski dimen-
ston less than or equal to k.

1.7.2. Stationary harmonic maps. Similarly let u € W1H2(2,.4") be a station-
ary harmonic map from an open set 2 C R” to a Riemannian manifold (.4, h)
isometrically embedded in some Euclidean space R? (see, e.g., [19]). We can
set

Os(z) = 52"/ \Vul*dy, s € (0,dist(z,09)),
Bs(z)
and for every k € {0,...,n}
dg(z,r) := inf ][ distil/ (um«, v)dy,
VEG) B
with
e Uy, (y) :=u(z +ry) for z € Q and r € (0, dist(z, 00));

e a measurable map v is said to be k-conical if there exists a vector space
V with dim V' > k that leaves v invariant, i.e.

v(z)=v(y+x) VeeR" yeV, (1.8)
and such that v is 0-homogeneous with respect to the points in V, i.e.
vly+x)=vly+Az) VeeR", yeVand A > 0; (1.9)

e ¢ :={v:By — .4 k-conical} .
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Assumption (a) in § 1.0.1 is easily verified and the monotonicity formula

" 9_n | Ou 2
O,(z) — O5(z) = t
s JOB¢(x)

—| an"at
ot

together with an elementary contradiction argument show that the Structural

hypothesis (i) in § 1.0.2 is satisfied. Moreover the structural hypothesis (ii)

follows similarly to the one for minimizing currents (cp. [5] for more details),

thus leading to the stratification of Theorem 1.2.

In Section 5 we give other applications of this abstract regularity result to
the case of varifolds with bounded variation and almost minimizers of the mass
in codimension one.

2. PROOF OF THE ABSTRACT STRATIFICATION AND COMPARISON WITH
ALMGREN’S STRATIFICATION

2.1. Preliminary results. To begin with, we state a simple consequence of
the Structural Hypothesis 1.0.2 (ii) in the following

2.1.1. Lemma. For every so > 0, for every e,7 € (0,1) there exists 0 <
Yo < € such that if (z,5s) € U, with x € Q% and 5s < sg, satisfies for some
ke{0,...,m—1}

do(7,4s) <7 and dgyi(z,4s) > ¢,
then there exists a linear subspace V' with dim(V') < k such that
y € Bs(z) & do(y,4s) <y = yeTs(x+V). (2.1)

PROOF. Let 79 <1 < ... < k41 be set as v = € and vj—1 = 12(50,75,7)
with 72 the constant in the Structural Hypothesis (ii). Let i € {0,...,k} be
the smallest index such that d;+1(z,4s) > vi+1 (which exists because of the
assumption dygi1(x,4s) > & = qx4+1). Then, applying the Structural Hypoth-
esis (ii) we deduce that there exists an i-dimensional linear subspace V' such
that every point y € Bg(x) with do(y,4s) < v < v belongs to the tubular
neighborhood 7;s(z + V). O

In the proof of Theorem 1.2 we shall repeatedly use the following elementary
covering argument.

2.1.2. Lemma. For every measurable set E C R™ with finite measure and
for every p > 0, there exists a finite covering {B,(x;) }icr of Tps(E) with x; € E

and -
5™ (F
HO(I) é ’ Po( )‘.
Wp P

ProOF. Consider the family of balls { B,/;(7)}zcr. By the Vitali 5r-covering
lemma, there exists a finite subfamily {B,;(z;)}icr of disjoint balls such that
Tojs(E) C User By(;). By a simple volume comparison we conclude (2.2). [0

(2.2)
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2.2. Proof of Theorem 1.2.

PROOF OF THEOREM 1.2. We start fixing a parameter 7 = 7(n, ko) > 0
such that
wa T <207 (2.3)
We choose the other constants involved in the Structural Hypotheses in the
following way:
(1) let v0 < 71 < ... <y, be such that v, = 6 and vj—1 = n2(ro,y;, 7) for
every j € {1,...,k} as in the Structural Hypothesis (ii);
(2) let Ay = A\ (70,70) and n1 = n1(70,Y0) be as in the Structural Hypothesis
1);
(3) 1Ei>)< q € N such that 77 < A;.
We divide the proof into four steps.

Step 1: reduction to dyadic radii. Let Ag = Ag(rp) given in 1.0.1. It suffices to
prove (1.3) for every r of the form r = % with p € N such that p > pg :=

g+ M+1and M := |qgAo/m]. Indeed for @ < s < rp we simply have

k 2]
[ Ts(Sgr0,6)| <19 < W
5

= Cs(ko, 0,70,m,2) g h—ro,

On the other hand, if we assume that (1.3) holds with a constant C; > 0 for

every r of the form r = =0 ® with p > po, we conclude that for r7 < s < r it
holds

n—k—ko

I To(Sery.6)l S TSPy 0) < Cor om0 < Oy ghtromn gnmhoso,

Therefore setting C' := max{r**"0~"C;, Oy} we deduce that (1.3) holds for
every r € (0,rp).

Step 2: selection of good scales. Fix a value p € N with p > pg as above and
set r = rom/5. For all (x,rg) € U we have

4 p l+g-1
Z @47l o (1:) - @4Tl+q ro (I) = Z Z @4Ti o (J:) - 947—i+1 ro (l’)
l=q l=q 1=l
pt+q—1

<gq Z (647-h 70 (.’L’) - 64Th+1 70 (x))
h=q

=q (@47—q7~0 (ZL‘) — @4.,—p+q o (ZL‘)) < qAO-

Therefore, there exist at most M indices [ € {q,...,p} for which it does not
hold that

Ot 1y(8) = Ouptva () <1t 2.4)
For any subset A C {q,...,p} with cardinality M we consider

Sp = {g: €5 5:(24) holds Vj ¢ A} .
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We prove in the next step that
I To(Sa)| < Crn k=2 (2.5)

for some C = C(ko,d,7r9,n,2) > 0. From (2.5) one concludes because the
number of subsets A as above is estimated by

— 1
(") < wmar ¥ < cliogn

for some C(kg, d,79,n) > 0, and

|7;“(S7I~€,r0,6)| < Z |7-(Sa)] < C|log r|Mr”_k_%0 < O pk—ko
A

for some C(kg, 8, r9,n,2) > 0.

Step 3: proof of (2.5). We estimate the volume of 7,(S4) by covering it itera-
tively with families of balls centered in S4 and with radii 77rq for j € {q,...,p}.
We can then proceed as follows. Firstly we consider a cover of Tra,y;(S4)
made of balls {Brary(z;)}ier, with 2; € Sy and by a straightforward use of
Lemma 2.1.2
HO(I,) < 5"r ™y " (diam(Q) + 1)".

Iteratively, for every j € {q¢ + 1,...,p}, we assume to be given the cover
{Bri-1ry (i) Yier,_, of Toi-1,,5(Sa), and we select a new cover of T, /5(S4)
which is made of balls of radii 7797y centered in S4 according to the following
two cases:

(a) ] —-1le Aa
(b) j—1¢ A.
Case (a). For every z; in the family at level j—1, using Lemma 2.1.2 we cover
SaNBri-1,,(x;) with finitely many balls B_i, ,(y) with y; € Sa 0 Brj-1,,(7;)
and the cardinality of the cover is bounded by

5" | B(ri=1471/10) ro (i)
wn (7'1o/2)"
(note that Toi,./10(Sa N Bri-1, (7)) C B(ri—1413/10)r, (). We claim next that
the union of B, ;, (y;) covers the tubular neighborhood

TTjTO (San Bﬂﬂm ().

5
Indeed for every z € T.i, /5(Sa N Brj-1,,(;)) there exists 2’ € Sa N Bj-1, (%)
such that |2 — 2/| < 7'ro/5. Since 2" € B.J, j,(y1) for some y;, then 2 € B, (y1)-
Therefore, collecting all such balls, the cardinality of the new covering is
estimated by

<2077

HO(I;) < 20" 77" HO(1;-1). (2.6)

Case (b). If j —1 ¢ A, then (2.4) holds with [ = 7 — 1. By the Structural
Hypothesis (i) and the choice of 1,71 in (2) and 7 in (3) at the beginning of
the proof, we have that do(z,477"'rg) < 7o for every x € S4. Since x; € Sy C
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Skro s we have also dj1 (@, 477 rg) > 5. We can then apply Lemma 2.1.1 and

”
conclude that

SANBj-1,4(x;) C Tripg (i + V) (2.7)
for some linear subspace V of dimension less than or equal to k. Note that
[ Trirg (23 + V) N Brimigg (€0))] < w7 |Brioay, (@) (2.8)

Thus applying Lemma 2.1.2 we find a covering of 7, /5(S4) with balls B, i (y)
such that y; € S4 and using (2.8) the cardinality of the covering is bounded by

HO(L;) < 10"w, HO(I;—1) T7F. (2.9)

In any case the procedure ends at j = p with a covering of Trr.,/5(S4) which
is made of balls { Brry,(2;)}ic1, such that z; € Sa and

HO(I,) < 5" "Iy " (diam(€2) + 1)"(2()” T*H)M (107w, T—k)p—q—M
< O 17 P (20"w, )P < O 7 P(E+T) (2.10)

with C' = C(kog, d,79,n,) > 0 and where we used (2.3) in the last inequality.
Estimate (2.5) follows at once

0 (2.10) o 10
T (Sa)| < H(Ip) [Brory| < Cr 7772,
for some C' = C(ko, 9, r9,n,$) > 0.
Step 4: proof of (1.4). Let j, be the smallest index such that (2.4) holds for
every j > j., and for every i € N set
A ={x eS8 5 : jo=1i}.

70,0

We will prove that A; is discrete, and hence 819075 is at most countable. Fix
x € A;. By the choice of the parameters applying the Structural Hypothesis (i)
it follows that do(x,4r977) < o for every j > 4. Since z € 8790’5, we can apply
Lemma 2.1.1 and infer that the points y € B, ., (x) satisfying do(y, 47077) < 7o
are contained in B, ,j+1(x). Therefore A; N B, .i(z) C B, .+ (x) for every
j > 1, which implies that A; is discrete. O

2.3. Almgren’s stratification principle. In this section we make the con-
nection to the approach to Almgren’s stratification principle by White [22].
Indeed under very natural assumptions the results by White for the time inde-
pendent case follow from ours.

2.3.1. White’s stratification criterion in its simplest formulation is based
on:

(a") an upper semi-continuous function f : 2 — [0, c0) defined on a bounded
open set 2 C R™;

(b’) for every x € 2 a compact class of conical functions G(x) according to
the following definition.
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2.3.2. Definition. (1) An upper semi-continuous map g : R™ — [0,00) is
conical if g(z) = ¢g(0) implies that g is positively 0-homogeneous with respect to
z, t.e.,

g(z+Az) =g(z+z) forallz € R" and A > 0.

(2) A class 9 of conical functions is compact if for all sequences (g;)ien € ¥
there exist a subsequence (gi;)jen and an element g € G such that

limsup g;; (vi;) < g(y) Yy €R", (yi)ien CR" with y; —y.

Jj—00
In particular a conical function is 0-homogeneous with respect to 0.

2.3.3. White’s Structural Hypotheses. The stratification theorem by
White is then based on the following two structural hypotheses:

() 9(0) = f(x) for all g € (a);
(ii") for all r; | O there exist a subsequence r;; | 0 and g € ¢¥(z) such that

limsup f(z + T'ijyj> <g(y) forally,y; € By withy; = y.

Jj—+oo
2.3.4. By the upper semi-continuity of any conical function g, the closed set
Syi= {2 €R": g(2) = g(0)}

is in fact the set of the maximum points of g. S, is called the spine of g.
Moreover S, is the largest vector space that leaves g invariant, i.e.,

Sg={2€R": g(y) =g(z +y) forall y € R"} (2.11)
(cp. [22, Theorem 3.1]). We set d(x) := sup{dim S, : g € ¥(x)}, and
Ypi={xeQ: f(z)>0,dx) < (]}
The stratification criterion in [22, Theorem 3.2] is the following.
2.4. Theorem (White). Under the Structural Hypotheses 2.3.3,
Yo s countable; (2.12)
dimy (X)) <€ Vee{l,...,n}, (2.13)
where dimy denotes the Hausdorff dimension.

The reader who is interested in the application of this criterion to the model
cases of area minimizing currents and harmonic maps is referred to [22].

2.4.1. Theorem 2.4 can be recovered from our Theorem 1.4 if we assume
the following relations between the Structural Hypotheses 1.0.2 and 2.3.3:

(1) f = ©o;
(2) for every x € Q, if

limd(z,r;) =0 for some (r;);en C (0, dist(z,09)),
J
then = ¢ ¥j_q.

Note that (1) and (2) are always satisfied in the relevant examples considered
in the literature.
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2.4.2. To prove that the conclusions of Theorem 2.4 are implied by Theo-
rem 1.4 it is enough to show that

sec | S (2.14)
ro>0
This means that for every rg > 0 and for every x € ¥, N " there exists 6 > 0
such that

depi(z,r) >0 YO<r<ry. (2.15)

Assume by contradiction that (2.15) does not hold, we find 7y and x as above
such that for a sequence r; € (0,79] we have dgy;(z,7;) L 0. Then by § 2.4.1
(2) x cannot belong to X.

3. PRELIMINARY RESULTS ON DIR-MINIMIZING Q-VALUED FUNCTIONS

We follow [9] for the notation and the terminology, which we briefly recall in
the following subsections.

The space of Q)-points of R is the subspace of positive atomic measures in
R™ with mass @), i.e.

Q
R™) := {Zﬂpi]] C s eRm}
=1

where [p;] denotes the Dirac delta at p;. Ag is endowed with the complete
metric G given by: for every T'= 3, [p;] and S = 3, [pi] € Ag(R™)

1/2
T S = E i
g( Hli%l ( |p po_( )

where & is the symmetric group of @ elements.

A @Q-valued function is a measurable map u : 2 = Ap(R™) from a bounded
open set @ C R™ (with smooth boundary 092 for simplicity). It is always
possible to find measurable functions w; : @ — R™ for i € {1,...,Q} such
that u(z) = >, [ui(z)] for a.e. z € Q. Note that the w;’s are not uniquely
determined: nevertheless, we often use the notation u = ), [u;] meaning an
admissible choice of the functions u;’s has been fixed. We set

1/2
|ul(z) := G(u(z), Q0]) = (Z |ui (@ > :
The definition of the Sobolev space W12((2, Ag) is given in [9, Definition 0.5]

and leads to the notion of approximate differential Du = ), [Dw;] (cp. [9,
Definitions 1.9 & 2.6]. We set

| Dul(x (Z | Dy ( )1/2
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and say that a function u € W12(Q, Ag(R™)) is Dir-minimizing if
/ |Duf? < / |Dv* Vv e Wh(Q), vlag = ulao
Q Q

where the last equality is meant in the sense of traces (cp. [9, Definition 0.7]).
By [9, Theorem 0.9] Dir-minimizing @-valued functions are locally Holder con-
tinuous with exponent 8 = B(n, Q) > 0.

In what follows we shall always assume that u € WH2(Q, Ag(R™)) is a
nontrivial Dir-minimizing function, i.e. u # @ [0], with

>y
nou:= — U;
Qi:l

As explained in [9, Lemma 3.23] the mean value condition in (3.1) does not
introduce any substantial restriction on the space of Dir-minimizing functions.
Moreover, in this case Ag reduces to the set {x € Q : u(z) = Q[0]}. Note
that, if v # Q [0], then Ag C Sing, by [9, Theorem 0.11].

0. (3.1)

3.1. Frequency function. We start by introducing the following quantities:
for every x € Q and s > 0 such that Bs(z) C Q we set

Dy(z,s) := /B( )\Du!Z

)= | N

s Dy(x, )
Hy(z,s)

1, is called the frequency function of u. Since u is Dir-minimizing and nontrivial,
it holds that H,(x,s) > 0 for every s € (0,dist(x,99)) (cp. [9, Remark 3.14]),
from which I, is well-defined.

We recall that the functions s — Dy(x, s), s — Hy(z,s), and s — I, (x, s) are
absolutely continuous on (0, dist(z, 0€2)). Similarly for fixed s € (0, dist(x, 9Q2))
one can prove the continuity of © — D, (z,s), © — Hy(z,s) and = — I,(z,s)
for z € {y : dist(y,9Q) > s}. The former follows by the absolute continuity of
Lebesgue integral; while for the remaining two it suffices the following estimate:

I,(x,s) =

o=

VH.(.5) = VH(y.5)] < ( [ e - ru\<z+x—y>\2dz>

Bs(y)

1

1 2

<lz—yl (/ /|V|u|<z+t<x—y>>|2dtdz)
aBs(y) 0

<lo—y ( / wm?) (3:2)
Bs+\z—y|(y)\Bs—\z—y\ (y)

N|=
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where we use the fact that |u| € W12(Q) with |V|u|| < |Du| (cp. [9, Defini-
tion 0.5]).

3.1.1. The following monotonicity formula discovered by Almgren in [2]
is the main estimate about Dir-minimizing functions (cp. [9, Theorem 3.15 &
(3.48)]): for all 0 < ry < ry < dist(x,d0) it holds

I,(z,r2) :rrl)

2
10,2 / uf2 — / Oou,u)) ) . (3.3)
/ H,(t) /8Bt(x) 9By (x) ( 9B () ) )

We finally recall that from [9, Corollary 3.18] we also deduce that
Hy(z,7) = O(r" T2 1u(z00)-1) (3.4)
where I,,(z,07) = lim, o [, (2, 7).

3.2. Compactness. From [9, Proposition 2.11 & Theorem 3.20], if (u;);en is
a sequence of Dir-minimizinig functions in €2 such that

sup sl ) + Su'p/Q |Duj|2 < 400,
j j

then there exists u € W12(Q, Ag) such that u is Dir-minimizing, and up to
passing to a subsequence (not relabeled in the sequel) G(uj,u) — 0 in L?(€),
and for every Q' CcC Q

1G(uj, )| ooy = 0 and /Q/ |Duj|2 — /Q/ | Dul?.

In particular this implies that (|Du;|?);en are equi-integrable in €', and

hm L (x,8) = I(x,s) Yz V0<2s<dist(r,00Q). (3.5)

]H

3.3. Homogeneous ()-valued functions. We discuss next some properties
of the class of homogeneous Q-valued functions: w € VVl1 (R, Ag(R™)) satis-
fying

(1) w is locally Dir-minimizing with now =0,

(2) w is a-homogeneous, in the sense that

w(@) = || w (f') vz e R™\ {0},
x
for some a € (0, Ag], where Ay is a constant to be specified later.

We denote this class by Ha,. Note that I,(z,07) = 0 if w(z) # Q[0]. The
following lemma is an elementary consequence of the definitions.

3.3.1. Lemma. Let w € Hyp,. Then I,(-,0") is conical in the sense of
Definition 2.3.2 (1).
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PROOF. Firstly I,,(-,0") is upper semi-continuous. Indeed since w is Dir-
minimizing, we can use (3.3) and deduce that I,(z,0") = infsoLy(z,s),
i.e. I,(,0") is the infimum of continuous (by (3.2)) functions = — I,,(z,s)
and hence upper semi-continuous.

We need only to show that I,,(-,0") is 0-homogeneous at every point z such
that I,,(z,0") = I,,(0,0"). We can assume without loss of generality that w is
nontrivial, i.e. w # Q [0]. We start noticing that if I,,(z,0") = I,,(0,0") then

Iy(2,07) = 1,(0,07) = I,,(0,1) > 0
where in the last equality we used the homogeneity of w. Therefore in particular

w(z) = Q [0]. Next we show that I,(z,7) = I,,(0,0") for all » > 0. By a simple
estimate we get

M Hw(O,T+|Z’) Hw(OaT)
Hy(z,1) Hy,(0,7)  Hy(z,7)

Since w is homogeneous with respect to the origin and the frequency of w at 0
is exactly a (cp. [9, Corollary 3.16]), we have also

Hw(07 ’/‘) = Hw(07 1) Tn+2a—1
Dy (0,7) = Dy(0,1) rm 272,

Lo(z,7) = < I,(0,r + |2|) (3.6)

In particular

L,(0,7 + |2]) = a = I,,(0,07) = I,(2,07)

H, (0,
W —1 as 771 +4oo.
For what concerns the third factor in (3.6)
Hw(ov T) _ Hw(oa 7’) — Hw(Z, 7’) (3 7)
Hy(z,7) Hy(z,7) '

and from (3.4) and (3.2) we infer that
[Ho(0,7) = Ho(2,7)| = (v Ho(0,) + v/ Hu(z,1) [V Ho(0,r) = v/ Hy(z,7)]

n+21,(0,01)—1 1
<Cr 2 |z[(Dw(0,T—|—|Z])—Dw(O,r—\z|))2
n u( 5 +)* 1
SC|Z’T‘ 2 SO = ((r+’2‘)n+2a72_(T_‘Z|)n+2a72)2
<C |z|g prtze=2, (3.8)

This in turn implies

H.,,(0,
(O;)—>1 as r T +4oo

Hy(z,7)
and from (3.6)

. <1
rgrfoo Iy(z,1) < Tlﬁﬁ Iy(z,7),

i.e. by Almgren’s monotonicity estimate (3.3) we deduce that I,(z,r) =
I,(2,07) for all » > 0. As a consequence (cp. [9, Corollary 3.16]) w
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is a-homogeneous at z which straightforwardly implies that I,,(-,07) is 0-
homogeneous at z. O

3.3.2. Spines. We can then define the spine of a homogeneous Q-valued
function w € Hp,:

S :={r €R" : I,(x,07) = 1,(0,07)}.

By the proof of Lemma 3.3.1 it follows that w is a-homogeneous at every point
x € Sy. Similarly it is simple to verify that Sy, is the largest vector space which
leaves w invariant, as well as I,,(-,0™):

Sw={z€R" : wly)=w(z+y) VyeR"}. (3.9)

Indeed it is enough to prove that every z € S, leaves w invariant (the other
inclusion is obvious). To show this, note that by the a-homogeneity of w at z
and 0 it follows that for every y € R"

w(y):w(z+y—z):2aw<z+y;2‘> :2aw<y+z>

2
=w(z+y).

3.3.3. We denote by Cy, for k € {0,...,n} the set of k-invariant homogeneous
Q-functions

Cr :={w € Hyp, : dim(Sy) > k}. (3.10)

Note that C, = C,—1 = {Q [0]}, i.e. these sets are singleton consisting of the
constant function w = Q [0]. For C, this is follows straightforwardly from the
definition and (3.9). While for C,_; one can argue via the cylindrical blowup
in [9, Lemma 3.24]. Assume without loss of generality that

weCy 1, w#Q[] and S,=R""1x {0}

Then by the invariance of w along S,, it follows that w is a function of one
variable. By [9, Lemma 3.24] it follows that @ : R — Ag(R™) is locally Dir-
minimizing and

w#Q[0], now=0.
This is clearly a contradiction because the only Dir-minimizing function of one
variable are non-intersecting linear functions (cp. [9, 3.6.2]).

Finally, a simple consequence of (3.9) is that {w|p, : w € Ci} is a closed
subset of L?(By, Ag(R™)).

3.3.4. Lemma. Let (w;)jen C Cp and w € VVl})’f(Q,AQ(Rm)) be such that
w; — w in L2 (R, Ag(R™)). Then w € Cy.

loc

PROOF. Let o be the homogeneity exponent of w;. Since for Dir-minimizing
a-homogeneous @Q-valued functions w it holds that D,,(1) = a Hy,(1), we deduce
from a; < Ag and w; — w that the functions w; have equi-bounded energies in
any compact set of R™. Therefore by the compactness in § 3.2 it follows that
w; — w locally uniformly and w € Ha,,.
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For every j € Nlet now V; be a k-dimensional linear subspace of R" contained
in Sy,;. By the compactness of the Grassmannian Gr(k,n), we can assume that
up to passing to a subsequence (not relabeled) V; converges to a k-dimensional
subspace V. Using the uniform convergence of w; to w we then conclude that
for every z € V and y € R"

w(z +y) = 1i§n w;i(z; +y) = 1i]m w;(y) = w(y)

where z; € Vj is any sequence such that z; — z. This shows that V' C S, thus
implying that dim(S,,) > k. O

3.4. Blowups. Let u be a Dir-minimizing ()-valued function, n o v = 0 and
u # Q[0]. Fix any 19 > 0. For every y € Ag NQ", i.e. for every y such that
u(y) = Q[0] and dist(y, 02) > 21, we define the rescaled functions of u at y
as

m—2

s 2z u(y+ sx)
DL (y,s)

From [9, Theorem 3.20] we deduce that for every si | 0 there exists a subse-
quence s, | 0 such that Uy 5/ CONVErges locally uniformly in R™ to a function

w: R™ — Ag(R™) such that w € H,, with

ro fQ | Du|?
mingeqro Hy(z,70)

Uy s(T) = V0 <s<ry, V:UEB%O(O).

AO = Ao(To) =

(3.11)

Note that mingeqro Hy(z,r9) > 0. Indeed, by the continuity of x — Hy(x, 1)
and the closure of 2", the minimum is achieved and cannot be 0 because of
the condition v # 0. In particular, Ag € R.

4. STRATIFICATION FOR DIR-MINIMIZING Q—VALUED FUNCTIONS

In this section we apply Theorems 1.2, 1.4 and 1.6 to the case of Almgren’s
Dir-minimizing Q-valued functions. Keeping the notation Q° and U asin § 1.0.1,
we set

(1) ©5:Q° — [0,400) given by
Oo(z) == lirr}r I,(x,r) and ©O4(z):=I,(x,s) for s>0,x€Q®,
rl0

(2) for every k € {0,...,n}, dx : U — [0, +00) is given by

dy(z, 8) = min{Hg(ux’&w)HLz(aBl) Lwe ck}.

Note that since {w|p, : w € C;} is a closed subset of L?(B;) the mini-
mum in the definition of dj, is achieved.
It follows from Almgren’s monotonicity formula (3.3) that conditions (a) and
(b) of § 1.0.1 are satisfied.

We verify next that the Structural Hypotheses 1.0.2 are fulfilled. For sim-
plicity we write the corresponding statements for fixed rg. The corresponding
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Ao > 0is defined as in (3.11) above. Therefore, the sets H,, and Ci, introduced
respectively in § 3.3 and (3.10), are defined in terms of Ag = Ag(79).

4.0.1. Lemma. For every €1 > 0 there exist 0 < A\i(e1), m(e1) < /4 such
that, for all (z,s) € U with x € Q™ and s < rg, it holds

L(z,s) = Iu(x,\18) <m = FweCl : [G(ugs,w)|r20m) < e1-
PROOF. We argue by contradiction and assume there exist points (x;,s;)
with z; € Q" and s; < ¢ such that
Lu(xj,85) = Lu(wj, 57) <277 and (|G (ug; ;5 0) |28, > &1 Vw € Co
or equivalently, setting u; := ug; s;,
1,;(0,1) = I,,(0,277) <277 and  [|G(uj,w)llr29m,) = €1 Vw € Co. (4.1)
From [9, Corollary 3.18] it follows that
I,,;(0,2)
22 <C 4.2
1,0.1) = 2

where C' = C(Ag) because I, (0,2) < Ag by definition of Ag. We can then use
the compactness for Dir-minimizing functions in § 3.3 to infer the existence of
a Dir-minimizing w such that (up to subsequences) u; — w locally strongly in
W12(By) and uniformly. We then can pass into the limit in (3.3) and using
(4.1) we obtain

/01 Hwt(t) </8Bt 0,0l /BBt Jw]* ~ </aBt<(9yw,w>>2) dt = 0.

This implies that w is a-homogeneous (cp. [9, Corollary 3.16]) with o =
lim; 7,,;(0,1) < Ag because of § 3.2. This contradicts ||G(uj, w)| r29p,) > €1 for

J

all w € Cp in (4.1) and proves the lemma. O

sup Dy, (0,2) < on—2+21,;(0,2)
J

4.0.2. Remark. Using the regularity theory of Dir-minimizing functions
proven in [9] it is in fact possible to prove a stronger claim then Lemma 4.0.1,
namely that for every e; > 0 there exists 0 < 7;(¢1) < 1/4 such that for all
(z,s) € U with z € Q™ and s < rg

L(z,s) — Iy(xz,8/2) <m = FJwel: ||g(ux,s,w)||L2(aBl) <ep. (4.3)

Since (4.3) is not needed in the sequel, we leave the details of the proof to the
reader.

For what concerns (ii) we argue similarly using a rigidity property of homo-
geneous Dir-minimizing functions.

4.0.3. Lemma. For every 0 < g9, 7 < 1 there exists 0 < n2(e2,7) < €9 such
that if (z,5s) € U, with x € Q™ and 5s < ro, di(z,4s) < n2 and diy1(x,4s) >
g9 for some k € {0,...,n— 1} then there exists a k-dimensional affine space V
such that

do(y,4s) >n2 Vy € Bs(z) \ Trs(V).
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ProOOF. We prove the statement for V. = S, with w € C; such that
1G(u, w)[| 28B4y (2)) = dk(w,48). We argue by contradiction. Reasoning as
above with the rescalings of u (eventually composing with a rotation of the do-
main to achieve (4) below for a fixed space V'), we find a sequence of functions
uj € Wh2(Bs, Ag(RF) such that

(1) sup, Dy (0,5) < +o0;
(2) there exists w; € Cj, such that [|G(us,w;)||Leo(py) 4 0;
(3) 11G(uj, w)llp2(By) > €2 for every w € Cry1;
(4) there exists y; € By \ T-(V) such that do(y;,4) | 0 and V' = S, is the
k-dimensional spine of w; (note that by (2) & (3) the dimension of the
spine of w; cannot be higher than k).
Possibly passing to subsequences (as usual not relabeled), we can assume
that u; — w, w; — w locally in L*(R", Ag(R™)) and y; — y for some
w € VVI})’S(R”,AQ(R’”)) and y € By \ 7-(V). By Lemma 3.3.4 we deduce
that w € Cy, with S, D V; since by (3) w & Ci41, we conclude S, = V.

It follows from (4) that wys = wy, for every s € (0,1]. Indeed there exist
zj € Co such that [|G((u;)y; 1, 2j) | 22(am,) | 0 and by continuity (u;)y, 1 — wy,1 €
Co. In particular w(y) = 0 and by the upper semi-continuity of x + I,,(z,0")
we deduce also that I,,(y,0") = I,(0,0"), i.e. y € S, which is the desired
contradiction. 0

We can then infer that Theorem 1.2 holds for @-valued functions.

4.1. Theorem. Let u : @ — Ag(R™) be a nontrivial Dir-minimizing func-
tion with average nou = 0.

For every 0 < ko, 6 < 1 and rq > 0, there exists a constant C =
C(ko,d,70,n) > 0 such that

T (Mg Sk

70,0

)< Crmhr Ve {l,...,n—1}

and 879075 s countable.

In particular, Theorem 1.4 applies and we conclude that dimy (Sfo) < k and
that 8790 is at most countable. We shall improve upon the latter estimate on
the stratum 87?0*1 in the next paragraph.

4.2. Minkowski dimension. We can actually give an estimate on the
Minkowski dimension of the set of maximal multiplicity points Ag by means
of Theorem 1.6. An e-regularity result is the key tool to prove this.

4.2.1. Proposition. There exists a constant 6y = do(ro) > 0 such that
Sl=8 =82 Vre(0,r). (4.4)

PROOF. The first equality is an easy consequence of C,, = C,—1 = {Q [0]}
that gives d,, = d,,—1.
Set 0y := (Ag + 1)7"/2, we show that S5 C 577?502 for every ¢ € (0,do).

Assume by contradiction that there exists x € S \‘S’T’?go2 for some J as above.
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From C,—; = {Q [0]} we deduce the existence of s € (0,7) such that
0<d< ”ux,sHLQ(aBl) < dp.

In particular, the condition | B, |Dug s|? = 1 gives

Duy, 4|2 1
A W
faBl |t s o
By recalling that I,(z,s) = I, ,(0,1), the desired contradiction follows from

Almgren’s monotonicity formula (3.3) and the very definition of Ag in (3.11).
O

qu,s (07 1)

In particular Theorem A follows from Theorem 1.6.

PrROOF OF THEOREM A. It is a direct consequence of Proposition 4.2.1 and
Theorem 1.6. Given u : @ — Ag(R™) a nontrivial Dir-minimizing function
(i.e. Ag # Q), we can consider the function

v(z) = Z [ui(z) = nou(z)].

Then by [9, Lemma 3.23] v is Dir-minimizing with n ov = 0. Moreover, the set
of Q-multiplicity points of u in 2" corresponds to the set S,ff)_z for the function
v and the conclusion follows straightforwardly. O

4.3. White’s stratification. In this section we show that Theorem 2.4 applies
in the case of Q-valued functions, as well. In particular, this implies that the
singular strata for Dir-minimizing ()-valued functions can also be characterized
by the spines of the blowup maps, thus leading to the proof of Theorem B in
the introduction.

By following the notation in § 2.4.1 (1), we set

f(x) :=I,(z,07) Ve

For every x € Q such that f(x) = 0 (or, equivalently, u(z) # Q [0]) we define
% (x) to be the singleton made of the constant function 0, i.e. 4(x) = {Q [0]};
otherwise

9 (x) == {Lu(,0") :we W1’2(R”,AQ(RW)) blowup of u at z}. (4.5)

loc

As explained in § 3.3 ¢(x) is never empty because there always exist (possibly
non-unique) blowup of u at any multiplicity @ point.

Since every blowup of u is a nontrivial homogeneous Dir-minimizing function,
it follows from Lemma 3.3.1 that every function g € ¢(x) is conical in the sense
of Definition 2.3.2 (1). We need then to show the following.

4.3.1. Lemma. For every x € § the class 9 (x) is compact in the sense of
Definition 2.3.2 (2).
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PrOOF. If x is not a multiplicity @ point, then there is nothing to prove.
Otherwise consider a sequence of maps g; = I, (-,0") € ¢(z), with w; blowup
of u at . By § 3.3 w; is Dir-minimizing a-homogeneous with o = I,,(z,0%)
and Dy, (1) = 1. Then by the compactness in § 3.2, there exists w such that
w; — w locally in L? up to subsequences (not relabeled) with D,,(1) = 1. By
a simple diagonal argument it follows that w is as well a blowup of u at x,
iLe. g = I,(-,0") € G(z). For every y; € By with y; — y € B; and for every
s > 0, we then deduce

lim sup g; (yj) < lim sup ij (yj, s)

JT+oo JT+oo
<8ij<yvs) ij(ijs) ij(y,s) >
ij(y’ S) ij (y,S) ij (y],S)

= lim sup
JT+oo
= Iy (yv 5)
where we used
- the monotonicity of I, (y;, ) in the first line,

- the continuity of z + Dy, (z,s) and z +— Hy,(z,s),

- and the convergence of the frequency functions I, (y,s) — lu(y,s)
(cp. 3.2).
Sending s to 0 provides the conclusion. O

4.3.2. Finally we prove that the Structure Hypothesls 2.3.3 (ii) of White’s
theorem holds as well:

limsup f(z + 73,y;) = limsup I, (z + r4,y;,07)

1400 JjT+oo
< limsup I,,(x + Ti;Yj, Ti; s)
JT+oo
= lim sup Ly, (yj.5) = Luw(y, s)
JjT+oo J

where we used the strong convergence of the frequency of § 3.2.

In particular, Theorem 2.4 holds true, which in turn leads to the proof of
Theorem B by a simple induction argument.

4.4. Stratification: Theorem B. We define now the singular strata Singﬁ
for a Dir-minimizing multiple valued function u : Q2 — Ag(R™). Consider any
point xg € Sing,,, and let

J
u(zo) =Y i [pi]
=1

with x; € N\ {0} such that Z;;]:1 ki = @ and p; # p; for i # j. Then by the
uniform continuity of u there exist » > 0 and Dir-minimizing multiple valued
functions u; : By(z9) — Ak, (R™) for i € {1,...,J} such that

J

u|Br(x0) = Z [[uz]] )

i=1
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where by a little abuse of notation the last equality is meant in the sense u(z) =
> ui(x) as measures. For every i € {1,...,J} let v; : B,(x9) — Ay, (R™) be
given by

vi(e) = 3 [(ws(@)) — m o u@)].
=1

Then we say that a point xyp € Sing, belongs to Singﬁ, k € {0,...,n}, if
the spine of every blowup of v; at zg, for every ¢ € {1,...,J}, is at most
k-dimensional.

We can then prove Theorem B by a simple induction argument on the number
of values Q.

PrOOF OF THEOREM B. Clearly if () = 1 there is nothing to prove because
every harmonic function is regular and Sing,, = (). Now assume we have proven
the theorem for every Q* < () and we prove it for Q).

We can assume without loss of generality that Ag # Q. Then, as noticed,
Ag = Sing, N Ag by [9, Theorem 0.11]. Moreover Sing® N Ag = ¥, where ¥,
is that of Theorem 2.4. Indeed zg € ¥, if and only if the maximal dimension
of the spine of any g € G(zo) is at most k. By (4.5) g € G(z¢) if and only if
g = I,(-,0") for some blowup w of u at xp. Hence by (3.9) zg € 3y, if and only
if the dimension of the spines of the blowups of u at x( is at most k. Note that
Sing” 2 N Ag = Ag since C, = Cy—1 = {Q[0]} (we use here the notation in
§ 3.3.3) and w is not trivial. Therefore we deduce that

Sing) N Ag is countable
dimyg (Sing® NAg) <k VEke{l,....,n—2}.

Next we consider the relatively open set {2\ Ag (recall that both Sing, and
Ag are relatively closed sets). Thanks to the continuity of v we can find a cover
of 2\ (Sing, N Ag) made of countably many open balls B; C ©\ (Sing, N Ag)
such that u|p, = [u}] + [u?] with u} and u? Dir-minimizing multiple valued
functions taking strictly less than @ values. Since Singﬁ NB; = Singﬁg U Sing’;?
by the very definition, using the inductive hypotheses for ull and uf we deduce
that

Sing? N B; is countable

Sinng2 N B; = Sing,, N B;

dimH(Singﬁ NB)<k Vke{l,...,n—2},
thus leading to (0.2) and (0.3). O

5. APPLICATIONS TO GENERALIZED SUBMANIFOLDS

In the present section we apply the abstract stratification results in § 1 to
integral varifolds with mean curvature in L*° and to almost minimizers in codi-
mension one (both frameworks are not covered by the results in [5] although
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they can be considered as slight variants of those). This case is relevant in
several variational problems (see the examples in [22, § 4]) most remarkably
the case of stationary varifolds or area minimizing currents in a Riemannian
manifold. For a more complete account on the theory of varifolds and almost
minimizing currents we refer to [1], [3] and the lecture notes [18].

5.1. Tubular neighborhood estimate. In what follows we consider integer
rectifiable varifolds ¥ = (T, f), where I" is an m-dimensional rectifiable set in
the bounded open subset 2 C R"™, and f : I' — N\ {0} is locally H™-integrable.
We assume that ¥ has bounded generalized mean curvature, i.e. there exists a
vector field Hy : Q — R™ such that || Hy || fecqrn) < Ho for some Hy > 0 and

/divapX dpy = —/X ‘Hydpy VX eCHQRY)
I

where py := fH™LT. It is then well-known (cp., for example, [18, Theo-
rem 17.6]) that the quantity
py (Bp(x))
e = elor
“//(:Ea p) € wmpm

is monotone and the following inequality holds for all 0 < o < p < dist(x, 00Q)

Orr.p)~0rm oz [ DR, ) (5.1)
’ T T BBy () [y — ™2
where (y — )t is the orthogonal projection of y — x on the orthogonal com-

plement (T,I")*. In particular the family (©(+, 8))sefo,ro) (With the obvious
extended notation O(-,0") := lim, | O(-,7)) satisfies assumption (a) in Para-
graph 1.0.1 for every fixed rg > 0 with
; Q
Aofr) = eTodiente) L7 ) )

W Ty

In order to introduce the control functions d; we recall next the definition of
cone.

5.1.1. Definition. An integer rectifiable m-varifold € = (R, g) in R™ is a
cone if the m-dimensional rectifiable set R is invariant under dilations i.e.

Aye R VYyeR,YA>0
and g is 0-homogeneous, i.e.
9gAy) =g(y) VYyeR, YA>0.

An integer rectifiable m-varifold € = (R, g) in B,, p > 0 is a cone if it is the
restriction to B, of a cone in R™.

The spine of a cone € = (R, g) in R™ is the biggest subspace V. C R™ such
that R = R' x V up to H™-null sets.

The class of cones whose spine is at least k-dimensional is denoted by Ci, and
its elements are called k-conical.
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If d, is a distance inducing the weak * topology of varifolds with bounded
mass in By (cp., for instance, [17, Theorem 3.16] for the general case of dual
spaces), the control function dy is then defined as

dg(z, s) ;= inf {d* (7/:5,57(5) 1€ €Ch, |Hellpo@rn) < HO} (5.3)

where ¥, s := (Ne,s(T), f oy §) with 0, s(y) := W —2)/s.

By very definition, then (b) in Paragraph 1.0.1 is satisfied. We are now
ready to check that the conditions in the Structural Hypotheses are satisfied.
As usual, we write the corresponding statements for fixed ro and Ay := Ag(ro),
for simplicity.

5.1.2. Lemma. For every 1 > 0 there exist 0 < \i(e1), m(e1) < /4 such
that for all (z,p) € U, with x € Q™ and p < 1o,

Oy(z,p) = Op(z,\1p) <m = do(z,p) <er.

PROOF. Assume by contradiction that for some e; > 0 there exists (z;, pj) €
U, with z; € Q™ and p; < rg, such that

Oy (xj,p;) — Op(xj,i " p;) <j ' and do(zj, p5) > €1 (5.4)
We consider the sequence (7});jen with 7 := ¥, ,., and note that for all ¢ > 0

there is an index j such that ¢ p; < rg if j > j, so that
py;(Bi) < wm t™ Oy (x5, pj) <wmt™Ag V5 >

Therefore, up to the extraction of subsequences and a diagonal argument,
Allard’s rectifiability criterion (cp., for instance, [18, Theorem 42.7, Remark
42.8]) yields a limiting m-dimensional integer varifold ¥; — € = (R, g) with
|He || oo (@ < Ho. Since Oy (zj,5 p;) = ©,(0,s) = O%(0, s) except at most for
countable values of s, by monotonicity and (5.4) for all 7! < r < s < 1 we have
O¢(0,s) = O« (0,07) for every s > 0. The monotonicity formula (5.1) applied
to ¢ implies that ¢ is actually a cone, thus contradicting do(zj, p;) <e;. O

5.1.3. Lemma. For every e2,7 € (0,1), there exists 0 < ma(e2,7) < €2
such that, for every (x,5s) € U, with x € Q™ and 5s < rg, if for some k €
{0,...,m—1}

di(z,4s) <m2  and  dpyi(z,4s) > e,
then there exists a k-dimensional affine space x + V' such that
do(y,48) >ny Vye Bs(x) \7;'5(37 + V)

PROOF. The proof is by contradiction. Assume that there exist 0 < g9, 7 <
1,k €{0,...,m—1} and a sequence of points (z;,5s;) € U, with z; € Q™ and
5sj < 1o, for 25 > 551 such that

di(zj,4s;) < i1 and  dega (g, 4s5) > e, (5.5)
and such that the conclusion of the lemma fails, in particular, for V; given by
the spine of ¢} with

d (%3]’#15]"(53') < 2j_1 (5.6)
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(note that by 2j > &5 ! necessarily dim(V;) = k). Without loss of generality
(up to a rotation) we can assume that V; = V' a given vector subspace for every
j. This means that there exist y; € B, (z;) \ Trs;(z; + V) such that

do(y;,4s;) <j . (5.7)

Using the compactness for varifolds with bounded generalized mean curvature,
(up to passing to subsequences) we can assume that
(1) s; = 800 € [0,70/5];
(2) €5 — % in the sense of varifolds, where ¢ is a cone with
| Heo | Lo (@,rm) < Ho;
(3) Wi—=3)fs; — z € B, \ T-(V);
(4) Vajs; = Woo and ¥, s, — Z5 in the ball By in the sense of varifolds,
where #5, and %5 are cones thanks to (5.5) and (5.7), respectively.

Note that by (5.6) it follows that €; — # and therefore #, € Cj because
all the ¢; are invariant under translations in the directions of V. Moreover,
arguing as above it also follows from dy41(xj,4s;) > €2 that the spine of
is exactly V.

Note that 7, —,),,1 corresponds to the translation of vector (v —z;)/s;.
By the equality of (1w, —«,)s,1)i%;s; and ¥, s, in Bs, we deduce that
(New; —2)/s;,1)i W0 = Zoo as varifolds in B, i.e. #i is a cone around z too. We
claim that this implies that # is invariant along the directions of Span{z, V'},
thus contradiction the fact that the spine of #,, equals V. To prove the claim,
let #oo = (Roo,g) with R cone around the origin and z. It suffices to show
that y + 2z € R for all y € R. Indeed (2+9)/2 = 2 +v—2/2 € Ry, being Ry
a cone with respect to z; and then y 4+ z € Ry, being R, a cone with respect
to 0. (|

In particular we deduce that Theorem 1.2 and Theorem 1.4 hold in the case
of varifolds with generalized mean curvature in L*°.

5.2. Almost minimizer in codimension one. It is well-known by the clas-
sical examples by Federer [14] that no Allard’s type e-regularity results can hold
for higher codimension generalized submanifolds without any extra-hypotheses
on the densities. Vice versa for generalized hypersurfaces one can strengthen
the results of the previous subsection giving estimates on the Minkowski di-
mension of the singular set. The arguments in this part resemble very closely
those in [7], therefore we keep them to the minimum.

In what follows we consider sets of finite perimeter, i.e. borel subsets E € 2
such that the distributional derivative of corresponding characteristic function
has bounded variation: Dyp € BVg. Following [3, 21|, a set of finite perimeter
is almost minimizing in  if for all A CC ) open there exist T' € (0, dist(A, 89))
and «a : (0,7) — [0, +00) non-decreasing and infinitesimal in 0 such that when-
ever EAF CC By(z) C A

Per(E, B,(z)) < Per(F, B,(z)) + a(r)r"!  Vre (0,7) (5.8)
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and

t T a'2(t
0,T)>t— ag) is non-increasing, and / atodt < 0. (5.9)
0

Examples of almost minimizing sets not only include minimal boundaries on
Riemannian manifolds, but also boundaries with generalized mean curvature in
L°°, minimal boundaries with volume constraint, and minimal boundaries with
obstacles (cp. [21, § 1.14]).

We use here again the control functions introduced in Section 1.7.1 in terms
of flat distance: given a set of finite perimeter E, we denote by OF its boundary
(in the sense of currents) and set

dp(w,s) := inf {F((0FE;s — C)LB1) : C k-conical & area minimizing }
where the dimension of the cones C'is always n—1, and E,  is the push-forward
of E via the rescaling map 7, ;. In particular d,,—; denotes the distance of the
rescaled boundary 0E, s rescaling of the from flat (n — 1)-dimensional vector
spaces.

The main e-regularity result for almost minimizing sets can be stated as
follows (cp. [21, Theorem 1.9], [3, Lemma 17] and [18, Theorem B.2]).

5.3. Theorem. Suppose that E is a perimeter almost minimizer in 0 sat-
isfying (5.8) and (5.9) for a given function «. Then, there exists € > 0 and
w: [0,400) = [0, +00) continuous, non-decreasing and satisfying w(0) = 0 with
the following property: if

P o2
p+dn_1(z,p) +/ at(t)dt <e,
0

then OE N By, (x) is the graph of a C! function f satisfying
V() = Vi)l < w(lz—yl). (5.10)

Moreover, there are no singular area minimizing cones with dimension of the
singular set bigger than n — 8, i.e. equivalently

dpe7 =dp_g = ... = dp_1. (5.11)

5.3.1. Remark. The smallness condition d,,—; < ¢, together with the al-
most minimizing property, implies the more familiar smallness condition on the
FExcess, i.e.

Exc(E, B (x)) := r' ™" | Dxgl|(By(x)) — " [Dxp(B(2))] < €

for some ¢/ = €’(e) > 0 infinitesimal as e goes to 0 because of the continuity of
the mass for converging uniform almost minimizing currents. Therefore (5.10)
readily follows from [21, Theorem 1.9].

By a simple use of Theorem 5.3 we can the prove the following.

5.3.2. Corollary. Under the hypotheses of Theorem 5.3 there exist constants
9o = do(Ag,m, ) > 0 and po = po(Ao,n, ) > 0 such that

Sie =8 t=8rT = =8 Ve (0,p.
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PROOF. Set §p = ¢/2 and let pg be sufficiently small to have
Po o2 (¢
p0+/ at<)dt§5/2.
0

If v ¢ 8;‘(;520, ro € (0, pol, then there exists 0 < zg < ro such that d,,—1(z, z9) <
do- In particular, by the choices of §y and of py the assumptions of Theorem 5.3
are satisfied at sg. Therefore, it turns out that x is a regular point of OF and
that B.,/,(r) NOE can be written as a graph of a function f satisfying (5.10).
In particular, limg o d,—1(z, s) = 0. Therefore, given any ¢’ < dy, we have that
x & 82;62,, thus implying that S=2 = %}20. By taking into account (5.11) we

conclude the corollary straightforwardly. O

In particular, Theorem 1.6 holds and we deduce the following refinement of
the Hausdorff measure estimate of the singular set.

5.4. Theorem. Let E C ) be a almost minimizing set of finite perimeter in
a bounded open set @ C R™ according to (5.8) and (5.9). Then there exists a
closed subset ¥ C OENSQ such that OENQ\Y is a Ct regular (n—1)-dimensional
submanifold of R™ and dimpa(X) < n — 8.

PROOF. Let ' CcC Q be compactly supported and set ro := dist(Q',99).
By the regularity Theorem 5.3, a point x € 2 is regular if and only if there
exists > 0 sufficiently small such that d,,—1(z,7) < ¢/2. In particular, the set
of singular points ¥ coincides with SZ;E% and the conclusion follows combining

Theorem 1.6 with Corollary 5.3.2. O

In addition, a higher integrability estimate for almost minimizers with
bounded generalized mean curvature can be also derived. Given a set of fi-
nite perimeter F C (), one can associate to JF a varifold in a canonical way
(cp. [18]). One can then talk about sets of finite perimeter with bounded gen-
eralized mean curvature. Important examples of such an instance are:

(1) the minimizers of the area functional in a Riemannian manifold;
(2) the minimizers of the prescribed curvature functional in 2 C R™

F(B) = | Dxel(Q) + /Q m

with H € L>®(Q);
(3) minimizers of the area functional with volume constraint;
(4) more general A-minimizers for some A > 0, i.e. sets E such that

I1Dxel[() < [[Dxrll(2) + A[E\F| VFCQ.

Given a point x € F such that B,.(z) N OE is the graph of a C! function f, if
the generalized mean curvature H of OF is bounded then we can also talk about
generalized second fundamental form A in B,,(z), because in a suitable chosen
system of coordinates f solves in a weak sense the prescribed mean curvature
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equation

Vi _ %
v (W) =HeL™. (5.12)

Note that, since in this case f satisfies (5.10), we can choose a suitable system
of coordinates and use the LP theory for uniformly elliptic equations to deduce
that actually A € LP(B,,(z), H" 'LOE) for every p < +oo with uniform
estimate

/ |APH" ! < ¢ Pl (5.13)

for some dimensional constant C' > 0. For convenience we set A = +oo on the
singular set > C OF.

5.5. Theorem. Let E C ) be as in Theorem 5./ and assume moreover that
the varifold induced by OF has bounded generalized mean curvature. Then, for
every p < 7 there exists a constant C > 0 such that

/ JAPdH™ ! < C. (5.14)
OENQ

PrOOF. Let pg > 0 be the constant in Corollary 5.3.2 and ¢ that of Theo-

rem 5.3. Then ¥ = S;‘O_’SQ. In then follows that for a fixed k > logy(ro/10)

(supp @D\ 2) N = J 858, L\ S8, L
k>k

Applying Theorem 1.2 we infer that for every n > 0 there exists C' > 0 such
that

\E_k(sgjgpomﬂ < ¢ 27kE=m, (5.15)
By Lemma 2.1.2 there exists a cover of 7}1972/5(8;1;,51)076/2 \ ngkgfl,po,a/z) by

balls {By—r—s(xF)}ier, with zF € S"58 \S;L__kg_l

“k whose cardinality is
2 7/)076/2
estimated by (2.2) as

00,5/2

HO(I) < C 27 FE——) (5.16)
where C' > 0 is a dimensional constant.

We start estimating the integral in (5.14) as follows:

/abm |AJP ARt = Z/ |AJP A" !

n—8 n—8
S \8271671

k>k 2=k pg,e/2 ,P0+5/2
>y AP !
K>k €]y OENB,_j—3(zF)
Since x¥ € ngkgpo /2 \ S;Lfkgpo ), it follows that there exists rk e [27k=1 27k

such that d,,(z¥,r¥) < ¢/2. In particular by Theorem 5.3 E N By 2 (%) is a

171
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graph of a C! function satisfying (5.10). From (5.13) we conclude that

AP AR < > HO(L,) 27k < 0N T2 kT1-R) < ¢

assoonasn <7 —p. O
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