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Abstract

We focus on a special type of domain walls appearing in the Landau-Lifshitz theory
for soft ferromagnetic films. These domain walls are divergence-free S2-valued transition
layers that connect two directions m±

θ
∈ S2 (differing by an angle 2θ) and minimize the

Dirichlet energy. Our main result is the rigorous derivation of the asymptotic structure
and energy of such “asymmetric” domain walls in the limit θ ↓ 0. As an application, we
deduce that a supercritical bifurcation causes the transition from symmetric to asym-
metric walls in the full micromagnetic model.
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1 Introduction

1.1 Model

We consider the following model for asymmetric domain walls: The magnetization is de-
scribed by a unit-length vector field

m = (m1,m2,m3) : Ω → S2,

where the two-dimensional domain

x = (x1, x3) ∈ Ω = R× (−1, 1)

corresponds to a cross-section of a ferromagnetic sample that is parallel to the x1x3-plane.
The following “boundary conditions at x1 = ±∞” are imposed so that a transition from the
angle −θ to θ ∈ (0, π2 ] is generated and a domain wall forms parallel to the x2x3-plane (see
Figure 1):

m(±∞, ·) = m±
θ := (cos θ,± sin θ, 0), (1)
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with the convention

f(±∞, ·) = a± ⇐⇒
∫

Ω+

|f − a+|2 dx+

∫

Ω−

|f − a−|2 dx <∞, (2)

where Ω+ = Ω ∩ {x1 ≥ 0} and Ω− = Ω ∩ {x1 ≤ 0}. Throughout the paper, we use the
variables x = (x1, x3) ∈ Ω together with the differential operator ∇ = (∂1, ∂3), and we
denote by

m′ = (m1,m3)

the projection of m on the x1x3-plane.

The set Xθ of all magnetization configurations of wall angle θ ∈ [0, π] is defined as

Xθ :=

{

m ∈ Ḣ1(Ω,S2)

∣
∣
∣
∣
m(±∞, ·) (2)

= m±
θ

}

. (3)

The asymmetry of “asymmetric” domain walls is a consequence of m trying to avoid “mag-
netic charges” in the bulk and on the surface of the sample, so that no magnetic stray-field is
generated via Maxwell’s equations, see Remark 1(ii) below. In other words, the main feature
of asymmetric walls is the flux-closure constraint

∇ · (m′
1Ω) = 0 in D′(R2). (4)

Observe that for any m ∈ Ḣ1(Ω,S2) satisfying (4), i.e.,

∇ ·m′ = 0 in Ω and m3 = 0 on ∂Ω, (5)

there exists a unique constant angle θm ∈ [0, π] such that the x3-average (which will always
be denoted by a bar ¯ ) satisfies

m̄1(x1) := −
∫ 1

−1
m1(x1, x3) dx3 = cos θm for all x1 ∈ R. (6)

Moreover, such vector fields have the property1

m′(±∞, ·) = (cos θm, 0) and |m2|(±∞, ·) = sin θm

1It is a direct consequence of Poincaré’s inequalities (84) and (85), together with Remark 1 (see below)
and [11, Lemma 3].

x1
x2

x3

Figure 1: The cross-section Ω in a ferromagnetic sample on a mesoscopic level.
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in the sense of (2). We define the set X0 as the non-empty (see Proposition 5 below and
[11, Appendix A]) set of such configurations m that additionally change sign as |x1| → ∞,
namely m2(±∞, ·) = ± sin θm in the sense of (2):

X0 :=

{

m ∈ Ḣ1(Ω,S2)

∣
∣
∣
∣
∇ ·m′ = 0 in Ω, m3 = 0 on ∂Ω, m(±∞, ·) (2)

= m±
θm

}

(7)

Remark 1. (i) Observe that if θm ∈ {0, π} for m ∈ Ḣ1(Ω,S2) with ∇ · (m′
1Ω) = 0 in

D′(R2) – in particular if m ∈ X0 –, then m ∈ {±e1}: Indeed, since |m̄1| ≡ 1 in R and
|m| = 1 in Ω, we deduce |m1| ≡ 1 and m2 ≡ m3 ≡ 0 in Ω.

(ii) Observe that the set X0 as defined in (7) does not contain symmetric magnetization
configurations m = m(x1) provided m 6∈ {±e1}. Indeed, if m = m(x1), then (5) implies
∂1m1 = 0, i.e. m1 ≡ cos θm, and m3 ≡ 0. This is incompatible with the requirement in
(7) that m2 changes sign, unless θm ∈ {0, π}, i.e. m ∈ {±e1}.

Our aim is to study the following minimization problem:2

Easym(θ) := min
m∈X0∩Xθ

∫

Ω
|∇m|2dx (8)

For every θ ∈ [0, π], the minimum in (8) is indeed attained, which is essentially due to
a concentration-compactness result that copes with the change of sign of m2(±∞, ·) (see
[11, Theorem 3]). The minimizers stand for asymmetric domain walls and we are going to
characterize their structure and energy as the angle θ ↓ 0. The variational problem (8) closely
resembles the S2-harmonic map problem with an additional divergence constraint.

1.2 Asymmetric domain walls

In the physics literature [19, 14], two different types of asymmetric domain walls have been
found via the construction of models and also numerical simulation: asymmetric Bloch walls
and asymmetric Néel walls. These transition layers have a width that is comparable to the
film thickness and ensure (5) at the expense of non-vanishing ∂3m in Ω, see Remark 1(ii).
This makes asymmetric walls favored over other types of transition layers only in sufficiently
thick films. Both asymmetric Néel and Bloch walls can also be obtained numerically as crit-
ical points3 of a discretized Easym(θ) (cf. Figures 2 and 3). We refer to [15] for experimental
pictures of magnetic domains and the domain walls in-between, and to [24] for a rigor-
ous derivation of a precise regime in which asymmetric walls minimize the Landau-Lifshitz
energy.

Judging from the models and the numerical results, there are (at least) three ways to dis-
tinguish asymmetric Néel from asymmetric Bloch walls:

2We refer to Section 1.5 for a brief motivation of Easym(θ) and to [11] for its rigorous derivation from the
full Landau-Lifshitz energy.

3Actually, we conjecture them to be (local) minimizers of Easym(θ), at least for certain ranges of wall
angles θ.
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Figure 2: Asymmetric Néel wall (on the left) and asymmetric Bloch wall (on the right).
Numerics.
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Figure 3: The energies of asymmetric-Néel (solid line) and asymmetric-Bloch (dotted line)
type critical points of a discretized Easym(θ), as well as the expansion of Easym(θ) that we give
in (10) (dashed line). According to the numerics, the expansion (10) is a good approximation
of the energy of asymmetric Néel walls, with a relative error less than 15% across the whole
range of wall angles.

• On the film surface, the asymmetric Néel wall rotates in a non-monotonic way (i.e.,
considered as a map m

∣
∣
∂Ω

: ∂Ω ≃ S1 → S1, its phase is non-monotonic), while the
asymmetric Bloch wall rotates monotonically; this feature is actually used to experi-
mentally distinguish the asymmetric Néel wall from other wall types in images obtained
by Kerr microscopy [15, Sec. 5.5.3 (B)].

• The asymmetric Néel wall (up to a translation in x1) is invariant under the symmetry
x 7→ −x, m2 7→ −m2, while (except for the special case θ = π

2 ) the asymmetric Bloch
wall does not respect any of the symmetries of the energy functional Easym(θ).

• Defining the winding number W := deg(m
∣
∣
∂Ω

: S1 → S1), the asymmetric Néel wall
has a trivial W = 0, while the asymmetric Bloch wall satisfies |W | = 1 (see also
Section 1.4).

Since the magnetization of an asymmetric Bloch wall points into the opposite direction on
the top film surface with respect to the bottom surface, it is expected to be energetically more
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costly than the asymmetric Néel wall when sufficiently strong magnetic fields are applied
along the x1 direction, i.e. when the wall angle θ decreases from π

2 to 0 (cf. [3], the quotation
from [15] in Section 1.5, and Figure 3).

1.3 Main results

Our main goal is to establish the following asymptotic expansion of Easym in the wall angle θ:

Easym(θ) = C0 θ
2 + C1 θ

4 + o(θ4) as θ ↓ 0, (9)

with some positive constants C0 > 0 and C1 > 0 that we compute explicitly. In fact it will
turn out to be more convenient to expand Easym in terms of sin θ, i.e. derive

Easym(θ) = E0 sin2 θ + E1 sin4 θ + o(θ4) as θ ↓ 0. (10)

Both expansions are related via C0 = E0 and C1 = −E0/3+E1. Our method is based on an
asymptotic development by Γ-convergence. In deriving (10), we will obtain an asymptotic
expansion up to order o(θ2) also of minimizers mθ of Easym(θ). The expansion indicates that
the variational problem (8) has – up to translation and for small 0 < θ ≪ 1 – exactly two
global minimizers that are related by the reflection x3  −x3, m3  −m3. Moreover, both
minimizers rotate non-monotonically on the sample surface, satisfy – at least up to order θ2

– the symmetry x −x, m2  −m2, and are topologically trivial, see Proposition 1.

In conjunction with a reduced model for extended tails of asymmetric domain walls that
was derived in [11], the asymptotic expansion (9) allows us to prove that symmetric Néel
walls turn into their asymmetric variant as the global wall angle increases via a supercritical
bifurcation (see Sections 1.5 and 1.6 for details).

The leading-order coefficient E0

The leading-order coefficient in (10) is obtained as a consequence of deriving the asymptotic
behavior of a minimizer mθ of Easym(θ) up to order θ2 (cf. Lemma 3 below):

mθ =
( cos θ

sin θm∗
2

0

)

+O(θ2) as θ ↓ 0,

where m∗
2 is a minimizing transition layer of the variational problem

E0 = min
f∈X∗

∫

Ω

∣
∣∇f

∣
∣2dx. (11)

The set of admissible configurations is defined as

X∗ =

{

f ∈ Ḣ1(Ω,R)

∣
∣
∣
∣
f(±∞, ·) (2)

= ±1, −
∫ 1

−1
f2(·, x3) dx3 = 1, f̄(0) = 0

}

. (12)

Observe that due to translation invariance of the minimization problem (11) and the bound-
ary conditions of admissible f at x1 = ±∞, the constraint f̄(0) = −

∫ 1
−1f(0, x3) dx3 = 0

5



is not a restriction. The requirement that the average f2 ≡ 1 follows from the property
m̄1 ≡ cos θm of any m ∈ X0 by letting θ ↓ 0.

By matching upper and lower bounds on Easym(θ) in the spirit of Γ-convergence at the level
of minimizers we prove:

Theorem 1. The leading-order coefficient of Easym is given by E0 as defined in (11), i.e.

lim
θ↓0

(
sin−2 θ Easym(θ)

)
= E0.

Problem (11) has exactly two minimizers, determined by:

m∗
2(x) = tanh(π2x1) + σ

√
2 sin(π2x3)

√

1− tanh2(π2x1), x = (x1, x3) ∈ Ω, (13)

corresponding to the choice of σ ∈ {±1}. Moreover, one computes E0 = 4π.

The above theorem already justifies the physical prediction for the asymmetric Néel wall:
First of all, observe that m∗

2 is a non-monotonic function on the surface ∂Ω = {|x3| = 1}, so
that the same behavior is conserved by the second component of the asymmetric Néel wall.
Second, observe that m∗

2 is odd with respect to the origin, so that the second component of
an asymmetric Néel wall approximately conserves the same symmetry. Indeed, by Lemma 3
m∗

2,θ → m∗
2 in Ḣ1(Ω), in particular uniformly on a.e. vertical line {x1 = a}. Due to the

symmetry x  −x, m2  −m2 , we expect that for small 0 < θ ≪ 1 the variational
problem (8) has only two global minimizers mθ.

Second-leading order coefficient E1

The second-leading order coefficient of the asymmetric-wall energy is obtained by expanding
the minimizer mθ of Easym(θ) to the next order:

m′
θ =

(
cos θ
0

)
+ sin2 θ m̂′ + o(θ2)

m2,θ = sin θm∗
2 + o(θ2)

}

in Ḣ1(Ω) as θ ↓ 0, (14)

where m∗
2 is a minimizing transition layer of E0 (cf. (13)) and m̂′ is given by

m̂1 :=
1−(m∗

2
)2

2 and ∂3m̂3 := −∂1m̂1 = ∂1
(m∗

2
)2

2 in Ω. (15)

Note that m̂3 is indeed uniquely determined due to its boundary condition m̂3 = 0 on
∂Ω. Using the expansion (14) and the fact that m∗

2 minimizes (11), one computes that the
expansion (10) of Easym(θ) holds with the exact constant (see Section 2.4)

E1 =

∫

Ω

(

|∇m̂′|2 − µ(x1) |m̂′|2
)

dx = 148
35 π, (16)

where µ : R → R is the Lagrange multiplier corresponding to the constraint −
∫ 1
−1 f

2dx3 = 1
in (11). It is given by

µ(x1) = −
∫ 1

−1
|∇m∗

2(x1, x3)|2dx3 = π d
dx1

ℓ(x1) =
π2

2

(
1− ℓ2(x1)

)
, (17)
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with

ℓ(x1) := tanh(π2x1) for x1 ∈ R. (18)

We again rigorously establish the second-order term of the expansion (10) by finding match-
ing upper and lower bounds on the energy Easym(θ).

Theorem 2. The second-leading order coefficient of Easym is given by E1 as in (16), i.e.

lim
θ↓0

(

sin−4 θ
(
Easym(θ)− E0 sin

2 θ
))

= E1.

Moreover, if {mθ}θ is a family of minimizers of {Easym(θ)}θ, then the asymptotic expansion
up to the second order (14) holds in Ḣ1(Ω). That is, up to a translation in x1-direction and
a subsequence we have

1
sin2 θ

(

mθ −
(

cos θ+sin2 θ m̂1

sin θm∗
2

sin2 θ m̂3

))

→ 0 strongly in Ḣ1(Ω) as θ ↓ 0,

where m̂′ is defined in (15) for one of the two minimizers m∗
2 given in (13).

From Theorems 1 and 2 one finally deduces the expansion (9) of Easym(θ) in terms of θ
instead of sin θ:

Easym(θ) = 4π θ2 + 304
105π θ

4 + o(θ4).

1.4 Topological properties of small-angle walls

There are (at least) two ways of defining topological invariants for smooth vector fields
m ∈ X0:

• Since m
∣
∣
∂Ω

: ∂Ω ≈ S1 → S1, we can define a winding number W (m) = deg(m
∣
∣
∂Ω

).

• Since m3 = 0 on ∂Ω, we can extend m from Ω to Ω̃ := R × [−3, 1) by even reflection
in (m1,m2) and odd reflection in m3. The reflected configuration remains divergence
free. Identifying Ω ⊂ Ω̃ with the upper hemisphere of S2 and the reflected version Ω̃\Ω
with the lower hemisphere, we see that (due to the boundary conditions at x1 = ±∞)
the extension m̃ : Ω̃ → S2 of m induces a vector field m̃ : S2 → S2, to which we can
associate a degree D(m) = deg(m̃).

Both degrees can be represented in terms of the Jacobian determinants

J(m1
m2

) = ∂1(
m1
m2

)× ∂3(
m1
m2

), ω(m) = m · (∂1m× ∂3m).

We have (note [23, Rem. 1.5.10])

W (m) =
∑

x∈(m1
m2

)
−1
( y1y2 )

sgn
(
J(m1

m2
)(x)

)
∈ Z, (19)

for any regular value
( y1
y2

)
of (m1

m2
), where sgn(a) denotes the sign of a 6= 0. The integer W

is independent of the choice of the regular value
( y1
y2

)
(cf. [23, Prop. 1.4.1]).
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Moreover, for any two regular values y and z of m : Ω → S2 with y3 > 0 and z3 < 0, we have

D(m) =
∑

x∈m−1(y)

sgn
(
ω(m)(x)

)
+

∑

x∈m−1(z)

sgn
(
ω(m)(x)

)
∈ Z. (20)

The sums are constant in y and z, respectively (cf. [23, Prop. 1.4.1]).

With these definitions the following relation holds (see also [18, pg. 1021]):

W (m) ≡ D(m) (mod 2).

Furthermore, recall that there are alternative characterizations of W and D available by
integrating J and ω, respectively:

Z ∋W (m) = 1
π

∫

Ω
J(m1

m2
) dx = 1

π

∫

∂Ω
m1∂τm2 dH1(x),

Z ∋ D(m) = 1
2π

∫

Ω
ω(m) dx.

The winding number W is a classical quantity in the study of Ginzburg-Landau vortices [4]
and has been generalized also to less regular vector fields [7, 5].

By Young’s inequality both W (m) and D(m) relate topological properties of m to its ex-
change energy:

|W (m)| ≤ 1
2π

∫

Ω
|∇m|2dx, |D(m)| ≤ 1

4π

∫

Ω
|∇m|2dx. (21)

Finally, note that an odd reflection in m3 and even reflection in (m1,m2) across one of the
components of ∂Ω, like in the definition of m̃ : Ω̃ → S2, sets W to zero in Ω̃, while D is
doubled in Ω̃.

With these definitions, one immediately obtains:

Proposition 1. For 0 < θ ≪ 1, any global minimizer mθ of Easym(θ) is topologically trivial
in the sense that m has vanishing winding number and degree, i.e. W (mθ) = D(mθ) = 0.

Proof. Using (9), choose 0 < θ ≪ 1 small enough so that 0 ≤ Easym(θ) < 2π. Then,
the proposition directly follows from the fact that W and D are integers and the classical
inequalities (21) hold.

1.5 The origin of Easym(θ)

The minimization problem (8) appears naturally in the asymptotic analysis of the micro-
magnetic energy in the limit η ↓ 0, with a fixed parameter λ > 0:4

Eη(m) =

∫

Ω
|∇m|2dx+ λ ln 1

η

∫

R2

|h|2dx+ η

∫

Ω
(m1 − cosα)2 +m2

3 dx

4Recall the physical interpretation of the parameters: We have η := Q t2

d2
and λ := t2

d2
ln−1 1

η
where Q

is the quality factor (of the crystalline anisotropy), d is the exchange length and 2t is the thickness of the
ferromagnetic film. The regime (η ≪ 1 and λ ∼ 1) corresponds to (Q ≪ 1 and ln 1

Q
∼ ( t

d
)2), where the

cross-over from symmetric to asymmetric walls is known to occur. In particular, λ can be interpreted as
measure of the film thickness, relative to the critical film thickness of the cross-over. The value cosα can be
seen as strength of the reduced external magnetic field. We refer to [11, 24] for further details.
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Here m : Ω → S2 describes a general, i.e. not stray-field free, transition layer that connects

the two directions m(±∞, ·) (2)
= m±

α for a fixed angle α ∈ [0, π2 ] (cf. (1)). The stray field
h = −∇u : R2 → R2 is generated in the x1x3-plane due to non-vanishing “magnetic charges”
∇ · (m′

1Ω) via the static Maxwell equation:

∇ · (h+m′
1Ω) = 0 in D′(R2).

In [11], rigorous asymptotic analysis, based on the Γ-convergence method, was used to derive
a reduced model for the minimal energy of such transition layers:

min
m∈Xα

Eη(m)
η↓0−→ min

θ∈[0,π
2
]

(

Easym(θ) + λEsym(α− θ)
)

, given any α ∈ [0, π2 ], (22)

for Esym(α−θ) = 2π(cos θ−cosα)2. This reduced model confirms and renders more precisely
a statement on extended tails of asymmetric Néel walls that is found in the physics literature
[15, Page 250]:

“The magnetization of an asymmetric Néel wall points in the same direction at
both surfaces, which is [. . . ] favourable for an applied field along this direction.
This property is also the reason why the wall can gain some energy by splitting
off an extended tail, reducing the core energy in the field generated by the tail.
[. . . ] The tail part of the wall profile increases in relative importance with an
applied field, so that less of the vortex structure becomes visible with decreasing
wall angle. At a critical value of the applied field the asymmetric disappears in
favour of a symmetric Néel wall structure.”

The symmetric Néel wall has been studied extensively by many authors (e.g. in [21, 22, 9, 17,
16, 10]). It occurs in very thin films (cf. [24] for a precise regime), where the exchange energy
suppresses variation along the thickness direction of the sample. Moreover, the stray-field
energy suppresses an out-of-plane component of the magnetization on the sample surface,
hence in the whole sample. More precisely, to leading order in t/d, the symmetric Néel wall
is a smooth, one-dimensional transition layer with values in S1 that connects the boundary
values m±

α and minimizes Eη. To this end, it exhibits two internal length scales: It com-
bines a symmetric core of width wcore ∼ λ−1 ln−1 1

η with two logarithmically decaying tails

wcore . |x1| . wtails ∼ λ ln 1
η/η. The symmetric Néel wall is invariant with respect to all the

symmetries of the variational problem (besides translation invariance). Its specific energy
is to leading order given by the energy of the stray field generated in the tails. It depends
quartically on the wall angle α≪ 1.

The first part of the above quotation suggests that asymmetric domain walls can replace the
symmetric wall core of the symmetric Néel wall, in an optimal way. The result (22) confirms
this on the level of the energy: Indeed, asymptotically, Esym(α − θ) is the micromagnetic
energy of logarithmic wall tails that connect the boundary values m±

θ of an asymmetric
wall core, i.e. a minimizer of Easym(θ), with the global boundary conditions m±

α . Thus, (22)
states that, asymptotically, minEη splits into contributions from an asymmetric core and
symmetric tails in an optimal way. The core wall angle θ serves as an indicator for the actual
wall type (asymmetric Néel/Bloch for θ > 0 or symmetric Néel for θ = 0) and the relative
amount of rotation in the wall core.

9
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Figure 4: Bifurcation diagram for the angle θ of the asymmetric core part in the case λ > 2,
depending on the global wall angle α.

1.6 Bifurcation from symmetric to asymmetric Néel walls

We now address the second part of the quotation from [15] in the previous section, i.e. the
core size θ as a function of the global wall angle α and the relative film thickness λ: Consider
the reduced energy

[0, π2 ] ∋ θ 7→ Easym(θ) + λEsym(α− θ), for α ∈ [0, π2 ] fixed.

Assuming smoothness of Easym in θ and using (9), critical points θ of the above reduced
energy solve the equation

0 = C0θ + 2C1θ
3 − 2π λ(cos θ − cosα) sin θ + o(θ3),

which always has the trivial solution θ = 0. For λ > 2 and cosα < 1− C0

2πλ = 1− 2
λ , expanding

sin θ and cos θ up to order θ4, we obtain another branch of positive solutions5

θ ≈
√

2πλ(1−cosα)−C0

2C1+πλ(1+ 1−cosα
3

)
=

√

λ(1−cosα)−2
304

105
+λ 4−cosα

6

as α ↓ αcrit := arccos(1− 2
λ).

Evaluating the second derivative of the reduced model at these critical points, we see that
for α > αcrit (provided λ > 2) the trivial zero θ = 0 becomes unstable, while the non-trivial
branch – corresponding to an asymmetric Néel wall for 0 < θ ≪ 1 – is a minimizer.

In other words: In sufficiently thin ferromagnetic films, corresponding to 0 < λ < 2 small,
only the symmetric Néel wall is the stable minimizer of the reduced model. In thicker films,
on the other hand, i.e. for λ > 2, there exists a critical wall angle αcrit at which the symmetric
Néel wall, which is a minimizer up to that point, becomes unstable with respect to pertur-
bations that nucleate an asymmetric core. With decreasing field, i.e. increasing angle α, the
core wall angle grows.

Hence, a supercritical bifurcation as in Figure 4 is at the origin of the cross-over from
symmetric to asymmetric Néel wall (with extended tails).

5Note that at this point we need the expansion of Easym up to order θ4.
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1.7 Discussion on methods

Asymptotic expansions by Γ-convergence

Our proof of Theorems 1 and 2 is based on the method of Γ-convergence, at the level of
minimizers of Easym(θ). Proposition 5 gives an asymptotically optimal upper bound for the
energy Easym(θ), while in Proposition 4 below we prove a compactness result for minimizers
of Easym(θ) and an asymptotically sharp lower bound for their energy. In combination, these
propositions immediately yield Theorems 1 and 2 (see also Corollary 1 below).

This approach fits into the framework of asymptotic expansions by Γ-convergence (or the
process of Γ-development), see e.g. [1, 6]. In fact, for small θ, (8) appears to be a scalar
variational problem. To see this, we reformulate (8) in the following way: Let

Fθ(m) := sin−2 θ

∫

Ω
|∇m|2dx for m ∈ X0 ∩Xθ.

We expect that – at least in the regime Fθ(m) ≤ C < ∞ of small energy, which is the
relevant one for the study of small-angle asymmetric Néel walls – we can reconstruct the
first and third component m′ of any such m ∈ X0 ∩Xθ from its second component m2 by
solving the Eikonal equation (cf. Section 4):

|∇ψ|2 = 1−m2
2 in Ω, ψ = 0 for x3 = −1, ψ = −2 cos θ for x3 = 1 (23)

for ψ ∈ Ḣ2(Ω) and setting m′ := ∇⊥ψ. Hence, we may formally rewrite Fθ as functional on
the second component m2 alone, while the other components are slaved to m2 via (23):

Fθ(m2) := Fθ

(
m1,m2,m3

)
, for m′ := ∇⊥ψ.

In order to define all functionals Fθ(m2) on the same space, we introduce f := m2/ sin θ, so
that we may consider Fθ as function Fθ : Ḣ

1(Ω,R) → [0,∞], given by

Fθ(f) :=







sin−2 θ
∫

Ω|∇m|2dx, if f is such that f(±∞, ·) = ±1 and the
function m2 := sin θ f admits a unique
extension m′ so that m ∈ X0 ∩Xθ,

+∞, otherwise.

Then, the leading-order Γ-limit F (0) : Ḣ1(Ω,R) → [0,∞] of Fθ is expected to be given by

F (0)(f) :=

{∫

Ω|∇f |2dx, if f ∈ X∗,

+∞, otherwise.

By Proposition 2 below, the energy F (0) admits only two minimizers m∗
2 of energy E0 = 4π,

which are related by the symmetry x  −x, m2  −m2. Since the whole energy Fθ is
invariant under this symmetry, we cannot expect that any higher-order expansion will select
one of the two minimizers, i.e. the first order has already locked the minimizer(s).
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In line with the general results on Γ-expansions (see [1, Eq. (0.5)] and [6, Remark 1.8]), the
next coefficient in the expansion of minFθ is just given in terms of a function F (1) : Ḣ1(Ω,R) →
[0,∞]

F (1)(f) :=

{

E1, if f = m∗
2 for a σ ∈ {±1},

+∞, otherwise,

that attains a finite value only on the set of minimizers {m∗
2 |σ = ±1} of the leading-order

limit. The coefficient E1 = F (1)(m∗
2) has been defined in (16).

Viewed as a formal Γ-expansion, we may write

Fθ
Γ
= F (0) + sin2 θ F (1) + o(θ2) weakly in Ḣ1 as θ ↓ 0.

In fact, at the first order, we conjecture that Fθ Γ-converges to F (0) in the weak Ḣ1-
topology as θ ↓ 0. Note that Lemma 2 proves compactness and the liminf inequality of
the Γ-convergence program. A variant of the construction argument in Proposition 5 might
also carry over to general limit configurations f ∈ X∗, so that the limsup inequality should
hold true.

Implicit function theorem

One expects that the expansion (10) of Easym(θ) and its minimizers mθ can also be derived by
more standard methods such as an implicit function theorem, applied to the Euler-Lagrange
equation Gθ(mθ, λθ, pθ) = 0 of Easym(θ), which is formally given by (for simplicity we use
the notation ∇p = (∂1p, 0, ∂3p))

Gθ

(
m,λ, p

)
:=











−∆m+∇p− λm

∇ ·m′

(∂3m1, ∂3m2,m3)
∣
∣
∂Ω

1
2 (|m|2 − 1)

m(±∞, ·)−m±
θ











.

The function λ : Ω → R is the Lagrange multiplier that corresponds to the unit-length
constraint |m|2 = 1 in the variational problem, while the function p : Ω → R is the Lagrange
multiplier that corresponds to the constraint ∇ ·m′ = 0 on the divergence of m′, just as the
pressure in Stokes’ equations.

Denote by mθ ∈ X0 a curve of minimizers of Easym(θ) that smoothly depends on the pa-
rameter θ in a neighborhood of θ = 0. For θ = 0, we have m0 = (1, 0, 0), which solves
G0(m0, λ0, p0) = 0 for – a priori – an arbitrary choice of the multipliers λ0 and p0, provided
∂1p0 = λ0 and ∂3p0 = 0. However, it turns out that one has p0 = πℓ with ℓ given in (18) (in
fact, this means λ0 = µ as given in (17)).

In the spirit of the implicit function theorem method, one identifies the first-order correction
(δm, δλ, δp) to (m0, λ0, p0), i.e. (mθ, λθ, pθ) = (m0, λ0, p0) + θ(δm, δλ, δp) + o(θ), by solving
the linear equation

0 = d
dθ

∣
∣
θ=0

Gθ(mθ, λθ, pθ) = ∂θ|θ=0Gθ(m0, λ0, p0) +DG0(m0, λ0, p0)(δm, δλ, δp)

12



for (δm, δλ, δp). The differential of G0 is given by

DG0(m0, λ0, p0)(δm, δλ, δp) =











−∆δm+∇δp − λ0 δm−m0 δλ

∇ · δm′

(∂3δm1, ∂3δm2, δm3)
∣
∣
∂Ω

m0 · δm
δm(±∞, ·)











,

and the only non-vanishing term in ∂θ|θ=0Gθ(m0, λ0, p0) is ∂θ|θ=0m
±
2,θ = ±1.

However, according to our results we can expect to have two branches of solutions, so that
DG0(m0, λ0, p0) has a non-trivial kernel, containing the linear space spanned by the dif-
ference of the functions m∗

2 for σ = ±1 (see (13)). But even after restricting to a suitable
subspace on which this degeneracy is ruled out, there is another degeneracy in the Lagrange
multipliers: δp and δλ can be taken arbitrarily as long as ∂1δp = δλ and ∂3δp = 0. It is
possible to (formally) identify δλ = 0 and δp ≡ const by taking into account also higher-
order terms in the expansion of (mθ, λθ, pθ) around θ = 0, but this involves similar technical
problems as the Γ-convergence approach that we have pursued.

2 Properties of the coefficients E0 and E1

2.1 Identification of minimizers of E0

In this section, we show that a minimizer of E0 exists and has the form (13). The main idea
is to write an admissible function f ∈ X∗ in (11) as cosine series in x3-direction and find a
lower bound independent of f with help of the Modica-Mortola trick. The lower bound will
be attained by the two configurations given in (42).

Proposition 2. The variational problem (11) has exactly two minimizers m∗
2 given by (13).

In particular, E0 = 4π.

Proof of Proposition 2: We split the proof into several steps:

Step 1: Fourier cosine representation of (11).

Let f ∈ X∗, i.e. be admissible in (11). Since f ∈ Ḣ1(Ω) and f(±∞, ·) = ±1, there exist
Fourier coefficients a0 ∈ Ḣ1(R) and an ∈ H1(R) for every n ≥ 1 so that f is represented as
cosine series (in x3-direction):

f(x1, x3)− a0(x1)√
2

=
∑

n≥1

an(x1) cos
(
π
2 n (x3 + 1)

)
in H1(Ω).

Therefore, one computes:

∫

Ω

∣
∣∇f

∣
∣2dx =

∫

R

(∣
∣∂1a0

∣
∣2 +

∑

n≥1

∣
∣∂1an

∣
∣2 +

∑

n≥1

(π2n)
2|an|2

)

dx1, (24)

13



and
∫

Ω±

|f(x1, x3)∓ 1|2 dx =

∫

R±

|a0 ∓
√
2|2 dx1 +

∑

n≥1

∫

R±

|an|2 dx1. (25)

Hence, a0∓
√
2 ∈ H1(R±), a0, an are continuous in R, and we have limx1→±∞ a0(x1) = ±

√
2

and lim|x1|→∞ an(x1) = 0 for every n ≥ 1. Finally, one may write the constraint −
∫ 1
−1 f

2dx3 =
1 in terms of the Fourier coefficients as:

1 = −
∫ 1

−1
f2(x1, x3) dx3 = 1

2

(
|a0(x1)|2 +

∑

n≥1

|an(x1)|2
)

∀x1 ∈ R, (26)

while f̄(0) = 0 is equivalent to a0(0) = 0.

Step 2: Lower bound: E0 ≥ 4π.

Indeed, with the notation introduced at Step 1 for an arbitrary f ∈ X∗, we define g : R → R+

by

g(x1) :=

(
∑

n≥1

|an(x1)|2
) 1

2 (26)
=

(

2− |a0(x1)|2
) 1

2

∀x1 ∈ R. (27)

By (24) and (25), we have that g ∈ H1(R) since the Cauchy-Schwarz inequality yields:

|∂1g|2 =
(
∑

n≥1
an∂1an)2

∑

n≥1
|an|2 ≤

∑

n≥1

|∂1an|2 in L1(R). (28)

Let us introduce the continuous profile

ℓ = a0√
2
∈ Ḣ1(R).

Note that limx1→±∞ ℓ(x1) = ±1. By (24), (27) and (28), we have the lower bound:

∫

Ω
|∇f |2dx ≥

∫

R

(

|∂1a0|2 + |∂1g|2 + (π2 )
2g2

)

dx1

= 2

∫

R

(∣
∣∂1ℓ

∣
∣2 +

∣
∣∂1

√

1− ℓ2
∣
∣2 + (π2 )

2
(
1− ℓ2

))

dx1

= 2

∫

R

(
|∂1ℓ|2
1−ℓ2

+ (π2 )
2
(
1− ℓ2

))

dx1

≥ 2π

∫

R

∣
∣∂1ℓ

∣
∣ dx1 ≥ 2π

∫

R

∂1ℓ dx1 = 4π,

(29)

where we applied Young’s inequality to obtain the first term in the last line.

Step 3: The configurations m∗
2 in (13) are the only minimizers of E0.

First of all, a direct computation shows thatm∗
2 in (11) belongs toX∗ with

∫

Ω|∇m∗
2|2dx = 4π.

In order to prove that these two configurations are the unique minimizers, let f : Ω → R be

14



an arbitrary minimizer of E0, i.e. let f ∈ X∗ satisfy
∫

Ω|∇f |2dx = 4π. By (29), this implies
that ∂1ℓ ≥ 0 and

∂1ℓ =
π
2 (1− ℓ2) in R, (30)

g2 =
∑

n≥1

n2|an|2 in R. (31)

Comparing (31) to (27), one deduces that the Fourier modes an with n ≥ 2 vanish, and the
unique solution of (30) with ℓ(0) = a0(0) = 0 is given by ℓ as it has been defined in (18), so
that

a0(x1) =
√
2 tanh(π2x1).

Therefore, (27) turns into the relation a21(x1) = 2
(
1− tanh2(π2x1)

)
> 0 for every x1 ∈ R and

the continuity of a1 implies the existence of σ ∈ {±1} such that

a1(x1) = σ
√
2
√

1− tanh2(π2x1) in R.

Hence, using cos(π2 (x3+1)) = − sin(π2x3), we conclude that f has the form given in (13).

2.2 Derivation of the Euler-Lagrange equation of E0

Let m∗
2 ∈ X∗ be one of the minimizers of E0. We aim to prove that m∗

2 satisfies the equation
∫

Ω
∇m∗

2 · ∇f dx =

∫

Ω
m∗

2 f µ(x1)dx ∀f ∈ Ḣ1(Ω), f̄(0) = 0, (32)

for the Lagrange multiplier µ as defined in (17).

Let f ∈ Ḣ1(Ω) be such that f̄(0) = 0 and f = 0 if |x1| ≫ 1. We define a variation γt ∈ X∗

of m∗
2 for |t| ≪ 1 as

γt =
m∗

2+tf
√

−
∫ 1

−1
(m∗

2
+tf)2dx3

in Ω. (33)

Since γ0 = m∗
2 ∈ X∗ minimizes E0, we deduce that

d
dt

∣
∣
t=0

∫

Ω
|∇γt|2dx = 0.

Using the fact that

0 = d
dx1

−
∫ 1

−1
(m∗

2)
2(·, x3) dx3 = 2−

∫ 1

−1
m∗

2(·, x3) d
dx1

m∗
2(·, x3) dx3,

a short computation yields that m∗
2 satisfies the Euler-Lagrange equation (32), provided the

test functions have compact support.

In order to pass from compactly supported functions to arbitrary f ∈ Ḣ1(Ω) with f̄(0) = 0,
we consider fn := χnf for χn(x1) = χ(x1

n ), where χ : R → [0, 1] is a smooth, compactly
supported cutoff function with χ ≡ 1 on [−1, 1]. Then ∇fn → ∇f in L2(Ω), hence, by

Hardy’s inequality (86), also µ
1

2 (x1)fn → µ
1

2 (x1)f in L2(Ω). Therefore, passing to the limit
n ↑ ∞ in (32) for f = fn, one deduces that indeed (32) holds for every f ∈ Ḣ1(Ω) with
f̄(0) = 0.
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2.3 The Hessian of E0 and its spectral gap

As above, let m∗
2 ∈ X∗ be one of the minimizers of E0 and f ∈ Ḣ1(Ω) such that f̄(0) = 0

and f = 0 if |x1| ≫ 1. Again, we consider the variation γt of m∗
2 defined in (33), under the

additional assumption that the function f be tangential to the constraint −
∫ 1
−1(m

∗
2)

2 dx3 = 1.

To this end, we require f to satisfy
∫ 1
−1m

∗
2 f dx3 = 0.

Since γ0 = m∗
2 ∈ X∗ minimizes E0, one has that

2B(f, f) := d2

dt2

∣
∣
t=0

∫

Ω
|∇γt|2dx ≥ 0.

Using (32) one can explicitly compute the bilinear form

B(f, f̃) =

∫

Ω
∇f · ∇f̃ − µ(x1) f f̃ dx. (34)

Hence, the same density argument as in the previous section shows that we trivially have

B(f, f) ≥ 0 for every f ∈ Ḣ1(Ω) with f̄(0) = 0 and

∫ 1

−1
m∗

2 f dx3 = 0.

However, the Hessian in fact has a spectral gap as we prove below.

Proposition 3. Let m∗
2 be given by (13) for some σ ∈ {±1}. For all f ∈ Ḣ1(Ω) with

f̄(0) = 0 and

∫ 1

−1
m∗

2 f dx3 = 0, (35)

we have

B(f, f) =

∫

Ω
|∇f |2 − µ(x1) f

2 dx ≥ 1
5

∫

Ω
|∇f |2 + µ f2 dx, (36)

where µ has been defined in (17). Moreover, B(f, f) ≥ π2

4 ‖f‖2L2 , where π2

4 is sharp.

Proof. We divide the proof into three steps:

Step 1: Any f ∈ Ḣ1(Ω) with (35) satisfies f ∈ L2(Ω).

Indeed, by the second constraint in (35), we may apply Poincaré’s inequality (84) to m∗
2f .

Hence,

∫

Ω
f2 dx ≤ 2

∫

Ω
f2(m∗

2)
2 + f2 (1− |m∗

2|)2
︸ ︷︷ ︸

≤Cµ(x1)

dx

(35)
(84)

≤ C

∫

Ω
|∂3(fm∗

2)|2
︸ ︷︷ ︸

≤C(|∂3f |2+f2µ)

+f2 µdx

≤ C

∫

Ω
|∇f |2 + f2 µdx ≤ C

∫

Ω
|∇f |2 dx,

where we used that |m∗
2| ≤ C and |∂3m∗

2| ≤ C
√

µ(x1) in Ω.
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Step 2: For all f ∈ H1(Ω) with (35), we have

B(f, f) ≥ π2

4

∫

Ω
f2 dx.

The constant π2

4 is sharp.

As in the proof of Proposition 2, we represent f ∈ H1(Ω) as a Fourier cosine series: There
exist coefficients an ∈ H1(R), n ≥ 0, such that

f(x1, x3) =
a0(x1)√

2
+

∑

n≥1

an(x1) cos
(
π
2n(x3 + 1)

)
in H1(Ω).

The constraints (35) turn into

a0(0) = 0, a0√
1−ℓ2

= σ a1
ℓ =: g ∈ H1(R). (37)

Then, one computes

(∂1a0)
2 = (1− ℓ2)(∂1g)

2 + π2

4 (1− ℓ2)ℓ2 g2 − π
2 (1− ℓ2)ℓ ∂1g

2,

(∂1a1)
2 = ℓ2(∂1g)

2 + π2

4 (1− ℓ2)2 g2 + π
2 (1− ℓ2)ℓ ∂1g

2,

as well as g2 = a20 + a21 and

(∂1a0)
2 + (∂1a1)

2 + π2

4 a
2
1 = (∂1g)

2 + π2

4 g
2. (38)

Therefore, using the cosine-series representation (24) of the exchange energy, and

∫ 1

−1
|f(·, x3)|2dx3 =

∑

n≥0

|an|2 in L1(R),

we find

B(f, f) =

∫

R

(

(∂1a0)
2 + (∂1a1)

2 − µa20 + (π
2

4 − µ)a21

+
∑

n≥2

(

(∂1an)
2 +

(
(π2n)

2 − µ
)
a2n

︸ ︷︷ ︸

≥0+
π2

4 a2n

))

dx1

(38)

≥
∫

R

(∂1g)
2 − µ g2 dx1 +

π2

4

∫

R

g2 +
∑

n≥2

a2n dx

︸ ︷︷ ︸

=
∫

Ω
f2 dx

.

This concludes Step 2, provided

∫

R

(∂1g)
2 − µ g2 dx1 ≥ 0 ∀g ∈ Ḣ1(R) with g(0) = 0. (39)
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For the proof of (39), note that by an approximation argument we may assume that g is
smooth and g = 0 in a neighborhood of x1 = 0. Then, (39) easily follows using the Hardy
decomposition g = ℓ gℓ , which entails ∂1g = ∂1ℓ

g
ℓ + ℓ∂1(

g
ℓ ) and hence

(∂1g)
2 = ℓ2

(
∂1(

g
ℓ )
)2

+ (∂1ℓ)
2(gℓ )

2 +

=ℓ∂1ℓ∂1(
g
ℓ
)2

︷ ︸︸ ︷

∂1(∂1ℓ
g2

ℓ )− (∂1ℓ)
2(gℓ )

2 − ℓ∂21ℓ(
g
ℓ )

2

≥ ∂1(∂1ℓ
g2

ℓ )− ℓ ∂21ℓ
︸︷︷︸

=−ℓπ
2

2
(1−ℓ2)=−ℓµ

(gℓ )
2 = ∂1(∂1ℓ

g2

ℓ ) + µ g2.

After integrating over R, the first term on the right hand side vanishes.

Finally, we note that the spectral gap estimate would be saturated for a function f that
is defined in Fourier space by an = 0 for n ≥ 2 and a0, a1 such that the corresponding
g ∈ H1(R) satisfies equality in (39). While g = ℓ saturates (39), it is not in H1(R). However,
it can be approximated by compactly supported functions ℓn such that B(ℓn, ℓn) → 0 as

n ↑ ∞. Hence, the constant π2

4 is sharp.

Step 3: Conclusion

By Step 2, we have

∫

Ω
|∇f |2 + f2 µdx = B(f, f) + 2

∫

Ω
f2 µdx

︸ ︷︷ ︸

≤2B(f,f)

≤ 5B(f, f).

2.4 Computation of E1

Observe that the two minimizers m∗
2 as in (13) and hence also the two possible definitions of

m̂′ are related6 via the symmetry x3  −x3. By definition (16), the energy E1 is invariant
under this transformation. Therefore, we may restrict our attention to the case σ = 1.

As before, we denote ℓ(x1) := tanh(π2x1). Then

m∗
2(x1, x3) = ℓ(x1) +

√
2
√

1− ℓ2(x1) sin(
π
2x3), (40)

and using the relation ℓ′ = π
2 (1− ℓ2) one can compute:

∂1m
∗
2

(40)
= π

2 (1− ℓ2)− π√
2
ℓ
√

1− ℓ2 sin(π2x3), (41)

∂3m
∗
2

(40)
= π√

2

√

1− ℓ2 cos(π2x3). (42)

6In case of m̂3 observe that
∫ s

−1
m̂1 dx3 = −

∫
1

s
m̂1 dx3 for any s ∈ [−1, 1].

18



Hence,

−
∫ 1

−1
|∂1m∗

2|2dx3
(41)
= π2

4 (1− ℓ2)2 + π2

4 ℓ
2(1− ℓ2) = π2

4 (1− ℓ2),

−
∫ 1

−1
|∂3m∗

2|2dx3
(42)
= π2

4 (1− ℓ2),

which entails (17):

µ = −
∫ 1

−1
|∇m∗

2|2dx3 = π2

2 (1− ℓ2). (43)

Moreover, we have

m̂1
(15)
=

1−(m∗
2)

2

2

(40)
= 1

2(1− ℓ2) cos(πx3)−
√
2ℓ
√

1− ℓ2 sin(π2x3), (44)

∂3m̂3
(15)
= −∂1m̂1

(44)
= π

2 ℓ(1− ℓ2) cos(πx3) +
π√
2

√

1− ℓ2(1− 2ℓ2) sin(π2x3), (45)

∂3m̂1
(44)
= −π

2 (1− ℓ2) sin(πx3)− π√
2
ℓ
√

1− ℓ2 cos(π2x3), (46)

and

m̂3 =

∫ x3

−1
∂3m̂3 dy3

(45)
= 1

2ℓ(1− ℓ2) sin(πx3)−
√
2
√

1− ℓ2(1− 2ℓ2) cos(π2x3), (47)

∂1m̂3
(47)
= π

4 (1− ℓ2)(1− 3ℓ2) sin(πx3) +
π√
2
ℓ
√

1− ℓ2(5− 6ℓ2) cos(π2x3). (48)

This yields
∫ 1

−1
m̂2

1 dx3
(44)
= 1

4(1− ℓ2)2 + 2ℓ2(1− ℓ2) = 1
8(2 + 12ℓ2 − 14ℓ4),

∫ 1

−1
m̂2

3 dx3
(47)
= 1

4ℓ
2(1− ℓ2)2 + 2(1 − ℓ2)(1− 2ℓ2)2

= 1
8(16 − 78ℓ2 + 124ℓ4 − 62ℓ6),

and
∫ 1

−1

∣
∣∂1m̂1

∣
∣2 dx3

(45)
= π2

4 ℓ
2(1− ℓ2)2 + π2

2 (1− ℓ2)(1 − 2ℓ2)2

= π2

16 (1− ℓ2)(8− 28ℓ2 + 28ℓ4), (49)
∫ 1

−1

∣
∣∂3m̂1

∣
∣2 dx3

(46)
= π2

4 (1− ℓ2)2 + π2

2 ℓ
2(1− ℓ2) = π2

16 (1− ℓ2)(4 + 4ℓ2),

∫ 1

−1

∣
∣∂1m̂3

∣
∣2 dx3

(48)
= π2

16 (1− ℓ2)2(1− 3ℓ2)2 + π2

2 ℓ
2(1− ℓ2)(5− 6ℓ2)2

= π2

16 (1− ℓ2)(1 + 193ℓ2 − 465ℓ4 + 279ℓ6),
∫ 1

−1

∣
∣∂3m̂3

∣
∣2 dx3

(49)
= π2

16 (1− ℓ2)(8− 28ℓ2 + 28ℓ4).
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Using this and (43) in (16), and exploiting the relation ℓ′ = π2

2 (1− ℓ2), we obtain

E1 =
π
8

∫

R

(
3 + 207ℓ2 − 519ℓ4 + 341ℓ6

)
ℓ′ dx1.

By the change of variables s = ℓ(x1) we arrive at

E1 =
π
8

∫ 1

−1

(
3 + 207s2 − 519s4 + 341s6

)
ds = 148

35 π.

3 Compactness and lower bounds

In this section, we prove asymptotic lower bounds for Easym(θ) as θ ≪ 1. Together with the
upper bound in Section 4, they combine to Theorems 1 and 2.

Starting point is the following Lemma, which shows that the energy of any magnetization
configuration mθ ∈ X0 ∩Xθ has the structure displayed in (10):

Lemma 1. Let mθ ∈ X0 ∩Xθ be admissible in the definition of Easym(θ), and let m∗
2 ∈ X∗

satisfy the equation (32) (e.g., m∗
2 could be one of the minimizers of E0). Let m̂θ be such

that

mθ =

(
cos θ

sin θm∗
2

0

)

+ sin2 θ m̂θ. (50)

Then

2

∫ 1

−1
m∗

2 m̂2,θ dx3 = − sin θ

∫ 1

−1
|m̂θ|2 dx3 for every x1 ∈ R (51)

and
∫

Ω
|∇mθ|2dx = sin2 θ

∫

Ω
|∇m∗

2|2dx+ sin4 θ B(m̂θ, m̂θ), (52)

where

B(m̂θ, m̂θ) :=

∫

Ω
|∇m̂θ|2 − µ|m̂θ|2dx =

3∑

i=1

B(m̂i,θ, m̂i,θ). (53)

Proof. From |mθ|2 = 1 and (50) we obtain

1 = cos2 θ + 2cos θ sin2 θ m̂1,θ + sin4 θ m̂2
1,θ +m2

2,θ + sin4 θ m̂2
3,θ.

Integrating over (−1, 1) in x3 and using −
∫ 1
−1 m̂1,θ dx3 = 0 (recall m̄1,θ ≡ cos θ) yields

sin2 θ = 1− cos2 θ = sin2 θ−
∫ 1

−1
(m∗

2 + sin θ m̂2,θ)
2

︸ ︷︷ ︸

=m2
2,θ/ sin

2 θ

dx3 + sin4 θ−
∫ 1

−1
|m̂′

θ|2 dx3.
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Dividing by sin2 θ, we obtain:

1 = −
∫ 1

−1

(

(m∗
2)

2 + 2 sin θm∗
2 m̂2,θ + sin2 θ |m̂θ|2

)

dx3.

Now, using −
∫ 1
−1(m

∗
2)

2 dx3 ≡ 1, we conclude (51).

For (52), we use the Euler-Lagrange equation (32) associated to m∗
2 together with (51):

sin−4 θ
(∫

Ω
|∇mθ|2dx− sin2 θ

∫

Ω
|∇m∗

2|2dx
)

(50)
=

∫

Ω

(

|∇m̂θ|2 + 2 sin−1 θ∇m∗
2 · ∇m̂2,θ

)

dx

(32)
=

∫

Ω

(

|∇m̂θ|2 + 2 sin−1 θ µ(x1)m
∗
2 m̂2,θ

)

dx

(51)
=

∫

Ω

(

|∇m̂θ|2 − µ(x1) |m̂θ|2
)

dx.

Hence, for a family of minimizers {mθ}θ of Easym it remains to find a suitable m∗
2 – a

minimizer of (11) for an appropriate choice of σ ∈ {±1} – such that the corresponding term
B(m̂θ, m̂θ) (see (50) and (52)) can be controlled. We are going to prove that B(m̂2,θ, m̂2,θ)
is negligible for θ ↓ 0 and B(m̂′

θ, m̂
′
θ) → E1.

3.1 Outline of the proof

While obtaining an asymptotic lower bound on Easym(θ) in terms of E0 is almost straightfor-
ward (cf. Lemma 2 below), using the concentration-compactness type result [11, Lemma 1],
it requires more work to establish rigorously that the coefficient E1 in (10) is given by (16).

Main problem here is that – a priori – the term B(m̂θ, m̂θ) in (52) is lacking a sign, while
the explicit construction in Section 4 below (see Proposition 5) just provides an upper

bound (note that, due to µ(0) = π2

2 , even with optimal constants, Poincaré’s and Hardy’s
inequalities yield a sign for B only away from the origin, where µ is small).

We overcome this difficulty in the following way: Exploiting the relation

m1,θ ≈
√

1−m2
2,θ −m2

3,θ ≈ 1− sin2 θ
(m∗

2
+sin θ m̂2,θ)

2+(sin θ m̂3,θ)
2

2 for θ ≪ 1,

leading-order control over m2,θ and m3,θ in fact suffices to prove that {m̂1,θ}θ and {∂1m̂1,θ}θ
are bounded in L2

loc(Ω) and L1(Ω, µdx), respectively. Using the stray-field constraint ∂1m̂1,θ =
−∂3m̂3,θ and a suitable interpolation inequality, L2(Ω, µdx)-control can be transferred to
{m̂3,θ}θ. Due to the exponential tails of the density µ, local control of m̂1,θ suffices to render
B(m̂′

θ, m̂
′
θ) harmless. In fact, B(m̂′

θ, m̂
′
θ) provides H1-control of m̂′

θ.

For B(m̂2,θ, m̂2,θ), we use that B is the Hessian of the problem (11) defining E0 (cf. Sec-
tion 2.3) and satisfies a spectral gap inequality. Thus, it provides some control over tangent
vectors to the “manifold” X∗ at m∗

2. Unfortunately, m̂2,θ is not exactly tangential, but, by
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(51), it is at least formally an approximation to a tangent vector. Using part of the control
of m̂′

θ coming from B(m̂′
θ, m̂

′
θ), this suffices to prove that asymptotically, B(m̂2,θ, m̂2,θ) still

controls m̂2,θ in Ḣ1(Ω), and in particular is non-negative. This finally yields the lower bound
for the expansion of Easym(θ) at order sin4 θ.

The details of this procedure will be given in the following Section 3.2, Proposition 4 summa-
rizing the compactness results that we obtain for sequences of magnetization configurations
mθ ∈ X0 ∩Xθ whose energy satisfies the upper bound of Proposition 5.

3.2 Compactness and lower bounds for minimizers of Easym(θ)

Our main result is the following:

Proposition 4. For 0 < θ ≪ 1, let mθ ∈ X0∩Xθ be admissible in the definition of Easym(θ)
and satisfy the bound

∫

Ω
|∇mθ|2dx ≤ E0 sin

2 θ + C sin4 θ (54)

for some fixed positive constant C > 0, where E0 = 4π is given in (11). Then, up to a
suitable translation in x1 and a subsequence, we have m2,θ = sin θm∗

2 + o(sin θ) in Ḣ1(Ω),
for an m∗

2 as in (13). Let m̂θ be as in (50).

Then, up to another subsequence, for µ = µ(x1) as in (17),

m̂′
θ −⇀ m̂′ weakly in H1(Ω) and strongly in L2(Ω, µdx) as θ ↓ 0,

where m̂1 and m̂3 are given in (15).

Moreover, we have the lower bounds

lim inf
θ↓0

sin−4 θ
(∫

Ω
|∇mθ|2dx− sin2 θ

=E0=4π by Prop. 2
︷ ︸︸ ︷∫

Ω
|∇m∗

2|2dx
)

≥
∫

Ω
|∇m̂′|2 − µ(x1)|m̂′|2 dx = B(m̂′, m̂′) = E1.

(55)

and, for some ε > 0,

lim sup
θ↓0

sin−4 θ
(∫

Ω
|∇mθ|2dx−E0 sin2 θ − E1 sin4 θ

)

≥ ε lim sup
θ↓0

∫

Ω
|∇m̂2,θ|2dx.

(56)

Corollary 1. Provided the upper bound in Proposition 4 holds in the form

∫

Ω
|∇mθ|2dx ≤ E0 sin

2 θ + E1 sin
4 θ + o(sin4 θ), (57)

we have strong convergence m̂θ → (m̂1, 0, m̂3) in Ḣ1(Ω) ∩ L2(Ω, µdx) as θ ↓ 0.
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Proof of Corollary 1. By (56), Lemma 1 and the stronger upper bound (57), we have

0
(57)
= lim sup

θ↓0

((
B(m̂′

θ, m̂
′
θ)− E1

)
+B(m̂2,θ, m̂2,θ)

) (56)

≥ ε lim sup
θ↓0

∫

Ω
|∇m̂2,θ|2dx.

Therefore, m̂2,θ → 0 in Ḣ1(Ω) and thus – by Hardy’s inequality (86) – in L2(Ω, µdx) as
θ ↓ 0. In particular, B(m̂2,θ, m̂2,θ) → 0. By (55), this yields

0 = lim sup
θ↓0

(
B(m̂′

θ, m̂
′
θ)− E1

)
≥ lim inf

θ↓0

(
B(m̂′

θ, m̂
′
θ)− E1

) (55)

≥ 0,

i.e. B(m̂′
θ, m̂

′
θ) → B(m̂′, m̂′) as θ ↓ 0. In view of the strong convergence of m̂′

θ in L2(Ω, µdx),
this implies convergence

∫

Ω|∇m̂′
θ|2dx→

∫

Ω|∇m̂′|2dx. Therefore, m̂′
θ → m̂′ strongly in Ḣ1(Ω)

as θ ↓ 0.

The proof of Proposition 4 consists of several steps. In the first one, Lemma 2, we prove
a compactness result for sequences of magnetization configurations mθ ∈ X0 ∩ Xθ with
exchange energy of order sin2 θ in the limit θ ↓ 0.

Lemma 2. For 0 < θ ≪ 1, let mθ ∈ X0 ∩ Xθ be admissible in the definition of Easym(θ)
and satisfy the bound

∫

Ω
|∇mθ|2dx ≤ C sin2 θ (58)

for some fixed positive constant C > 0. Define m∗
2,θ and m̂′

θ by

mθ =

(
cos θ

sin θm∗
2,θ

0

)

+ sin2 θ

(
m̂1,θ

0
m̂3,θ

)

. (59)

Then, up to translations in x1 and for a subsequence in θ, there exists f ∈ X∗, i.e. admissible
in E0, such that for θ ↓ 0

• m∗
2,θ −⇀ f in Ḣ1(Ω),

• m̂1,θ → 1−f2

2 =: m̂1 in Lp
loc(Ω) for any p ≥ 1,

• sin θ m̂3,θ −⇀ 0 in H1(Ω).

Here, the main issue consists in proving that there exists a (weak) limit configuration f ∈ X∗

of the sequence {m∗
2,θ}θ. While a change of sign in the second component can be established

easily by applying the concentration-compactness result [11, Lemma 1], one has to take into
account also the convergence of the two remaining components m′

θ in order to obtain the

correct numerical value 1 in −
∫ 1
−1 f

2 dx3 = 1 and f(±∞, ·) = ±1. In particular, this part deals

with controlling m̂1,θ in L2
loc (see Section 3.1 for the relevance of this).

In the next step, Lemma 3, we identify the (weak) limit f as one of the minimizers m∗
2

of the variational problem defining E0, provided the second-order upper bound (54) holds.
Moreover, we improve the convergence of mθ and derive the bounds on ∂1m̂1,θ in L1(Ω, µdx)
(again, cf. Section 3.1).
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Lemma 3. For 0 < θ ≪ 1, let mθ ∈ X0 ∩ Xθ be admissible in the definition of Easym(θ)
and satisfy the more restrictive bound

∫

Ω
|∇mθ|2dx ≤ E0 sin

2 θ + C sin4 θ (60)

for some fixed positive constant C > 0, and E0 = 4π as in (11). Then, the limit configuration
f ∈ X∗ in Lemma 2 is one of the minimizers m∗

2 of the variational problem defining E0;
moreover, adopting the notation in Lemma 2, up to translations in x1 and for a subsequence
in θ, we have in the limit θ ↓ 0:

• m∗
2,θ → m∗

2 in Ḣ1(Ω),

• {∂1m̂1,θ}θ is bounded in L1(Ω, µdx),

• sin θ m̂′
θ → 0 in H1(Ω).

Note that under the more restrictive assumption (60) (which, in particular, is satisfied by
minimizers mθ of Easym(θ), cf. Proposition 5), not only the weak limit f can be identified,
but also the convergence of the second component becomes strong in the Ḣ1(Ω)-topology.

This information then suffices to prove the asymptotic spectral gap inequality for the ap-
proximate tangent vectors m̂2,θ:

Lemma 4. Let mθ ∈ X0 ∩Xθ satisfy the assumptions of Lemma 3. Define m̂θ as in (50),
for m∗

2 given by Lemma 3.

Then, there exists a constant ε > 0 such that in the limit θ ↓ 0 we have

B(m̂2,θ, m̂2,θ) ≥ ε

∫

Ω
|∇m̂2,θ|2 + m̂2

2,θ µdx− o(1)

∫

Ω
|∇m̂′

θ|2dx, (61)

where the Hessian B has been defined in (53).

Combining all steps, we finally obtain Proposition 4.

We will now prove Lemmas 2 and 3.

Proof of Lemma 2. Define m∗
3,θ := sin θ m̂3,θ =

m3,θ

sin θ .

Step 1: There exist f ∈ Ḣ1(Ω) and m∗
3 ∈ H1(Ω) such that f̄(0) = 0 and

lim sup
x1→−∞

f̄(x1) ≤ 0 as well as lim inf
x1→∞

f̄(x1) ≥ 0. (62)

Moreover, up to a subsequence and translations in x1-direction, as θ ↓ 0:

m∗
2,θ −⇀ f in Ḣ1(Ω),

m̄∗
2,θ → f̄ locally uniformly,

m∗
3,θ −⇀ m∗

3 in H1(Ω).

(63)
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Indeed, by (58), the families {m∗
2,θ}θ and {m∗

3,θ}θ are bounded in Ḣ1(Ω). Recall that for

mθ ∈ X0 ∩Xθ we have m̄1,θ = cos θ (cf. (6)). Moreover, m3,θ = 0 on ∂Ω. Thus, the Poincaré
inequalities (84) and (85) imply

∫

Ω
|m1,θ − cos θ|2 +m2

3,θ dx ≤ C

∫

Ω
|∂3m′

θ|2dx.

Similar estimates hold for the rescaled variants m̂1,θ and m̂3,θ given in (15). For the second
component m2,θ, due to m̄2,θ(0) = 0, Hardy’s inequality (86) leads to a control of the L2-
norm of m2,θ on bounded subsets Ωk = (−k, k) × (−1, 1) ⊂ Ω for every k > 0:

∫

Ωk

m2
2,θ dx =

∫

Ωk

∣
∣m2,θ − m̄2,θ(0)

∣
∣2dx

(86)

≤ Ck

∫

Ωk

|∇m2,θ|2dx.

Therefore, we deduce that {m∗
3,θ}θ is bounded in H1(Ω) while {m∗

2,θ}θ is bounded in Ḣ1(Ω)∩
H1

loc(Ω).

Now we will use a concentration-compactness result to ensure that x1-translated configura-
tions {m∗

2,θ}θ do satisfy the constraint (62) in the limit θ ↓ 0. For that, let

uθ = m̄∗
2,θ =

m̄2,θ

sin θ .

Since m2,θ(±∞, ·) = ± sin θ and θ ∈ (0, π), we have that uθ ∓ 1 ∈ H1(R±): Indeed

∫

R+

|uθ − 1|2 dx1 = 1
sin2 θ

∫

R+

|m̄2,θ − sin θ|2 dx1 ≤ 1
2 sin2 θ

∫

Ω+

|m2,θ − sin θ|2 dx
(2)
< ∞

(similarly on R−). Moreover, {uθ}θ is uniformly bounded in Ḣ1(R) and satisfies

lim sup
x1→−∞

uθ(x1) = −1 < 0 and lim inf
x1→∞

uθ(x1) = 1 > 0 for every θ ↓ 0.

By Lemma 1 in [11], up to a subfamily in θ, we obtain an admissible limit u ∈ Ḣ1(R) and
zeros x1,θ of m̄2,θ for θ ↓ 0 such that

m̄∗
2,θ(·+ x1,θ) → u locally uniformly in R and u satisfies (62).

In particular, u(0) = 0. Since {m∗
3,θ(·+x1,θ , ·)}θ is bounded in H1(Ω) and {m∗

2,θ(·+x1,θ, ·)}θ
is bounded in Ḣ1(Ω) ∩H1

loc(Ω), there exist f ∈ Ḣ1(Ω,R) and m∗
3 ∈ H1(Ω,R) such that

m∗
2,θ(·+ x1,θ, ·) −⇀ f in Ḣ1(Ω) ∩H1

loc(Ω) as θ ↓ 0,

m∗
3,θ(·+ x1,θ, ·) −⇀ m∗

3 in H1(Ω) as θ ↓ 0.

By Rellich’s theorem, we know that m∗
2,θ(·+ x1,θ, ·) → f strongly in L2

loc(Ω), which implies

in particular that we can identify the x3-average of the limit f̄ = u.

In order to simplify notation, we may w.l.o.g. assume that these hold without translation in
x1-direction.
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Before we can show that f is admissible in X∗ (see Steps 4 and 5) and m∗
3 = 0 (see Step 3),

we need to identify the limit of {m̂1,θ}θ as θ ↓ 0.

Step 2: For every 1 ≤ p <∞ we have m̂1,θ → 1−f2−(m∗
3
)2

2 in Lp
loc(Ω).

Let Ωk := [−k, k]×[−1, 1]. By Rellich’s embedding theorem, Step 1 yields strong convergence
m∗

2,θ → f and m∗
3,θ → m∗

3 in Lp(Ωk) as θ ↓ 0. Set

hθ = (m∗
2,θ)

2 + (m∗
3,θ)

2.

On one hand, one has that

hθ → f2 + (m∗
3)

2 =: h in Lp(Ωk) for every p ≥ 1.

On the other hand, denoting

Mρ,θ := {m1,θ ≤ ρ} for some ρ ∈ [−1, 1] and θ > 0,

the function m̂1,θ can be expressed in terms of hθ as follows:

m̂1,θ =
m1,θ−cos θ

sin2 θ
=

√
1−sin2 θ hθ −1

sin2 θ
+ 1−cos θ

sin2 θ
=: Fθ(hθ) on Ω \M0,θ.

It is easy to check that Fθ(t) → F (t) as θ ↓ 0 (assuming sin2 θ ≤ t−1 to make Fθ(t) well-
defined) with F (t) = 1−t

2 .

In fact, one computes

|Fθ(t)− F (t)| ≤
∣
∣ 1
2 − 1−cos θ

sin2 θ

∣
∣+ |t|

∣
∣1
2 − 1

1+
√

1−t sin2 θ

∣
∣ ≤ C sin2 θ (1 + t2)

as θ ↓ 0. Therefore,
∫

Ωk\M0,θ

∣
∣
∣m̂1,θ −

1−(m∗
2,θ)

2−(m∗
3,θ)

2

2

∣
∣
∣

p
dx =

∫

Ωk\M0,θ

|Fθ(hθ)− F (hθ)|p dx

≤ Cp sin2p θ

∫

Ωk

(1 + h2θ)
p dx→ 0 as θ ↓ 0.

For the estimate on M0,θ, we will prove more generally that for arbitrary p ≥ 1, 0 ≤ ρ < 1
and θ ∈ (0, π2 ) such that 1+ρ

2 < cos θ < 1

L2(Mρ,θ) ≤ Cρ,p sin
p θ, (64)

where Cρ,p > 0 is a constant depending only on ρ and p.

Indeed, if 1+ρ
2 < cos θ < 1, we have

1 ≤ m1,θ−cos θ
ρ−cos θ on Mρ,θ. (65)

By Poincaré’s inequality we know that m1,θ − cos θ ∈ H1(Ω), so that for p ≥ 2, Sobolev’s
embedding theorem H1(Ω) ⊂ Lp(Ω) yields

(
L2(Mρ,θ)

) 1

p =
(∫

Mρ,θ

1 dx
) 1

p
(65)

≤
(∫

Mρ,θ

∣
∣m1,θ−cos θ

ρ−cos θ

∣
∣pdx

) 1

p

≤ Cp

cos θ−ρ

(∫

Ω
|∇m1,θ|2dx

) 1

2 ≤ Cρ,p sin θ,
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as long as 1+ρ
2 < cos θ < 1, e.g. for θ ∈ (0, π3 ), if ρ = 0. Since we have now proven that

(64) holds for p ≥ 2, it immediately follows that (64) holds also for p ∈ [1, 2) (because
sin2 θ ≤ sinp θ for every θ ∈ (0, π2 )).

Therefore, applying (64) for 2p + 1 instead of p, we find, using |m̂1,θ|, |hθ| ≤ C
sin2 θ

:

∫

Ωk∩M0,θ

∣
∣m̂1,θ − 1−hθ

2

∣
∣pdx ≤ Cp

sin2p θ
L2(M0,θ)

(64)→ 0 as θ ↓ 0.

So far we have obtained
∫

Ωk
|Fθ(hθ)− F (hθ)|pdx→ 0 as θ ↓ 0. Due to

∫

Ωk

|F (hθ)− F (h)|p dx ≤ 1
2p

∫

Ωk

|hθ − h|p dx→ 0,

we conclude
∫

Ωk
|Fθ(hθ)− F (h)|pdx→ 0 in the limit θ ↓ 0.

Step 3: We have m∗
3 = 0. In particular, by Step 2, this yields m̂1,θ → 1−f2

2 in Lp
loc(Ω) for

every 1 ≤ p <∞.

Indeed, we will use ∇ ·m′
θ = 0 in Ω in order to show that m∗

3,θ vanishes in the limit θ ↓ 0.
For that, observe that in terms of m̂1,θ and m∗

3,θ, the divergence constraint turns into

{

sin θ ∂1m̂1,θ + ∂3m
∗
3,θ = 0 in Ω,

m∗
3,θ = 0 on ∂Ω.

(66)

By Step 1 we have m∗
3,θ −⇀ m∗

3 weakly in H1(Ω), hence weakly in H
1

2 (∂Ω) by weak continuity
of the trace operator. Therefore, m∗

3 = 0 on ∂Ω. After testing (66) with functions in C∞
0 (Ω)

we may therefore pass to the limit θ ↓ 0 and use Steps 1 and 2 to find

∂3m
∗
3 = 0 in D′(Ω).

Since m∗
3 ∈ H1(Ω), we conclude m∗

3 = 0 in Ω.

Step 4: We have −
∫ 1
−1(m

∗
2,θ)

2 dx3 → 1 a.e. in x1. As a consequence, −
∫ 1
−1 f

2 dx3 ≡ 1.

Indeed, by the compact embedding H1
loc(Ω) → L2({x1}×[−1, 1]) for any fixed x1 ∈ R, Step 1

implies that −
∫ 1
−1(m

∗
2,θ)

2 dx3 → −
∫ 1
−1 f

2 dx3 a.e. in x1. But Step 3 yields 0 =
∫ 1
−1 m̂1,θ dx3 →

−
∫ 1
−1

(
1− f2

)
dx3 in L1

loc(R) and thus a.e. in x1. Since the function x1 7→ −
∫ 1
−1 f

2 dx3 is of class

W 1,1
loc (R) and therefore continuous, we conclude −

∫ 1
−1 f

2 dx3 = 1 for all x1 ∈ R.

Step 5: We have f(±∞, ·) = ±1, which concludes the proof of f ∈ X∗.

We start by checking that |f |(±∞, ·) = 1. Indeed, since |f | ∈ Ḣ1(Ω), the function x3 7→
|f |(x1, x3) is of class H1

(
(−1, 1)

)
for almost every x1 ∈ R, hence continuous on almost every

line {x1}× (−1, 1). Using Step 4, we deduce that for a.e. x1 ∈ R, there exists an x3 ∈ (−1, 1)
such that |f |(x1, x3) = 1. Therefore, from Poincaré’s inequality we deduce that

∫ 1

−1

∣
∣|f |(x1, s)− 1

∣
∣2 ds =

∫ 1

−1

∣
∣|f |(x1, s)− |f |(x1, x3)

∣
∣2 ds ≤ C

∫ 1

−1
|∂3f |2(x1, s) ds.
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Integrating in x1, one obtains

∫

Ω

∣
∣|f | − 1

∣
∣2dx ≤ C

∫

Ω
|∂3f |2 dx,

i.e. |f |(±∞, ·) = 1.

In particular,

∫

R

∣
∣|f̄ | − 1

∣
∣2dx1 =

1
2

∫

Ω

∣
∣|f̄ | − 1

∣
∣2dx

≤
∫

Ω
|f − f̄ |2 +

∣
∣|f | − 1

∣
∣2 dx ≤ C

∫

Ω
|∂3f |2 dx <∞, (67)

where we used
∣
∣|f | − |f̄ |

∣
∣ ≤ |f − f̄ | and the Poincaré-Wirtinger inequality (84).

Due to ‖|f̄ |‖Ḣ1(R) = ‖f̄‖Ḣ1(R) ≤ 1√
2
‖f‖Ḣ1(Ω) <∞, we have |f̄ | − 1 ∈ H1(R). Therefore,

|f̄(x1)| → 1 as |x1| → ∞. (68)

In order to conclude, we proceed as in [11, Lemma 2]: From (62) and (68) we deduce that
|f̄(x1)| = f̄(x1) and |f̄(−x1)| = −f̄(−x1) if x1 is sufficiently large, such that (67) translates
into

∫

R−

|f̄ + 1|2dx1 +
∫

R+

|f̄ − 1|2dx1 <∞.

This finally yields

∫

Ω−

|f + 1|2dx+

∫

Ω+

|f − 1|2dx

≤ 2

∫

Ω
|f − f̄ |2dx+ 4

∫

R−

|f̄ + 1|2dx1 + 4

∫

R+

|f̄ − 1|2dx1 <∞.

Proof of Lemma 3. The proof of Lemma 3 is essentially independent of that of Lemma 2,
once it is known that up to translations in x1-direction there is a weak limit f ∈ X∗ of m∗

2,θ

in Ḣ1(Ω) that is admissible in E0. We will now step by step use the additional information
(60) to improve the compactness result from Lemma 2.

Step 1: The limit f =: m∗
2 ∈ X∗ is a minimizer of E0 and m∗

2,θ → m∗
2 in Ḣ1(Ω).

Indeed, since f ∈ X∗ is admissible in E0 by Lemma 2 (in particular, E0 ≤
∫

Ω|∇f |2dx), we
only need to prove the corresponding lower bound E0 ≥

∫

Ω|∇f |2 dx. Indeed, from (60) and
Lemma 2 it follows

E0 ≤
∫

Ω
|∇f |2dx ≤ lim inf

θ↓0

∫

Ω
|∇m∗

2,θ|2dx ≤ lim sup
θ↓0

∫

Ω
|∇m∗

2,θ|2dx (69)

(59)

≤ lim sup
θ↓0

sin−2 θ

∫

Ω
|∇mθ|2dx

(60)

≤ lim sup
θ↓0

(

E0 + C sin2 θ
)

= E0.
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Therefore, f is one of the minimizers m∗
2 of E0 with representation (13); moreover, (69)

implies
∫

Ω|∇m∗
2,θ|2dx →

∫

Ω|∇m∗
2|2dx as θ ↓ 0, which yields strong convergence m∗

2,θ → m∗
2

in Ḣ1(Ω) as θ ↓ 0.

Step 2: We have sin θ m̂′
θ → 0 in H1(Ω) as θ ↓ 0.

Indeed, to obtain more information on the convergence of m̂′
θ, we combine Step 1 with (60):

sin2 θ

∫

Ω
|∇m̂′

θ|2dx
(59)&Step 1

= sin−2 θ

∫

Ω
|∇mθ|2dx− E0

︸ ︷︷ ︸

(60)

≤ C sin2 θ

+

∫

Ω
|∇m∗

2|2 − |∇m∗
2,θ|2dx

︸ ︷︷ ︸

Step 1
= o(1)

→ 0 as θ ↓ 0.

Convergence of sin θ m̂′
θ in L2(Ω) again follows from the Poincaré inequalities (84) and (85).

Step 3: We have
∫

Ω|∂1m̂1,θ|µ(x1)dx ≤ C <∞ uniformly in 0 < θ ≪ 1.

Indeed, consider M 1

2
,θ := {m1,θ ≤ 1

2}. Using (64) for ρ = 1
2 , i.e.

L2(M 1

2
,θ) ≤ C sin2 θ for θ ≪ 1,

the Cauchy-Schwarz inequality implies

∫

M 1
2
,θ

|∂1m̂1,θ|µ(x1)
︸ ︷︷ ︸

≤π2

2

dx ≤ π2

2

(L2(M 1
2
,θ
)

sin2 θ

) 1

2 (
∫

M 1
2
,θ

|∂1
(
sin θ m̂1,θ

)
|2dx

) 1

2

Step 2−→ 0 as θ ↓ 0.

It thus remains to treat the set MC
1

2
,θ
= Ω \M 1

2
,θ.

On MC
1

2
,θ
, we have m1,θ =

√

1−m2
2,θ −m2

3,θ ≥ 1
2 . Hence, we can estimate the derivative of

m̂1,θ by using the Cauchy-Schwarz inequality and µ ≤ π2

2 :
∫

MC
1
2
,θ

|∂1m̂1,θ|µ(x1)dx
(59)
=

∫

MC
1
2
,θ

∣
∣
∣
m2,θ∂1m2,θ+m3,θ∂1m3,θ

sin2 θ
√

1−m2
2,θ−m2

3,θ

∣
∣
∣µ(x1)dx

(59)

≤ C

∫

MC
1
2
,θ

(

|m∗
2,θ|2µ(x1) +

∣
∣∂1m

∗
2,θ

∣
∣2
)

dx

+ C

∫

MC
1
2
,θ

(∣
∣sin θ m̂3,θ

∣
∣2 +

∣
∣∂1

(
sin θ m̂3,θ

)∣
∣2
)

dx

(85)& (86)

≤ C

(∫

Ω

∣
∣∇m∗

2,θ

∣
∣2 +

∣
∣∇(sin θ m̂3,θ)

∣
∣2 dx

)
Steps 1&2

≤ C.

(70)

This concludes the proof of Lemma 3.

We now turn to proving the spectral gap for approximate tangent vectors, which improves
Proposition 3 and in combination with the previous lemmata yields Proposition 4.
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Proof of Lemma 4. Denote by C > 0 a generic, universal constant, whose value may change
from line to line.

Step 1: The function g(x1) := −
∫ 1
−1m

∗
2 m̂2,θ dx3 satisfies

∫

Ω
g2 µdx ≤ C

∫

Ω
g2 µ

1

2 dx
(51)

≤ C sin2 θ

∫

Ω
|m̂θ|4 µ

1

2 dx

≤ C sin2 θ
(∫

Ω
|∇m̂θ|2dx

)2
= o(1)

∫

Ω
|∇m̂θ|2dx.

Indeed, while the inequalities on the first line are obvious due to the boundedness of µ and
Jensen’s inequality, the last equality holds since Lemma 3 entails sin2 θ

∫

Ω|∇m̂θ|2dx = o(1)
as θ ↓ 0.

It remains to argue that
∫

Ω|m̂θ|4 µ
1

2 dx ≤ C
(∫

Ω|∇m̂θ|2dx
)2

holds for a constant C > 0
independent of θ: Indeed, by continuity of the Sobolev embedding H1 →֒ L4, applied to
m̂θµ

1

8 , we have

∫

Ω
|m̂θ|4 µ

1

2 dx ≤ C
(∫

Ω
|∇(m̂θµ

1

8 )|2 + |m̂θ|2 µ
1

4 dx
)2
.

Since µ decays exponentially, we have | d
dx1

µ
1

8 | . µ−
7

8 | d
dx1

µ| . µ
1

8 . Hence, noting µ
1

4 .

(1+x21)
−1 . 1, the Poincaré inequalities (84) and (85) (for m̂′

θ) and Hardy’s inequality (86)
(for m̂2,θ) yield

∫

Ω
|m̂θ|4 µ

1

2 dx ≤ C
(∫

Ω
|∇m̂θ|2 + |m̂θ|2 µ

1

4 dx
)2

≤ C
(∫

Ω
|∇m̂θ|2dx

)2
.

Step 2: Projecting m̂2,θ onto the “tangent space” {f
∣
∣
∫ 1
−1m

∗
2 f dx3 = 0} yields

B(m̂2,θ, m̂2,θ) ≥ 1
5

∫

Ω
m̂2

2,θ µdx− o(1)

∫

Ω
|∇m̂θ|2dx.

Indeed, we define the projection ψ of m̂2,θ onto {f
∣
∣
∫ 1
−1m

∗
2 f dx3 = 0} via

ψ(x) := m̂2,θ(x)− g(x1)m
∗
2(x) for all x ∈ Ω,

where g = g(x1) has been introduced in Step 1. Then one computes

B(m̂2,θ, m̂2,θ) = B(ψ,ψ) + 2B(ψ, gm∗
2) +B(gm∗

2, gm
∗
2). (71)

We estimate each term separately.

For the third term, using −
∫ 1
−1(m

∗
2)

2dx3 ≡ 1 and g2µ =
(
g2µ

)
(x1), we trivially have

B(gm∗
2, gm

∗
2) =

∫

Ω
|∇(gm∗

2)|2dx−
∫

Ω
(gm∗

2)
2 µdx ≥ −

∫

Ω
g2 µdx. (72)
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For the first term in (71), we observe that ψ ∈ Ḣ1(Ω) satisfies the assumptions of Proposi-
tion 3, i.e. ψ̄(0) = 0, and

∫ 1
−1m

∗
2 ψ dx3 ≡ 0. Hence, the spectral gap of B yields

B(ψ,ψ) ≥ 1
5

∫

Ω
|∇ψ|2 + ψ2 µdx = 1

5

∫

Ω
|∇ψ|2 + m̂2

2,θ µdx− 1
5

∫

Ω
g2 µdx (73)

Note that in the last step we used µ = µ(x1) and that by definition we have
∫ 1
−1 ψ

2 dx3 ≡
∫ 1
−1 m̂

2
2,θ − g2 dx3.

Finally, we rewrite the second term in (71):

B(ψ, gm∗
2) =

∫

Ω
∇ψ · ∇(gm∗

2)− gm∗
2ψ µdx

=

∫

Ω
∇(ψg) · ∇m∗

2 − (ψg)m∗
2 µ+m∗

2∇ψ · ∇g − ψ∇g · ∇m∗
2 dx

(32)
=

∫

R

d
dx1

g

∫ 1

−1
m∗

2∂1ψ − ψ∂1m
∗
2 dx3 dx1

= −2

∫

R

d
dx1

g

∫ 1

−1
ψ∂1m

∗
2 dx3 dx1 = 2

∫

Ω
g∂1(ψ∂1m

∗
2) dx,

where we used the fact that

0 = d
dx1

∫ 1

−1
ψm∗

2 dx3 =

∫ 1

−1
m∗

2∂1ψ + ψ∂1m
∗
2 dx3

and, in the last step, integration by parts (g(±∞) = 0 since ¯̂m2,θ and thus also g ∈ H1(R)).

By (13), we have |∂1m∗
2|, |∂21m∗

2| ≤ Cµ
1

2 in Ω so that Young’s inequality and Hardy’s in-
equality (86) yield

2|B(ψ, gm∗
2)| ≤ C

∫

Ω
|g|(|∂1ψ|+ |ψ|)µ 1

2 dx ≤ 1
5

∫

Ω
|∇ψ|2dx+ C

∫

Ω
g2µ

1

2 dx. (74)

Thus, in view of Step 1, using (72)-(74) in (71) concludes Step 2.

Step 3: Conclusion.

Trivially, we have

∫

Ω
|∇m̂2,θ|2 + m̂2

2,θ µdx = B(m̂2,θ, m̂2,θ) + 2

∫

Ω
m̂2

2,θ µdx

Step 2
≤ 11B(m̂2,θ, m̂2,θ) + o(1)

∫

Ω
|∇m̂θ|2dx.

This yields (61).

Proof of Proposition 4. By assumption, (60) is satisfied so that we may apply Lemma 2 and
Lemma 3 to the sequence {mθ}θ. This already yields m2,θ = sin θm∗

2 + o(sin θ) in Ḣ1(Ω) as
θ ↓ 0 for a minimizer m∗

2 of (11) as in (13).
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In the remainder of the proof, we first explain why B(m̂′
θ, m̂

′
θ) is harmless and apply Lemma 4

to control m̂θ in Ḣ1(Ω). Then, simple lower-semicontinuity arguments yield the bounds (55)
and (56).

Step 1: For every δ > 0, there exists a constant Cδ <∞, independent of θ ↓ 0, such that

∫

Ω
|m̂′

θ|2 µdx ≤ δ

∫

Ω
|∇m̂′

θ|2dx+ Cδ as θ ↓ 0. (75)

In particular, the sequence {m̂θ}θ is bounded uniformly in Ḣ1(Ω) and therefore – up to a
subsequence – converges weakly in Ḣ1(Ω) as well as strongly in L2(Ω, µdx). The weak limit
of m̂′

θ is given by m̂′ as defined in (15).

We start by bounding m̂1,θ in L2(Ω, µdx): Indeed, for L≫ 1 such that we have sup|x1|>L µ ≤
δ π

2

4 , Poincaré’s inequality in x3 yields

∫

{|x1|>L}
m̂2

1,θ µdx ≤ δ

∫

Ω\ΩL

|∇m̂1,θ|2dx.

Thus, the first half of (75) follows after recalling that by Lemma 2 the sequence {m̂1,θ}θ is
bounded uniformly in L2

loc(Ω).

For m̂3,θ, we can argue via the interpolation inequality7

∫

Ω
m̂2

3,θ µdx ≤ C

∫

Ω
|∂3m̂3,θ
︸ ︷︷ ︸

=−∂1m̂1,θ

|µdx
(∫

Ω
|∇m̂3,θ|2dx

) 1

2
.

Since by Lemma 3 the sequence {∂1m̂1,θ}θ is bounded uniformly in L1(Ω, µdx), Young’s
inequality yields the second half of (75).

Regarding boundedness of {m̂θ}θ, we have

∞ > C
(54)&Lem. 1

≥ B(m̂θ, m̂θ) =

∫

Ω
|∇m̂′

θ|2dx−
∫

Ω
|m̂′

θ|2 µdx+B(m̂2,θ, m̂2,θ)

≥
(
1− δ − o(1)

)
∫

Ω
|∇m̂′

θ|2dx− Cδ + ε

∫

Ω
|∇m̂2,θ|2dx,

where we applied (75) and Lemma 4.

Thus, for δ and θ sufficiently small, {m̂θ}θ is bounded uniformly in Ḣ1(Ω). In particular, we
may extract a subsequence for which ∇m̂θ converges weakly in L2(Ω). Strong convergence of

7W.l.o.g. u := m̂3,θ ∈ H1
0 (Ω) is compactly supported and smooth. Then we have

u
2(x1, x3)µ(x1) = |u(x1, x3)− u(x1,−1)|µ(x1) |u

2(x1, x3)− u
2(−∞, x3)|

1

2

≤

∫
1

−1

|∂3u(x1, y3)|µ(x1) dy3

(∫

R

|∂1u
2(y1, x3)| dy1

) 1

2

︸ ︷︷ ︸

.(
∫
R
|∂1u|2dy1

∫
R
u2dy1)

1

4

Integrating over Ω and applying Cauchy-Schwarz’ and Poincaré’s inequality yields the result.
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{m̂θ}θ in L2(Ω, µdx) follows from Rellich’s theorem on sufficiently large but compact subsets
and Poincaré’s/Hardy’s inequality on the (negligible) tails of the density µ.

Comparing the weak limit of {m̂1,θ}θ to the one obtained in Lemma 2 and 3, and passing
to the limit in the equation ∇ · m̂′

θ = 0 in D′(R2), identifies m̂′ as the function defined in
(15) and thereby concludes Step 1.

Step 2: The lower bounds (55) and (56) hold along the subsequence obtained in Step 1.

Indeed, Lemma 1 shows

sin−4 θ
(∫

Ω
|∇mθ|2dx− sin2 θ

∫

Ω
|∇m∗

2|2dx
)

= B(m̂′
θ, m̂

′
θ) +B(m̂2,θ, m̂2,θ).

By Step 1, we have

lim sup
θ↓0

B(m̂′
θ, m̂

′
θ) ≥ lim inf

θ↓0
B(m̂′

θ, m̂
′
θ) ≥ B(m̂′, m̂′) = E1.

Using boundedness of {m̂′
θ}θ in Ḣ1(Ω), Lemma 4 yields

B(m̂2,θ, m̂2,θ) ≥ ε

∫

Ω
|∇m̂2,θ|2dx− o(1) as θ ↓ 0.

Hence, both (55) and (56) easily follow.

4 Upper bound

We prove the upper bound for Easym(θ) that we relied on in the previous section:

Proposition 5. For every 0 < θ ≪ 1 there exists a smooth function mθ ∈ X0 ∩Xθ that is
admissible in Easym(θ) and satisfies the estimate

Easym(θ) ≤
∫

Ω
|∇mθ|2dx ≤ E0 sin

2 θ + E1 sin
4 θ +O(θ6), (76)

where E0 and E1 have been defined in (11) and (16), respectively.

4.1 Strategy of the proof

For minimizers of Easym(θ), θ ≪ 1, we have already identified the leading-order behavior of
the second component as sin θm∗

2 (see (13)). Therefore, we will begin the construction by
making the ansatz m2,θ := sin θm∗

2 and searching for configurations m′
θ that satisfy

|m′
θ|2 = 1− sin2 θ (m∗

2)
2 and m′

θ(±∞, ·) = (cos θ, 0).

Since also (4) needs to be satisfied, the construction of m′
θ is equivalent to finding a “stream

function” ψθ : Ω → R such that m′
θ = ∇⊥ψθ in Ω (hence ∇ · m′ = 0 in Ω) and ψθ is

constant on each component of {x3 = ±1} (leading to m3 = 0 on ∂Ω). The limit condition
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Figure 5: The way in which the three solutions ψt
θ, ψ

m
θ and ψb

θ are combined in the case
σ = 1.

cos θ = m1,θ = −∂3ψθ at x1 = ±∞ fixes the difference of those constants: Indeed, setting

ψθ(·,−1) := 0 on R, we deduce that ψθ(·, 1) =
∫ 1
−1 ∂3ψθ(·, s) ds = −2 cos θ. Therefore, ψθ

has to satisfy:

|∇ψθ|2 = 1− sin2 θ (m∗
2)

2 in Ω, (77)

ψθ = 0 on {x3 = −1}, (78)

ψθ = −2 cos θ on {x3 = +1}. (79)

However, there is no solution of the “perturbed” eikonal equation (77) with (78) & (79).
Indeed, integrating (77) on {x1} × (−1, 1) for every x1 ∈ R, we deduce:

cos2 θ = 1− sin2 θ−
∫ 1

−1
(m∗

2)
2(x1, s) ds

(77)
= −

∫ 1

−1
|∇ψθ|2(x1, s) ds

≥ −
∫ 1

−1
|∂3ψθ|2(x1, s) ds ≥

(

−
∫ 1

−1
∂3ψθ(x1, s) ds

)2

= cos2 θ.

It means that ∂1ψθ ≡ 0 and ∂3ψθ ≡ − cos θ in Ω, i.e.,

ψθ(x) = − cos θ (x3 + 1) in Ω,

which is a contradiction to (77).

Therefore, we will solve (77) imposing only one boundary condition at a time. Denote by

ψb
θ and ψt

θ the solutions of (77) & (78) and (77) & (79), respectively.

We will then try to blend the two solutions ψb
θ and ψt

θ into one. This leads to a new difficulty:
The blended function will not solve (77) anymore, but an equation of the form |∇ψ|2 =
1 − sin2 θ v2 with v2 = (m∗

2)
2 + O(θ2). Yet the function v2 will in general not have a curve

γ of zeros that connects {x3 = 1} with {x3 = −1}; note that the existence of such a curve
is necessary to define m2,θ := ± sin θ |v| with the suitable sign to the left and right of γ so
that (1) holds. To fix this problem, we solve (77) a third time for suitably chosen boundary
data on the curve of zeros of m∗

2, calling this solution ψm
θ , and blend all three solutions into

one, according to Figure 5.
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In order to prove the energy estimate (76), we will show that each of the approximate
solutions ψt

θ, ψ
b
θ, ψ

m
θ and therefore also the blended function ψθ agrees with

ψ̃θ(x1, x3) = −
∫ x3

−1

(

cos θ + sin2 θ
1−(m∗

2)
2

2 (x1, s)
)

ds (80)

up to an error of order O(θ4) that is exponentially decaying as |x1| → ∞. We remark that
it is natural to consider ψ̃θ since by Proposition 4 we expect to have ∂3ψθ = −m1,θ ≈
−
(
cos θ + sin2 θ

1−(m∗
2
)2

2

)
.

Method of characteristics

Our main tool for constructing solutions to the Hamilton-Jacobi equation (77) and proving
ψθ = ψ̃θ + O(θ4) is the method of characteristics. Recall (see e.g. [12, 20]) that given a
Hamiltonian Hθ : R

2 × Ω → R the characteristics (p, x) : Imax ⊂ R → R2 × Ω are defined as
solutions of the Hamiltonian system ṗ = −∇xHθ(p, x) and ẋ = ∇pHθ(p, x) for some initial
data (p0, x0) at time s = 0 ∈ Imax with Hθ(p0, x0) = 0 (so that Hθ(p(s), x(s)) = 0 for all
times s of existence).

In the case of (77), i.e. for

Hθ(p, x) = |p|2 −
(

1− sin2 θ (m∗
2)

2(x)
)

,

choosing θ > 0 small enough so that 1 − sin2 θ (m∗
2)

2(x) > 1
2 , we obtain the following

characteristic equations:

ẋ = 2p,

ṗ = − sin2 θ∇(m∗
2)

2(x) =: F (x).
(81)

Observe that also ψ̃θ satisfies (77) up to an error of order O(θ4):

|∇ψ̃θ|2 = 1− sin2 θ (m∗
2)

2 +O(θ4). (82)

Finally, we cast property (82) in the form of a Hamilton-Jacobi equation for the Hamiltonian

H̃θ(p̃, x̃) = |p̃|2 − |∇ψ̃θ|2.

The associated characteristic equations read

˙̃x = 2p̃,

˙̃p = ∇|∇ψ̃θ|2(x̃) =: F̃ (x̃).
(83)

Observe that (81) and (83) are the same, up to an error |F (x) − F̃ (x)| of order θ4, which
decays exponentially as |x| → ∞.

In Lemmas 7 and 8 in the Appendix we have collected properties of the solutions of (81) and
(83) which will be used in the sequel. In particular, we prove existence and uniqueness, a
growth estimate and a stability estimate under perturbations of the initial data. Furthermore,
we prove that the characteristics cover the whole domain.
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4.2 Proof of Proposition 5

To simplify notation, we will omit the index θ from here on.

Step 1: A simple perturbation result.

Let (p, x) and (p̃, x̃) be solutions of (81) and (83) with respect to the initial conditions
(p0, x0) and (p̃0 = ∇ψ̃(x̃0), x̃0) at time s = 0, respectively. Suppose that |x0 − x̃0| ≤ 1
and |p0 − p̃0| ≤ C sin2 θ < 1

2 . Then, by the fundamental theorem of calculus, we obtain the
following estimates:

|p(r)− p̃(r)| ≤ |p0 − p̃0|+
∣
∣
∣
∣

∫ r

0
ṗ(s)− ˙̃p(s)
︸ ︷︷ ︸

=F (x(s))−F (x̃(s))+F (x̃(s))−F̃ (x̃(s))

ds

∣
∣
∣
∣

≤ |p0 − p̃0|+ C
(
‖∇F‖∞,loc sup

s∈[0,r]
|x(s)− x̃(s)|+ ‖F − F̃‖∞,loc

)
,

as well as

|x(r)− x̃(r)| ≤ |x0 − x̃0|+
∣
∣
∣
∣

∫ r

0
ẋ(s)− ˙̃x(s)
︸ ︷︷ ︸

=2p(s)−2p̃(s)

ds

∣
∣
∣
∣
≤ |x0 − x̃0|+ 2|r| sup

s∈[0,r]
|p(s)− p̃(s)|

≤ |x0 − x̃0|+ C
(
|p0 − p̃0|+ ‖∇F‖∞,loc sup

s∈[0,r]
|x(s)− x̃(s)|+ ‖F − F̃‖∞,loc

)
,

where we denote by ‖·‖∞,loc the L∞ norm of a function, taken over a sufficiently large but
bounded box that contains both trajectories x and x̃.

Since ‖∇F‖∞ ≤ C sin2 θ → 0 as θ ↓ 0, we can absorb the third term on the right hand side
of the second estimate into the left hand side, so that we obtain

sup
r∈[0,s]

|x(r)− x̃(r)| ≤ C
(
|x0 − x̃0|+ |p0 − p̃0|+ ‖F − F̃‖∞,loc

)
,

and thus also

sup
r∈[0,s]

|p(r)− p̃(r)| ≤ C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc + sin2 θ|x0 − x̃0|

)
.

Now additionally suppose that x and x̃ intersect at some point x̄ = x(s) = x̃(s̃) ∈ Ω, and that
the initial values x0 and x̃0 are taken from the graph of a smooth function f : [a, b] → [−1, 1],
so that we have the estimate |x0,3 − x̃0,3| ≤ ‖f ′‖∞|x0,1 − x̃0,1|. We prove that x0 and x̃0
cannot differ much and therefore the previous estimates apply.

Note that s and s̃ need to have the same sign. W.l.o.g. we may assume 0 < s ≤ s̃. Thus, we
have

|s̃− s| ≤ 2

∫ s̃

s
−p̃3(r)
︸ ︷︷ ︸

≥ 1

2

dr =

∫ s

0
ẋ3(r) dr −

∫ s̃

0

˙̃x3(r) dr

︸ ︷︷ ︸

=x0,3−x̃0,3

−2

∫ s

0
p3(r)− p̃3(r) dr

≤ C
(
|x0 − x̃0|+ |p0 − p̃0|+ ‖F − F̃‖∞,loc

)
.
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This yields

|x0,3 − x̃0,3|
︸ ︷︷ ︸

≤‖f ′‖∞|x0,1−x̃0,1|

+ |x0,1 − x̃0,1
︸ ︷︷ ︸

=x0,1−x̄1+x̄1−x̃0,1

| ≤ (1 + ‖f ′‖∞)

∣
∣
∣
∣

∫ s̃

0
2p̃1(r) dr −

∫ s

0
2p1(r) dr

∣
∣
∣
∣

≤ C sup
r∈[0,s]

|p1(r)− p̃1(r)|+ C sup
r∈[0,s]

max
(
|p1(r)|, |p̃1(r)|

)

︸ ︷︷ ︸

≤C sin2 θ

|s̃− s|

≤ C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc + sin2 θ (|x̃0,3 − x0,3|+ |x̃0,1 − x0,1|)

)
,

so that (again absorbing the small term C sin2 θ (|x̃0,3 − x0,3| + |x̃0,1 − x0,1|) into the left
hand side)

|x0 − x̃0| ≤ C
(
|x0,1 − x̃0,1|+ |x0,3 − x̃0,3|

)
≤ C

(
|p0 − p̃0|+ ‖F − F̃‖∞,loc

)
.

This improves our estimates to

|x0 − x̃0|+ |s− s̃|+ sup
0≤r≤s

|p(r)− p̃(r)|+ sup
0≤r≤s

|x(r)− x̃(r)|

≤ C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc

)
,

and we may deduce for a solution ψ of (77), using ψ(x̄) = ψ(x0) +
∫ s
0

d
dtψ(x(t))dt and the

equivalent for ψ̃,

|ψ(x̄)− ψ̃(x̄)| ≤ |ψ(x0)− ψ̃(x̃0)|+ 2

∣
∣
∣
∣

∫ s

0
|p(s)|2ds−

∫ s̃

0
|p̃(s)|2ds

∣
∣
∣
∣

≤ |ψ(x0)− ψ̃(x̃0)|+C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc

)

and

|∇ψ(x̄)−∇ψ̃(x̄)|
︸ ︷︷ ︸

≤|p(s)−p̃(s)|+|p̃(s)−p̃(s̃)|

≤ C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc

)
+

∣
∣
∣
∣

∫ s̃

s
F̃ (x(s)) ds

∣
∣
∣
∣

≤ C
(
|p0 − p̃0|+ ‖F − F̃‖∞,loc

)
.

Step 2: Construction of ψb and ψt.

For θ ≪ 1, we consider the following admissible initial data of the Hamilton-Jacobi equation
(77):

(xt0, z
t
0, p

t
0) =

(
(xt0,1, 1),−2 cos θ,−

√

1− sin2 θ (m∗
2)

2(xt0,1, 1) e3
)
∈ ∂Ω ×R× R2

and

(xb0, z
b
0, p

b
0) =

(
(xb0,1,−1), 0,−

√

1− sin2 θ (m∗
2)

2(xb0,1,−1) e3
)
∈ ∂Ω× R× R2.
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Figure 6: The cutoff function α.

Thus, by the method of characteristics (cf. Appendix), there exist smooth functions ψb and
ψt that satisfy

∇ψb(xb(s)) = pb(s) and ∇ψt(xt(s)) = pt(s), respectively,

and solve (77) subject to the one-sided constraints ψb = ψ̃ = 0 on {x3 = −1} and ψt = ψ̃ =
−2 cos θ on {x3 = 1}.
Observe that |pt0 − p̃0| ≤ C sin2 θ|xt0 − x̃0|, so that Step 1 for f ≡ 1 immediately yields
|xt0 − x̃0| ≤ C‖F − F̃‖∞,loc and thus also

|ψt(x̄)− ψ̃(x̄)|+ |∇ψt(x̄)−∇ψ̃(x̄)| ≤ C‖F − F̃‖∞,loc, ∀x̄ ∈ Ω.

The same inequality holds for ψb, i.e.,

|ψb(x̄)− ψ̃(x̄)|+ |∇ψb(x̄)−∇ψ̃(x̄)| ≤ C‖F − F̃‖∞,loc, ∀x̄ ∈ Ω.

Step 3: Definition of ψm.

Now, we focus on the region around the curve γ of zeros of m∗
2, where we interpolate ψt

with ψb by means of another stream function ψm that will satisfy the same equation (77).
To define ψm, we will impose initial conditions on the curve γ that interpolate between ∇ψt

and ∇ψb.

To this end, we may assume that γ denotes an arc-length parametrization of the curve of
zeros of m∗

2, i.e., |γ̇| = 1. Moreover, we can choose γ symmetric w.r.t. γ(0) = 0. Denote by
a > 0 the value at which γ1(a) = −γ1(−a) = 1

2 . Obviously, a > 1
2 . We also remark that on

[−a, a] the curve γ is in fact the graph of a smooth function.

Let α : (−1
2 ,

1
2 ) → [0, 1] be a smooth cutoff function with α(s) = 1 for s ≤ −1

4 and α(s) = 0
for s ≥ 1

4 . Then we define h : (−1
2 ,

1
2) → R via

ψm
(
γ(s)

)
:= h(s) = α(s)ψt

(
γ(s)

)
+

(
1− α(s)

)
ψb

(
γ(s)

)
= ψ̃

(
γ(s)

)
+O(‖F − F̃‖∞,loc).

Given s ∈ (−1
2 ,

1
2) we let

xm0 := γ(s),

zm0 := h(s),
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while pm0 is uniquely determined by

pm0 · γ̇(s) := ḣ(s) = ∇ψ̃
(
γ(s)

)
· γ̇(s) +O(‖F − F̃‖∞,loc),

pm0 · γ̇⊥(s) := −
√

1− |ḣ(s)|2 = ∇ψ̃
(
γ(s)

)
· γ̇⊥(s) +O(‖F − F̃‖∞,loc)

Clearly, (xm0 , z
m
0 , p

m
0 ) are admissible initial data such that the method of characteristics yields

a smooth function ψm : [−3
8 ,

3
8 ]× [−1, 1] → R that coincides with ψt in a neighbourhood of

{−3
8} × [−1, 1] and with ψb in a neighbourhood of {3

8} × [−1, 1], and solves (77) with the
boundary conditions (zm0 , p

m
0 ) on γ.

In particular, using the notation from Step 1, we have |pm0 − p̃0| ≤ C‖F − F̃‖∞,loc, so that
Step 1 yields

|ψm(x̄)− ψ̃(x̄)|+ |∇ψm(x̄)−∇ψ̃(x̄)| ≤ C‖F − F̃‖∞,loc ∀x̄ ∈ [−3
8 ,

3
8 ]× [−1, 1].

Step 4: Construction of a smooth stream function ψ : Ω → R such that

• ψ satisfies (78) and (79) on ∂Ω,

• |∇ψ| ≤ 1 and |∇ψ|2 = 1− sin2 θ (m∗
2)

2 in a neighborhood N ⊂ Ω of γ,

• |ψ(x)− ψ̃(x)|+ |∇ψ(x)−∇ψ̃(x)| ≤ C‖F − F̃‖∞,loc for all x ∈ Ω.

Here we blend the functions ψt, ψb and ψm from Steps 2 and 3 as indicated in Figure 5. Let
η : [−1, 1] → [0, 1] be a smooth cutoff function with η(x3) = 1 for x3 ≥ 3

4 and η(x3) = 0 if
x3 ≤ 1

2 . We define

ψ(x) =







ψt(x), if x ∈ Ωt,

ψm(x), if x ∈ Ωm,

ψb(x), if x ∈ Ωb,

η(x3)ψ
t(x) +

(
1− η(x3)

)
ψm(x), if x ∈ Ωt

inter and |x1| ≤ 3
8 ,

η(x3)ψ
t(x) +

(
1− η(x3)

)
ψb(x), if x ∈ Ωt

inter and x1 ≥ 3
8 ,

η(−x3)ψb(x) +
(
1− η(−x3)

)
ψm(x), if x ∈ Ωb

inter and |x1| ≤ 3
8 ,

η(−x3)ψb(x) +
(
1− η(−x3)

)
ψt(x), if x ∈ Ωb

inter and x1 ≤ −3
8 .

= ψ̃(x) +O(‖F − F̃‖∞,loc).

Observe that the resulting function is smooth, since ψt, ψm, ψb and η are, and since ψm = ψt

and ψm = ψb in neighbourhoods of {−3
8} × [−1, 1] and {3

8} × [−1, 1], respectively. Further-
more, by definition, ψ satisfies (78) and (79) on ∂Ω and |∇ψ|2 = 1 − sin2 θ (m∗

2)
2 ≤ 1 on

Ωt ∪ Ωb ∪ Ωm. In particular |∇ψ|2 = 1 on γ. On Ωt
inter ∪ Ωb

inter we can estimate

|∇ψ| ≤ η |∇ψ̂|
︸ ︷︷ ︸

=
√

1−sin2 θ (m∗
2
)2

+ (1− η) |∇ψ̌|
︸ ︷︷ ︸

=
√

1−sin2 θ (m∗
2
)2

+ |∂3η| |ψ̂ − ψ̌|
︸ ︷︷ ︸

≤C‖F−F̃‖∞,loc

≤
√

1− sin2 θ (m∗
2)

2 + C‖F − F̃‖∞,loc < 1

for ψ̂, ψ̌ ∈ {ψb, ψt, ψm} suitably chosen and θ ≪ 1, since (m∗
2)

2 ≥ C > 0 for every x ∈
Ωt

inter ∪Ωb
inter.
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Step 5: Conclusion.

First, observe that

|∇ψ|2 = 1− sin2 θ (m∗
2)

2 +

{

O(‖F − F̃‖∞,loc), on Ωt
inter ∪ Ωb

inter,

0, otherwise.

We define

m′(x) = ∇⊥ψ(x), m2(x) = s(x)
√

1− |m′(x)|2,
where s(x) = −1 if x is left of γ and s(x) = 1 else, to obtain a magnetization that is
admissible in Easym(θ).

This yields

s(x)
√

1− |m′(x)|2 = sin θm∗
2(x)

for x ∈ N and

s(x)
√

1− |m′(x)|2 = sin θm∗
2(x)

√

1 +O
(
‖F−F̃‖∞,loc

sin2 θ

)

= sin θm∗
2(x) +O

(
‖F−F̃‖∞,loc

sin θ

)

for x 6∈ N , since |m∗
2| ≥ C > 0 in Ω \N .

We claim that the smooth m = mθ defined above generates a suitable recovery family as
θ ↓ 0. Indeed, it is easy to see that m ∈ X0 ∩ Xθ, and using the expansion of ψ given in
Step 4 we obtain (by (15))

m =

(
cos θ

sin θm∗
2

0

)

+ sin2 θ

(
m̂1+sin2 θ φ1

sin θ φ2

m̂3+sin2 θ φ3

)

with φ = (φ1, φ2, φ3) ∈ C∞(Ω) decaying exponentially as |x| → ∞. Thus, by Lemma 1, we
have

sin−4 θ

∫

Ω

(

|∇m|2 − sin2 θ |∇m∗
2|2

)

dx

(52)
=

∫

Ω

(

|∇m̂1|2 + |∇m̂3|2 − µ(x1)(m̂
2
1 + m̂2

3)
)

dx+O(θ2)

(16)
= Ẽ1 +O(θ2),

which ends the proof of Proposition 5.

Appendix

A Classical inequalities

Lemma 5. The following Poincaré(-Wirtinger) inequalities hold with optimal constant:

∀f ∈ Ḣ1(Ω):

∫

Ω
|f − f̄ |2dx ≤ 4

π2

∫

Ω
|∂3f |2dx, (84)

∀f ∈ H1
0 (Ω):

∫

Ω
f2 dx ≤ 4

π2

∫

Ω
|∂3f |2dx. (85)
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In the context of this paper, we typically apply the first inequality to “first components”,
i.e. m1,θ with m̄1,θ ≡ cos θ or m̂1,θ with ¯̂m1,θ = 0. The second inequality is applied to “third
components”, i.e. m3,θ or m̂3,θ, which satisfy m3,θ(±∞, ·) = 0 as well as m3,θ = 0 on ∂Ω.

The above lemma can be obtained as a corollary e.g. of [8, Theorem 4.24].

Combining the classical Hardy inequality [13, pg. 3] with (84), one obtains

Lemma 6. There exists a constant 0 < C <∞, such that we have:

∫

Ω

∣
∣f − f̄(0)

∣
∣2 1

1+x2
1

dx ≤ C

∫

Ω
|∇f |2dx for any f ∈ Ḣ1(Ω). (86)

Note that we may replace the profile 1
1+x2

1

with any continuous function that decays at least

quadratically for |x1| → ∞ such as µ = µ(x1) as in (17).

B Characteristics of the eikonal equation

The following two lemmata show that the method of characteristics can in fact be applied
to construct a solution of the modified eikonal equations (77) and (82) on Ω. Lemma 7 (iii)
yields that under suitable assumptions on the initial data characteristics cannot cross, while
by Lemma 8 characteristics cover the whole domain Ω.

Lemma 7. There exists a universal constant 0 < C < ∞ such that for θ ≤ 1
C and any

initial datum (x0, p0) ∈ Ω × R2 with |p0 + e3| ≤ 1
2 there exists a unique solution (x, p) of

(81), subject to the initial condition (x, p)(0) = (x0, p0). The solution depends smoothly on
time and initial data and satisfies:

(i) Let [Tt, Tb] be the maximal interval of existence of (x, p). We have Tt = sup {t ≤ 0 | x3(t) = 1},
Tb = inf {t ≥ 0 | x3(t) = −1}, and |Tt|+ |Tb| ≤ C.

(ii) It holds |p(t)− p0| ≤ C sin2 θ for all t ∈ [Tt, Tb].

(iii) Given 0 < q < 1 there exists a constant C(q) such that the solution (x̃, p̃) of (81)
corresponding to the initial datum (x̃, p̃)(0) = (x̃0, p̃0) ∈ Ω× R2 satisfies the estimate

1
C(q)

(
|x0 − x̃0|+ |t− t̃|

)

≤ |x(t)− x̃(t̃)| ≤ C(q)
(
|x0 − x̃0|+ |t− t̃|

)
∀t ∈ [Tt, Tb], t̃ ∈ [T̃t, T̃b],

provided θ ≤ 1
C(q) , |p0 − p̃0| ≤ |x0−x̃0|

C(q) , and |(x0 − x̃0) · ξ| ≤ q2|x0 − x̃0||ξ| for ξ ∈
{p0, p̃0}. This last inequality in fact is a lower bound on the angle between x0 − x̃0 and
ξ ∈ {p0, p̃0}.

The same statements hold for solutions of (83).

Proof. We denote by 0 < C <∞ a universal, generic constant. Note that we only treat the
case (81), since the argument for (83) is similar. In fact, the only property that we actually
need is F = O(θ2) = F̃ .
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Existence of a unique solution (x, p) of (81) that depends smoothly on time and initial data
is immediate by standard theory, see e.g. [2, Ch. 2, Cor. 6].

Integrating the second line of (81) obviously yields

|p(t)− p0| ≤ C sin2 θ |t|, (87)

if the solution exists on [0, t). In view of the structure of (81), this already rules out finite-time
blow-up.

Hence, solutions exist until x(t) leaves Ω̄ and we may estimate for t > 0

x0,3 − x3(t)
(81)
= −2

∫ t

0
p0,3 ds− 2

∫ t

0
p3(s)− p0,3 ds

|p0+e3|≤ 1

2≥ t− Ct sup
0≤s≤t

|p(s)− p0|

(87)

≥ t
(
1− C sin2 θ t

)
.

Thus if θ is sufficiently small, e.g. such that C sin2 θ ≤ 1
8 , we have

1 ≥ −x3(t) ≥ t
8

(
8− t

)
− x0,3 ≥ t

8

(
8− t

)
− 1,

and therefore 0 ≤ Tb ≤ 4. A similar argument shows that 0 ≤ −Tt ≤ 4.

This proves statement (i) of Lemma 7. In particular, (87) improves to statement (ii).

We now address statement (iii): Assume t̃ ≥ t ≥ 0. In the remaining cases, the proof is
similar (using that |t|+ |t̃| ≤ 2|t− t̃| if tt̃ ≤ 0). Successively employing (81), one computes

x(t)− x̃(t̃) = (x0 − x̃0)− 2p̃0(t̃− t) + 2(p0 − p̃0) t

+ 2

∫ t

0

∫ s

0
F
(
x(s)

)
− F

(
x̃(s)

)

︸ ︷︷ ︸

|·|≤C sin2 θ |x(s)−x̃(s)|

dσ ds

− 2

∫ t̃

t

∫ s

0
F
(
x̃(s)

)
dσ ds.

With help of (i) this yields the estimate
∣
∣
(
x(t)− x̃(t̃)

)
− (x0 − x̃0) + 2p̃0(t̃− t)

∣
∣

≤ C sin2 θ
(
|t− t̃|+ sup

s
|x(s)− x̃(s)|

)
+C|p0 − p̃0|. (88)

By the triangle inequality and (88) in the case t = t̃ we derive

sup
s
|x(s)− x̃(s)| ≤ C

(
|x0 − x̃0|+ |p0 − p̃0|

)
,

such that (88) turns into
∣
∣
(
x(t)− x̃(t̃)

)
− (x0 − x̃0) + 2p̃0(t̃− t)

∣
∣

≤ C sin2 θ
(
|t− t̃|+ |x0 − x̃0|

)
+ C|p0 − p̃0|.

(89)
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The upper bound of statement (iii) now easily follows from the triangle inequality and (89).

For the lower bound note that Young’s inequality and the assumptions yield:
∣
∣(x0 − x̃0)− 2p̃0(t̃− t)

∣
∣2 ≥ (1− q2)|x0 − x̃0|2 + (1− q2)|t̃− t|24|p0|2

︸ ︷︷ ︸

≥1

.

Thus by the triangle inequality and (89), we can estimate

1
2

√

1− q2
(
|x0 − x̃0|+ |t− t̃|

)
≤ |x(t)− x̃(t̃)|+ C sin2 θ

(
|t− t̃|+ |x0 − x̃0|

)
+ C|p0 − p̃0|.

In view of the assumptions θ ≤ 1
C(q) and |p0 − p̃0| ≤ |x0−x̃0|

C(q) it remains to choose C(q)
sufficiently large to absorb the second and third terms on the right hand side into the left
hand side and conclude the lower bound of (iii) in Lemma 7.

Lemma 8. Let γ ⊂ Ω̄ be the graph of a smooth function f : [a, b] ⊂ R → [−1, 1], and let
p0 = p0(x0,1) ∈ R2 be a smooth function of x0,1 ∈ [a, b] with ‖ d

dx1
p0‖∞ ≤ 1

C(q) for q2 = 7
9

if ‖f ′‖∞ < 1, and q2 = 1+2‖f ′‖2∞
2+2‖f ′‖2∞

< 1 otherwise (cf. previous lemma). Moreover, assume

|p0 + e3| ≤ 1
4 and

|p0,1| ≤
|p0,3|

4‖f ′‖∞
∀x0,1 ∈ [a, b].

Denote for θ sufficiently small by (xa, pa) and (xb, pb) the non-intersecting characteristics
solving (81) corresponding to the initial data

(
(a, f(a)), p0

)
and

(
(b, f(b)), p0

)
, respectively.

Let M be the bounded subdomain of Ω that is bounded by the curves xa and xb.

Then for each point x1 ∈M there exists an x0 ∈ γ such that the characteristic (x, p) corre-
sponding to the initial datum (x0, p0) passes through x1, i.e. M is covered by characteristics.

The same statements hold for solutions of (83).

Proof. First of all, we remark that Lemma 7 (iii) is applicable and in particular the char-
acteristics x do not intersect. Indeed, by smoothness of p0 we have |p0(x0,1) − p0(x̃0,1)| ≤
‖ d
dx1

p0‖∞|x0− x̃0|. Moreover, due to the assumptions, an improved Cauchy-Schwarz inequal-

ity holds: By definition of x0 = (x0,1, f(x0,1)) and monotonicity of z 7→ a+bz√
1+z2

, for az ≤ b,

a, b, z ≥ 0, we have for ξ ∈ {p0(x0), p0(x̃0)}:

|(x0 − x̃0) · ξ|
√

|x0,1 − x̃0,1|2 + |f(x0,1)− f(x̃0,1)|2
≤

|ξ1|+ |ξ3||f(x0,1)−f(x̃0,1)
x0,1−x̃0,1

|
√

1 + |f(x0,1)−f(x̃0,1)
x0,1−x̃0,1

|2
≤ |ξ1|+ |ξ3|‖f ′‖∞

√

1 + ‖f ′‖2∞

In the case ‖f ′‖∞ < 1 we use |ξ1| ≤ 1
4 ≤ 1

3 |ξ3|, which implies

(
|ξ1|+|ξ3|‖f ′‖∞√

1+‖f ′‖2∞

)2
≤ |ξ3|2

( 1
3
+‖f ′‖∞)2

1+‖f ′‖2∞
= |ξ3|2

1+‖f ′‖2∞− 8

9
+ 2

3
‖f ′‖∞

1+‖f ′‖2∞
= |ξ3|2(1− 8

9 +
2
3) =

7
9 |ξ|

2.

For ‖f ′‖∞ ≥ 1 the improved Cauchy-Schwarz inequality follows from the assumption 4‖f ′‖∞|ξ1| ≤
|ξ3|:

(

|ξ1|+ |ξ3|‖f ′‖∞
)2

≤ |ξ1|2 + (12 + ‖f ′‖2∞)|ξ3|2 ≤ (12 + ‖f ′‖2∞)|ξ|2.
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We now give a topological argument to prove that the characteristics cover M : Denote by
Ψ: D →M the continuous map (t, s) 7→ x(s), where (x, p) is the characteristic corresponding
to the initial datum

(
x0, p0(x0)

)
, x0 = (t, f(t)) ∈ γ. Both the domain D =

⋃

t∈[a,b]{t} ×
[T t(t), T b(t)] of Ψ and M are homeomorphic to a disk. Moreover, Ψ(∂D) = ∂M , and the
restriction Ψ

∣
∣
∂D

has topological degree 1. Therefore Ψ is surjective.

Indeed, if R := Ψ(D) (M , Ψ would induce a continuous map g : D2 → S1 with g
∣
∣
S1

≃ idS1 ,
i.e. the sphere were a retract of the disk, which is impossible. Hence R =M , and Lemma 8
is proven.
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