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THE HOMOLOGICAL NATURE OF ENTROPY

PIERRE BAUDOT AND DANIEL BENNEQUIN

Abstract. We propose that entropy is a universal co-homological class in a

theory associated to a family of observable quantities and a family of proba-

bility distributions. Three cases are presented:
(1) classical probabilities and random variables;

(2) quantum probabilities and observable operators;

(3) dynamic probabilities and observation trees.
This gives rise to a new kind of topology for information processes, that ac-

counts for the main information functions: entropy, mutual-informations at

all orders, and Kullback-Leibler divergence and generalizes them in several
ways. The article is divided into two parts, that can be read independently.

In the first part, the introduction, we provide an overview of the results, some
open questions, future results and lines of research, and discuss briefly the

application to complex data. In the second part we give the complete defini-

tions and proofs of the theorems A, C and E in the introduction, which show
why entropy is the first homological invariant of a structure of information in

four contexts: static classical or quantum probability, dynamics of classical or

quantum strategies of observation of a finite system.
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1. Introduction

1.1. What is Information ?
“What is information ?” is a question that has received several answers according
to the different problems investigated. The best known definition was given by
Shannon [49], using random variables and a probability law, for the problem of
optimal message compression. However, the first definition was given by Fisher,
as a metric associated to a smooth family of probability distributions, for optimal
discrimination by statistical tests; it is a limit of the Kullback-Leibler divergence,
which was introduced to estimate the accuracy of a statistical model of empirical
data, and which can be also viewed as a quantity of information. More generally
Kolmogorov considered that the concept of information must precede probability
theory (cf. [33]). However, Evariste Galois saw the application of group theory for
discriminating solutions of an algebraic equation as a first step toward a general
theory of ambiguity, that was developed further by Riemann, Picard, Vessiot, Lie,
Poincare and Cartan, for systems of differential equations; it is also a theory of in-
formation. In another direction Rene Thom claimed that information must have a
topological content (see [51]); he gave the example of the unfolding of the coupling
of two dynamical systems, but he had in mind the whole domain of algebraic or
differential topology.

All these approaches have in common the definition of secondary objects, either
functions, groups or homology cycles, for measuring in what sense a pair of ob-
jects departs from independency. For instance, in the case of Shannon, the mutual
information is I(X;Y ) = H(X) + H(Y ) − H(X,Y ), where H denotes the usual
Gibbs entropy (H(X) = −

∑
x P (X = x) ln2 P (X = x)), and for Galois it is the

quotient set IGal(L1;L2|K) = (Gal(L1|K)×Gal(L2|K))/Gal(L|K), where L1, L2

are two fields containing a field K in an algebraic closure Ω of K, where L is the
field generated by L1 and L2 in Ω, and where Gal(Li|K) (for i = ∅, 1, 2) denotes
the group introduced by Galois, made by the field automorphisms of Li fixing the
elements of K.

We suggest that all information quantities are of co-homological nature, in a
setting which depends on a pair of categories (cf. [39, 38]); one for the data on a
system, like random variables or functions of solutions of an equation, and one for
the parameters of this system, like probability laws or coefficients of equations; the
first category generates an algebraic structure like a monoid, or more generally a
monad (cf. [39]), and the second category generates a representation of this struc-
ture, as do for instance conditioning, or adding new numbers; then information
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quantities are co-cycles associated with this module.
We will see that, given a set of random variables on a finite set Ω and a sim-

plicial subset of probabilities on Ω, the entropy appears as the only one universal
co-homology class of degree one. The higher mutual information functions that
were defined by Shannon are co-cycles (or twisted co-cycles for even orders), and
they correspond to higher homotopical constructions. In fact this description is
equivalent to the theorem of Hu Kuo Ting [27], that gave a set theoretical interpre-
tation of the mutual information decomposition of the total entropy of a system.
Then we can use information co-cycles to describe forms of the information dis-
tribution between a set of random data; figures like ordinary links, or chains or
Borromean links appear in this context, giving rise to a new kind of topology.

1.2. Information Homology.
Here we call random variables (r.v) on a finite set Ω congruent when they define
the same partition (remind that a partition of Ω is a family of disjoint non-empty
subsets covering Ω and that the partition associated to a r.v X is the family of
subsets Ωx of Ω defined by the equations X(ω) = x); the join r.v Y Z, also denoted
by (Y, Z), corresponds to the less fine partition that is finer than Y and Z. This
defines a monoid structure on the set Π(Ω) of partitions of Ω, with 1 as a unit, and
where each element is idempotent, i.e., ∀X,XX = X. An information category
is a set S of r.v such that, for any Y,Z ∈ S less fine than U ∈ S, the join Y Z
belongs to S, cf. [5]. An ordering on S is given by Y ≤ Z when Z refines Y , which
also defines the morphisms Z → Y in the category S. In what follows we always
assume that 1 belongs to S. The simplex ∆(Ω) is defined as the set of families of
numbers {pω;ω ∈ Ω}, such that ∀ω, 0 ≤ pω ≤ 1 and

∑
ω pω = 1; it parameterizes

all probability laws on Ω. We choose a simplicial sub-complex P in ∆(Ω), which is
stable by all the conditioning operations by elements of S. By definition, for N ∈ N,
an information N -cochain is a family of measurable functions of P ∈ P, with values
in R or C, indexed by the sequences (S1; ...;SN ) in S majored by an element of S,
whose values depend only of the image law (S1, ..., SN )∗P . This condition is natural
from a topos point of view, cf. [39]; we interpret it as a “locality” condition. Note
that we write (S1; ...;SN ) for a sequence, because (S1, ..., SN ) designates the joint
variable. For N = 0 this gives only the constants. We denote by CN the vector space
of N -cochains of information. The following formula corresponds to the averaged
conditioning of Shannon [49]:

(1) S0.F (S1; ...;SN ;P) =
∑

P(S0 = vj)F (S1; ...;SN ;P|S0 = vj),

where the sum is taken over all values of S0, and the vertical bar is ordinary
conditioning. It satisfies the associativity condition (S′0S0).F = S′0.(S0.F ).
The coboundary operator δ is defined by

(2) δF (S0; ...;SN ;P)

= S0.F (S1; ...;SN ;P)+

N−1∑
0

(−1)i+1F (...; (Si, Si+1); ...;SN ;P)+(−1)N+1F (S0; ...;SN−1;P),

It corresponds to a standard non-homogeneous bar complex (cf. [38]). Another
co-boundary operator on CN is δt (t for twisted or trivial action or topological com-
plex), that is defined by the above formula with the first term S0.F (S1; ...;SN ;P)
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replaced by F (S1; ...;SN ;P). The corresponding co-cycles are defined by the equa-
tions δF = 0 or δtF = 0, respectively. We easily verify that δ ◦δ = 0 and δt ◦δt = 0;
then co-homology H∗(S;P) resp. H∗t (S;P) is defined by taking co-cycles modulo
the elements of the image of δ resp. δt, called co-boundaries. The fact that classi-
cal entropy H(X;P) = −

∑
i pi log2 pi is a 1-co-cycle is the fundamental equation

H(X,Y ) = H(X) +X.H(Y ).

Theorem A. (cf. Theorem 1 section 2.3, [5]): For the full simplex ∆(Ω), and if
S is the monoid generated by a set of at least two variables, such that each pair
takes at least four values, then the information co-homology space of degree one is
one-dimensional and generated by the classical entropy.

Problem 1. Compute the homology of higher degrees.

We conjecture that for binary variables it is zero, but that in general non-trivial
classes appear, deduced from polylogarithms. This could require us to connect with
the works of Dupont, Bloch, Goncharov, Elbaz-Vincent, Gangl et al. on motives
(cf. [19]), which started from the discovery of Cathelineau (1988) that entropy
appears in the computation of the degree one homology of the discrete group SL2

over C with coefficients in the adjoint action (cf. [14]).
Suppose S is the monoid generated by a finite family of partitions. The higher

mutual informations were defined by Shannon as alternating sums:

(3) IN (S1; ...;SN ;P) =

k=N∑
k=1

(−1)k−1
∑

I⊂[N ];card(I)=k

H(SI ;P),

where SI denotes the join of the Si such that i ∈ I. We have I1 = H and I2 = I is
the usual mutual information: I(S;T ) = H(S) +H(T )−H(S, T ) .

Theorem B. (cf. section 3, [5]): I2m = δtδδt...δδtH, I2m+1 = −δδtδδt...δδtH,
where there are m − 1 δ and m δt factors for I2m and m δ and m δt factors for
I2m+1.

Thus odd information quantities are information co-cycles, because they are in
the image of δ, and even information quantities are twisted (or topological) co-
cycles, because they are in the image of δt.

In [5] we show that this description is equivalent to the theorem of Hu Kuo
Ting (1962) [27], giving a set theoretical interpretation of the mutual information
decomposition of the total entropy of a system: mutual information, join and av-
eraged conditioning correspond respectively to intersection, union and difference
A\B = A ∩ Bc . In special cases we can interpret IN as homotopical algebraic in-
variants. For instance for N = 3, suppose that I(X;Y ) = I(Y ;Z) = I(Z;X) = 0,
then I3(X;Y ;Z) = −I((X,Y );Z) can be defined as a Milnor invariant for links,
generalized by Massey, as they are presented in [37] (cf. page 284), through the
3-ary obstruction to associativity of products in a subcomplex of a differential alge-
bra, cf. [5]. The absolute minima of I3 correspond to Borromean links, interpreted
as synergy, cf. [41, 12].

1.3. Extension to Quantum Information.
Positive hermitian n×n-matrices ρ, normalized by Tr(ρ) = 1, are called density of
states (or density operators) and are considered as quantum probabilities on E =
Cn. Real quantum observables are n×n hermitian matrices, and, by definition, the



THE HOMOLOGICAL NATURE OF ENTROPY 5

amplitude, or expectation, of the observable Z in the state ρ is given by the formula
E(Z) = Tr(Zρ) (see e.g., [46]). Two real observables Y,Z are said congruent if their
eigenspaces are the same, thus orthogonal decomposition of E are the quantum
analogs of partitions. The join is well defined for commuting observables. An
information structure S is given by a subset of observables, such that, if Y, Z have
common refined eigenspaces decomposition in S, their join (Y, Z) belongs to S. We
assume that {E} belongs to S. What plays the role of a probability functor is a
map Q from S to sets of positive hermitian forms on E, which behaves naturally
with respect to the quantum direct image, thus Q is a covariant functor. We
define information N -cochains as for the classical case, starting with the numerical
functions on the sets QX ;X ∈ S, which behave naturally under direct images.

The restriction of a density ρ by an observable Y is ρY =
∑
AE

∗
AρEA, where

the EA’s are the spectral projectors of the observable Y . The functor Q is said to
match S (or to be complete and minimal with respect to S) if, for each X ∈ S, the
set QX is the set of all possible densities of the form ρX .
The action of a variable on the cochains space C∗Q is given by the quantum averaged
conditioning :

(4) Y.F (Y0; ...;Ym; ρ) =
∑
A

Tr(E∗AρEA)F (Y0; ...;Ym;E∗AρEA)

From here we define coboundary operators δQ and δQt by the formula (22), then
the notions of co-cycles, co-boundaries and co-homology classes follow. We have
δQ ◦ δQ = 0 and δQt ◦ δQt = 0; cf. [5].

When the unitary group Un acts transitively on S and Q, there is a notion of
invariant cochains, forming a subcomplex of information cochains, and giving a
more computable co-homology than the brut information co-homology. We call it
the invariant information co-homology and denote it by H∗U (S; Q).

The Von-Neumann entropy of ρ is S(ρ) = Eρ(− log2(ρ)) = −Tr(ρ log2(ρ)); it
defines a 0-cochain SY by restricting S to the sets QX . The classical entropy is
H(Y ; ρ) = −

∑
A Tr(E

∗
AρEA) log2(Tr(E∗AρEA)). Both these co-chains are invari-

ant. It is well known that S(X,Y )(ρ) = H(X; ρ) + X.SY (ρ) when X,Y commute,
cf. [46]. In particular, by taking Y = 1E we see that classical entropy measures the
default of equivariance of the quantum entropy, i.e., H(X; ρ) = SX(ρ)− (X.S)(ρ).
But using the case where X refines Y , we obtain that the entropy of Shannon is
the co-boundary of (minus) the Von Neumann entropy.

Theorem C. (cf. Theorem 3 section 4.3): For n ≥ 4 and when S is generated by
at least two decompositions such that each pair has at least four subspaces, and
when Q is matching S, the invariant co-homology H1

U of δQ in degree one is zero,
and the space H0

U is of dimension one. In particular, the only invariant 0-cochain
such that δS = −H is the Von Neumann entropy.

(This statement, which will be proved below, corrects a similar statement which
was made in the announcement [8].)

1.4. Concavity and Convexity Properties of Information Quantities.
The simplest classical information structure S is the monoid generated by a family
of “elementary” binary variables S1, ..., Sn. It is remarkable that in this case, the
information functions IN,J = IN (Sj1 ; ...SjN ) over all the subsets J = {j1, ..., jN} of
[n] = {1, ..., n}, different from [n] itself, give algebraically independent functions on
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the probability simplex ∆(Ω) of dimension 2n − 1. They form coordinates on the
quotient of ∆(Ω) by a finite group.

Let Ld denotes the Lie derivative with respect to d = (1, ..., 1) in the vector space
R2n

, and 4 the Euclidian Laplace operator on R2n

, then ∆ = 4−2−nLd◦Ld is the
Laplace operator on the simplex ∆(Ω) defined by equating the sum of coordinates
to 1.

Theorem D. (cf. [6]): On the affine simplex ∆(Ω) the functions IN,J with N odd
(resp. even) satisfies the inequality ∆IN ≥ 0 (resp. ∆IN ≤ 0).

In other terms, for N odd the IN,J are super-harmonic which is a kind of weak
concavity and for N even they are sub-harmonic which is a kind of weak convex-
ity. In particular, when N is even (resp. odd) IN,J has no local maximum (resp.
minimum) in the interior of ∆(Ω).

Problem 2. What can be said of the other critical points of IN,J? What can be
said of the restriction of one information function on the intersection of levels of
other information functions? Information topology depends on the shape of these
intersections and on the Morse theory for them.
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1.5. Monadic Cohomology of Information.
Now we consider the category S∗ of generalized ordered partitions of Ω over S: they
are sequences S = (E1, ..., Em) of subsets of Ω such that ∪jEj = Ω and Ei∩Ej = ∅
as soon as i 6= j. The number m is named the degree of S. Note the important
technical point that some of the sets Ej can be the empty set. In the same spirit
we introduce generalized ordered orthogonal decompositions of E for the quantum
case; but in this summary, for simplicity we restrict ourselves to the classical case.
Also we forget to add generalized to ordered up to now in this summary. A rooted
tree decorated by S∗ is an oriented finite planar tree Γ, with a marked initial vertex
s0, named the root of Γ, where each vertex s is equipped with an element Fs of S∗,
such that edges issued from s correspond to the values of Fs. When we want to
mention that we restrict to partitions less fine than a partition X we put an index
X, like in S∗X .

The notation µ(m;n1, ..., nm) denotes the operation which associates to an or-
dered partition S of degree m and to m ordered partitions Si of respective degrees
ni, the ordered partition that is obtained by cutting the pieces of S using the pieces
of Si and respecting the order. An evident unit element for this operation is the
unique partition π0 of degree 1. The symbol µm denotes the collection of those
operations for m fixed. The introduction of empty subsets in ordered partitions
insures that the result of µ(m;n1, ..., nm) is a partition of length n1 + ... + nm,
thus the µm do define what is named an operad ; cf. [37, 20]. The axioms of unity,
associativity and covariance for permutations are satisfied. See [42, 43, 20, 37] for
the definition of operads.

The most important algebraic object which is associated to an operad is a monad
(cf. [39, 20]), i.e., a functor V from a category A to itself, equipped with two natural
transformations µ : V◦V → V and η : R→ V, which satisfy to the following axioms:

(5) µ ◦ (Vµ) = µ ◦ (µV), µ ◦ (Vη) = Id = µ ◦ (ηV)

In our situation, we can apply the Schur construction (cf. [20]) to the µm to get
a monad: take for V the real vector space freely generated by S∗; it is naturally
graded, so it is the direct sum of spaces V (m);m ≥ 1 where the symmetric group
Sm acts naturally to the right, then introduce, for any real vector space W the real
vector space V(W ) =

⊕
m≥0 V (m)⊗Sm

W⊗m; the Schur composition is defined by

V ◦V =
⊕

m≥0 V (m)⊗Sm
V⊗m. It is easy to verify that the collection (µm;m ∈ N)

defines a natural transformation µ : V ◦ V → V, and the trivial partition π0 defines
a natural transformation η : R→ V, that satisfied to the axioms of a monad.

Also we fix a functor of probability laws QX over the category S. LetMX(m) be
the vector space freely generated over R by the symbols (P, i,m) where P belongs
to QX , and 1 ≤ i ≤ m. In the last section of the second part we show how this
space arises from the consideration of divided probabilities. This is apparent on the
following definition of the right action of the operad V on the familyMX(m);m ∈
N∗: a sequence S1, ..., Sm or ordered partitions in S∗X acts to a generator (P, i,m)
by giving the vector

∑
j pj(Pj , (i, j), n) where pj is the probability P (Si = j) and Pj

is the conditioned probability P |(Si = j). We denote by θm((P, i,m), (S1, ..., Sm))
this vector.

Now we consider the Schur functor MX(W ) =
⊕

mMX(m) ⊗Sm
W⊗m; the

operations θm define a natural transformation θ :M◦ V →M, which is an action
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to the right in the sense of monads, i.e., θ ◦ (Fµ) = θ ◦ (θV); θ ◦ (Fη) = Id. (We
forgot the index X for simplicity.)

Now we consider the bar resolution ofM: ....→M◦V◦(k+1) →M◦V◦k → ..., as
in Beck (triples, ...) [9], and Fresse [20], with its simplicial structure deduced from
θ and µ, and the complex of natural transformations of V-right modules C∗(M) =
HomV (M◦V◦∗,R), where R is the trivial right module given by R(m) = R. As in
the classical case, we restrict us to co-chains that are measurable in the probability
(P, i,m).

The co-boundary is defined by the Hochschild formula, extended by MacLane
and Beck to monads (see Beck [9]):

(6) δF = F ◦ (θV◦k)−
∑

i=0,...,k−1

(−1)iF ◦MV◦iµV◦k−i−1 − (−1)kF ◦MV◦kε.

The cochains are described by families of scalar measurable functions FX(S1; ..., Sk; (P, i,m),
where S1; ...;Sk is a forest of m trees of level k labelled by S∗X , and where the value
on (P, i,m) depends only on the tree Si1;Si2; ...;Sik.

We impose now the condition, named regularity, that FX(S1; ..., Sk; (P, i,m)) =
FX(Si1;Si2; ...;Sik;P ). The regular co-chains form a sub-complex C∗r (M); by defini-
tion, its homology is the arborescent information co-homology.

The regular cochains of degree k are determined by their values for m = 1 and
decorated trees of level k, where the co-boundary takes the form:

δF (S;S1; ...;Sk;P)

=
∑
i

P(S = i)F (Si1; ...;Sik;P|(S = i)) +

i=k∑
i=1

(−1)iF (S; ...;µ(Si−1 ◦ Si);Si+1; ...;Sk;P)(7)

+(−1)k+1F (S; ...;Sk−1;P)

This gives co-homology groupsH∗τ (S,P), τ for tree. The fact that entropyH(S∗P) =
H(S;P) defines a 1-cocycle is a result of an equation of Fadeev, generalized by Baez,
Fritz and Leinster [3], who gave another interpretation, based on the operad struc-
ture of the set of all finite probability laws. See also Marcolli and Thorngren [40].

Theorem E. (cf. Theorem 4 section 6.3, [7]): If Ω has more than four points,
H1
τ (Π(Ω),∆(Ω)) is the one dimensional vector space generated by the entropy.

Another co-boundary δt on C∗r (M) corresponds to another right action of the
monad VX , which is deduced from the maps θt that send (P, i,m)⊗ S1 ⊗ ...⊗ Sm)
to the sum of the vectors (P, (i, j), n) for j = 1, ..., ni that are associated to the end
branches of Si. It gives a twisted version of information co-homology as we have
done in the first paragraph. This allows us to define higher information quantities
for strategies: for N = 2M + 1 odd, Iτ,N = −(δδt)

MH, and for N = 2M + 2 even,
Iτ,N = δt(δδt)

MH.
This gives for N = 2, a notion of mutual information between a variable S of

length m and a collection T of m variables T1, ..., Tm:

(8) Iτ (S;T ;P) =

i=m∑
i=1

(H(Ti;P)− P(S = i)H(Ti;P|S = i)).

When all the Ti are equals we recover the ordinary mutual information of Shannon
plus a multiple of the entropy of Ti.
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1.6. The Forms of Information Strategies.
A rooted tree Γ decorated by S∗ can be seen as a strategy to discriminate between
points in Ω. For each vertex s there is a minimal set of chained edges α1, ..., αk
connecting s0 to s; the cardinal k is named the level of s; this chain defines a
sequence (F0, v0;F1, v1; ...;Fk−1, vk−1) of observables and values of them; then we
can associate to s the subset Ωs of Ω where each Fj takes the value vj . At a given
level k the sets Ωs form a partition πk of Ω; the first one π0 is the unit partition
of length 1, and πl is finer than πl−1 for any l. By recurrence over k it is easy to
deduce from the orderings of the values of Fs an embedding in the Euclidian plane
of the subtrees Γ(k) at level k such that the values of the variables issued from
each vertex are oriented in the direct trigonometric sense, thus πk has a canonical
ordering ωk. Remark that many branches of the tree gives the empty set for Ωs
after some level; we name them dead branches. It is easy to prove that the set
Π(S)∗ of ordered partitions that can be obtained as a (πk, ωk) for some tree Γ and
some level k is closed by the natural ordered join operation, and, as Π(S)∗ contains
π0, it forms a monoid, which contains the monoid M(S∗) generated by S∗.

Complete discrimination of Ω by S∗ exists when the final partition of Ω by
singletons is attainable as a πk; optimal discrimination correspond to minimal level
k. When the set Ω is a subset of the set of words x1, ..., xN with letters xi belonging
to given setsMi of respective cardinalitiesmi, the problem of optimal discrimination
by observation strategies Γ decorated by S∗ is equivalent to a problem of minimal
rewriting by words of type (F0, v0), (F1, v1), ..., (Fk, vk); it is a variant of optimal
coding, where the alphabet is given. The topology of the poset of discriminating
strategies can be computed in terms of the free Lie algebra on Ω, cf. [20].

Probabilities P in P correspond to a priori knowledge on Ω. In many problems
P is reduced to one element, that is the uniform law. Let s be a vertex in a strategic
tree Γ, and let Ps be the set of probability laws that are obtained by conditioning
through the equations Fi = vi; i = 0, ..., k − 1 for a minimal chain leading from s0

to s. We can consider that the sets Ps for different s along a branch measure the
evolution of knowledge when applying the strategy. The entropy H(F ;Ps) for F in
S∗ and Ps in Ps gives a measure of information we hope to obtain when applying
F at s in the state Ps. The maximum entropy algorithm consists in choosing at
each vertex s a variable that has the maximal conditioned entropy H(F ;Ps).

Theorem F. (cf. [7]): To find one false piece of different weight among N pieces
for N ≥ 3, when knowing the false piece is unique, by the minimal numbers of
weighing, one can use the maximal entropy algorithm.

However we have another measure of information of the resting ambiguity at s,
by taking for the Galois group Gs the set of permutations of Ωs which respects
globally the set Ps and the set of restrictions of elements of S∗ to Ωs, and which
preserves one by one the equations Fi = vi. Along branches of Γ this gives a
decreasing sequence of groups, whose successive quotients measure the evolution of
acquired information in an algebraic sense.

Problem 3. Generalize Theorem F. Can we use algorithms based on the Galoisian
measure of information? Can we use higher information quantities associated to
trees for optimal discrimination?
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1.7. Conclusion and Perspective.
Concepts of Algebraic topology were recently applied to Information theory by sev-
eral researchers. In particular notions coming from category theory, homological
algebra and differential geometry were used for revisiting the nature and scope of
entropy, cf. for instance Baez et al. [3], Marcolli and Thorngren [40] and Gro-
mov [24]. In the present note we interpreted entropy and Shannon information
functions as co-cycles in a natural co-homology theory of information, based on
categories of observable and complexes of probability. This allowed us to associate
topological figures, like Borromean links, with particular configuration of mutual
dependency of several observable quantities. Moreover we extended these results to
a dynamical setting of system observation, and we connected probability evolutions
with the measures of ambiguity given by Galois groups. All those results provide
only the first steps toward a developed Information Topology. However, even at
this preliminary stage, this theory can be applied to the study of distribution and
evolution of Information in concrete physical and biological systems. This kind of
approach already proved its efficiency for detecting collective synergic dynamic in
neural coding [12], in genetic expression [54], in cancer signature [32], or in signal-
ing pathways [53]. In particular, information topology could provide the principles
accounting for the structure of information flows in biological systems and notably
in the central nervous system of animals.

2. Classical Information Topos. Theorem One

2.1. Information Structures and Probability Families.
Let Ω be a finite set, the set Π(Ω) of all partitions of Ω constitutes a category with
one arrow Y → Z from Y to Z when Y is more fine than Z, we also say in this
case that Y divides Z. In Π(Ω) we have an initial element, which is the partition
by points, denoted ω and a final element, which is Ω itself and is denoted by 1. The
joint partition Y Z or (Y,Z), of two partitions Y,Z of Ω is the less fine partition
that divides Y and Z, i.e., their gcd. For any X we get XX = X, ωX = ω and
1.X = X.

By definition an information structure S on Ω is a subset of Π(Ω), such that for
any element X of S, and any pair of elements Y,Z in S that X refines, the joint
partition Y Z also belongs to S.
In addition we will always assume that the final partition 1 belongs to S. In terms
of observations, it means that at least something is a certitude.

Examples: start with a set Σ = {Si; 1 ≤ i ≤ n} of partitions of Ω. For any subset
I = {i1, ..., ik} of [n] = {1, ..., n}, the joint (Si1 , ..., Sik), also denoted SI , divides
each Sij . The set W = W (Σ) of all the SI , when I describes the subsets of [n] is
an information struture. It is even a commutative monoid, because any product
of elements of W belongs to W , and the partition associated to Ω itself gives the
identity element of W . The product S[n] of all the Si is maximal; it divides all the
other elements. As Π(Ω) the monoid W (Σ) is idempotent, i.e., for any X we have
XX = X.

By definition, the faces of the abstract simplex ∆([n]) are the subsets of [n]; its
vertices are the singletons. Thus the monoid W (Σ) can be identified with the first
barycentric subdivision of the simplex ∆([n]).

Remind that a simplicial subcomplex of ∆([n]) is a subset of faces that contains
all faces of any of its elements. Then any simplicial sub-complex K of ∆([n]) gives
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a simplicial information structure S(K), embedded in W (Σ). In fact, if Y and Z
are faces of a simplex X belonging to K, Y Z is also a face in X, thus it belongs to
K. The maximal faces Σa; a ∈ A of K correspond to the finest elements in S(K);
the vertices of a face Σa gives a family of partitions, which generates a sub-monoid
Wa = W (Σa) of W ; it is a sub-information structures (full sub-category) of S(K),
having the same unit, but having its own initial element ωa. These examples arise
naturally when formalizing measurements if some obstructions or a priori decisions
forbid a set of joint measurements.

This kind of examples were considered by Han [26] see also McGill [44].

Example 1. Ω has four elements (00), (01), (10), (11); the variable S1 (resp. S2)
is the projection pr1 (resp. pr2), on E1 = E2 = {0, 1}; Σ is the set {S1, S2}.
The monoid W (Σ) has four elements 1, S1, S2, S1S2. The partition S1S2 = S2S1

corresponds to the variable Id : Ω→ Ω.

Example 2. Same Ω as before, with the same names for the elements, but we take
all the partitions of Ω in S. In addition to 1, S1, S2 and S = S1S2, there is S3, the
last partition in two subsets of cardinal two, which can be represented by the sum
of the indices: S3(00) = 0, S3(11) = 0, S3(01) = 1, S3(10) = 1, the four partitions
Yω, for ω ∈ Ω, formed by a singleton {ω} and its complementary, and finally the
six partitions Xµ,ν = YµYν , indexed by pairs of points in Ω satisfying µ < ν in the
lexical order. The product of two distinct Y is a X, the product of two distinct X
or two distinct Si is S, the product of one Y and a Si is a X, of one Y and a X is
this X or S, of one S and a X is this X or S. In particular the monoid W is also
generated by the three Si and the four Yω; it is called the monoid of partitions of
Ω, and the associative algebra Λ(S) of this monoid is called the partition algebra
of Ω.

Example 3. Same Ω as before, that is Ω = ∆(4), with the notations of example
2 for the partitions; but we choose as generating family the set Υ of the four
partitions Yµ;µ ∈ Ω; the joint product of two such partitions is either a Yµ (when
they coincide) or a Xµν (when they are different). The monoid W (Υ) has twelve
elements.

Example 4. Ω has 8 elements, noted (000), ..., (111), and we consider the family Σ
of the three binary variables S1, S2, S3 given by the three projections. If we take all
the joints, we have a monoid of eight elements. However, if we forbid the maximal
face (S1, S2, S3), we have a structure S which is not a monoid; it is the set formed
by 1, S1, S2, S3 and the three joint pairs (S1, S2), (S1, S3), (S2, S3).

On the side of probabilities, we choose a Boolean algebra B of sets in Ω, i.e.,
a subset B of the set P(Ω) of subsets of Ω that contains the empty set ∅ and the
full set Ω, and is closed by union and intersection. In this finite context, it is easy
to prove that B is constituted by all the unions of its minimal elements (called
atoms). Associated to this case, we will consider only information structures that
are made by partitions whose each element belongs to B. Consequently we could
replace everywhere Ω by the finite set ΩB of the atoms of B, but we will see that
several Boolean sub-algebras appear naturally in the process of observation, thus
we prefer to mention the choice of B at the beginning of observations.
Then we consider the set ∆(ΩB), or ∆(B), of all probability laws on (Ω,B), i.e.,
all real functions px of the atoms x of B (the points of ΩB), satisfying px ≥ 0 and
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x px = 1. We see that this set of probabilities is also a simplex ∆([N ]), where N

is the cardinality of ΩB.
As on the side of partitions, we will consider more generally any simplicial sub-

complex Q of ∆(B), and call it a probability complex. In the appendix, we show
that this kind of examples correspond to natural forbidding rules, that can express
physical constraints on the observed system.

A partition Y which is measurable with respect to B is made by elements Yi
for i = 1, ...,m, belonging to B. Let P be an element of ∆(B); the conditioning
of P by the element Yi is defined only if P (Yi) 6= 0, and given by the formula
P (B|Y = yi) = P (B∩Yi)/P (Yi). We will consider it as a probability on Ω equipped
with B, not as a probability on Yi. Remark that if P belongs to a simplicial family
Q, the probability P (B|Y = yi) is also contained in Q. In fact, if the smallest
face of Q which contains P is the simplex σ on the vertices x1, ..., xk, then the
conditioning of P by Yi, being equal to 0 for the other atoms x, belongs to a face
of σ, which is in Q, because Q is a complex.

For a probability family Q, i.e., a set of probabilities on Ω, and a set of partitions
S, we say that Q and S are adapted one to each other if the conditioning of every
element of Q by every element of S belongs to Q.

By definition, the algebra BY is the set of unions of elements of the partition Y .
We can consider it as a Boolean algebra on Ω contained in B or as Boolean algebra
on the quotient set Ω/Y .
The image Y∗Q of a probability Q for B by the partition Y is the probability on
Ω for the sub-algebra BY , that is given by Y ∗ Q(t) = Q(t) for t ∈ BY . It is the
forgetting operation, also frequently named marginalization by Y .

By definition, the set QY is the image of Y∗. Let us prove that it is a simplicial
sub-complex of ∆(BY ): take a simplex σ of Q, denote its vertices by x1, ..., xk,
note δj the Dirac mass of xj , and look at the partition σi = Yi ∩ σ of σ induced
by Y , then for all the xj ∈ σi the images Y∗δj coincide. Let us denote this image
by δ(Y, σi); it is an element of QY . For every law Q in σ, the image Y∗Q belongs
to the simplex on the laws δ(Y, σi), and any point in this simplex belongs to QY .
Q.E.D.

If X → Y is an arrow in Π(ΩB), the above argument shows that the map
QX → QY is a simplicial mapping.

Conditioning by Y and marginalization by Y∗ are related by the barycentric law
(or theorem of total probability, Kolmogorov 1933 [34]): for any measurable set A
in B we have

(9) P (A) = P (Y = y1)P |(Y = y1)(A) + ...+ P (Y = ym)P |(Y = ym)(A).

Remark that the notions of information structures and probability complexes
extend to infinite sets; this is developed in paper [5].

In this context, we have a formula for any integrable function ϕ on Ω with respect
to P :

(10)

∫
Ω

ϕ(ω)dP (ω) =

∫
Ω/Y

d(Y∗P )(ω′)

∫
Ω

ϕ(ω)d(P |(Y = ω′))(ω).

Consider a finite set Ω, equipped with a Boolean algebra B, a probability family
Q for it and an information structure S adapted to B.

For each object X in S, the set SX made by the partitions Y that are divided
by X is a closed sub-category, possessing an internal law of monoid. The object X
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is initial. To any arrow X → Y is associated the inclusion SY → SX , thus we get
a contra-variant functor from S to the category of monoids.

On the other side we have a natural co-variant functor of S to the category of
sets, which associates to each partition X ∈ S the set QX of probability laws in the
image of Q on the quotient set Ω/X, and which associates to each arrow X → Y
the surjection QX → QY which is given by direct image PX 7→ Y∗PX . If Q is
simplicial the functor goes to the category of simplicial complexes.

Definition 1. For X ∈ S, the functional module FX(Q) is the real vector space
of measurable functions on the space QX ; for each arrow of divisibility X → Y , we
have an injective linear map f 7→ fY |X from FY to FX , given by

(11) fY |X(PX) = f(Y∗PX).

In this manner, we obtain a contra-variant functor F from the category S to the
category of real vector spaces.

If Q and S are adapted one to each other, the functor F admits a canonical
action of the monoid functor X 7→ SX , given by the average formula

(12) (Y.f)(P ) =

∫
dY∗P (y)f(P |(Y = y)).

To verify this is an action of monoid, we must verify that for any Z which divides
Y , and any f ∈ FY , we have, in FX the identity

(13) (Z.f)Y |X = Z.(fY |X);

that means, for any P ∈ QX :

(14)

∫
EZ

dZ∗P (z)fY |X(P |(Z = z)) =

∫
EZ

dZ∗P (z)f((Y∗P )|(Z = z)).

But this results from the identity Y∗(P |(Z = z)) = (Y∗P )|(Z = z) due to
Y∗P (Z = z) = P (Z = z).
The arrows of direct images and the action of averaged conditioning satisfy the
axiom of distributivity: if Y and Z divide X, but not necessarily Z divides Y , we
have

(15) Z.(fY )(P,X) = (Z.f)((Z, Y )∗P, (Y,Z)) = (Z.f)(Z,Y )(P,X).

Proof. The first identity comes from the fact that (Z, Y )∗(P |(Z = z)) = Y∗(P |(Z =
z)); the second one follows from the fact that we have an action of the monoid SX .

As the formula (12) is central in our work, we insist a bit on it, and comment
its meaning, at least in this finite setting:

Let P 7→ f(P ) be an element of FX , and Y be the goal of an arrow X → Y , we
have

(16) Y.f(P ) =
∑
j

P(Y = yj)f(P|Y = j).

where j describes the indices of the partition Y .
We will see when discussing functions of several partitions that this formula is

due to Shannon and correspond to conditional information.

Lemma 1. for any pair (Y,Z) of variables in SX , and any F for which the integrals
converge, we have (Y,Z).F = Y.(Z.F ).
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Proof. We note pi the probability that Y = yi, πij the joint probability of (Y =
yi, Z = zj), and qij the conditional probability of Z = zj knowing that Y = yi,
then

(Y,Z).F (P) =
∑
i

∑
j

πijF (P|(Y = yi, Z = zj))

=
∑
i

pi(
∑
j

qijF (P|(Y = yi, Z = zj))

=
∑
i

pi(
∑
j

qijF (P|(Y = yi))|(Z = zj))

=
∑
i

pi(Z.F )(P|(Y = yi))

= Y.(Z.F )(P).

Remark 1. In the general case, where Ω is not necessarily finite and B is any
sigma-algebra, the Lemma 1 is a version of the Fubini theorem.

Let us consider the category S equipped with the discrete topology, to get a site
(cf. SGA [1]). Over a discrete site every presheaf is a sheaf. The contravariant
functor X 7→ SX gives a structural sheaf of monoids, and by passing to the algebras
AX over R which are generated by the (finite) monoids, we get a sheaf in rings,
thus S becomes a ringed site. Moreover, by considering all contra-variant functors
X 7→ NX from S to modules over the algebra functor A, we obtain a ringed
topos, that we name the information topos associated to Ω,B,S. This ringed topos
concerns only the observables given by partitioning.

Take now in account a probability family Q which is adapted to S, for instance
a simplicial family; we obtain a functor X 7→ QX translating the marginalization
by the partitions, considered as observable quantities, and the conditioning by
observables is translated by a special element X 7→ FX of the information topos.

In this way it is natural to expect that topos co-homology, as introduced by
Grothendieck, Verdier and their collaborators (see SGA 4 [1]), captures the invari-
ant structure of observation, and defines in this context what information is. This
is the main outcome of our work.

As a consequence of Grothendieck’s article (Tohoku, 1957 [25]), a ringed topos
possesses enough injective objects, i.e., any object is the sub-object of an injective
object, moreover, up to isomorphism, there is a unique minimal injective object con-
taining a given object, called its injective envelope (cf. Gabriel, seminaire Dubreil,
exp. 17 [21]). Thus each object in the category DS of modules over a ringed site S
possesses a canonical injective resolution I∗(N); then the group ExtnD(M,N) can
be defined as the homology of the complex HomD(M, In(N)). Those groups are
denoted by Hn(M ;N).

The “comparison theorem” (cf. Bourbaki, Alg.X Th1, p.100 [11], or MacLane
1975, p. 261 [38]) asserts that, for any projective (resp. injective) resolution of M
(resp. N) there exists a natural map of complexes between the resulting complex
of homomorphisms and the above canonical complex, and that this map induces
an isomorphism in co-homology.

In our context, we take for M the trivial constant module RS over S, and we
take for N the functional module F(Q).

The existence of free resolutions of RS makes things easier to handle.
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Hence we propose that the natural information quantities are classes in the co-
homology groups H∗(RS ,F(Q)).

This is reminiscent of Galois co-homology see SGA [1], where M is also taken as
the constant sheaf over the category of G-objects seen as a site.

In [5] we develop further this more geometric approach, by considering several
resolutions. But in this paper, in order to be concrete, we will only focus on a more
elementary approach, associated to a special resolution, called the non-homogeneous
bar-resolution, which also leads to the general result. This is the object of the next
section.

2.2. Non-Homogeneous Information Co-Homology.
For each relative integer m ≥ 0, and each object X ∈ S, we consider the real vector
space Sm(X), freely generated by the m-uples of elements of the monoid SX , and
we define Cm(X) as the real vector space of linear functions from Sm(X) to the
space FX of measurable functions from QX to R.

Then we define the set Cm of m-cochains as the set of collections FX ∈ Cm(X)
satisfying the following condition, named joint locality :

For each Y divided by X, when each variable Xj is divided by Y , we must have

(17) FY (X1; ...;Xm;Y∗P) = FX(X1; ...;Xm;P).

Thus a co-chain F is a natural transformation from the functor Sm(X) from S
to the category of real vector spaces to the functor F of measurable functions on
QX . Hence, F is not an ordinary numerical function of probability laws P and a set
(X1, ..., Xm) of m random variables, but we can speak of its value FX(X1; ...;Xm;P)
for each X in S. For X given the co-chains form a sub-vector space Cm(X) of
Cm(X).

If we apply the condition to Y = (X1, ..., Xm) we find that F (X1; ...;Xm;P)
depends only on the direct image of P by the joint variable of the Xi’s. This
implies that, if F belongs to Cm(X), we have

(18) F (X1; ...;Xm;P) = F (X1; ...;Xm; (X1...Xn)∗P),

Conversely, suppose that F satisfies the conditions (18) and consider X,Y two
variables such that X divides Y , and that Y divides each Xj , and let P be a
probability in QX ; then the joint variable Z = (X1, ..., Xm) divides Y and X, thus
we have Z∗P = Z∗(X∗P ) = Z∗(Y∗P ), and

(19) F (X1; ...;Xm;Y∗P ) = F (X1; ...;Xm;Z∗P ) = F (X1; ...;Xm;X∗P ).

Which proves that F belongs to Cm(X).
Let F be an element of Cm(X), and Y an element of SX ; then we define

(20) Y.F (X1; ...;Xm;P) =
∑

P(Y = yj)F (X1; ...;Xm;P|Y = yj).

It follows from the equivalent condition (18) that Y.F also belongs to Cm(X).
Moreover, the proof of Lemma 1 applies and give that, for any pair (Y, Z) of

variables in SX , and any F in Cm(X), we have (Y,Z).F = Y.(Z.F ).
Thus (1) defines an action of the semigroup SX on the vector spaces Cm(X).

Remark 2. The operation of SX can be rewritten more compactly by using inte-
grals:

(21) Y.F (X1; ...;Xm;P) =

∫
Ω

F (X1; ...;Xm;P|(Y = Y (ω)))dP (ω).
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The differential δ for computing co-homology is given by the Eilenberg-MacLane
formula (1943):

δmF (Y1; ...;Ym+1;P )

=Y1.F (Y2; ...;Ym+1;P ) +

m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1;P ) + (−1)m+1F (Y1; ...;Ym;P ).

(22)

Since this formula corresponds to the standard inhomogeneous bar-resolution in
the case of semi-groups and algebras (Cf. MacLane p.115 [39] and Cartan-Eilenberg
pp.174–175. [13]), we name δ the Hochschild co-boundary, as in the case of semi-
groups, and algebras.

Remark that a function F satisfying the joint locality condition, (i.e., the hy-
pothesis that F (Y1; ...;Ym;P ) depends only on (Y1, ..., Ym)∗P ), has a co-boundary
which is also jointly local, because the variables appearing in the definition are all
joint variables of the Yj . (This this would not have been true for the stronger local-
ity hypothesis asking that F depends only on the collection (Yj)∗P ; j = 1, ...,m.)

It is easy to verify that δm ◦ δm−1 = 0. We denote by Zm the kernel of δm and
by Bm the image of δm−1. The elements of Zm are named m-cocycles, we consider
them as information quantities, and the elements of Bm are m-coboundaries.

Definition 2. For m ≥ 0, the quotient

(23) Hm(C∗) = Zm/Bm

is the m-th cohomology group of information of the information structure S on the
simplicial family of probabilities Q. We denote it by Hm(S;Q).

The information co-homology satisfies functoriality properties:

Consider two pairs of information structures and probability families, (S,Q) and
(S ′,Q′) on two sets Ω,Ω′ equipped with the σ-algebras B,B′ respectively, and ϕ
a surjective measurable map from (Ω,B) to (Ω′,B′), such that ϕ∗(Q) ⊆ Q′ (i.e.,
ϕ∗(Q) ∈ Q′ for every Q ∈ Q), and such that S ⊆ ϕ∗S ′ (i.e., ∀X ∈ S,∃X ′ ∈ S ′, X =
X ′ ◦ ϕ); then we have the following construction:

Proposition 1. For each integer m ≥ 0, a natural linear map

(24) ϕ∗ : Hm(Q′;S ′)→ Hm(Q;S),

is defined by the following application at the level of local co-chains:

(25) ϕ∗(F ′)(X1; ...;Xm;P ) = F ′(X ′1; ...;X ′m;ϕ∗(P )),

for a collection of variables X ′j ; j = 1, ...,m satisfying Xj = X ′j ◦ ϕ for each j.

Proof. First, remark that Xj = X”j ◦ ϕ implies X ′j = X”j because ϕ is surjective.
As F ′ is (jointly) local, the co-chain F = ϕ∗(F ′) is also (jointly) local. Finally, it is
evident that the map F ′ 7→ F commutes with the co-boundary operator. Therefore
the proposition follows.

Another co-homological construction works in the reversed direction:

Consider two information structures (S,Q) and (S ′,Q′) on two sets Ω,Ω′ equipped
with σ-algebras B,B′ respectively, and ϕ a measurable map from (Ω,B) to (Ω′,B′),
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such that Q′ ⊆ ϕ∗(Q) (i.e., ∀Q′ ∈ Q′,∃Q ∈ Q, Q′ = ϕ∗(Q)), and such that
ϕ∗S ′ ⊆ S (i.e., ∀X ′ ∈ S ′, X = X ′ ◦ ϕ ∈ S); then the following result is true:

Proposition 2. For each integer m ≥ 0, a natural linear map

(26) ϕ∗ : Hm(Q′;S ′)→ Hm(Q;S),

is defined by the following application at the level of co-chains:

(27) ϕ∗(F )(X ′1; ...;X ′m;P ′) = F (X ′1 ◦ ϕ; ...;X ′m ◦ ϕ;P ),

for a probability law P ∈ Q and its image P ′ = ϕ∗(P ).

Proof. First, remark that, if Q also satisfies P ′ = ϕ∗(Q), we have F (X ′1◦ϕ; ...;X ′m◦
ϕ;P ) = F (X ′1 ◦ ϕ; ...;X ′m ◦ ϕ;Q). To establish that point, let us denote Xj =
X ′j ◦ ϕ; j = 0, ...,m, and X ′ = (X ′1, ..., X

′
m), X = (X1, ..., Xm) the joint variables;

the quantity F (X ′1 ◦ ϕ; ...;X ′m ◦ ϕ;P ) depends only on X∗P , but this law can be
rewritten X ′∗P

′, which is also equal to X∗Q. In particular, if F is local, then
F ′ = ϕ∗F is local.

As it is evident that the map F 7→ F ′ commutes with the co-boundary operator,
the proposition follows.

Remark this way of functoriality uses the locality of co-cycles.

Corollary 1. In the case where Q′ = ϕ∗(Q) and S = ϕ∗S ′, the maps ϕ∗ and ϕ∗
in information co-homology are inverse one of each other.

This is our formulation of the invariance of the information co-homology for
equivalent information structures.

When m = 0, co-cochains are functions f of PX in QX such that f(Y∗PX) =
f(PX) for any Y multiple of X (i.e., coarser than X). As we assume 1 belongs to
S, and the set Q1 has only one element, f must be a constant. And every constant
is a co-cycle, because
(28)

δ.f(X0;P ) = X0.f(P )−f(P ) =
∑
j

P (X0 = xj)f(P |X0 = xj)−f(P ) = f(1)(1−1) = 0.

Consequently H0 is R. This corresponds to the hypothesis 1 ∈ S, meaning connex-
ity of the category. If m components exist, we recover them in the same way and
H0 is isomorphic to Rm.

We now consider the case m = 1. From what precedes we know that there is no
non-trivial co-boundary.

Non-homogeneous 1-cocycles of information are families of functions fX(Y ;PX),
measurable in the variable P in Q, labelled by elements Y ∈ SX , which satisfies
the locality condition, stating that each time we have Z → X → Y in S, we have

(29) fX(Y ;X∗PZ) = fZ(Y ;PZ)

and the co-cycle equation, stating that for two elements Y, Y ′ of SX , we have

(30) f((Y, Y ′);P ) = f(Y ;P ) + Y.f(Y ′;P ).

Remark that locality implies that it is sufficient to know the fY (Y ;Y∗P ) to recover
fX(Y ;P ) for all partition X in S that divides Y .

It is in this sense that we frequently omit the index X in fX .
Remark also that for any 1-cocycle f we have f(1;P ) = 0.
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In fact, the co-cycle equation tells that

(31) f((1, 1);P ) = f(1;P ) + 1.f(1;P ).

but

(32) 1.f(1;P ) = f(1;P |1 = 1) = f(1;P ),

and (1, 1) = 1, thus f(1;P ) = 0.
More generally, for any X, and any value xi of X, we have

(33) f(X;P |(X = xi)) = 0,

In fact a special case of Equation (30) is

(34) f((X,X);P ) = f(X;P ) +X.f(X;P ).

which implies X.f(X;P ) = 0; however, by definition,

(35) X.f(X;P ) =
∑
i

P (X = xi)f(X;P |(X = xi)),

thus for every i we must have f(X;P |(X = xi)) = 0, due to P ≥ 0. This generalizes
f(1;P ) = 0 for any P , because, for a probability conditioned by X = xi, the
partition X appears the same as 1, that is a certitude.

Remark also that for each pair of variables (X,Y ), a 1-cocycle must satisfy the
following symmetric relation:

(36) f(Y ;P)− Z.f(Y ;P) = f(Z;P)− Y.f(Z;P).

2.3. Entropy.
Any multiple of the Shannon entropy is a non-homogeneous information co-cycle.
Remind that entropy H is defined for one partition X by the formula

(37) H(X;P) = −
∑
i

pi log pi,

where the pi denotes the values of P on the elements of the partitionX. In particular
the function H depends only on X∗(P), which is locality. The co-cycle equation
expresses the fundamental property for an information quantity, writen by Shannon:

(38) H(X,Y ) = H(X) +HX(Y )

Thus every constant multiple f = λH of H defines a co-cycle.
Remark that the corresponding “homogeneous 1-cocycle” is the entropy variation:

(39) F (X;Y ;P) = H(X;P)−H(Y ;P).

This means that it satisfies the “invariance property”:

F ((Z,X); (Z, Y )) = H(Z,X)−H(Z, Y )

= H(Z) +HZ(X)−H(Z)−HZ(Y )

= Z.F (X;Y ),

and the “simplicial equation”:

(40) F (Y ;Z)− F (X;Z) + F (X;Y ) = 0

Note that the entropy variation H(X;P ) − H(Y ;P ) exists in a wider range of
condition, i.e., when Ω is infinite, if the laws of X and Y are absolutely continuous
with respect to a same probability law P0: we only have to replace the finite sum
by the integral of the function −ϕ logϕ where ϕ denotes the density with respect
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to P0. Changing the reference law P0 changes the quantities H(X) and H(Y ) by
the same constant, thus does not change the variation H(X;P )−H(Y ;P ).

We will prove now that, for many simplicial structures S, and sufficiently large
adapted probability complexes Q, any information co-homology class of degree one
is a multiple of the entropy class.

In particular this would be true for S = W (Σ) and Q = ∆(Ω), when Σ has more
than two elements and Ω more than four elements, but this is also true in more
refined situation, as we will see.

We assume that the functor of probabilities QX contains all the laws on Ω/X,
when X belongs to S. In such a case, by definition, we say that Q is complete with
respect to S.

Let us consider a probability law P in Q and two partitions X,Y in the structure
S, such that the joint XY belongs to S. We denote by Greek letters α, β, ... the
indices labelling the partition Y and by Latin letters k, l, ... the indices of the
partition X; the probability that X = ξk, Y = ηα is noted pk,α, then the probability
of X = ξk is equal to pk =

∑
α pk,α and the probability of Y = ηα is equal to

qα =
∑
k pk,α.

To simplify the notations, let us write F = f(X;P),G = f((Y,X);P),H = f(Y ;P),
Fα = f(X;P|(Y = ηα)),Hk = f(Y ;P|(X = ξk)).

The Hochschild co-cycle equation gives

(41)
∑
α

qαFα(
pk1,α
qα

, ...,
pkm,α
qα

) = G((pk,α))−H(qα1 , ..., qαn)

But we also have the relation obtained by exchanging X and Y , which gives

(42)
∑
k

pkHk(
pk,α1

pk
, ...,

pk,αn

pk
) = G((pk,α))− F (pk1 , ..., pkm).

Suppose that pk,α = 0 except when α = α1 and k = k2, k3, ..., km or α = α2

and k = k1; we put pki,α1
= xi; i = 2, ...,m and pk1,α2

= x1, which implies that
we have x1 + x2 + ... + xm = 1. Then Equation (33) implies that each term H in
Equation (42) is zero, because only one value of the image law is non-zero, thus we
can replace the only term G by F (pk1 , ..., pkm), and we get from Equation (41):

(43) H(1−x1, x1, 0, ..., 0) = F (x1, x2, ..., xm)− (1−x1)Fα1
(0,

x2

1− x1
, ...,

xm
1− x1

).

Only the term F for α1 subsists because, the possible other one, for α2, concerns
a certitude.

Consequently, by imposing x2 = 1 − x1 = a, x3 = ... = xm = 0, we deduce the
identity H(a, 1− a, 0, ..., 0) = F (1− a, a, 0, ..., 0). This gives a recurrence equation
to calculate F from the binomial case:

(44) F (x1, x2, ..., xm) = F (x1, 1− x1, 0, ..., 0) + (1− x1)F (0,
x2

1− x1
, ...,

xm
1− x1

).

That is due to the fact that Fα1
is a special case of F , thus independent from Y

and α1.
Then coming back to the co-cycle equation, we obtain in particular a functional

equation for the binomial variables.

Lemma 2. With the notations of the example 1 (cf. example 1), Ω = {(00), (01), (10), (11)},
S1 (resp. S2) the projection pr1 (resp. pr2), on E1 = E2 = {0, 1}, S = {S1, S2};
then the (measurable) information co-homology of degree one is generated by the
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entropy, i.e., there exists a constant C such that, for any X in W (Σ), P ∈ P,
f(X;P ) = CH(X;P ).

Proof. We consider a 1-cocycle f . We have f(1;P ) = 0. Let us note fi(P ) =
f(Si;P ), and fijk(u) the function f(Si;P |(Sj = k)), the variable u representing
the probability of the first point in the fiber Sj = k in the lexicographic order. For
each tableau 2× 2, P = (p00, p01, p10, p11), the symmetry formula (36) gives

(p00 + p10)f120(
p00

p00 + p10
) + (p01 + p11)f121(

p01

p01 + p11
)− f1(P )

= (p00 + p01)f210(
p00

p00 + p01
) + (p10 + p11)f211(

p10

p10 + p11
)− f2(P )(45)

imposing p10 = 0,p00 = u,p11 = v,p01 = 1 − u − v in this relation, we obtain the
equation:

(1− u)f1(0,
1− u− v

1− u
, 0,

v

1− u
)− f1(u, 1− u− v, 0, v)

= (1− v)f2(
u

1− v
,

1− u− v
1− v

, 0, 0)− f2(u, 1− u− v, 0, v).(46)

By hypothesis, f1, f2 depend only on the image law by S1, S2 respectively, thus,
again by noting a binomial probability from the value of the first element in lexi-
cographic order, we get

(47) (1− u)f1(
1− u− v

1− u
)− f1(1− v) = (1− v)f2(

u

1− v
)− f2(u).

By equating u to 1− v, we find that f1(u) = f2(u); then we arrive to the following
functional equation for h = f1 = f2:

(48) h(u)− h(v) = (1− v)h(
u

1− v
)− (1− u)h(

v

1− u
)

This is the functional equation which was considered by Tverberg in 1958 [52].
As a result of the works of Tverberg [52], Kendall [30] and Lee (1964, [36]), (see also
Kontsevich, 1995 [35]), it is known that every measurable solution of this equation
is a multiple of the entropy function:

(49) h(x) = C(x log(x) + (1− x) log(1− x)).

From here it follows that, for any m-uple (x1, ..., xm) of real numbers such that
x1 + ...+ xm = 1,

(50) F (x1, x2, ..., xm) = C
∑
i

xi log(xi).

The same is true for H and G with the appropriate number of variables.

A pair of variables X,Y , such that X,Y, (XY ) belong to S, is called an edge of
S; we says this edge is rich if X and Y contain at least two elements and (X,Y )
at least four elements which cross the elements of X and Y , in such a manner
that the Lemma 2 applies if Q is complete. We say that S is connected, if every
pair of elements X,X ′ in S can be joined by a sequence of edges. We say that
S is sufficiently rich if each vertex belongs to at least one rich edge. By the the
recurrence Equation (100), these two conditions guaranty that the constant C which
appears in the Lemma 2 is the same for all rich edges. Then the same recurrence
Equation (100) implies that the whole co-cycle is equal to CH. If S has m connected
components, we get necessarily m independent constants.
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Thus we have established the following result:

Theorem 1. For every connected structure of information S, which is sufficiently
rich, and every set of probability Q, which is complete with respect to S, the
information co-homology group of degree one is one-dimensional and generated by
the classical entropy.

The theorem applies to rich simplicial complexes, in particular to the full simplex
S = W (Σ) , which is generated by a family Σ of partitions S1, ..., Sn, when n ≥ 2,
such that, for every i at least of the pairs (Si, Sj) is rich.

Note that most of the axiomatic characterizations of entropy have used convexity,
and recurrence over the dimension, see Khintchin [31], Baez et al. [3].

In our characterization, we assumed no symmetry hypothesis, this was a conse-
quence of co-homology. Moreover, we do not assume any stability property relating
to a higher dimensional simplex, this was also a consequence of the homological
definition.

There exists a notion of symmetric information co-homology:
The group of permutations S(Ω,B), made by the permutations of Ω that re-

spect the algebra B, acts naturally on the set of partitions Π(Ω); in fact, if X ∈
Π(Ω) is made by the subsets Ω1, ...,Ωk, the partition σ∗X is made by the subsets
σ−1(Ω1), ..., σ−1(Ω1), in such a manner that, if σ, τ are two permutations of Ω, we
have τ∗(σ∗X) = (σ ◦ τ)∗X.

We say that a classical information structure S on (Ω,B) is symmetric if it is
closed by the action of the group of permutations S(Ω,B), i.e., if X ∈ S, and
σ ∈ S(Ω), the partition σ∗X also belongs to S.

In the same way, we say that a probability functor Q is symmetric, if it is stable
under local permutations, i.e., if X ∈ S and P ∈ QX , and if σ ∈ S(Ω/X), then
the probability law σ∗P = P ◦ σ on Ω/X also belongs to QX .

Remark that we also have τ∗σ∗P = (σ ◦ τ)∗P ). Thus the actions of symmetric
groups are defined here on the right. However, we have actions to the left by taking
σ∗ = (σ−1)∗. For the essential role of symmetries in information theory, see the
article of Gromov in this volume.

A m-cochain FX : Sm × QX → R is said symmetric, when, for every X ∈ S,
every probability P ∈ QX , every collection of partitions Y1, ..., Ym in SX , we have

(51) Fσ∗X(σ∗Y1; ...;σ∗Ym;σ∗P ) = FX(Y1; ...;Ym;P ).

It is evident that symmetric cochains form a subcomplex of the information
cochains complex; i.e., the coboundary of a symmetric cochain being a symmetric
cochain. Consequently we get a symmetric information co-homology, that we name
H∗S(S;Q).

In particular the entropy is a symmetric 1-cocycle.
The above proof of Theorem 1 applies to symmetric cocycle as well, thus, under

the convenient hypothesis of connexity, richness, and completeness for S and Q we
have H1

S(S;Q) = RH.
Remark that an equivalent way to look at symmetric information cochains, con-

sists in enlarging the category S in a “symmetric category” SS, by putting an
arrow associated to each element σX ∈ S(Ω/X) from X to σ∗X, and completing
the category by composing the two kind of arrows, division and permutation. In
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this case, the probability functor Q must behave naturally with respect to permu-
tation, which implies it is symmetric. Moreover, the natural notion of functional
sheaf and local cochains are a symmetric sheaf and symmetric cochains.

2.4. Appendix. Complex of Possible Events.
In each concrete situation, physical constraints produce exclusion rules between
possible events, which select a sub-complex Q in the full probability simplex P =
∆N on Ω. The aim of this appendix is to make this remark more precise.

Let A0, A1, A2, A3, ... the N + 1 vertices of the large simplex ∆N , a point of ∆N

is interpreted as a probability P on the set of thee vertices; each vertex can be seen
as an elementary event, and we will say that a general event A is possible for P
when P(A) is different from zero. An event A is said impossible for P in the other
case, that is when P(A) = 0.

The star S(A) of a vertex A of ∆N is the complementary set of the opposite
face to A, i.e., it is the set of probabilities P in ∆N such that A is possible, i.e.,
has non-zero probability. The relative star S(A|K) of A in subcomplex K is the
intersection of the star of A with K.

We denote F = (A,B,C,D, ...) the face of ∆N whose vertices are A,B,C,D, ....
We note L(F ) the set of points p in ∆N such that at least one of the points
A,B,C,D, ... is impossible for p. This is also the reunion of the faces which are
opposite to the vertices A,B,C,D, ... . Then L(F ) is a simplicial complex. The
complementary set in F of the interior of F , i.e., the boundary of F , is the reunion
of the intersections of F with all faces opposite to A,B,C,D, ...; it is also the set of
probabilities p in F such that at least one of the points A,B,C,D, ... is impossible
for p, thus it is equal to L(F ) ∩ F . If G is a face containing F the complex L(G)
contains the complex L(F ).

Let K be a simplicial complex contained in a N -simplex; then K is obtained by
deleting from ∆N a set E = EK of open faces. Let Ḟ = F\∂F be an element of E,
then each faces G of ∆N containing F belongs to E, because K is a complex.

In this case K is contained in L(F ). In fact L(F ) is the smallest sub-complex of

∆N which does not contain Ḟ . This can be proved as follows: if p in K makes that
every vertices of F is possible, it belongs to a face G such that every vertex of F is
a vertex of G, thus K contains G which contains F . So, if K does not contain Ḟ ,
K is contained in L(F ).

Let L = LK be the intersection of the L(F ), where F describe the faces in
EK . From what precedes we know that K is contained in L. However, every
Ḟ in E is included in the complementary set of L(F ), thus it is included in the
complementary set of L, which is the union of the complementary sets of the L(F ).
Consequently the complementary set of K is included in the complementary set of
L. Then K = L.

This discussion establishes the following result:

Theorem 2. A subset K of the simplex ∆N is a simplicial sub-complex if and only
if it is defined by a finite number of constraints of the type: “for any p in K, the
fact that A,B,C, ... are possible for p implies that D is impossible for p”.

In other terms, more imaged but also more ambiguous, every sub-complex K is
defined by constraints of the type: “if A,B,C, ... are simultaneously allowed it is
excluded that D can happen”.
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The statement of the theorem is just a rewriting of the discussion, using ele-
mentary propositional calculus: let K be a sub-complex of ∆N , we have shown
that K is the intersection of the L(F ) where the open face Ḟ is not in K, but if
A,B,C,D, ... denote the vertices of the face F , a point p belongs to L(F ) if and
only if “(A is impossible for p) or (B is impossible for p) or ...”, and this sentence
is equivalent to “if (A is possible for p) and (B is possible for p) and ..., then (D
is impossible for p)”. This results from the equivalence between “(P implies Q) is
true” and “(no P or Q) is true”. Reciprocally any L(F ) is a simplicial complex,
then every intersection of sets of the form L(F ) is a simplicial complex too.

3. Higher Mutual Informations. A Sketch

The topological co-boundary operator on C∗, denoted by δt, is defined by the
same formula as δ, except that the first term Y1.F (Y2; ...;Yn;P) is replaced by the
term F (Y2; ...;Yn;P) without Y1:

δmt F (Y1; ...;Ym+1;PX)

=F (Y2; ...;Ym+1;PX) +

m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1;PX) + (−1)m+1F (Y1; ...;Ym;PX).

(52)

It is the coboundary of the bar complex for the trivial module Ft, which is the
same as F except no conditioning appears, i.e., Y.F = F . Hence it is the ordinary
simplicial co-homology of the complex S with local coefficients in F .

Remark that this operator also preserves locality, because all the functions of P
which comes in the development depends only on (Y2, ..., Yn)∗P, (Y1, ..., Yn)∗P and
(Y1, ..., Yn−1) ∗ P.

By definition a topological cocycle of information is a cochain F that satisfies
δtF = 0, and a topological co-boundary is an element in the image of δt.

It is easy to show that δt ◦ δt = 0, which allows to define a co-homology theory
that we will name topological co-homology.

Now assume that the information structure S is a set W (Σ) = ∆(n) generated
by a family Σ of partitions S1, ..., Sn, when n ≥ 2.

Higher mutual information quantities were defined by Hu Kuo Ting [27] (see also
Yeung [55]), generalizing the Shannon mutual information.

(53) IN (S1; ...;SN ;P) =

k=N∑
k=1

(−1)k−1Hk(S1; ...;SN ;P),

where

(54) Hk(S1; ...;SN ;P) =
∑

I⊂[N ];card(I)=k

H(SI ;P),

SI denoting the joint partition of the Si such that i ∈ I. We also define I1 = H.
The definition of IN makes evident it is a symmetric function, invariant by all

permutation of the partitions S1, ..., SN .
For instance I2(S;T ) = H(S)+H(T )−H(S, T ) is the usual mutual information.
It is easily seen that I2 = δtH. The following formula generalizes this remark to

higher mutual informations of even orders:

(55) I2m = δtδδt...δδtH,



24 PIERRE BAUDOT AND DANIEL BENNEQUIN

where the right member contains 2m− 1 terms.
And for odd mutual information we have

(56) I2m+1 = −δδtδδt...δδtH,

where the right member contains 2m terms.
We deduce from here that higher mutual informations are co-boundaries for δ or

δt according that their order is odd or even respectively.
The result which proves the two above formulas is the following:

Lemma 3. Let n be even or odd we have

(57) IN ((S0, S1);S2; ...;SN ;P) = IN (S0;S2; ...;SN ;P) + S0.IN (S1;S2; ...;SN ;P)

This lemma can be proved by comparing the completely developed forms of the
quantities. It seems to signify that, with respect to one variable, IN satisfies the
equation of information 1-cocycle, thus IN seems to be a kind of “partial 1-cocycle”;
however this is misleading, because the locality condition is not satisfied. In fact
IN is a N -cocycle, either for δ, either for δt depending on the parity of N .

For any N -cochain F we have

(58) (δ − δt)F (S0;S1; ...;SN ;P) = ((S0 − 1).F )(S1; ...;SN ;P ),

where S0−1 denotes the sum of the two operators of mean conditioning and minus
identity.
That implies:

(59) (δδt − δtδ)F (S0;S1;S2; ...;SN ;P) = ((1 + S0 + S1 − S0S1).F )(S2; ...;SN ;P),

Remark 3. Reciprocally the functions IN decompose the entropy of the finest joint
partition:

(60) H(S1, S2, ..., SN ;P) =

k=N∑
k=1

(−1)k−1
∑

I⊂[N ];card(I)=k

Ik(Si1 ;Si2 ; ...;Sik ;P)

For example, we have H(S, T ) = I1(S) + I1(T )− I2(S;T ), and
(61)
H(S, T, U) = H(S) +H(T ) +H(U)− I2(S;T )− I2(T ;U)− I2(S;U) + I3(S;T ;U).

Let us also note the recurrence formula whose proof is left to the reader (cf. Cover
and Thomas [17]):

(62) IN+1(S0;S1; ...;SN ) = IN (S1; ...;SN )− S0.I(S1; ...;SN ).

4. Quantum Information and Projective Geometry
4.1. Quantum Measure, Geometry of Abelian Conditioning.
In finite dimensional quantum mechanics the role of the finite set Ω of atomic events
is played by a complex vector space E of finite dimension.

In fact, to each set Ω, of cardinal N , is naturally associated a vector space of
dimension N over C, which is the space freely generated over C by the elements
of Ω. Then we can identify E with CN , the canonical basis being the points x of
Ω. In this case the canonical positive hermitian metric on E corresponds to the
quadratic mean: if f and g are elements of E, we have

(63) h0(f, g) = 〈f |g〉0 =

∫
f̄(ω)g(ω)dω =

1

N

∑
j

fjgj
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Remark that, in the infinite dimensional situation, the space which would play the
role of E is the space of L2 functions for a fixed probability P0.

Probability laws P, which are elements of the big simplex ∆(N), give other her-
mitian structures, the ones which are expressed by diagonal matrices, with positive
coefficients, and trace equal to 1.

In the general quantum case, described by E, a quantum probability law is every
positive non-zero hermitian product h. If a basis is chosen, h is described by an
N×N -matrix ρ. In the physical literature, every such ρ is called a density of states;
and it is considered as a full description of the physical states of the finite quantum
system. Usually ρ is normalized by Tr(ρ) = 1.

Note that this condition on the trace has no meaning for a positive hermitian
form h if no additional structure is given, for instance a non-degenerate form h0

of reference. Why is it so? Because a priori a hermitian form h on E is a map

from E to E
∗
, where ∗ denotes duality and bar denotes conjugation, the conjugate

space E being the same set E, with the same structure of vector space over the real
numbers as E, but with structure of vector space over the complex numbers changed
by changing the sign of the action of the imaginary unit i. The complexification of

the real vector space H of hermitian forms is HomC(E,E
∗
) ∼= E∗⊗E∗. The space

H is the set of fixed points of the C-anti-linear map u 7→t ū. A trace is defined for
an endomorphism of the space E, as a linear invariant quantity on E∗ ⊗ E. Here
we could take the trace over R, because E and E are the same over R, but the
duality would be an obstacle, because even over the field R, the spaces E and E∗

cannot be identified, and there exits no linear invariant in E∗ ⊗ E∗, even over R.

In fact, a non-degenerate positive h0 is one of the way to identify E and E
∗
. A

basis is another way, also defining canonically a form h0. More precisely, when h0

is given, every hermitian form h diagonalizes in an orthonormal basis for h0, thus
all the spectrum of h makes sense not only the trace.

This h0 is tacitly assumed in most presentations. However it is better to un-
derstand the consequences of this choice. In non-relativistic quantum mechanics,
it is not too grave, however in relativist quantum mechanics, it is; for instance,
considering the system of two states as a spinor on the Lorentz space of dimension
4, the choice of h0 is equivalent to the choice of a coordinate of time. See Penrose
and Rindler [48].

A much less violent way to do is to consider hermitian structures h up to mul-
tiplication by a strictly positive number. This would have the same effect as fixing
the trace equals to one, without introducing any choice. In quantum mechanics only
non-zero positive h are considered, not necessarily positive definite, but non-zero.
This indicates that a good space of states is not the set H+ of all positive non-zero
hermitian products but a convex part PH+ of the real projective space of real lines
in the vector space H of hermitian forms. In this space, the complex projective
space P(E) of dimension N − 1 over C is naturally embedded, its image consists of
the rank one positive hermitian matrices of trace 1; these matrices correspond to
the orthogonal projectors on one dimensional directions in E.

When a basis of E is chosen, particular elements of P(E) are given by the gen-
erators of CN ; they correspond to the Dirac distributions on classical states. We
see here a point defended in particular by Von Neumann, that quantum states are
projective objects not linear objects.
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The classical random variables, i.e., the measurable functions on Ω with values
in C, are generalized in Quantum Mechanics by the operators in E, they are all the
endomorphisms, i.e., any N×N -matrix, and they are named observables. Classical
observables are recovered by diagonal matrices, their action on E corresponding to
the multiplication of functions. Real valued variables are generalized by hermitian
operators. Again this supposes that a special probability law h0 is given. If not
“to be hermitian” for an operator has no meaning. (What could have a meaning
for an operator is to be diagonalizable over R, which is something else.)

Then if h0 is chosen, the only difference between real observable and density of
states is the absence of the positivity constraint.

By definition, the amplitude, or expectation, of the observable Z in the state ρ is
the number given by the formula

(64) Eρ(Z) = Tr(Zρ).

It is important to note that h0 plays a role in this formula. Consequently the
definition of expectation requires to fix an h0 not only a ρ. This imposes a departure
from the relativistic case, which shall not be surprising, since considerations in
relativistic statistical physics show that the entropy, for instance, depends on the
choice of a coordinate for time. Cf. Landau-Lifschitz, Fluid Mechanics, second
edition [?].

The partitions of Ω associated to random variables are replaced in the quantum
context by the spectral decompositions of the hermitian operatorsX. As h0 is given,
this decomposition is given by a set of positive hermitian commuting projectors of
sum equal to the identity. The additional data for recovering the operator X is one
real eigenvalue for each projector. The underlying fact from linear algebra is that
every hermitian matrix is diagonalizable in a unitary basis, which means that

(65) Z =
∑
j

zjEj ,

where the number zj are real, two by two different, and where the matrices Ej are
hermitian projectors, which satisfy, for any j and k 6= j,

(66) E2
j = Ej ; E∗j = Ej ; EjEk = EkEj = 0;

and

(67)
∑
j

Ej = IdN

When the hermitian operator Z commutes with the canonical projectors on the
axis of CN , its spectral measure gives an ordinary partition of the canonical basis,
and we recover the classical situation.

Note that the extension of the notion of partition is given by any decomposition
of the vector space E in orthogonal sum, not necessarily compatible with a chosen
basis. Again this assumes a given positive definite h0.

To generalize what we presented in the classical setting, quantum information
theory must use only the spectral support of the decomposition, not the eigenvalues.

It would have been tempting to consider any decomposition of E in direct sum
as a possible observable, however not every linear operator, or projective transfor-
mation, corresponds to such a decomposition, due to the existence of non-trivial
nilpotent operators. What could be their role in quantum information? Moreover,
the presence of h0 fully justifies the limitation to orthogonal decompositions.
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In the general case, hermitian but not necessarily diagonal, we define the prob-
ability of the elementary events Z = zj by the following formula

(68) Pρ(Z = zj) = Tr(E∗j ρEj)

And we define the conditional probability ρ|(Z = zj) by the formula

(69) ρ|(Z = zj) = E∗j ρEj/Tr(E
∗
j ρEj).

One can notice that this definition can be extended to any projector, not neces-
sarily hermitian. By definition, the conditioning of ρ by a projector Y is the matrix
Y ∗ρY , normalized to be of trace 1. However, here, as it is done in most of the texts
on Quantum Mechanics, we will mostly restrict ourselves to the case of hermitian
projectors, i.e., Y ∗ = Y .

Remark 4. What justifies these definitions of probability and conditioning? First
they allow to recover the classical notions when we restrict to diagonal densities
and diagonal observables, i.e., when ρ is diagonal, real, positive, of trace 1, Z is
diagonal, and the Ej are diagonals, in which case they give a partition of Ω. The
mean of Z is its amplitude. The probability of the event Z = zj is the sum of the
probabilities p(ω) = ρωω for ω in the image of Ej ; this the trace of ρEj . Moreover,
the conditioning by this event is the probability obtained by projection on this
image, as prescribed by the above formula.

Second, pure states are defined as rank one hermitian matrices. In this case ρ is
the orthogonal projection on a vector ψ of norm equal to 1 (the finite dimensional
version of the Schrodinger wave vector), the exact relation is

(70) ρ = |ψ〉〈ψ|

or, in coordinates, if ψ has for coordinates the imaginary numbers ψ(ω), we have

(71) ρωω′ = ψ(ω)ψ(ω′).

Let Z be any hermitian operator, the result of quantum experiments indicate
that the probability of the event Z = zj , for the state ψ, is equal to

(72) Pj = 〈ψ|Ejψ〉.

But this quantity can also be written

(73) Pj = TrC(〈ψ|Ejψ〉) = TrE(|ψ〉〈ψ|Ej) = Tr(ρEj).

Starting from this formula and the fact any ρ can be written as a classical mixture
of commuting quantum pure states,

(74) ρ =
∑
a

pa|ψa〉〈ψa|,

we get the general formula of a quantum probability that we recalled.
Moreover, physical experiments indicate that after the measurement of an ob-

servable Z, giving the quantity zj , the system is reduced to the space Ej , and every
pure state ψ is reduced to its projection Ejψ, which is compatible with the above
definition of conditioning for pure states. Here again, the general formula can be
deduced by Equation (74). The division by the probability is achieved to normalize
to a trace 1. Thus conditioning in general is given by orthogonal projection in E,
and it corresponds to the operation of measurement.



28 PIERRE BAUDOT AND DANIEL BENNEQUIN

However, as claimed in particular by Roger Balian [4], the fact that the decom-
position in pure states is non-unique implies that pure states cannot be so pertinent
for understanding quantum information.

Definition 3. The density of states associated to a given variable Z and a given
density ρ is given by the sum:

(75) ρZ =
∑
j

Pρ(Z = zj)ρ|(Z = zj) =
∑
j

E∗j ρEj ,

where (Ej)j∈J designates the spectral decomposition of Z, also named spectral
measure of Z. Thus ρZ is usually seen as representing the density of states after the
measurement of the variable Z. This formula is usually interpreted by saying that
the statistical analysis of the repeated measurements of the observable Z transforms
the density ρ into the density ρZ .

Remark that ρZ is better understood as being a collection of conditional proba-
bilities ρ|(Z = zj), indexed by j.

In quantum physics as in classical physics the symmetries, discrete and continu-
ous, have always played a fundamental role. For example, in quantum mechanics,
a fundamental principle is the unitarity of the evolution in time, which claims that
the states evolve as ρt = Utρ and that the observables evolve as Zt = UtZU

−1
t , with

Ut respecting the fundamental scalar product h0. In fact, as we already mentioned,
a deeper principle associates the choice of a time coordinate t to the choice of h0,
which gives birth to a unitary group U(E;h0), isomorphic to UN (C). For stationary
systems the family (Ut)t∈R forms a one parameter group, i.e., Ut+s = UtUs = UsUt,
and there exists a hermitian generator H of Ut in the sense that Ut = exp(2πitH/h);
by definition, this particular observable H is the energy, the most important ob-
servable. Even if we have a privileged basis, like Ω in the relation with classical
probability, the consideration of another basis which makes the energy H diagonal
is of great importance. In the stationary case, a symmetry of the dynamical system
is defined as any unitary operator, which commutes with the energy H. The set
of symmetries forms a Lie group G, a closed sub-group in UN . The infinitesimal
generators are considered as hermitian observables (obtained by multiplying the
elements of the Lie algebra L(G) by i); in general they do not commute between
themselves.

All these axioms extend to the infinite dimensional situation when E has a
structure of an Hilbert space, but the spectral analysis of the un-bounded operators
is more delicate and diverse than the analysis in finite dimension. Three kinds of
spectrum appear, discrete, absolutely continuous and singular continuous. The
symmetries could not form a Lie group in general, and so on.

In our simple case of elementary quantum probability, without fixed dynamics,
the classical symmetries of the set of probabilities are given by the permutations
of Ω, the vertices of ∆(N). They correspond to the unitary matrices which have
one and only one non-zero element in each line and each column. They do not
diagonalize in the same basis because they do not commute, but they form a group
SN . Another subgroup of UN is natural for semi-classical study, it is the diagonal
torus TN , its elements are the diagonal matrices with elements of modulus 1, they
correspond to sets of angles. The group SN normalizes the torus TN , i.e., for each
permutation σ and each diagonal element Z, the matrix σZσ−1 is also diagonal; its
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elements are the same as the elements of Z but in a different orders. The subgroup
generated by SN and TN is the full normalizer of TN .

One of the strengths of the quantum theory, with respect to the classical theory,
is that it gives a similar status to the states, the observables and the symmetries.
States are hermitian forms, generalizing points in the sphere (or in the projective
space) which are pure states, observables are hermitian operators, or better spectral
decompositions, and symmetries are unitary operators, infinitesimal symmetries
being anti-hermitian matrices.

All classical groups should appear in this framework. First, by choosing a special
structure on E we restrict the linear group GLN (C) to an algebraic subgroup GC.
For instance, by choosing a symmetric invertible bilinear form on E we obtain
ON (C), or, when N is even, by choosing an antisymmetric invertible bilinear form
on E we obtain SpN (C). In each of these cases there exists a special maximal
torus (formed by the complexification of a maximal abelian subgroup T of unitary
operators in GC), and a Weyl group, which is the quotient of the normalizer N(T )
by the torus T itself. This Weyl group generalizes the permutation group when
more algebraic structures are given in addition to the linear structure. The compact
group of symmetries is the intersection G of GC with UN . In fact, given any compact
Lie group Gc, and any faithful representation rc of Gc in CN , we can restrict real
observables to generators of elements in Cc, and general observables to complex
combinations of these generators, which integrate in a reductive linear group G.
The spectral decomposition corresponds to the restriction to parabolic sub-groups
of GC. The densities of states are restricted to the Satake compactification of the
symmetric space GC/Gc [10].

4.2. Quantum Information Structures and Density Functors.
To define information quantities in the quantum setting, we have a priori to con-
sider families of operators (Y1, Y2, ..., Ym) as joint variables. However, the efforts
made in Physics and Mathematics were not sufficient to attribute a clear proba-
bility to the joint events (Y1 = y1, Y2 = y2, ..., Ym = ym), when Y1, ..., Ym do not
commute; we even suspect that this difficulty is revelator of a principle, that in-
formation requires a form of commutativity. Thus, in our study, we will adopt the
convention that every time we consider joint observables, they do commute. Hence
we will consider only collections of commuting hermitian observables; their natural
amplitudes in a given state are vectors in Rm. However we do not exclude the con-
sideration in our theory of sequences (Y1; ...;Ym) such that the Yi do not commute.

A joint observable (Y1, Y2, ..., Ym) define a linear decomposition of the total space
E in direct orthogonal sum

(76) E =
⊕
α∈A

Eα,

where Eα;α ∈ A is the collection of joint eigenspaces of the operators Yj . Note
that any orthogonal decomposition can be defined by a unique operator.

Another manner to handle the joint variables is to consider linear families of
commuting operators

(77) Y (λ1, ..., λm) = λ1Y1 + ...+ λmYm,

or in equivalent terms, linear maps from Rm to End(E). Then assigning a proba-
bility number and perform probability conditioning can be seen as functorial oper-
ations.
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In what follows we denote indifferently by Eα the subspace of E or the orthogonal
projection on this subspace.

From the point of view of information, two sets of observables are equivalent
if they give the same linear decomposition of E. We say that a decomposition
Eα;α ∈ A refines a decomposition E′β ;β ∈ B, when each E′β is a sum of spaces Eα
for α in a subset Aβ of A. In such a case, we say that Eα;α ∈ A divides E′β ;β ∈ B.

For instance, for commuting decompositions Y, Z it is possible to define the joint
variable, as the less fine decomposition which is finer than Y and Z.

We insist that only decompositions have a role in information study at this mo-
ment. We will see that observation trees in the last section imposes to consider a
supplementary structure, which consists in an ordering of the factors in the decom-
position.

An information structure on E is a set S of decompositions X of E in direct
sum, such that when Y and Z are elements of S which refine X ∈ S, then Y,Z
commute and the finer decomposition (Y, Z) they generate belongs to S. In this
text, we will only consider orthogonal decompositions.

Remark: in fact, the necessity of this condition in the quantum context was the
original motivation to introduce the definition of classical information structure, as
exposed in the first section. This can be seen as a comfortable flexibility in the
classical context, or as a step from classical to quantum information theory.

As in the classical case, an information structure gives a category, denoted by
the letter S, whose objects are the elements of S, and whose arrows X → Y are
given by the divisions X|Y between the decompositions in S.

In what follows we always assume that 1, which corresponds to the trivial par-
tition E, belongs to S, and is a final object. If not we will not get a topos.

Note that we are not the first to use categories and topos to formulate quantum
or classical probability. In particular Doring and Isham propose a reformulation of
the whole quantum and classical physics by using topos theory, see [18] and ref-
erences inside. This theory followed remarkable works of Isham, Butterfield and
Hamilton, made beween 1998 and 2002, and was further developed by Flori, He-
unen, Landsman, Spitters, specially in the direction of a quantum logic. A common
point between these works and our work is the consideration of sheaves over the cat-
egory made by the partial ordering in commutative subalgebras. However, Doring
et al. consider only the set of maximal algebras, and do not look at decompositions,
i.e., they consider also the spectral values. In [18], Doring and Isham defined topos
associated to quantum and classical probabilities. However, they focused on the
definition of truth values in this context. For instance, in the classical setting, the
topos they define is the topos of ordinary topological sheaves over the space (0, 1)L
which has for open sets the intervals ]0, r[ for 0 ≤ r ≤ 1, and particular points in
their topos are given by arbitrary probabilized spaces, which is far from the objects
we consider, because our classical topos are attached to sigma-algebras over a given
set. In fact, our aim is more to develop a kind of geometry in this context, by
using homological algebra, in the spirit of Artin, Grothendieck, Verdier, when they
developed topos for studying the geometry of schemes.

Example 5. The most interesting structures S seem to be provided by the quan-
tum generalization of the simplicial information structure in classical finite proba-
bility. A finite family of commuting decompositions Σ = {S1, ..., Sn} is given, they
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diagonalize in a common orthogonal basis, but it can happen that not all diag-
onal decompositions associated to the maximal torus belongs to the set of joints
W (Σ). In such a case a subgroup GΣ appears, which corresponds to the stabilizer
of the finest decomposition S[n] = (S1...Sn). This group is in general larger than
a maximal torus of UN , it is a product of unitary groups (corresponding to com-
mon eigenvalues of observables in W (Σ)), and it is named a Levy subgroup of the
unitary group. In addition we consider a closed subgroup G in the group U(E;h0)
(which could be identified with UN ), and all the conjugates gY g−1 of elements of
W (Σ) by elements of G; this gives a manifold of commutative observable families
Σg; g ∈ G. More generally we could consider several families Σγ ; γ ∈ Γ of com-
muting observables, where Γ is any set. It can happen that an element of Σγ is
also an element of Σλ for λ 6= γ. The family Γ ∗ Σ of the Σγ when γ describes the
set Γ forms a quantum information structure. The elements of this structure are
(perhaps ambiguously) parameterized by the product of an abstract simplex ∆(n)
with the set Γ (in particular Γ = G for conjugated families).

A simplicial information structure is a subset of Γ ∗ Σ which corresponds to a
family Kγ of simplicial sub-complexes of ∆(n). In the invariant case, when Γ = G,
several restrictions could be usefull, for instance using the structure of the manifold
of the conjugation classes of GΣ under G. The simplest case is given by taking
the same complex K for all conjugates gΣg−1. By definition this latter case is a
simplicial invariant family of quantum observables.

An event associated to S is a subspace EA, which is an element of one of the
decompositions X ∈ S. For instance, if Y = (Y1, ..., Ym), the joint event A = (Y1 =
y1, Y2 = y2, ..., Ym = ym) gives the space EA which is the maximal vector subspace
of E where A happens, i.e.,

(78) (f ∈ EA)⇔ (Y1(f) = y1f, Y2(f) = y2f, ..., Ym(f) = ymf).

We say that A is measurable for a decomposition Y whenever it is obtained by
unions of elements of Y .

The role of the Boolean algebra B introduced in the first section, could have
been accounted here by a given decomposition B of E such that any decomposition
in S is divided by B.

However this choice of B is too rigid, in particular it forbids invariance by the
unitary group U(h0). Thus we decided that a better analog of the Boolean algebra
B is the set UB of all decompositions that are deduced from a given B by unitary
transformations.

On the side of density of states, i.e., quantum probabilities, we can consider a
subspace Q1 of the space P = PH+ of hermitian positive matrices modulo multi-
plication by a constant. Concretely, we identify the elements of Q1 with positive
hermitian operators ρ such that Trρ = 1. The space P is naturally stratified by the
rank of the form; the largest cell PH++ corresponds to the non-degenerate forms;
the smallest cells correspond to the rank one forms, which are called pure states in
Quantum Mechanics.

We will only consider subsets Q1 of P which are adapted to S, i.e., which satisfy
that if ρ belongs to Q1, the conditioning of ρ by elements of S also belongs to Q1.
This means that Q1 is closed by orthogonal projections on all the elements EA of
the orthogonal decompositions X belonging to S. Note that a subset of P which
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is closed by all orthogonal projections is automatically adapted to any information
category S.

Remind that, if ρ is a density of states and EA is an elementary event (i.e., a
subspace of E), we define the conditioning of ρ by A by the hermitian matrix

(79) ρ|A = E∗AρEA/Tr(E
∗
AρEA).

And we define the probability of the event EA for ρ as the trace:

(80) Pρ(A) = Tr(E∗AρEA),

In the same manner we define the density of a joint observable by

(81) ρY =
∑
A

Pρ(A)ρ|A =
∑
A

E∗AρEA,

A nice reference studying important examples is Paul-Andre Meyer, Quantum prob-
ability for probabilists [45].

If X is an orthogonal decomposition of E, we can associate to it a subset QX of
Q1, which contains at least all the forms ρX where ρ belongs to Q1. The natural
axiom that we assume for the function X 7→ QX , is that for each arrow of division
X → Y , the set QY contains the set QX ; then we note Y∗ the injection from
QX to QY . The fact that QX is stable by conditioning by every element of a
decomposition Y which is less fine than X is automatic; it follows from the fact
that Q1 is adapted to S. We will use conditioning in this way.

In what follows we denote by the letter Q such a functor X 7→ QX from the
category S to the category of quantum probabilities, with the arrows given by direct
images. The set Q1 is the value of the functor Q for the certitude 1. We must
remind that many choices are possible for the functor when Q1 is given; the two
extreme being the functor Qmax where QX = Q1 for every X, and the functor
Qmin where QX is restricted to the set of forms ρX where ρ describes Q1; in
this last case the elements of QX are positive hermitian forms on E, which are
decomposed in blocs according to X.

From the physical point of view, Qmin appears to have more sense than Qmax,
but we prefer to consider both of them.

A special probability functor, which will be noted Qcan(S), is canonically asso-
ciated to a quantum information structure S:

Definition 4. The canonical density functor Qcan
X (S) is made by all positive her-

mitian forms matched to X, i.e., all the forms ρX when ρ describes PH+.

It is equal to the functor Qmin associated to the full set Q1 = PH+. When the
context is clear, we will simply write Qcan.

An important difference appears between the quantum and the classical frame-
works: if X divides Y , there exist more (quantum) probability laws in QY than in
QX , but there exist less classical laws at the place Y than at the place X, because
classical laws are defined on smaller sigma-algebras.

In particular, the trivial partition has only one classical state, which is Tr(ρ) = 1,
but it has the richest structure in terms of quantum laws, any hermitian positive
form.

Let us consider the classical probabilities, i.e., the maps that associate the num-
ber Pρ(A) to an event A; then, for an event which is measurable for Y , the law
Y∗ρX gives the same result than the law ρX .
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Remark: This points to a generalized notion of direct image, which is a corre-
spondence qXY∗ between QX and QY , not a map: we say that the pair (ρX , ρY )
in QX ×QY belongs to qXY∗, if for any event which is measurable for Y , we have
the equality of probabilities

(82) PρX (A) = PρY (A).

Let us look at the relation of quantification, between a classical information
structure and a quantum one:

Consider a maximal family of commuting observables S in the quantum informa-
tion structure S, i.e., the full subcategory associated to an initial object X0. This
family is a classical information structure. Conversely, if we start with a classical
information structure S, made by partitions of a finite set Ω, we can always consider
it as a quantum structure associated to the vector space E = CΩ freely generated
over C by the elements of Ω. Note that E comes with a canonical positive definite
form h0, and, to be interesting from the quantum point of view, it is better to
extend S by applying to it all unitary transformations of E, generating a quantum
structure S = US.

Remark 5. Suppose that S is unitary invariant, we can define a larger category
SU by taking as arrows the isomorphisms of ordered decomposition, and close by all
compositions of arrows of S with them. Such an invariant extended category SU is
not far to be equivalent to the category SS, made by adding arrows for permutations
of the sets Ω/X (cf. above section), from the point of view of category theory: let us
work an instant, as we will do in the last part of this paper, with ordered partitions
of Ω, being itself equipped with an order, and ordered orthogonal decompositions
of E. In this case we can associate to any ordered partition X = (E1, ..., Em) of E,
the unique ordered partition Ω compatible with the sequence of dimensions and the
order of Ω. It gives a functor τ from S to S such that ι◦τ = IdS , where ι denotes the
inclusion of S in S. These two functors are extended, preserving this property, to
the categories SU and SS. In fact, the functor ι sends a permutation to the unitary
map which acts by this permutation on the canonical basis, and the functor τ sends
a unitary transformation g between X ∈ S and gXg∗ ∈ S to the permutation it
induces on the orthogonal decompositions. Moreover, consider the map f which
associates to any X ∈ SU the unique morphism from the decomposition ι ◦ τ(X)
to X; it is a natural transformation from the functor ι ◦ τ to the functor IdSU ,
which is invertible, then it defines an equivalence of category between SS and SU .
However a big difference begins with probability functors.

Let Q be a quantum density functor adapted to S, and note ι∗Q the composite
functor on S; we can consider the map Q which associates to X ∈ S the set of
classical probabilities Pρ for ρ ∈ QX . If X divides Y , the fact that the direct image
Y∗P(ρ) of ρ ∈ QX coincides with the law PY∗(ρ) gives the following result:

Lemma 4. ρ 7→ Pρ is a natural transformation from the functor ι∗Q to the functor
Q.

Definition 5. This natural transformation is called the Trace, and we denote by
TrX its value in X, i.e., TrX(ρ) = Pρ, seen as a map from QX to QX .

In general there is no natural transformation in the other direction, from QX to
QX .

Remark that the trace sends a unitary invariant functor to a symmetric functor.
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4.3. Quantum Information Homology.
As in the classical case, we can consider the ringed site given by the category S,
equipped with the sheaf of monoids {SX ;X ∈ S}. In the ringed topos of sheaves
of S-modules, the choice of a probability functor Q generates remarkable elements
in this topos, formed by the functional space F of measurable functions on Q
with values in R. The action of the monoid (or the generated ring) being given
by averaged conditioning, and the arrows being given by transposition of direct
images. Then, the quantum information co-homology is the topos co-homology:

(83) Hm(S,Q) = ExtmS (R; F)

However, as in the classical case, we can define directly the co-homology with a
bar resolution of the constant sheaf, as follows:

A set of functions FX of m observables Y1, ..., Ym divided by X, and one den-
sity ρ indexed by X ∈ S, is said local, when for any decomposition X dividing a
decomposition Y , we have, for each ρ in QX ,

(84) FX(Y1; ...;Ym; ρ) = FX(Y1; ...;Ym;Y∗(ρ)).

For m = 0 this equation expresses that the family FX is an element of the topos.
For every m, a collection FX , X ∈ S is a natural transform F from a free functor

Sm to the functor F.
Be careful that in the quantum context, it is not true in general that locality

is equivalent to the condition saying that the value FX(Y1; ...;Yn; ρ) depends only
on the family of conditioned densities E∗Ai

ρEAi
; i = 0, ...,m, where Ai is one of the

possible events defined by Yi.
In fact it depends on the choice of Q; for instance it is false for a Qmax, but it

is true for a Qmin.
The counter-example in the case of Qmax is given by a function F (ρ) which

is independent of X. It is local (in the sense of topos that we adopt) but it is
non-local in the apparently more natural sense that it depends only of ρX . This
is important to have this quantum particularity in the mind for understanding the
following discussion.

As in the classical case, the action of observables on local functions is given by
the average of conditioning, in the manner of Shannon, but using the Von Neumann
conditioning:

(85) Y.F (Y0; ...;Ym; ρ) =
∑
A

Tr(E∗AρEA)F (Y0; ...;Ym; ρ|A)

where the EA’s are the spectral projectors of the bundle Y . In this definition there
is no necessity to assume that Y commutes with the Yj ’s.

Remind that, when E∗AρEA is non-zero, ρ|A is equal to E∗AρEA/Tr(E
∗
AρEA), and

verifies the normalization condition that the trace equals to one. When E∗AρEA is
equal to zero, the factor Tr(E∗AρEA) is zero, then by convention the corresponding
term F is absent.

The proof of the Lemma 1 applies without significant change to prove that the
above formula defines an action of the monoid functor SX .
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Then, the definition of co-homology is given exactly as we have done for the
classical case, by introducing the Hochschild operator:

δ̂mF (Y1; ...;Ym+1; ρ)

=Y1.F (Y2; ...;Ym+1; ρ) +

m∑
1

(−1)iF (...; (Yi, Yi+1); ...;Ym+1; ρ) + (−1)m+1F (Y1; ...;Ym; ρ).

(86)

The Von-Neumann entropy is defined by the following formula

(87) S(ρ) = Eρ(− log2(ρ)) = −Tr(ρ log2(ρ)).

For any density functor Q which is adapted to S, the Von-Neumann entropy
defines a local 0-cochain, that we will call SX , and is simply the restriction of S
to the set QX . If ρ belongs to QX and if X divides Y , the law Y∗ρ, which is the
same hermitian form as ρ belongs to QY by functoriality, thus S(Y∗ρ) = S(ρ) is
translated by SX(ρ) = SY (Y∗ρ). This 0-cochain will be simply named the Von
Neumann entropy.

In the case of Qmax, SX gives the same value at all places X. In the case of Qmin

it coincides with S(ρX), where ρX denotes the restriction to the decomposition X.
Be careful: ρ 7→ S(ρX) is not a local 0-cochain for Qmax. In fact in the case

of Qmax we have the same set Q = QX for every place X, thus, if we take for
X a strict divisor of Y and if we take a density ρ such that, for the restrictions
of ρ, the spectrum of ρY and ρX are different, then, in general, we do not have
SX(ρ) = SY (Y∗ρ), even if, as it is the case in the quantum context, Y∗ρ = ρ.

Remark that in the case of Qmax, where every function of ρ independent of X
is a cochain of degree zero, the particular functions which depends only on the
spectrum of ρ are invariant under the action of the unitary group, and they are the
only 0-cochains which are invariant by this group.

Definition 6. Suppose that S and Q are invariant by the unitary group, as is UB,
we say that an m-cochain F is invariant, if for every X in S dividing Y1, ..., Ym in
S, every ρ in QX and every g in the group U(h0), we have

(88) Fg.X(g.Y1, ..., g.Ym; g.ρ) = FX(Y1; ...;Ym; ρ);

where g.X = gXg∗, g.Yi = gYig
∗; i = 1, ...,m and g.ρ = gρg∗.

This is compatible with the naturality assumption (functoriality by direct im-
ages), because direct image is a covariant operation.

Note that conditioning is also covariant if we change all variables and laws co-
herently. Thus the action of the monoids SX on cochains respects the invariance.

Then the coboundary δ̂ preserves invariance. Thus the co-homology of the in-
variant co-chains is well defined. We call it the invariant information co-homology,
and we will denote it by H∗U (S; Q), U for unitary.

Invariant co-cochains form a subcomplex of ordinary cochains, then we have a
well defined map from H∗U (S; Q) to H∗(S; Q).

The invariant 0-co-chains depend only on the spectrum of ρ in the sets QX .
The invariant co-homology is probably a more natural object from the point

of view of Physics. It is also on this co-homology that we were able to obtain
constructive results.
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The classical entropy of the decomposition {Ej} and the quantum law ρ is

(89) H(X; ρ) = −
∑
j

Tr(E∗j ρEj) log2(Tr(E∗j ρEj))

In general it is not true that H(X; ρ) = H(Y ;Y∗ρ) when X divides Y . Thus the
Shannon (or Gibbs) entropy is not a local 0-cochain, but it is a local 1-cochain, i.e.,
if X → Y → Z we have

(90) HX(Z; ρX) = HY (Z;Y∗ρX),

Moreover it is a spectral 1-cochain for any Qmin.
The following result is well known, cf. Nielsen and Chuang [46].

Lemma 5. Let X,Y be two commuting families of observables; we have

(91) S(X,Y )(ρ) = H(Y ; ρ) + Y.SX(ρ)

Proof. We denote by α, β, ... the indices of the different values of X, by k, l, ...
the indices of the different values of Y , and by i, j, ... the indices of a basis Ik,α
of eigenvectors of the conditioned density ρk,α = E∗k,αρEk,α constrained by the

projectors Ek,α of the pair (Y,X). The probability pk = Pρ(X = ξk) is equal to
the sum over i, α of the eigenvalues λi,k,α of ρk,α. We have

Y.S(X; ρ) = −
∑
k

pk
∑
i,α

λi,k,α
pk

log2(
λi,k,α
pk

)

= −
∑
i,k,α

λi,k,α log2(λi,k,α) +
∑
i,k,α

λi,k,α log2(pk)

= −
∑
i,k,α

λi,k,α log2(λi,k,α) +
∑
k

pk log2(pk).

Remark 6. Taking X = 1, or any scalar matrix, the preceding Lemma 5 ex-
presses the fact that classical entropy is a derived quantity measuring the default
of equivariance of the quantum entropy:

(92) H(Y ; ρ) = SY (ρ)− (Y.SY )(ρ).

Lemma 6. For any X ∈ S, dividing Y ∈ S and ρ ∈ QX ,

(93) δ̂(SX)(Y ; ρ) = −HX(Y ; ρ).

Proof. This is exactly what says the Lemma 5 in this particular case, because in

this case (X,Y ) = X, and, by definition, we have δ̂(SX)(Y ; ρ) = Y.SX(ρ)− SX(ρ).
To insist, we give a direct proof with less indices for this case:

Y.SX(ρ) = −
∑
i

pi
∑
k

λik
pi

log2

λik
pi

= −
∑
ik

λik log2 λik +
∑
ik

λik log2 pi

= SX(ρ) +
∑
i

log2 pi
∑
k

λik = SX(ρ) +
∑
i

(log2 pi)pi

= SX(ρ)−HX(Y ;Pρ) = SX(ρ)−HX(Y ; ρ).
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The Lemma 6 says that (up to the sign) the Shannon entropy is the co-boundary
of the Von-Neumann entropy. This implies that the Shannon entropy is a 1-co-cycle,
as in the classical case, but now it gives zero in co-homology.

Note that the result is true for any Q, thus for Qmin and for Qmax as well.
Consider a maximal observable X0 in S, i.e., a maximal set of commuting ob-

servables in S, the elements of this maximal partition form a finite set Ω0. If S
is invariant by the group U(E;h0), all the maximal observables are deduced from
X0 by applying a unitary base change. Suppose that the functor Q is invariant
also; then we get automatically a symmetric classical structure of information S on
Ω0, given by the elements of S divided by X0. And S is equipped with a symmet-
ric classical functor of probability, given by the probability laws associated to the
elements of S.

Remind that we defined the trace from quantum probabilities to classical prob-
abilities, by taking the classical Pρ for each ρ, and we noticed that the trace is
compatible with invariance and symmetry by permutations.

Definition 7. To each classical co-chain F 0 we can associate a quantum co-chain
F = tr∗F 0 by putting

(94) tr∗(F )X(Y1; ...;Ym; ρ) = F 0
X(Y1; ...;Ym; trX(ρ)).

The following result is straightforward:

Proposition 3. (i) The trace of co-chains defines a map of the classical information
Hochschild complex to the quantum one, which commutes with the co-boundaries,
i.e., the map tr∗ defines a map from the classical information Hochschild complex
to the quantum Hochschild complex; (ii) this map sends symmetric cochains to
invaraint cochains; it induces a natural map from the symmetric classical infor-
mation co-homology H∗S(S;Q) to the invariant quantum information co-homology
H∗U (S; Q).

The Lemma 6 says that the entropy class goes to zero.

Remark 7. In a preliminary version of these notes, we considered the expression
s(X; ρ) = S(ρX) − S(ρ) and showed it satisfies formally the 1-cocycle equation.
But we suppress this consideration now, because s is not local, thus it plays no
interesting role in homology. For instance in Qmin, S(ρX) is local but S(ρ) is not
and in Qmax, S(ρ) is local but S(ρX) is not.

Definition 8. In an information structure S we call edge a pair of decompositions
(X,Y ) such that X,Y and XY belong to S; we say that an edge is rich when
both X and Y have at least two elements and XY cuts those two in four distinct
subspaces of E. The structure S is connected if every two points are joined by
a sequence of edges, and it is sufficiently rich when every point belongs to a rich
edge. We assume a maximal set of subspaces UB is given in the Grassmannian of
E, in such a way that the maximal elements X0 of S (i.e., initial in the category)
are made by pieces in UB. The density functor Q is said complete with respect
to S (or UB) if for every X, the set QX contains the positive hermitian forms on
the blocs of X, that give scalar blocs ραβ for two elements Eα, Eβ of a maximal
decomposition. (All that is simplified when we choose a basis, and take maximal
commutative subalgebras of operators, but we want to be free to consider simplicial
complexes.)
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Theorem 3. (i) for any unitary invariant quantum information structure S, which
is connected and sufficiently rich, and for the canonical invariant density functor
Qcan(S), (i.e., the density functor which is minimal and complete with respect
to S), the invariant information co-homology of degree one H1

U (S; Q) is zero. (ii)
Under the same hypothesis, the invariant co-homology of degree zero has dimension
one, and is generated by the constants. Then, up to an additive constant, the only
invariant 0-cochain which has the Shannon entropy as co-boundary is (minus) the
Von-Neumann entropy.

Proof. (I) Let X,Y be two orthogonal decompositions of E belonging to S such
that (X,Y ) belongs to S, and ρ an element of Q. We name Aki ; i = 1, ...,m
the summands of X, and Bαj

; j = 1, ..., l the summands of Y ; the projections
EkiρEki ; i = 1, ...,m resp. Eαj

ρEαj
; j = 1, ..., l of ρ on the summands of X, resp.

Y are denoted by ρki ; i = 1, ...,m and ραj ; j = 1, .., l respectively. The projections
by the commutative products EkiEαj are denoted by ρki,αj ; i = 1, ...,m, j = 1, .., l.

Let f be a 1-cocycle, we write f(X; ρ) = F (ρ), f(Y ; ρ) = H(ρ) and G(ρ) =

f(X,Y ; ρ). Note that in Qmin, F is a function of the ρki , H a function of the ραj

and G a function of the ρki,αj
, but there is no necessity too assume this property; we

can always consider these functions restricted to diagonal blocs, which are arbitrary
due to the completeness hypothesis.

For any positive hermitian ρ′, we write ρ′|α, resp. ρ′|i the form conditioned by
the event Bα resp. Ai.

The co-cycle equation gives the two following equations, that are exchanged by
permuting X and Y :

(95)
∑
αj

Tr(ραj
)F ((ρki |αj); i = 1, ...,m) = G((ρki,αj

); i, j)−H((ραj
); j),

(96)
∑
i

Tr(ρki)H((ραj
|ki); j) = G((ρki,αj

); i, j)− F ((ρki); i).

Now we consider a particular case, where the small blocs ρk,α are zero except
for (k1, α2) and (kj , α1) for j = 2, ...,m. We denote by h1 the forme ρk1,α2

and by
hi the form ρki,α1 , for i = 2, ...,m. Remark that Tr(h1 + h2 + ...+ hm) = 1.

(II) As in the classical case, it is a general fact for a 1-cocycle f and any variable Z
the value f(Z; ρ) is zero if ρ is zero outside one of the orthogonal summand Ca of Z;
because the equation fX(Z,Z; ρ) = fX(Z; ρ) + Z.fX(Z; ρ) implies Z.fX(Z, ρ) = 0,
and if ρ has only one non-zero factor ρa, we have

(97)

Z.f(Z; ρ) =
∑
b

Tr(ρb)f(Z; ρb/Tr(ρb)) = Tr(ρa)f(Z; ρa/Tr(ρa)) = 1.f(Z; ρa).

Therefore in the particular case that we consider, we get for any i thatH((ραj
|ki); j) =

0. Consequently the Equation (96) equals the term in G to the term in F , and we
can report this equality in the first equation. By denoting 1 − x1 = Tr(ρα1

), this
gives
(98)

H((ραj
); j = 1, 2) = F ((ρki); i = 1, ...,m)− (1− x1)F ((0,

h2

1− x2
, ...,

hm
1− xm

)).



THE HOMOLOGICAL NATURE OF ENTROPY 39

Now if we add the condition h3 = ... = hm = 0 we have F (0, h2/(1−x1), 0, ..., 0) =
0 for the reason which eliminated the H((ραj |ki); j); thus we obtain

(99) H(ρα1); j = 1, 2) = F ((ρk1); i = 1, 2).

This is a sufficiently strong constraints for implying that both terms are functions
of h1, h2 only, and that of course they coincide as functions of these small blocs.
First this gives a recurrence equation, which, as in the classical case is able to
reconstruct F ((ρki); i = 1, ...,m) from the case of two blocs:
(100)

F (X; (ρki); i = 1, ...,m) = F (X; (ρk1 , ρk2 , 0, ..., 0)−(1−x1)F (X; (0,
h2

1− x2
, ...,

hm
1− xm

)).

(III) We are left with the study of two binary variables Y,Z, forming a rich edge.
The blocs of ρ adapted to the joint ZY are denoted by ρ00, ρ01, ρ10, ρ11, where

the first index refers to Y and the second index refers to Z, but the blocs that
are allowed for Y and Z are more numerous than four; there exist out of diagonal
blocs, and their role will be important in our analysis. For Y we have matrices ρ0

0

and ρ0
1, and for Z we have matrices ρ1

0 and ρ1
1;

ρ0
0 =

(
ρ00 ρ0

001

ρ0
010 ρ01

)
ρ0

1 =

(
ρ10 ρ0

101

ρ0
111 ρ11

)
(101)

ρ1
0 =

(
ρ00 ρ1

001

ρ1
010 ρ01

)
ρ1

1 =

(
ρ10 ρ1

101

ρ1
111 ρ11

)
(102)

They are disposed in sixteen blocs for ρ, but certain of them, noted with stars,
cannot be seen from ρY or ρZ :

(103) ρ =


ρ00 ρ0

001 ρ1
001 ρ∗001

ρ0
010 ρ01 ρ∗101 ρ1

001

ρ1
010 ρ∗010 ρ10 ρ0

101

ρ∗111 ρ1
111 ρ0

111 ρ11


Now the co-cycle equations are

(104) F (Y,Z; ρ) = Y.F (Z; ρ) + F (Y ; ρ) = Z.F (Y ; ρ) + F (Z; ρ),

giving the symmetrical relation:

(105) Y.F (Z; ρ)− F (Z; ρ) = Z.F (Y ; ρ)− F (Y ; ρ).

The conditioning makes many blocs disappear. Then, by denoting with latin
letters the corresponding traces, and taking in account explicitly the blocs that
must count, the symmetrical identity gives, for any ρ, the following developed
equation:

(p00 + p01)FZ(
ρ00

p00 + p01
,

ρ01

p00 + p01
, 0, 0) + (p10 + p11)FZ(0, 0,

ρ10

p10 + p11
,

ρ01

p10 + p11
)

−FZ(ρ00, ρ
1
001, ρ01, ρ

1
001, ρ

1
010, ρ10, ρ

1
111, ρ11)

= (p00 + p10)FY (
ρ00

p00 + p10
, 0,

ρ10

p00 + p11
, 0) + (p01 + p11)FY (0,

ρ10

p01 + p11
, 0,

ρ11

p01 + p11
)(106)

−FY (ρ00, ρ
0
001, ρ01, ρ

0
001, ρ

0
010, ρ10, ρ

0
111, ρ11).

(IV) Now we make appeal to the invariance hypothesis: let us apply a unitary
transformation g which respects the two summands of Y but does not necessar-
ily respect the summands of Z we replace Z by gZg∗, and ρ by gρg∗, the value
of FY (ρ0

0, ρ
0
1) does not change. Our claim is that the only function FY which is
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compatible with the Equation (106) for every ρ are functions of the traces of the
blocs.

For the proof, we assume that all the blocs are zero except the eight blocs
concerning Y . In this case, we see that the last function −FY of the right member,
involves the eight blocs, but all the other functions involve only the four diagonal
blocs. Thus our claim follows from the following result:

Lemma 7. A measurable function f on the set H of hermitian matrices which is
invariant under conjugation by the unitary group Un and invariant by the change
of the coefficient a1n, the farthest from the diagonal, is a function of the trace.

Proof. An invariant function for the adjoint representation is a function of the
traces of the exterior powers Λk(ρ), but these traces are coefficients in the basis
ei1 ∧ ei1 ∧ ... ∧ eik , and the elements divisible by e1 ∧ en cannot be neglected, as
soon as k ≥ 2.

Therefore the co-cycle FY , FZ comes from the image of tr∗ in proposition 3. Then
the recurrence relation (100) implies that the same is true for the whole co-cycle F .

(V) For concluding the proof of (i), we appeal to the Theorem 1, that the only
non-zero cocycles in this context, connected and sufficiently rich, are multiples of
the classical entropy. However, the Lemma 5 says that the entropy is a co-boundary.

(VI) To prove (ii), we have to show that every 0-cocycle X 7→ fX(ρ), which
depends only on the spectrum of ρ, is a constant. We know that a spectral function
is a measurable function ϕ(σ1, σ2, ...) of the elementary symmetric functions σ1 =∑
i λi,σ2 = Σi<jλiλj ,....

And, to be a 0-cocycle, f must verify, for every pair of decompositions, X → Y ,
the equation

(107) fX(ρ) =
∑
i

Pρ(Y = i)fX(ρ|(Y = i)).

Explicitly, if fX(ρ) = ϕX(σ1, σ2, ...),

(108) ϕX(σ1, σ2, ...) =
∑
i

σ1(λk,i)ϕX(σ1(λki), ...)

where each bloc ρ|i has the spectrum {λk,i; k ∈ Ji}. For a sufficiently rich edge X =
Y Z, we have with four eigenvalues repeated as it must be to fulfill the dimensions:

f(λ
(n00)
00 , n

(n00)
00 , λ

(n01)
01 , λ

(n10)
10 , λ

(n11)
11 )

= (n00λ00 + n01λ01)f(
λ

(n00)
00

n00λ00 + n01λ01
,

λ
(n01)
01

n00λ00 + n01λ01
)(109)

+(n10λ10 + n11λ11)f(
λ

(n10)
10

n10λ10 + n11λ11
,

λ
(n11)
11

n10λ10 + n11λ11
),

and

f(λ
(n00)
00 , n

(n00)
00 , λ

(n01)
01 , λ

(n10)
10 , λ

(n11)
11 )

= (n00λ00 + n10λ10)f(
λ

(n00)
00

n00λ00 + n10λ10
,

λ
(n10)
10

n00λ00 + n10λ10
)(110)

+(n01λ01 + n11λ11)f(
λ

(n01)
01

n01λ01 + n11λ11
,

λ
(n11)
11

n01λ01 + n11λ11
),
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By equating the two second members, taking λ01 = λ00 = 0, and varying λ10, λ11,
we find that f(x, y) is the sum of a constant and a linear function.

At the end, fX must be the sum of a constant and a linear function for every
X. However, a linear symmetric function is a multiple of σ1. As ρ is normalized by
the condition Tr(ρ) = 1, only the constant survives.

Remark 8. In his book “Structure des Systemes Dynamiques”, J-M. Souriau [50]
showed that the mass of a mechanical system is a degree one class of co-homology
of the relativity group with values in its adjoint representation; this class being
non-trivial for classical Mechanics, with the Galileo group, and becoming trivial for
Einstein relativistic Mechanics, with the Lorentz-Poincare group. Even if we are
conscious of the big difference with our construction, the above result shows the
same thing happens for the entropy, but going from classical statistics to quantum
statistics.

From the philosophical point of view, it is important to mention that the main
difference between classical and quantum information co-homology in degree less
than one, is the fact that the certitude, 1, becomes highly non-trivial in the quantum
context. This point is discussed in particular by Gabriel Catren [15]. In geomet-
ric quantization the first ingredient, discovered by Kirillov, Kostant and Souriau
in the sixties, is a circular bundle over the phase space that allows a non-trivial
representation of the constants. The second ingredient also discovered by the same
authors, is the necessity to choose a polarization, which correspond to the choice of
a maximal commutative Poisson sub-algebra of observable quantities. This second
ingredient appears in our framework through the limitations of information cate-
gories to collection of commutative Boolean algebras, coming from the impossibility
to define manageable joints for arbitrary pair of observables.

5. Product Structures, Kullback-Leibler Divergence, Quantum
Version

In this short section, we use both the homogeneous bar-complex and the non-
homogeneous complex.

A natural extension of the information co-cycles is to look at the measurable
functions

(111) F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X),

of several probability laws Pj (or density of states respectively) on Ω (or E respec-
tively) belonging to the space QX that are absolutely continuous with respect to
P0, and several decompositions Yi less fine than X. To be homogeneous co-chains
these functions have to behave naturally under direct image Y∗(Pi), and to satisfy
the equivariance relation:

F ((Y,X0); (Y,X1); ...; (Y,Xm);P0;P1, P2, ..., Pn;X)

= Y.F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X),(112)

for any Y ∈ SX (resp. SX), where

Y.F (X0;X1; ...;Xm;P0;P1, P2, ..., Pn;X)

=

∫
EY

dY∗P0(y)F (X0;X1; ...;Xm;P0|Y = y;P1|Y = y, ..., Pn|Y = y;X).(113)

Note that a special role is played by the law P0, which justifies the coma notation.
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The proof of the Lemma 1 in Section 2.1 extends without modification to show
that this defines an action of semi-group.

Then we define the homogeneous co-boundary operator by

δF (X0;X1; ...; ...;Xm;Xm+1;P0;P1, P2, ..., Pn;X)

=
∑
i

(−1)iF (X0; ...; X̂i; ...;Xm;Xm+1;P0;P1, P2, ..., Pn;X).(114)

The co-cycles are the elements of the kernel of δ and the co-boundaries the
elements of the image of δ (with a shift of degree). The co-homology groups are
the quotients of the spaces of co-cycles by the spaces of co-boundaries.

This co-homology is the topos co-homology H∗S(R,Fn), of the module functor
Fn of measurable functions of n + 1-uples of probabilities, in the ringed topos S
(resp. S in the quantum case).

There is also the non-homogeneous version: a m-cocycle is a family of functions
FX(X1; ...; ...;Xm;P0;P1, P2, ..., Pn) which behave naturally under direct images,
without equivariance condition.

The co-boundary operator is copied on the Hochschild operator: then we define
the homogeneous co-boundary operator by

δ̂FX(X0;X1; ...; ...;Xm;P0;P1, P2, ..., Pn)

= (X0.FX)(X1; ...; ...;Xm;P0;P1, P2, ..., Pn)(115)

+
∑
i

(−1)i+1F (X0; ...; X̂i; ...;Xm;P0;P1, P2, ..., Pn;X).

Let us recall the definition of the Kullback-Leibler divergence (or relative en-
tropy) between two classical probability laws P,Q on the same space Ω, in the
finite case:

(116) H(P ;Q) = −
∑
i

pi log
qi
pi
.

Over an infinite set, it is required that Q is absolutely continuous with respect to
P with a L1-density dQ/dP , and the definition is

(117) H(P ;Q) = −
∫

Ω

dP (ω) log
dQ(ω)

dP (ω)
.

When dQ(ω)/dP (ω) = 0, the logarithm is −∞ and due to the sign minus, we get
a contribution +∞ in H, thus, if this happens with probability non-zero for P the
divergence is infinite positive. To get a finite number we must suppose also that P
is absolutely continuous with respect to Q, i.e., P and Q are equivalent.

The analogous formula defines the quantum Kullback-Leibler divergence (or
quantum relative entropy), cf. Nielsen-Chuang [46], between two density of states
ρ, σ on the same Hilbert space E, in the finite dimensional case:

(118) S(ρ;σ) = −Tr(ρ(log σ − log ρ)).

In the case of an infinite dimensional Hilbert space, it is required that the trace is
well defined.

These quantities are positive or zero, and they are zero only in the case of equality
of the measures (resp. the densities of states). It is the reason why it is frequently
used as a measure of distance between two laws.
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Proposition 4. The map which associates to X in S, Y divided by X, and two
laws P,Q the quantity H(Y∗P ;Y∗Q) defines a non-homogeneous 1-cocycle, denoted
HX(Y ;P ;Q).

Proof. As we already know that the classical Shannon entropy is a non-homogeneous
1-cocycle, it is sufficient to prove the Hochschild relation for the new function

(119) Hm(Y ;P ;Q) = −
∑
i

pi log qi.

Let us denote by pij (resp. qij) the probability for P (resp. Q) of the event
Y = xi, Z = yj , and by pj (resp. qj) the probability for P (resp. Q) of the event

Z = yj ; then the probability pji (resp. qji ) of Y = xi knowing that Z = yj for P
(resp. for Q) is equal to pij/p

j (resp. qij/q
j), and we have

Hm((Z, Y );P,Q) = −
∑
i

∑
j

pij log qij(120)

= −
∑
j

pj
∑
i

pji log(qjqji )(121)

= −
∑
j

pj log qj(
∑
i

pji )−
∑
j

pj
∑
i

pji log qji(122)

= −
∑
j

pj log qj −
∑
j

pj
∑
i

pji log qji ;(123)

the first term on the right is Hm(Z;P ;Q) and the second is (Z.Hm)(Y ;P ;Q),
Q.E.D.

This defines a homogeneous co-cycle for pairs of probability lawsHX(Y ;Z;P ;Q) =
HX(Y ;P ;Q)−HX(Z;P ;Q), named Kullback-divergence variation.

In the quantum case, for two densities of states ρ, σ we define in the same manner
a classical Kullback-Leibler divergence HX(Y ; ρ;σ) by the formula

(124) HX(Y ; ρ;σ) =
∑
k

(Tr(ρk log(Tr(ρk))− log(Tr(σk))));

where the index k parameterizes the orthogonal decomposition Ek associated to
Y and where ρk (resp. σk) denotes the matrix E∗kρEk (resp. E∗kσEk). It is the
Kullback-Leibler divergence of the classical laws associated to the direct images ρ
and σ respectively.

But in the case of quantum information theory, we can also define a quantum
divergence, for any pair densities of states (ρ, σ) in QX ,

(125) SX(ρ;σ) = −Tr(ρ log σ).

Lemma 8. For any pair (X,Y ) of commuting hermitian operators, such that Y
divides X, the function SX satisfies the relation

(126) S(X,Y )(ρ;σ) = HY (X; ρ;σ) +X.SY (ρ;σ);

where HX of two variables denotes the mixed entropy, defined by Equation (119).

Proof. As in the proof of the Lemma 4, we denote by α, β, ... (resp. k, l, ...) the
indices of the orthogonal decomposition Y (resp. X), and by i, j, ... the indices
of a basis φi,k,α of the space Ek,α made by eigenvectors of the matrix %k,α =
E∗k,αρEk,α belonging to the joint operator (X,Y ). In a general manner if M is
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an endomorphism of Ek,α we denote by Mi,k,α the diagonal coefficient of index
(i, k, α). The probability pk (resp. qk) for ρ (resp. σ) of the event X = ξk is equal
to the sum over i, α of the eigenvalues λi,k,α of ρk,α (resp. µi,k,α of σk,α). And the
restricted density ρYk (resp. σYk), conditioned by X = ξk, is the sum over α of %k,α
(resp. of σk,α) divided by pk (resp. qk). We have

X.SY (ρ;σ) = −
∑
k

pkTr(ρYk
log σYk)(127)

= −
∑
k

pk
∑
i,α

λi,k,α
pk

(log
σk
qk

)i,k,α(128)

=
∑
i,k,α

λi,k,α log qk −
∑
i,k,α

λi,k,α(log σk)i,k,α(129)

=
∑
k

pk log qk − Tr(ρk,α log(σk,α)(130)

= −HY (X; ρ;σ) + S(X,Y )(ρ;σ).(131)

As a corollary, with the argument proving the Lemma 5 from the Lemma 4,
we obtain that the classical Kullback divergence is minus the co-boundary of the
0-cochain defined by the quantum divergence.

This shows that the generating function of all the co-cycles we have considered
so far is the quantum 0-cochain for pairs S(ρ;σ) = −Tr(ρ log σ).

6. Structure of Observation of a Finite System

Up to now the considered structures and the interventions of entropy can be
considered as forming a kind of statics in information theory. The aim of this
section is to indicate the elements of dynamics which could correspond. This more
dynamical study could be more adapted to the known intervention of entropy in
the theory of dynamical systems, as defined by Kolmogorov and Sinai.

6.1. Problems of Discrimination.
The problem of optimal discrimination consists in separating the various states of a
system, by using in the most economical manner, a family of observable quantities.
One can also only want to detect a state satisfying a certain chosen property. A
possible measure of the cost of discrimination is the number of step before ending
the process.

First, let us define more precisely what we mean by a system, a state, an ob-
servable quantity and a strategy for using observations. As before, for simplicity,
the setting is finite sets.

The symbol [n] denotes the set {1, ..., n}. We have n finite sets Mi of respective
cardinalities mi, and we consider the set M of sequences x1, ..., xn where xi belongs
to Mi; by definition a system is a subset X of M and a state of the system is an
element of X. The set of (classical) observable quantities is a (finite) subset A of
the functions from X to R.

A use of observables, named an observation strategy, is an oriented tree Γ, start-
ing at its root, that is the smallest vertex, and such that each vertex is labelled by
an element of A, and each arrow (naturally oriented edge) is labelled by a possible
value of the observable at the initial vertex of the arrow.
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For instance, if F0 marks the root s0, it means that we aim to measure F0(x)
for the states; then branches issued from t0 are indexed by the values v of F0, and
to each branch F0 = v corresponds a subset Xv of states, giving a partition of X.
If F1,v is the observable at the final vertex αv of the branch F0 = v, the next step
in the program is to evaluate F1,v(x) for x ∈ Xv; then branches issued from αv
corresponds to values w of F1,v restricted to Xv, and so on.

For each vertex s in Γ we note ν(s) the number of edges that are necessary for
joining s to the root s0. The function ν with values in N is called the level in the
tree.

It can happen that a set Xv consists of one element only; in this case we decide
to extend the tree to the next levels by a branch without bifurcation, for instance
by labelling with the same observable and the same value, but it could be any
labelling, and its value on Xv. In such a way, each level k gives a well defined
partition πk of X.

The level k also defines a sub-tree Γk of Γ, such that its final branches are
bearing πk. This gives a sequence π0, π1, ..., πl of finer and finer partitions of X,
i.e., a growing sequence of partitions (if the ordering on partition is the opposite
of the sense of arrows in the information category Π(X)). The tree is said fully
discriminant if the last partition πl, which is the finest is made by singletons.

The minimal number of steps that are necessary for separating the elements of
X, or more modestly for detecting a certain part of states, can be seen as a measure
of complexity of the system with respect to the observations A. A refined measure
could take in account the cost of use of a given observable, for instance the difficulty
to compute its values.

Standard examples are furnished by weighting problems: in this case the states
are mass repartitions in n objects, and allowed observables are weighting, which
are functions of the form

(132) FI,J(x) =
∑
i∈I

xi −
∑
j∈J

xj

where I et J are disjoint subsets of [n].
We underline that such a function, which requires the choice of two disjoint

subsets in [n], makes use of the definition of M as a set of sequences, not as an
abstract finite set.

The kind of problems we can ask in this framework were studied for instance
in “Problemes plaisants et delectables qui se font par les nombres” from Bachet de
Meziriac (1612, 1624) [2].

The starting point of our research in this direction was a particular classical
problem signaled to us by Guillaume Marrelec: given n objects ξ1, ..., ξn, if we
know that m have the same mass and n − m have another common mass, how
many measures must be performed, to separate the two groups and decide which
is the heavier?

Even for m = 1 the solution is interesting, and follows a principle of choice
by maximum of entropy. In the present text we only want to describe the general
structures in relation to this kind of problem without developing a specific study, in
particular we want to show that the co-homological nature of the entropy extends
to a more dynamical context of discrimination in time.
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Remark 9. The discrimination problem is connected with the coding problem. In
fact a finite system X (as we defined it just before) is nothing else than a particular
set of words of length n, where the letter appearing at place i belongs to an alphabet
Mi. Distinguishing between different words with a set A of variables f , is nothing
else than rewriting the words x of X with symbols vf (labelling the image f(X)).
To determine the most economical manner to do that, consists to find the smallest
maximal length l of words in the alphabet (f, vf ); f ∈ A, vf ∈ f(X) translating all
the words x in X. This translation, when it is possible, can be read on the branches
of a fully discriminating rooted tree, associated to an optimal strategy, of minimal
level l. The word that translate x being the sequence (F0, v0), (F1, v1), ..., (Fk, vk),
k ≤ l, of the variables put on the vertices along the branch going from 0 to x, and
the values of these variables put along the edges of this branch.

6.2. Observation Trees. Galois Groups and Probability Knowledge.
More generally, we consider as in the first part (resp. in the second part) a finite set
Ω, equipped with a Boolean algebra B (resp. a finite dimensional complex vector
space E equipped with a positive definite hermitian form h0 and a family of direct
decompositions in linear spaces UB). In each situation we have a natural notion of
observable quantity : in the case of Ω it is a partition Y compatible with B (i.e., less
fine than B) with numbering of the parts by the integers 1, .., k if Y has k elements;
in the case of E it is a decomposition Y compatible with UB (i.e., each summand
is direct sum of elements of one of the decompositions uB; for u ∈ U(h0)), with a
numbering of the summands by the integers 1, .., k if Y has k elements. We also
have a notion of probability : in the case of (Ω, Y ) it is a classical probability law
PY on the quotient set Ω/Y ; in the case of (E, Y ) it is a collection of non-negative
hermitian forms hY,i on each summands of Y .

We will consider information structures, denoted by the symbol S, for both
cases (which could be distinguished by the typography, S or S, if necessary): they
are categories made by objects that are observables and arrows that are divisions,
satisfying the condition that if X ∈ S divides Y and Z in S, then the joint (Y, Z)
belongs to S.

We will also consider probability families adapted to these information struc-
tures; they form a covariant functor X 7→ QX (which can be typographically dis-
tinguished in the two cases by QX and QX) of direct images. When S is a classical
subcategory of the quantum structure S, we suppose that we have a trace trans-
formation from ι∗Q to Q, and if S and Q are unitary invariant, we remind that,
thanks to the ordering, we have an equivalence of category between SU and S, and
a compatible morphism from the functional module FQ to the functional module
FQ.

Except the new ingredient of orderings, they are familiar objects for our reader.
The letter X will denote both cases Ω and E, then the letters S, B, Q will denote
respectively S, B, Q or S, UB, Q. Be careful that now all observable quantities
are ordered, either partitions, either direct decomposition. We will always assume
the compatibility condition between Q and S, meaning that every conditioning of
P ∈ Q by an event associated to an element of S belongs to Q.

In addition we choose a subset A of observables in S, which play the role of
allowed elementary observations.

We say that a bijection σ from Ω to itself, measurable for B, respects a set of
observables A if for any Y ∈ A, there exists Z ∈ A such that Y ◦ σ = Z. It means
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that σ establishes an ordered bijection between the pieces Y (i) and the pieces Z(i),
i.e., x ∈ Z(i) if and only if σ(x) ∈ Y (i). In other words the permutation σ respects
A when the map σ∗ which associates the partition Y ◦ σ to any partition Y , sends
A into A.

In the same way, we say that σ respects a family of probabilities Q if the asso-
ciated map σ∗ sends an element of Q to an element of Q.
In the quantum case, with E, h0 and UB, we do the same by asking in addition
that σ is a linear unitary automorphism of E.

Definition 9. If X, S, Q, B and A are given, the Galois group G0 is the set of
permutations of X (resp. linear maps) that respect S, Q, B and A.

Example 6. Consider the system X associated to the simple classical weighting
problem: states are parameterized by points with coordinates 0, 1 or −1 in the
sphere Sn−1 of radius 1 in Rn, according to their weights, either normal, heavier
or lighter. Thus in this case Ω = X possesses 2n points. The set A of elementary
observables is given by the weighting operations FI,J , Equation (132). For S we take
the set S(A) of all ordered partitions πk obtained by applications of discrimination
trees labelled by A. And we consider only the uniform probability P0 on X; in Q
this gives the images of this law by the elements of S, and the conditioning by all
the events associated to S.

Then the Galois group G0 is the subgroup Sn×C2 of S2n made by the product
of the permutation group of n symbols by the group changing the signs of all the
xi for i in [n].
Proof : the elements of Sn respect A, and the uniform law. Moreover if σ changes
the sign of all the xi, one can compensate the effect of σ on FI,J by taking GI,J =
FJ,I , i.e., by exchanging the two sides of the balance.

To finish we have to show that permutations of X outside Sn×C2 do not respect
A. First, consider a permutation σ that does not respect the indices i. In this case
there exists an index i ∈ [n] such that σ(i+) and σ(i−) are states associated to
different coins, for instance σ(i+) = j+ and σ(i−) = k+, with j 6= k, or σ(i+) = j+

and σ(i−) = k−, with j 6= k. Two cases are possible: these states have the
same mass, or they have opposite mass. In both cases let us consider a weighting
Fj,h(x) = xj − xh, where h 6= k; by applying σ∗Fj,h to x = σ(i+) we find +1 (or
−1), and by applying σ∗Fj,h to x = σ(i−) we find 0. However, this cannot happen
for a weighting, because for a weighting, either the change of i+ into i− has no
effect, either it exchanges the results +1 and −1. Finally, consider a permutation
σ that respects the indices but exchanges the signs of a subset I = {i1, ..., ik}, with
0 < k < n. In this case let us consider a weighting Fi,j(x) = xi − xj with i ∈ I
and j ∈ [n]\I, the function Fi,j ◦ σ takes the value +1 for the states i−, j−, the
value −1 for i+, j+ and the value 0 for the other states, which cannot happen for
any weighting, because this weighting must involve both i and j, but it cannot be
Fj,i(x) = xj − xi, which takes the value −1 for j−, and it cannot be Fi,j which
takes the value +1 for i+.

The probability laws we are considering express the beliefs in initial knowledge
on the system, in this case it is legitimate to consider that they constrain the initial
Galois group G0. This corresponds to the Jaynes principle [28, 29].

We define in this framework the notion of observation tree adapted to a given
subset A of S: it is a finite oriented rooted tree Γ where each vertex s is labelled
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by an observable Fs belonging to A and each arrow α beginning at s is labelled
by an element Fs(i) of Fs. A priori we introduce as many branches as there exist
elements in Fs. The disposition of the arrows in the trigonometric circular order
makes that the tree Γ is imbedded in the Euclidian plane up to homotopy.

A branch γ in the tree Γ is a sequence α1, ..., αk of oriented edges, such that,
for each i the initial extremity of αi+1 is the terminal extremity of αi. Then αi+1

starts with the label Fi and ends with the label Fi+1. We will say that γ starts
with the root if the initial extremity of α1 is the root s0, with a label F0.

For any edge α in Γ, there exists a unique branch γ(α) starting from the root,
and abutting in α. Along this branch, the vertices are decorated with the variables
Fi; i = 0, ..., Fk and the edges are decorated with values vi of these functions; we
note

(133) S(α) = (F0, v0;F1, v1; ...;Fk−1, vk−1;Fk)

By definition, the set X(α) of states which are compatible with α is the subset
of elements of X such that F0(x) = v0, ..., Fk−1(x) = vk−1.

At any level k the sets X(α) form a partition πk de X.

Definition 10. We say that an observation tree Γ labelled by A is allowed by S,
if all joint observable along each branch belongs to S.
We say simply allowed if their is no risk of confusion.

In what follows this restriction is imposed on all considered tree. Of course if
we start with the algebra of all ordered partitions this gives no restriction, but this
would exclude the quantum case, where the best we can do is to take maximal
commutative families.

Definition 11. Let α be an edge of Γ, we note Q(α) the set of probability laws
on X(α) which are obtained by conditioning by the values v0, v1..., vk−1 of the
observables F0, F1, ..., Fk−1 along the branch γ(α) starting in the root and ending
with α.

Definition 12. The Galois group G(α) is the set of permutations of elements of
X(α) that belongs to G0, preserve all the equations Fi(x) = vi (resp. all the
summands of the orthogonal decomposition Fi labelling the edges) and preserve
the sets of probability Q(α) (resp. quantum probabilities).

We consider G(α) as embedded in G0 by fixing point by point all the elements
of X outside X(α).

Remark 10. Let P be a probability law (either classical or quantum) on X, Φ =
(Fi; i ∈ I) a collection of observables, and ϕ = (vi; i ∈ I) a vector of possible values
of Φ; the law P |(Φ = ϕ) obtained by conditioning P by the equations Φ(x) = ϕ, is
defined only if the set Xϕ of all solutions of the system of equations Φ(x) = ϕ has
a non-zero probability pϕ = P (Xϕ). It can be viewed either as a law on Xϕ, or as
a law on the whole X by taking the image by the inclusion of Xϕ in X.

Definition 13. The edge α is said Galoisian if the set of equations and probabilities
that are invariant by G(α) coincide respectively with X(α) and Q(α).
A tree Γ is said Galoisian when all its edges are Galoisian.

At each level k we define the group Gk which is the product of the groups G(α)
for the free edges at level k; it is a subgroup of G0 preserving elements by elements
the pieces of the partition πk.
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Along the path γ the partition (or decomposition) πl, l ≤ k of X is increasing
(finer and finer) and the sequence of groups Gl, l ≤ k is decreasing.

Along a branch the setsX(α) are decreasing and the sequence of groupsG0, G(α1), ..., G(αk)
is decreasing. We propose that the quotient G(αi+1)/G(αi) gives a measure of the
Galoisian information gained by applying Fi and obtaining the value vi.

On each set X(α) the images of the elements of the probability family Q form
sets Q(α) of probabilities on X(α).

Thus also imposed in the group G(α) to preserve the set Q(α).

Remark 11. In terms of coding, introducing probabilities on the X(α) permits
to formulate the principle, that it is more efficient to choose, after the edge α, the
observation having the largest conditional entropy in Q(α). In what circumstances
it gives the optimal discrimination tree is a difficult problem, even if the folklore
admit that as a theorem. It is the problem of optimal coding.

In virtue of a Shannon’s theorem, the minimal length is bounded below by en-
tropy of the law on X if this law is unique. We found it works in a simple example
of weighting (cf. paper 3 [7]).

Note however important differences between our approach and the traditional
one for coding: for us A is given and Q is given; they correspond respectively to an
a priori limitation of possible codes for use (like a natural language), and to a set
of possible a priori knowledges, for instance taking in account the Galois ambiguity
in the system (Jaynes principle). All that is Bayesian in spirit.

Definition 14. We say that an observation tree Γ labelled by A is allowed by S
and by X ∈ S, if it is allowed by SX , which means that all joint observable along
each branch is divided by X.

Definition 15. S(A) is the set of (ordered) observables πk which can be obtained
by allowed observation trees. For X ∈ S we note SX(A) the set of (ordered)
observables πk which can be obtained by observation trees that are allowed by S
and X.

Lemma 9. The joint product defines a structure of monoid on the set SX(A).

Proof. Let Γ,Γ′ be two observation trees allowed by A, S and X ∈ S, of respective
lengths k, k′, giving final decompositions S, S′. To establish the lemma we must
show that the joint SS′ is obtained by a tree associated with A, allowed by S and
X.

For that we just graft one exemplar of Γ′ on each free edge of Γ. This new tree
ΓΓ′ is associated with A, and its final partition is clearly finer than S. It is also
finer than S′, because at the end of any branch of ΓΓ′ we have an X(β) which
is contained in the corresponding element of the final partition πk′(Γ

′). To finish
the proof we have to show that each element of πk+k′(ΓΓ′) is the intersection of
element of πk(Γ) with one element of πk′(Γ

′), because we know these observables
are in SX , which is a monoid, by the definition of information structure. But a
complete branch γ.γ′ in ΓΓ′, going from the root to a terminal edge at level k+ k′,
corresponds to a word (F0, v0, F1, v1, ..., Fk−1, vk−1, F

′
0, v
′
0, ..., F

′
k′−1, v

′
k′−1, thus the

final set of the branch γ.γ′ is defined by the equations Fi = vi; i = 0, ..., k − 1 et
F ′j = v′j ; j = 0, ..., k′ − 1, and is the intersection of the sets respectively defined
by the first and second groups of equations, that belong respectively to πk(Γ) and
πk′(Γ

′).
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Then S(A) form an information structure. In particular there is a unique maxi-
mal partition, initial element for each subcategory SX(A) in the information struc-
ture S(A).

But on S(A) the operation of grafting, that we will describe now, is much richer
than what we used in the above Lemma 9: we can graft an allowed tree on each
free edge of an allowed tree, and this introduces to a theory of operads and monads
for information theory.

6.3. Co-Homology of Observation Strategies.
Remember that the elements of the partitions or decompositions Y we are consider-
ing, are now numbered by the ordered set {1, ..., L(Y )}, where L(Y ) is the number
of elements in the partition, or the decomposition, also called its length. In par-
ticular we consider as different two partitions which are labelled differently by the
integers. This was already taken into account in the definition of the Galois groups.

We define the multi-products µ(m;n1, ..., nm) on the set of ordered partitions:
They are defined between a partition equipped with an ordering (π, ω) with m

pieces andm ordered partitions (π1, ω1), ..., (πm, ωm) of respective lengths n1, ..., nm;
the results is the ordered partition obtained by cutting each piece Xi of π by the cor-
responding decomposition πi and renumbering the non-empty pieces by integers in
the unique way compatible with the orderings ω, ω1, ..., ωm. Observe the important
fact that the result has in general less than n = n1 + ...+nm pieces. This introduces
a strong departure from usual multi-products (cf. P. May [16, 42], Loday-Vallette
[37]). We do not have an operad, when introducing vector spaces V (m) generated
by decompositions of length m, we get filtered but not graded structures. However
a form of associativity and neutral element are preserved, hence we propose to name
this structure a filtered operads.

There exists an evident unit to the right which is the unique decomposition of
length 1.

The action of the symmetric group Sm on the products is evident, and does not
respect the length of the result. We will designate by µm the collection of products
for the same length m.

The numbers mi between 1 and ni that counts the pieces of the decomposition of
the element Xi of π are functions mi(π, ω, πi, ωi). There exists a growing injection
ηi : [mi]→ [ni], which depends only on (π, ω, πi, ωi) telling what indices of (πi, ωi)
survive in the product. These injections are integral parts of the structure of filtered
operad. In particular, if we apply a permutation σi to [ni], i.e., if we replace ωi by
ωi ◦ σi, the number can change.

The axioms of operadic unity and associativity, conveniently modified are easy
to verify (cf. [7]). The reference we follow here is Fresse “Basic concepts of oper-
ads” [20]. For unity nothing has to be modified. For associativity (Figure 1.3 in
Fresse [20]), we modify by saying that if the (πi, ωi) of lengths ni, for i between 1

et k, are composed from µ(ni;n
1
i , ..., n

ni
i ) with the ni-uples (..., (πji , ω

j
i ), ...) whose

respective lengths are nji , and if the result µi for each i has length (m1
i + ...+mni

i )

where mj
i is function of (πi, ωi) and (πji , ω

j
i ), then the product of (π, ω) of length

k with the µi is the same as the one we would have obtained by composing
µ(k;n1, ..., nk)((π, ω); (π1, ω1), ...)) with the m = m1 + ... + mk ordered decom-

positions (πji , ω
j
i ) for j belonging to the image of ηi : [mi] → [ni]. This result is
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more complicate to write than to prove, because it only expresses the associativity
of the ordinary join of three partitions; from which ordering follows.

Moreover, the first axiom concerning permutations (Figure 1.1 in Fresse [20]),
can be modified, by considering only permutations of ni letters which preserve the
images of the maps ηi.

The second axiom, which concerns a permutation σ of k elements in π, and the
inverse permutation of the partitions πi can be reformulated by telling the effect
of σ on the multiple product µ is the same as the effect of σ on the indices of the
(πi, ωi). In other terms, the effect of σ on ω is compensated by the action of σ−1

on the indices of the (πi, ωi). One has to be careful, because the result of µ applied
to (π, ω ◦σ) has in general not the same length as µ applied to (π, ω). However the
compensation implies that µk is well defined on the quotient of the set of sequences
((π, ω), (π1, ω1), ...) by the diagonal action of Sk, which permutes the k pieces of π
and which permutes the indices i of the ni in the other factors.

Geometrically, if the partition (π, ω) in S(A) is generated by an observation tree
Γ with m ending edges and the partitions (πi, ωi); i = 1, ...,m are generated by a col-
lection of observation trees Γi; then the result of the application of µ(m;n1, ..., nm)
to (π, ω) and (πi, ωi); i = 1, ...,m is generated by the observation tree that is ob-
tained by grafting each Γi on the vertex number i. Drawing the planar trees
associated to three successive sets of decompositions for two successive grafting
operations helps to understand the associativity property.

The fact that in general this does not give a tree with n1 + ... + nm free edges,
where ni denotes the number of free edges of Γi comes from the possibility to find
an empty set X(β) at some moment along a branch of the grafted tree; this we
call a dead branch. It expresses the fact that the empty set is excluded from the
elements of a partition in the classical context, and the zero space excluded from the
orthogonal decomposition in the quantum context. When computing conditioned
probabilities we encounter the same problem if a set X(β) at some place in a branch
has measure zero.

The dead branches and the lack of graduation cause a lot of difficulties for
studying algebraically the operations µm, thus we introduce more flexible objects,
which are the ordered partitions with empty parts of Ω, resp. ordered orthogonal
decompositions with zero summands of E: such a partition π∗ (resp. decomposition)
is a family (E1, ..., Em) of disjoint subsets of Ω (resp. orthogonal subspaces of E),
such that their union (resp. sum) is Ω (resp. E). The only difference with respect
to ordered partitions, resp. decompositions, is that we accept to repeat ∅ (resp.
0) an arbitrary high number of times. For shortening we will name generalized
decompositions these new objects. The number m is named the degree of π∗. These
objects are the natural results of applying rooted observation trees embedded in an
oriented half plane.

The notions of adaptation to A, S and X in S concerning the trees, apply to
the generated generalized decompositions. The corresponding sets of generalized
objets are written S∗(A) and S∗X(A).

The multi-product µ(m;n1, ..., nm) extends naturally to generalized decomposi-
tions, and in this case the degrees are respected, i.e., the result of this operation is
a generalized decomposition of degree n1 + n2 + ...+ nm.

Remark that we could write µ∗(m;n1, ..., nm) for the multi-products extended to
generalized decompositions, however we prefer to keep the same notation µ(m;n1, ..., nm);
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this is justified by the following observation: to a generalized decomposition π∗ is
associated a unique ordered decomposition (π, ω), by forgetting the empty sets
(resp. zero spaces) in the family, and the multi-product is compatible with this for-
getting application. The gain of the extension is the easy construction of a monad
we expose now.

The definition of operad was introduced by P. May [42] as the right tool for
studying the homology of infinite loop spaces; then it was recognized as a funda-
mental tool for algebraic topology, and many other topics, see Loday and Valette,
Fresse.

We will encounter only “symmetric” operads.
The multiple products µm on generalized decompositions can be assembled in a

structure of monad by using the standard Schur construction (cf. Loday et Valette
[37], or Fresse, “on partitions” [20]): For each X ∈ S, we introduce the real vector
space VX = VX(A) freely generated by the set S∗X(A) of generalized decompositions
obtained by observation trees that are allowed by A, S and X; the length m define
a graduation VX(m) of VX . We put VX(0) = 0.

The maps µm generate m-linear applications from products of these spaces to
themselves which respect the graduation; these applications, also denoted by µm,
are parameterized by the sets S∗X(m), whose elements are the generalized decom-
positions of degree m which are divided by X:

(134) µm : VX(m)⊗Sm V ⊗mX → VX

The linear Schur functor from the category of real vector spaces to itself, is defined
by the direct sum of symmetric co-invariants:

(135) VX(W ) =
⊕
m≥0

VX(m)⊗Sm
W⊗m

The composition of Schur functors is defined by

(136) VX ◦ VX =
⊕
m≥0

VX(m)⊗Sm V⊗mX .

i.e., for each real vector space W :

VX◦VX(W ) =
⊕
m≥0

⊕
l≥m

⊕
n1,...,nm;

∑
i ni=l

VX(m)⊗Sm

⊗
i

VX(ni)⊗Sni
W⊗ni(137)

=
⊕
l≥0

⊕
m≥0

⊕
n1,...,nm;

∑
i ni=l

VX(m)⊗Sm

⊗
i

VX(ni)⊗Sn1,...,nk
W⊗l;(138)

where Sn1,...,nm
denotes the groups of permutations by blocs.

Proposition 5. For each X in S, the collection of operations µm defines a linear
natural transformation of functors µX : VX ◦ VX → VX ; and the trivial partition
defines a linear natural transformation of functors ηX : R → VX , which satisfy
the axioms of a monad (cf. MacLane “Categories for Working Mathematician”
2nd ed. [39], and Alain Proute, Introduction a la Logique Categorique, 2013,
Prepublications [47]):

(139) µX ◦ (VXµX) = µX ◦ (µXVX), µX ◦ (VXηX) = Id = µX ◦ (ηXVX)

Proof. The argument is the same as the argument given in Fresse (partitions ...).
The fact that the natural transformation µX is well defined on the quotient by
the diagonal action of the symmetric group Sm on VX(m)⊗

⊗
i VX(ni)⊗Sn1,...,nm
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W⊗s comes from the verification of the symmetry axiom and the properties of
associativity and neutral element comes from the verification of the corresponding
axiom.

Moreover all these operations are natural for the functor of inclusion from the
category SY to the category SX of observables divided by Y and X respectively
when X divides Y ; therefore we have the following result:

Proposition 6. To each arrow X → Y in the category S is associated a natural
transformation of functors ρX,Y : VY → VX , making a morphism of monads; this
defines a contravariant functor V from the category S to the category of monads,
that we name the arborescent structural sheaf of S and A.

Considering the discrete topology on S, we introduce the topos of sheaves of
modules over the functor in monads V, which we call the arborescent information
topos associated to S and A.

As explained in Proute loc.cit. [47] a monad in a category C becomes a monoid
in the category of endo-functors of C, thus the topos we introduce is equivalent to
an ordinary ringed topos.

The monad VX , and the contravariant monadic functor V on S, are better un-
derstood by considering trees, cf. Getzler-Jones [22], Ginzburg-Kapranov [23] and
Fresse [20]; in our context we consider all observation trees labelled by elements of
S∗XA:
if Γ is an oriented rooted tree of level k, each vertex v of Γ gives birth to mv edges;
we define

(140) VX(Γ)(W ) =
⊗
v∈Γ

VX(mv)⊗Smv
W⊗mv .

The space V (Γ)(W ) is the direct sum of spaces VX(ΓY )(W ) associated to trees
which are decorated by a subset Y in S∗X(A), with one element Yv of SX(m) for each
vertex v which gives birth to mv edges. Then the iterated functors V◦k = V ◦ ... ◦V
for k ≥ 1 are the direct sums of the functors V (Γ) of level k.
Remark that we could have worked directly with observation trees labelled by
elements of A in spite of working with generalized partitions; this would have given
a strictly larger monad but equivalent results.

Associated to probability families we define now a right VX -module (in the terms
of Fresse, Partitions, the term VX -algebra being reserved to a structure of left
module on a constant functor).

For that we introduce the notion of divided probability.

Definition 16. A divided probability law of degree m is a sequence of triplets
(p, P, U) = (p1, P1, U1; ...; pm, Pm, Um), where pi; i = 1, ...,m are positive numbers
of sum one, i.e., p1 + ... + pm = 1, where each Pi; i = 1, ...,m is a classical (resp.
quantum) probability law when the corresponding pi is strictly positive, and a
probability law or the empty set when the corresponding pi is equal to 0, and
where each Ui; i = 1, ...,m is the support in X of Pi; moreover the Ui are assumed
to be orthogonal (resp. disjoint in the classical case). The letter P will designate
the probability p1P1 + ...+ pmPm, where 0.∅ = 0 when it happens.

The symbol D(m) designates the set of divided probabilities of degree m on X,
and DX(m) denotes the subset made with probability laws in QX adapted to a
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variable X.
The vector space generated by DX(m) will be written LX(m). We put LX(0) = 0.

We also introduce the subspace K(m) of LX(m) which is generated by two fam-
ilies of vectors in LX(m):

First the vectors

(141) L(λ, p′, p”, P, U) = λ(p′, P, U) + (1− λ)(p”, P, U)− (λp′ + (1− λ)p”, P, U),

where λ is any real number between 0 and 1, and (p′, P, U), (p”, P, U) two divided
probabilities associated to the same sequence of probability laws (P1, ..., Pm) and
the same supports (U1, ..., Um);

Second the vectors

(142) D(p, P, U,Q, V ) = (p, P, U)− (p, P ′, U ′),

where for each index i between 1 and m, such that pi > 0 we have Pi = P ′i , and
consequently Ui = U ′i .

The we define the space of classes of divided probabilities as the quotient real
vector space MX(m) = LX(m)/K(m). In particular MX(0) = 0, MX(1) is freely
generated over R by the elements of QX .

Lemma 10. The spaceMX(m) is freely generated over R by the vectors (∅, ..., ∅, Pi, ∅, ..., ∅)
of length m, where at the rank i, Pi is an element of QX .

Proof. Let D = (p1, P1, U1), ..., (pm, Pm, Um) be a divided probability; we consider
for each i between 1 and m the divided probability

Di = (0, P1, U1), ..., (0, Pi−1, Ui−1), (1, Pi, Ui), (0, Pi+1, Ui+1), ..., (0, Pm, Um),

then the vector D−
∑
i piDi is a sum of vectors of type L in KX(m). However, for

each i, the vector Di − (∅, ..., ∅, Pi, ∅, ..., ∅) is of type D, thus the particular vectors
of the Lemma 10 generate MX(m).

Now, we prove that, if a linear combination of r of these vectors belongs to
KX , the coefficients of this combination must all be equal to 0. We proceed by
recurrence on r, the result being evident for r = 1. We also can suppose that at
least two involved vectors have a non-empty element at the same place, which we
can suppose to be i = 1. All vectors with p1 = 0 can be replaced by a vector
where P1 = ∅ using an element of type D in KX(m), then we can assume that at
least one of the vectors has a p1 strictly positive, i.e., equals to 1. Let us consider
all these vectors D1, ..., Ds, for 2 ≤ s ≤ r, their other numbers pi for i > 1 are
zero. The other vectors Dj , for j > s having the coordinate p1 equal to zero. Let∑
j λjDj be the linear combination of length r belonging to KX(m); this vector is

a linear combination of vectors of type L and D. We can suppose that every λj is
non-zero. Let us consider an element Q of QX which appears in at least one of the
Dj , j ≤ s; this Q cannot appear in only one Dj , because the sum of coefficients λ
multiplied by the first p1 in front of any given Q in a vector L or D is zero. Thus
we have at least two Dj with the same P1. We can replace the sum of them with λj
positive (resp. negative) by only one special vector of the Lemma 10 using a sum of
multiples of vectors of type L. Then we are left with the case of two vectors, D1, D2

having P1 = Q such that λ1 + λ2 = 0, which means that λ1D1 + λ2D2 is multiple
of a vector of type D. Subtracting it we can apply the recurrence hypothesis and
conclude that the considered linear relation is trivial.
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As a corollary an equivalent definition of the spaces MX(m) would be the real
vector space freely generated by pairs (P, i) where P ∈ QX and i ∈ [m]. Such a
vector, identified with (∅, .., P, ..., ∅) in LX(m), where only the place i is non-empty,
will be named a simple vector of degree m.

Let S = (S1, ..., Sm) be a sequence of generalized decompositions in S∗X(A), of
respective degrees n1, ..., nm, with n = n1 + ...+nm, and let (p, P, U) be an element
of DX(m), we define θ((p, P, U), S) as the following divided probability of degree

n: if, for i = 1, ...,m the decomposition Si is made of pieces Ejii where ji varies

between 1 and ni, we take for pjii is the classical probability P(Ejii ∩ Ui); we take

for P jii the law Pi conditioned by the event Si = ji which corresponds to Ejii ; and

we take for U jii the support of P jii . Then we order the obtained family of triples

(pjii , P
ji
i , U

ji
i )i=1,...,m;ji=1,...,ni

by the lexicographic ordering. It is easy to verify
that the resulting sequence is a divided probability.

Extending by linearity we get a linear map,

(143) λm : LX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→ LX(n1 + ...nm),

By linearity a vector of type L in LX(m), tensorized with S1 ⊗ ... ⊗ Sm goes
to a linear combination of vectors of type L in LX(n). Moreover, if pi = 0 for an

index i in [m], all the pjii are zero, thus a vector of type D goes to a vector of type
D. Then the map λm sends the subspace KX(m)⊗ VX(n1)⊗ ...⊗ VX(nm) into the
subspace KX(n1 + ...nm), thus it defines a linear map

(144) θm :MX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→MX(n1 + ...nm),

On a simple vector (P, i), the operation θm is independent of the Sj for i 6= i.
Now we introduce the Schur functorMX of symmetric co-invariant spacesMX(W ) =⊕
mMX(m)⊗Sm

W⊗m from the category of real vector space to itself, associated
to the S-module M∗X (cf. Loday and Valette [37], Fresse [20]), formed by the
graded family MX(m);m ∈ N.

Then the maps θm define a natural transformation of functors:

(145) θX :MX ◦ V →MX .

In addition, this set of transformations behaves naturally with respect to X in
the information category S. Note that it defines a co-variant functor, not a presheaf.

For simplicity, we will note in general θ, µ,F ,V, ... and not θX , µX ,FX ,VX , ...,
but we memorize this is an abuse of language.

Then the composite functor M◦ V(W ) is given by

MX◦VX(W ) =
⊕
m≥0

MX(m)⊗Sm

⊗
i

(VX(ni)⊗Sni
W⊗ni)

=
⊕
n≥0

⊕
m≥0

⊕
n1,...,nm;

∑
i ni=n

MX(m)⊗Sm

⊗
i

VX(ni)⊗Sn1,...,nk
W⊗n;

where Sn1,...,nm denotes the groups of permutations by blocs.

Proposition 7. The natural transformation θ defines a right action in the sense
of monads, i.e., we have

(146) θ ◦ (Fµ) = θ ◦ (θV); θ ◦ (Fη) = Id.

Proof. The proof is the same as for proposition 5, by using the associativity of
conditioning, and the Bayes identity P (A ∩B) = P (A|B)P (B).
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Ginzburg and Kapranov [23] gave a construction of the (co)bar complex of an
operad based on decorated trees. It is a graded complex of operads, with a differen-
tial operator of degree −1. The dual construction can be found in Getzler et Jones
[22]; it gives a graded complex of co-operads with a differential operator of degree
+1. The link with quasi-free co-operads and operads (Quillen’s construction) is
developed by Fresse (in “partitions” [20]); in this article Fresse also shows that
these constructions correspond to the simplicial bar construction for the monads
(Maclane) and to the natural notions of derived functors in this context.

In our case, with two right modules, the easiest way is to use the bar construction
of Beck (1967) [9], further explicited by Fresse with decorated trees in the case of
monads coming from operads.

A morphism from a right module M over V to a right module R over V is a
natural transformation f of the first functor in the second such that f◦θM = θR◦fV.

In what follows we will use the module R which comes from the functor of
symmetric powers:

(147) R(W ) =
⊕
m

Sm(W );

it is the Schur functor associated to the trivial S∗-module, R(m) = R, i.e., the
action of Sm on R(m) is trivial. We put R(0) = R.

The right action of VX is given by the map

(148) ρm : RX(m)⊗ VX(n1)⊗ ...⊗ VX(nm)→ RX(n1 + ...nm),

which send each generator (1, S1, ..., Sm) to 1 in R(n) = R.
The axioms of a right module are easy to verify.
This V-module R will play the dual role of the trivial module in the case of

information structure co-homology.
Following Beck (Triples, Algebras, Cohomology, 1967, 2002 [9]), we consider

the simplicial bar complex MX ◦ V∗X extending the right module M on V by the

sequence of modules .... →MX ◦ V◦(k+1)
X →MX ◦ V◦kX → .... Then we introduce

the growing complex C∗(MX) of measurable morphisms from MX ◦ V∗X to the
symmetric right module R.

For a given k ≥ 0, a morphism F from MX ◦ V◦kX to R is defined by a family of
maps F (N) :MX ◦ V◦kX (N)→ R(N) = R, for N ∈ N.

This gives a family of measurable numerical functions of a divided probability
law (p, P, U), of degree m ≤ N , indexed by forests having m components trees of
height k and having total number of ending branches N .

We denote such a family of functions by the symbol FX(S1;S2; ...;Sk; (p, P, U)),
indexed by X in S, where S1; ...;Sk here designates the sets of decompositions
present in the trees at each level from 1 to k.

First we remark that the compatibility with the action of VX to the right imposes
that for any allowed set of variables Sk+1 we must have

(149) FX(S1;S2; ...;µ(Sk, Sk+1); (p, P, U)) = FX(S1;S2; ...;Sk; (p, P, U)).

By taking for Sk the collection (π0, ..., π0), we deduce that FX is independent of
the last variable.

This has the effect of decreasing the degree in k by one, for respecting the
preceding conventions on information cochains; i.e., we pose Ck(MX) = Hom(MX◦
V◦(k+1),R).
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Secondly, as we are working with the quotient of the space generated by divided
probabilities (p, P, U) by the space generated by linearity relations on the external
law p, for (p, P, U) of degree m, we have

(150) FX(S1;S2; ...;Sk; (p, P, U)) =

m∑
i=1

piFX(S1;S2; ...;Sk; (Pi; i,m));

where (Q; i,m) designates the divided probability of degree m where all the laws
in the sequence are empty except for the number i where it is equal to Q.

Moreover, from the definition of θ and the rule of composition of functors, for
any m ≥ 1 and i ∈ [m], and any simple vector (Q, i,m), the value of F on any
forest depends only on the tree component of index i; that we can summarize by
the following identity:

(151) FX(S1;S2; ...;Sk; (Q; i,m)) = FX(T (Si1;Si2; ...;Sik); (Q; i,m));

where T (Si1;Si2; ...;Sik) designates the tree numbered by i, prolonged in any manner
at all the places j 6= i.

Definition 17. An element of Ck(MX) is said regular when for each degree m and
each index i between 1 and m, we have, for each ordered forest S1;S2; ...;Sk of m
trees, and each probability Q,

(152) FX(S1;S2; ...;Sk; (Q; i,m)) = FX(Si1;Si2; ...;Sik;Q);

where Si1;Si2; ...;Sik designates the tree number i.

Due to Equation (150), this makes that regular elements are defined by their
values on trees and ordinary, not divided probabilities.

The adjective regular can be better interpreted as “local in the sense of obser-
vation trees”.

The vector space CkX(N) is generated by families of functions of divided proba-
bilities FX(S1;S2; ...;Sk; (p, P, U)), indexed by X in S and forests S1; ...;Sk of level
k. These families are supposed local with respect to X, which means that it is
compatible with direct image of probabilities under observables in S∗.

Remark 12. As we showed in the static case, in the classical context, locality is
equivalent to the fact that the values of the functions depend on P through the
direct images of P by the joint of all the ordered observables which decorate the
tree (the joint of the joints along branches); but this is not necessarily true in the

quantum context, where it depends on Q. However it is true for Qmin, in particular
Qcan which is the most natural choice.

The spaces Ck(MX) form a natural degree one complex:

The faces δ
(k)
i ; 1 ≤ i ≥ k are given by applying µ on V ◦V at the places (i, i+ 1);

the last face δ
(k)
k+1; 1 ≤ i ≥ k consists in forgetting the last functor, the operation

denoted by ε; and the zero face is given by the action θ. Then the boundary δ(k) is

the alternate sum of the operators δ
(k)
i ; 0 ≤ i ≥ k+ 1: if F is measurable morphism

from M◦ V◦k to R, then

(153) δF = F ◦ (θV◦k)−
∑

i=0,...,k−1

(−1)iF ◦MV◦iµV◦k−i−1 − (−1)kF ◦MV◦kε.

The zero face in the complex C∗X corresponds to the right action of the monad
VX on divided probabilities; on regular cochains it is expressed by a generalization
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of the formula (20): if (P, i,m) is a simple vector of degree m and S0;S1; ...;Sk a
forest of level k + 1, with m component trees, then

FS0
(S1; ...;Sk; (P, i,m)) = F (S1; ...;Sk; θ((P, i,m)S0))

=
∑

ji=1,...,ni

P(Si0 = ji)F ((Sji1 ;Sji2 ; ...;Sji2 ; (P |(Si0 = ji)),(154)

where Sji1 ;Sji2 ; ...;Sjik designates the tree number ji grafted on the branch ji of the
variable S0,i at the place i in the collection S0.

The formula (154) is compatible with the existence of dead branches.
Note that natural integers come into the play under two different aspects: m

is for the internal monadic degree and counts the number of components, or the
length of partitions, k is for the height of the trees in the forest. The number k
gives the degree in co-homology.

The coboundary δ of C∗ is of degree +1 with respect to k and degree 0 with
respect to m. For any m ∈ N, the operator δ has the formula of the coboundary
given by the simplicial structure associated to θ and µ:

δF (S0;S1; ...;Sk; (p, P, U)) = FS0
(S1; ...;Sk; (p, P, U))(155)

+

i=k∑
i=1

(−1)iF (S0; ...;µ(Si−1 ⊗ Si);Si+1; ...;Sk; (p, P, U))

+(−1)k+1F (S0; ...;Sk−1; (p, P, U))

We constat that locality is preserved by δ.

Lemma 11. If the transformation F is regular, then δF is regular; in other terms,
the regular elements form a sub-complex Ckr (MX).

Proof. Let (P, i,m) be a simple vector and S0; ...;Sk a forest with m components;

let us denote by Sj0 the variable number j having degree nj , and n = n1 + ...+nm;
we have

δF (S0; ...;Sk; (P, i,m))

= F (S1; ...;Sk; θ((P, i,m)Si0))− F (µ(S0, S1); ...;Sk; (P, i,m))− ...(156)

+(−1)kF (S0; ...;µ(Sk−1, Sk); (P, i,m)) + (−1)k+1F (S0; ...;Sk−1; (P, i,m)).

The first term on the right is a combination of the image of F for the ni simple
vectors P.Si,ji0 of degree n = n1 + ...+nm which result from the division of (P, i,m)
by Si0. If F is regular, this combination is the same as the combination of the
simple vectors of degree ni constituting the division of (P, i,m) by Si0, which gives
the same result as the first term on the right in the formula

δF (Si0; ...;Sik; (P, 1, 1)) = F (Si1; ...;Sik; θ(P, Si0))− F (µ(Si0, S
i
1); ...;Sik;P )− ...(157)

+(−1)kF (Si0; ...;µ(Sik−1, S
i
k);P ) + (−1)k+1F (Si0; ...;Sik−1;P ).

If F is regular the term number l > 1 on the right of the equation (156) coincides
with the corresponding term on the right of the Equation (157).

Therefore the terms on the left in Equation (156) coincides with the left term in
(157); which establishes the lemma.
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We define C∗r (MX) as the sub-complex of regular vectors in C∗(MX). Its ele-
ments are named tree information cochains or arborescent information cochains.

By definition, the tree information co-homology is the homology of this regular
complex, considered as a sheaf of complexes over the category S(A), i.e., a con-
travariant functor. This corresponds to the topos information co-homology in the
monadic context.

To recover the case of the ordinary algebra of partitions, and the formulas of the
bar construction in the first sections of this article, we have to take the special case
where all the decompositions of the same level coincide at every level of the forests.
In this case, we can replace the quotient MX by the modules of conditioning
by a redefinition of the action on functions FX . However the notion of divided
probabilities for observation trees and the definition of co-homology in the monadic
context can be seen as the natural basis of information co-homology.

When k = 0, in the classical case, a cochain is a function f(P), the locality
condition tells that it is a constant; and in this case it is a cocycle because the sum
of probabilities equals one implies f(P) = fS(P). Then H0

τ has dimension one.
When k = 0, in the quantum case, the spectral functions of ρ in the QX gives

invariant information co-chains. Among them the Von Neumann entropy is specially
relevant because its co-boundary gives the classical entropy. However, only the
constant function is an invariant zero degree co-cycle. Thus again H0

U has dimension
one.

For k = 1, a cochain is given by a function FX(S;P ), such that, each time we
have X → Y → S and elements of Y refines S, we have FX(S;P ) = FY (S;Y∗P ).
It is a cocycle when for every collection S1, ..., Sm of m observables, where m is the
length of S, we have

(158) F (µm(S, (S1, ..., Sm));P ) = F (S;P ) +
∑
i

P(S = i)F (Si;P |S = i).

Note that the partition µm(S, (S1, ..., Sm)) is not the joint of S and the Si for i ≥ 1,
except when all the Si coincide. Thus it is amazing that the ordinary entropy also
satisfies this functional equation, finer than the Shannon’s identity:

Proposition 8. The usual entropy H(S∗P) = H(S;P) is an arborescent co-cycle.

Proof. By linearity on the module of divided probabilitiesMX , we can decompose
the probability P in the conditional probabilities P|(S = s), thus we can restrict the
proof of the lemma to the case where S = π0 is the trivial partition, i.e., m = 1.

Let Xi; i = 1, ...,m denote the elements of the partition associated to S0 and
Xj
i ; j = 1, ..., ni the pieces of the intersection ofXi with the elements of the partition

associate to Si; note pi the probability of the event Xi and pji the probability of

the event Xj
i ; we have

(159) H(µm(S0; (S1, ..., Sm));P) = −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i ,
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and

HS0(S1; ...;Sm;P) = −
i=m∑
i=1

pi

j=ni∑
j=1

pji
pi

log2

pji
pi

(160)

= −
i=m∑
i=1

j=ni∑
j=1

pji (log2 p
j
i − log2 pi)(161)

= −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i +

i=m∑
i=1

log2 pi

j=ni∑
j=1

pji(162)

= −
i=m∑
i=1

j=ni∑
j=1

pji log2 p
j
i +

i=m∑
i=1

pi log2 pi,(163)

then

(164) H(µm(S0; (S1, ..., Sm));P)−HS0
(S1; ...;Sm;P) = H(S0;P).

Q.E.D.

This identity was discovered by Faddeev, Baez, Fritz, Leinster see [3]. However,
we propose that information homology explains its significance.

When the category of quantum information S, the set A and the probability
functor Q are invariant under the unitary group, and if we choose a classical full
subcategory S, there is trace map from Q to Q, induces a morphism from the clas-
sical arborescent co-homology of S, A and Q to the invariant quantum arborescent
co-homology of S, A and Q.
As a corollary of the Lemma 10 and the Theorems 1 and 3, we obtain the following
result:

Theorem 4. (i) both in the classical and the invariant quantum context, if S(A) is
connected, sufficiently rich, and if Q is canonical, every 1-co-cycle is co-homologous
to the entropy of Shannon; (ii) in the classical case H1(S, A,Q) is the vector space
of dimension 1 generated by the entropy; (iii) in the quantum caseH1

U (S, A,Q) = 0,
and the only invariant 0-cochain which has for co-boundary the Shannon entropy
is (minus) the Von-Neumann entropy.

6.4. Arborescent Mutual Information.
For k = 2, a cochain is given by a local function of a probability and a rooted
decorated tree of level 2. It is a cocycle when the following functional equation is
satisfied ∑

i

P(S = i)F (Ti;Ui;P |S = i)− F (S;T ;P )

= F (µm(S ◦ T );U ;P )− F (S; (µni
(Ti ◦ Ui); i ∈ [m]);P ),(165)

where S denotes a variable of length m, T a collection of m variables T1, ..., Tm
of respective lengths n1, ..., nm and U a collection of variables Uki,j of respective
lengths ni,j , with i going from 1 to m, j going from 1 to ni and k going from 1 to
ni,j ; the notation Ui denoting the collection of variables Uki,j of index i.

Our aim is to extend in the monadic context the topological action of the ordinary
information structure on functions of probability used in the discussion of mutual
information.
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For that, we define another structure of VX -right module on the functor MX

associated to probabilities, by defining the following map θt(m) fromMX(m) ten-
sorized with VX(n1)⊗ ...⊗ VX(nm) to MX(n), for n = n1 + ...+ nm:

(166) θt((P, i,m)⊗ S1 ⊗ ...⊗ Sm) =
∑

j=1,...,ni

(P, (i, j), n).

Remark that the generalized decompositions Sj are used only through the orders
on their elements.

As for R, it is easy to verify that the collection of maps θt(m) defines a right
action of the monad VX on the Schur functor MX .

Then we consider as before, the graded vector space C∗(MX) of homomorphisms
of V-modules from the functors M◦ V◦k; k ≥ 0 to the functor R which are mea-
surable in the probabilities P . As before, on C∗(MX), we shift the degree by one,
because of the independency with respect to the last stage of the forest, which
follows from the trivial action on R.

The topological coboundary operator δt is defined in every degree by the formula
of the simplicial bar construction, as in Equation (153) for δ, but with θt replacing
θ. It corresponds to the usual simplicial complex of the family V◦k. A cochain
is represented by a family of functions of probability laws FX(S1; ...;Sk; (P, i,m)),
where S1; ...;Sk denotes a forest with m trees of level k. The operator δt is given
by

(167) δtF (S0; ...;Sk; (P, i,m)) = F (S1; ...;Sk; θt((P, i,m), S0))

− F (µ(S0, S1); ...;Sk; (P, i,m))− ...+ (−1)kF (S0; ...;µ(Sk−1, Sk); (P, i,m))

+ (−1)k+1F (S0; ...;Sk−1; (P, i,m)).

where n = n1 + ... + nm is the sum of numbers of branches of the generalized
decompositions Si0 for i = 1, ...,m.

As for δ, a value F (S1; ...;Sk; (P, j, n) depends only on the tree Sj1; ...;Sjk rooted
at the place numbered by j in the forest S1; ...;Sk.

Lemma 12. The coboundary δt sends a regular cochain to a regular cochain.

Proof. Consider a simple vector (P, i,m) in MX(m) and a forest S0; ...;Sk with

m components; we denote by Sj0 the variable number j having degree nj , and
n = n1 + ...+ nm, and we consider the formula (167).

If F is regular the first term on the right is the sum of the images by F for P
and the ni trees Si,ji1 which result from the forgetting of the first branches Si0, and
the other terms on the right are equal to the value of F for P and the tree rooted
at i in S0. On the other side for the tree Si0; ...;Sik, if F is regular, we have

(168)

δF (Si0; ...;Sik; (P, 1)) =
∑
j

F (Si,j1 ; ...;Si,jk ; (P, 1))−F (µ(Si0, S
i
1); ...;Sik; (P, 1))− ...

+ (−1)kF (Si0; ...;µ(Sik−1, S
i
k); (P, 1)) + (−1)k+1F (Si0; ...;Sik−1; (P, 1)).

Thus δF is topologically regular.

Consequently we can restrict δt to the subcomplex C∗r (NX), and name its homol-
ogy the arborescent, or tree, topological information co-homology, writtenH∗τ,t(S

∗, A,Q).
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Now we suggest to extend the notion of mutual information I(X;Y ;P) in the
way it will be a cocycle for this co-homology as it was the case for the Shannon
mutual information in the ordinary topological information complex. We suggest
to adopt the formulas using δ and δt, as in the standard case:

Definition 18. Let H(T ; (P, i,m)) denotes the regular extension to forests of the
usual entropy; then the mutual arborescent information between a partition S of
length m and a collection T of m partitions T1, ..., Tm is defined by

(169) Iα(S;T ;P) = δtH(S;T ;P).

The identity δH = 0 implies

(170) Iα(S;T ;P) =

i=m∑
i=1

H(Ti;P)− P(S = i)H(Ti;P|S = i)).

In the particular case were all the Ti are equal to a variable T , it gives

Iα(S;T ;P) =

i=m∑
i=1

P(S = i)(H(T ;P)−H(T ;P|S = i)) + (m− 1)H(T ;P)

= H(T ;P )−
i=m∑
i=1

P(S = i)H(T ;P|S = i)) + (m− 1)H(T ;P)

= H(T ;P)−HS(T ;P) + (m− 1)H(T ;P),

then

(171) Iα(S;T ;P) = I(S;T ;P) + (m− 1)H(T ;P).

For S(A), the function Iα is an arborescent topological 2-cocycle.
It satisfies the Equation (165) were P replaces conditional probabilities P|(S = i)

and where the factors P(S = i) disappear. Remark that, in this manner, maximiza-
tion of Iα(S;T ;P) comports maximization of usual mutual information I(S;T ;P)
and unconditioned entropies H(Ti;P).

Pursuing the homological interpretation of higher mutual information quantities
given by the Formulas (55) and (56), we suggest the following definition:

Definition 19. The mutual arborescent informations of higher orders are given by
Iα,N = −(δδt)

MH for N = 2M + 1 odd and by Iα,N = δt(δδt)
MH for N = 2M + 2

even.
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