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In this paper, we address the structure and interaction of neighboring asymmetric Néel and Bloch
walls in soft ferromagnetic films.

First, we review a recent reduced model for the structure of parallel systems of asymmetric walls
with potentially interacting tails. The reduced model has the form of a minimization problem in two
parameters that describe the amount of rotation in a stray-field free wall-core and the average hard-
axis magnetization in each domain, respectively. Starting from the micromagnetic torque equation,
we provide a new derivation of this reduced model that uses the method of matched asymptotic
expansions instead of the original variational approach. The theoretical results apply to any soft
thin-film material and cover also isolated domain walls, in the limiting case of large domain widths.

With only little numerical effort, we then obtain detailed quantitative information on the struc-
ture of asymmetric domain walls. In particular, we predict the hard-axis magnetization curves for
asymmetric Bloch and interacting asymmetric Néel walls.

In the second part of the paper, we report on experimentally observed domain-wall transitions
in Co40Fe40B20 films of lateral dimensions 60µm × 9500µm and thicknesses 102nm, 153nm, and
212nm. Upon the wall transition, the average hard-axis magnetization in the domains increases
significantly. The increase depends on the width of the domains and ranges from 0.1Ms to 0.25Ms

for domain widths between 18µm and 6µm. For the thicknesses 102nm and 153nm, the predicted
hard-axis magnetization jump excellently agrees with the experimental data. We conclude that
interacting tails of neighboring asymmetric Néel walls cause the observed additional rotation of the
magnetization towards large hard-axis fields.

Hence, our results contribute to a quantitative understanding of isolated and interacting asym-
metric domain walls in soft ferromagnetic films.

I. INTRODUCTION

Even though magnetic domain walls in ferromagnetic
films have been under experimental and theoretical inves-
tigation for a long time, a general theory that describes
their properties and structure is not yet available. De-
pending on the film thickness, the magnetic properties of
the material and applied magnetic fields, different wall
types may be energetically favored. Figure 1 shows a
phase diagram that indicates the wall type of least energy
in films of Permalloy and CoFeB, depending on the nor-

malized film thickness t/d and the reduced field H = | ~H|
HK

,

for the two material-dependent quality factors Q = Ku

Kd
.

Here, HK denotes the anisotropy field, Ku the first-order
anisotropy constant, d =

√

A/Kd the Bloch line width,
A the exchange constant and Kd = 1

2µ0M
2
s the demagne-

tizing constant of the material with the vacuum perme-
ability µ0 and the saturation magnetization Ms. In this

work, we will only consider soft materials, i.e. Q ≪ 1.

In very thin films, symmetric Néel walls are observed
with a magnetization profile that splits into a narrow
core region with an extension of the order of ∼ d2/t and
extended tails with a logarithmically decaying magne-
tization over a width wtails ∼ t/Q. For low-anisotropy
materials, the dominant contribution to the energy of
symmetric Néel walls is the stray field generated in their
tails.
For intermediate film-thicknesses, cross-tie walls are ob-
served which consist of a series of Bloch lines and 90◦ Néel
wall segments in between. Note that the results presented
below do not allow for a prediction of the cross-tie wall
energy, which is therefore not present in the phase dia-
gram.
In thicker films, partially or completely stray-field free
domain walls are energetically favored, namely the asym-
metric Néel wall and asymmetric Bloch wall.2,3 In con-
trast to the asymmetric Bloch wall, the asymmetric Néel
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Figure 1. Phase diagram according to (5) for nanocrystalline
Permalloy and amorphous CoFeB, i.e. Q = 2.5 · 10−4 (solid
lines) and Q = 1.55 · 10−3, respectively. Note that compared
to Ref. 1, Fig. 3.80, the transition between symmetric and
asymmetric Néel walls is shifted towards larger fields.

wall reduces its energy by splitting off an extended tail.
A vortex pattern is formed within the wall core, which
avoids most of the dipolar charge. Typically, about 10%
of the dipolar charges are distributed in the tails of asym-
metric Néel walls. With increasing hard-axis field the con-
tribution of the tails to the total magnetization rotation
increases until – at a critical field value – the asymmetric
core disappears in favor of a symmetric Néel wall struc-
ture (cf. Ref. 1, Section 3.6.4 (E)). For a more detailed
review on magnetic domain walls in thin films we refer
the reader to Ref. 1 and references therein.

The existence of different wall types as well as the oc-
currence of domain wall transitions in an applied field
is of practical relevance for various applications. For in-
stance it has been shown recently that the high-frequency
magnetization response of domain structures is signifi-
cantly altered due to a network of interacting neighbor-
ing walls.4 As the acoustic domain resonance frequency
depends on the effective domain wall width and on the in-
teraction strength between neighboring domain walls, ei-
ther smooth or step-like changes (in the order of 0.5 GHz)
of the domain resonance frequency can be observed due
to domain wall transformations. For the quantification of
such effects, the knowledge of the internal structure of a
domain wall, i.e. its width and the strength of interaction
with walls in the neighborhood is indispensable.

The interaction between neighboring symmetric Néel
walls by an overlap of their extended tails has been
demonstrated to significantly determine the energy bal-
ance and structure of the domain walls.1 Whereas wall
interaction does not play a dominant role for stray-field
free asymmetric Bloch walls, it can be still significant for

the energy and magnetization configuration of neighbor-
ing asymmetric Néel walls.

The analysis of domain walls very much depends on
the specific wall type: On the one hand, the one-
dimensional nature of symmetric Néel walls makes both
their numerical5 and analytic6–9 treatment possible. On
the other hand, the structure of asymmetric Bloch
walls is only accessible to Ritz methods2,3 or numerical
micromagnetics10,11, which is feasible due to the small
wall width. For asymmetric Néel walls, the combination
of a two-dimensional wall pattern with long-range ex-
tended tails makes this type of wall difficult to study by
numerical simulation1,11.

Recently, a step towards a quantitative understanding
of the splitting of asymmetric Néel walls into stray-field
free core and logarithmic tails has been undertaken. In
Ref. 12 an asymptotic limit of the micromagnetic energy
functional was derived that yields a precise description
of the relative amount of rotation in stray-field free wall
core and logarithmic wall tails for an isolated domain
wall. The results have been generalized to systems of in-
teracting domain walls.13

Here, we briefly summarize the main results of Refs. 12
and 13 and compare the theoretical with experimental
results for Co40Fe40B20 films. Thereby we aim to demon-
strate the validity of the proposed model, which can be
easily applied for various magnetic thin film materials.
Additionally, we provide an alternative derivation of the
reduced models that focuses on the torque balance be-
tween magnetic moments and effective field instead of
energy considerations.

II. THEORY

Consider a ferromagnetic film with uniaxial anisotropy
(||y), a thickness t with − t

2 ≤ z ≤ t
2 and infinite ex-

tensions in the film plane (xy-plane). For the presence
of magnetic domain walls in the film two cases will be
distinguished, as sketched in Fig. 2.

In a first case (a) we assume that two domains of con-
stant magnetization ~m(x = ±∞) = (cosα,± sinα, 0)
have formed and are separated by a domain wall. Then, in
a second case (b) a system of domain walls is considered
that are equally spaced at a distance w and which may
interact via extended wall tails. The energy of isolated

and interacting domain walls in an external field ~Hext||x
is derived starting from the Landau-Lifshitz energy (see,
e.g., Ref. 1, Section 3.2):

E = A

∫

|grad ~m|2dV − 1
2µ0Ms

∫

~Hd · ~mdV

+Ku

∫
(
1− (~m · ~e)2

)
dV − µ0Ms

∫

~Hext · ~mdV,

(1)
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Figure 2. (Color online) Domain configuration (top) consid-
ered in the reduced model for (a) an isolated domain wall
(blue) and (b) a system of domain walls at distance w in an
extended film of thickness t. The bottom row schematically
illustrates the magnetization component mx on the film sur-
face with core (mx > cos θ) and tail region (mx > cosα) of
asymmetric walls.

with the magnetization vector ~m =
~M

Ms
, the stray or de-

magnetizing field ~Hd, and ~e ||y the anisotropy axis. By
dV we denote the volume element.

To make the problem accessible to a mathematical treat-
ment, we assume that all domain walls are parallel to
the y-axis and the magnetization configuration is trans-
lation invariant in y, so that it suffices to study the energy
density per length in the y-direction. Note, however, that
this assumption excludes the formation of Bloch lines and
wall segmentation as it occurs for cross-tie walls.

A. A reduced model for domain walls in
moderately thin films

In order to reduce the number of physical parame-
ters in the problem, we employ the Kd-based non-
dimensionalization14 of (1). On a cross-section of the
sample in the xz-plane with area element dA we obtain:

E = d2
∫

|grad ~m|2dA+

∫

R2

|~hd|2dA

+Q

∫
(
(mx −H)2 +m2

z

)
dA,

(2)

with ~Hd = Ms
~hd and ~Hext = HK(H, 0, 0) =

MsQ(H, 0, 0). The quantity H denotes the reduced ex-
ternal field. Note that while passing from (1) to (2) we
have also added the normalizing constant Q

∫
H2dA to

ensure that each of the constant magnetization configu-
rations ~m = (H,±

√
1−H2, 0) has vanishing energy den-

sity. Moreover, E is only partially non-dimensional and
has units of area.

In the regime Q ≪ ( t
d )

2 ≪ Q−1 and for a wall angle
2α = 180◦, the minimal wall energy (2) per unit domain
wall length is known15 to scale as follows (up to a multi-

plicative constant):

Ewall ∼
{

t2 ln−1 1
Q , if ( t

d )
2 ≤ ln 1

Q ,

d2, if ( t
d )

2 ≥ ln 1
Q .

In thin films, the minimal-energy scaling Ewall ∼
π
2 t

2 ln−1 1
Q is satisfied by symmetric Néel walls (see also

Refs. 14, Section 4.6.2, and 7). In thicker films, the
minimal-energy scaling Ewall ∼ d2 is satisfied by, e.g.,
a stray-field free asymmetric Bloch wall.

Thus, in order to analyze both symmetric and asym-
metric walls, in particular asymmetric Néel walls with
extended tails, it seems most promising to focus on the
critical regime of the cross-over from symmetric to asym-
metric wall types, i.e. the asymptotic regime ( t

d )
2 ∼ ln 1

Q

as Q ↓ 0. In this regime, for sufficiently large (reduced)
hard-axis field H ∈ [0, 1], one expects to recover a domain
wall of Néel instead of Bloch type.

In Refs. 12 and 13, it has been shown mathematically
rigorously that in this regime and both for isolated and
interacting walls the internal structure of an arbitrary
domain wall can be determined by analyzing a simple
scalar minimization problem.

We will describe the result for the periodic case (b): One
may assume that the width w ≫ t of the domains is
strictly smaller than the width t/Q of the tails of sym-
metric Néel walls that are constrained only by anisotropy.
Otherwise, one does not expect interaction of the walls
and may treat each domain wall independently. In partic-
ular, for w ≪ t/Q it is expected that the wall tails invade
the whole domain. Thus, to leading order in w/t ↑ ∞,
the sum of stray-field and anisotropy/Zeeman energy of
logarithmic wall tails that connect the magnetization
mx = cos θ in the core to mx = cosα in the center of
a domain (cf. Fig. 2) is given by

Etails(θ, α,H) := π
2 t

2 (cos θ−cosα)2

ln w
t

+Qwt(cosα−H)2.

Optimizing the angle α, we find that the magnetization
in the center of the domain is given by

cosαopt = H + πt
πt+2Qw ln w

t

(cos θ −H). (3)

In particular, one identifies the interesting regime of pe-
riods

w ∼ t
Q ln(1/Q) ,

in which a non-trivial cosα is possible. Surprisingly, the
domain width w needs to be by ln(1/Q) smaller than the
naive guess t/Q for the critical regime of periods.

The optimal angle θ for the transition from stray-field
free wall core to the logarithmic tails under the reduced
external field H can be found by optimizing the sum of
the minimal exchange energy Ecore(θ) of a stray-field free
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wall core16 of wall angle θ and the energy of the optimal
wall tails:

Ewall(H) ≈ min
θ

(

Ecore(θ) + min
α

Etails(θ, α,H)
︸ ︷︷ ︸

=π
2
t2 2Qw

πt+2Qw ln w
t
(cos θ−H)2

)

. (4)

Choosing17 w ≫ t/Q ln 1
Q , one recovers for Q ≪ 1 a

reduced model for the structure of an isolated domain
wall (a):

Ewall(H) ≈ min
θ

(

Ecore(θ) +
π
2

t2

ln 1
Q

(cos θ −H)2
)

. (5)

The structure of (4) and (5) confirms and quantifies the
description of asymmetric Néel walls as an optimal com-
bination of stray-field free wall cores with extended tails
given in Ref. 1, Section 3.6.4 (E). In other words, the
above results demonstrate that asymmetric Néel walls
have two internal parameters – the core and domain wall
angles θ and α – that the wall optimizes automatically to
produce the lowest micromagnetic energy given a reduced
external field H .

Note that this explanation (and also the rigorous proof
in Refs. 12 and 13) takes an energetic point of view and
is precise only in the limit Q ↓ 0. In the following section,
we will demonstrate that asymptotically the same result
(4) can be derived starting from the micromagnetic equa-
tions in the form of a torque balance, using the method of
matched asymptotic expansions. Moreover, this approach
potentially yields slightly more precise quantitative re-
sults for positive 0 < Q ≪ 1.

B. Matching core and tails by asymptotic
expansions

We will focus on the periodic case (b): Starting point
in the method of matched asymptotic expansions is the
first variation of the micromagnetic energy in its non-
dimensionalized form (2)

~m×
(

− d2△~m− ~hd +Q
(

mx−H
0

mz

))

= 0 for |z| < t
2 ,

∂z ~m = 0 for |z| = t
2 .
(6)

This torque balance has to be supplemented by (quasi-
static remnants of) Maxwell’s equations, expressed in
terms of the stray-field potential u (that is, hd =
− gradu):

△u = div ~m for |z| < t
2 ,

[−∂zu] = mz for z = ± t
2 ,

△u = 0 for |z| > t
2 .

(7)

We will assume that the configuration has the symmetry
of the asymmetric Néel wall, i.e. that it is invariant under

the transformation (x, z) → −(x, z), my → −my, u →
−u at each wall core.

We first turn to the core or inner region in the parlance of
matched asymptotics. Because this region is small, it can
afford a z-dependent magnetization pattern that to lead-
ing order avoids magnetic charges. Likewise, the effects
of anisotropy and external field are negligible. Hence in
this region, (6) and (7) are well-approximated by

~min ×
(
−△~min + grad uin

d2

)
= 0

div ~min = 0

}

for |z| < t
2 ,

∂z(min,x,min,y) = 0 and min,z = 0 for |z| = t
2 .

(8)

In the first equation, the (reduced) stray-field poten-
tial uin

d2 plays the role of a Lagrange multiplier for the
divergence-free condition in the second equation, like the
pressure in the equations describing an incompressible
fluid. We learn from (8) that the only length scale for
the core is the film thickness t. For all physically relevant
solutions of (8), the asymptotic behavior (i.e. for large
|x|) of the magnetization ~min is of the form

~min ≈ (cos θ,± sin θ, 0) for ± x ≫ t (9)

for some angle θ, which we interpret as the amount
of magnetization rotation in the asymmetric core. In
fact, there are two and only two continuous branches
θ 7→ ~min,θ of solutions of (8) with (9) that correspond
to the core of an asymmetric Néel (as opposed to Bloch)
wall. Both are related by a reflection z → −z, mz → −mz

and hence have the same energy. They intersect only for
the angle θ = 0, where ~min,θ = (1, 0, 0). Under smooth
changes of the external field H , the relevant solutions will
be on the same branch, which effectively makes the rel-
evant ~min,θ uniquely defined. In line with the discussion
that leads to the approximation (8), the energy of ~min,θ

is given by

Ecore(θ) = d2
∫

|grad ~min,θ|2dA. (10)

This now allows to characterize the asymptotic behavior
also of the stray-field potential u:

4t(sin θ)uin ≈ ± dEcore

dθ for ± x ≫ t. (11)

We note that (11) follows from using (9) after integrating
in x the identity

d
dθ

1
2

∫ t
2

− t
2

| grad ~min,θ|2dz

= d
dx

∫ t
2

− t
2

(∂x ~min,θ · ∂θ ~min,θ − uin

d2 ∂θmin,θ,x)dz,

which belongs to the realm of equipartition of energy
statements and easily follows from multiplying (8) with
∂θ ~min,θ.
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In the large tail region, the outer region, we neglect vari-
ations of the magnetization in the z direction, neglect the
mz-component, and project all the magnetic charges into
the {z = 0}-plane, so that (7) turns into

∂zuout(z = 0+)− ∂zuout(z = 0−)
= t∂x(mout,x −H)

︸ ︷︷ ︸

=t∂xmout,x

for z = 0,

△uout = 0 for z 6= 0,

(12)

where we denote by z = 0+ and z = 0− the limits z → 0
with z > 0 and z < 0, respectively, i.e. the limits from
above and below.

On the other hand, in the in-plane projection of the

torque balance ~m||−d2△~m−~hd+Q((mx−H)~ex+mz~ez),
cf. (6), we neglect the exchange term and arrive at
(mx,my)||(∂xu+Q(mx−H), ∂yu = 0), which, as long as
my 6= 0, i.e. away from the wall cores, implies18

∂xuout +Q(mout,x −H) = 0 for z = 0, x 6∈ wZ. (13)

We note that (12) & (13) form a system of linear equa-
tions for (uout,mout,x − H), with a one-dimensional set
of physically relevant solutions. The two relevant length
scales are w and t/Q. It is also convenient to choose the
multiplicative degree of freedom Aout such that it nor-
malizes the near-field behavior

uout = ±Aout for z = 0 and x = 0±, (14)

periodically extended.

Equating the inner and outer approximation to the stray-
field potential, that is, uin from (11) and uout from (14),
in the intermediate region t ≪ x ≪ w yields the first
matching condition

Aout =
1

4t sin θ
dEcore

dθ . (15)

The second matching condition comes from equating the
magnetizations: The Fourier transform of the solutions
of (12) & (13) can be determined explicitly. For fixed
mout,x, equation (12) is solved by

F
(
uout

)
(k, z) = −t

F
(
∂x(mout,x−H)

)
(k,z)

2|k| e−|k||z|, k ∈ 2π
w Z.

Multiplying (13) by e−ikx, integrating the result in x on
[0, w) and using the above, one finds

F
(
mout,x −H

)
(k) = 2Aout

Q+ t
2
|k|

, k ∈ 2π
w Z. (16)

The value 2Aout = uout(x = 0+) − uout(x = w−) for
z = 0 enters due to an integration by parts in x that
removes the derivative on uout.

From (16) one can now read off the profile of the wall
tails:

mout,x −H = 2Aout

w

∑

k∈ 2π
w

Z

cos(xk)
Q+ t

2
|k|

= 2Aout

Qw

∑

n∈Z

cos(2π x
w
n)

1+ πt
Qw

|n|
.

Sample No. Film thickness /nm µ0Ha /mT Q /10−3

1 102 2.02 1.36

2 153 1.37 0.93

3 212 1.72 1.16

Table I. Sample properties of extended reference films.

Using Qw/t ≪ 1, we compute

mout,x −H = 2Aout

Qw

(

1 + 2Qw
πt

∞∑

n=1

cos(2π x
w
n)

Qw

πt
+n

)

= 2Aout

Qw

(

1 +O
(

2Qw
πt

)

+ 2Qw
πt

∞∑

n=1

cos(2π x
w
n)

n

︸ ︷︷ ︸

=O(1)+ln(w/x)

)

≈ 2Aout

Qw

(

1 + 2Qw
πt ln w

t

)

, provided x ∼ t.

Equating the inner approximation of the magnetization
min,x in (9) with the outer approximation mout,x from
above in the overlapping range we obtain

cos θ −H ≈ 2Aout

Qw

(

1 + 2Qw
πt ln w

t

)

.

The two matching conditions (15) and the above combine
to

dEcore

dθ + πt2
2Qw

t

π+2Qw
t
ln w

t

(cos θ −H)(− sin θ) = 0.

This equation is precisely the first variation of (4) in θ.

Additionally, one computes the domain average of mx

in the periodic case by evaluating the zeroth Fourier
mode F(mout,x−H)(k = 0) = 2Aout/Q using the second
matching condition:

1
w

∫ w

0

mout,x dx = H+ 2Aout

Qw = H+ π
π+2Qw

t
ln w

t

(cos θ−H).

Another way of deriving this reduced model consists in
studying isolated walls, which decay quadratically for
|x| ≫ t/Q, by similar methods. The superposition of wall
tails coming from walls at centers x ∈ wZ can be shown
to yield the same result as the above Fourier approach.

C. Evaluation of the theoretical results for
different material parameters

In the following, we aim to apply the reduced model for
interacting tails of asymmetric domain walls using realis-
tic thin film parameters and derive (i) hard axis magne-
tization curves depending on the domain wall spacing w,
(ii) magnetization changes resulting from the Bloch-Néel
wall transition under applied magnetic fields and (iii) the
contribution of the wall core to the overall magnetization
rotation in the walls.
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Figure 3. (Color online) Predicted hard-axis magnetization
curves for the reduced model (4) with asymmetric Néel cores.
The prediction for asymmetric Bloch walls (dotted lines) is
essentially independent of domain widths, sample dimensions
and material parameters. Material parameters are those of
sample 1.

We employ the material parameters shown in Table I
which correspond to the samples that will be studied in
Section III.

Figure 3 displays the hard-axis magnetization mx(w/2)
that is obtained by minimizing (4) in θ for the ma-
terial parameters of sample 1 (cf. Table I). The value
mx(w/2) ≈ cosαopt is obtained from the optimal θ =
θopt in (4) by evaluating (3). As energy of the asymmet-
ric wall core, we use the exchange energy of numerically
determined exactly stray-field free asymmetric Bloch and
Néel walls, cf. (10). As expected, the choice of material
parameters and the tail energy contribution is irrelevant
along the Bloch wall branch mx(w/2) ≈ H .

As expected, Figure 3 shows that neighboring walls inter-
act more strongly, i.e. entail stronger hysteresis, the nar-
rower the domains are. Note that in the experimentally
relevant range of reduced fields H ∈ [0, 0.35], mx(w/2) is
almost linear in H . Since the instability fields of Néel and
Bloch wall seem unavailable within the reduced model,
we will therefore use the value mx(w/2) for zero field
H = 0 and Néel wall cores to predict the jump ∆mx(w/2)
between Néel and Bloch magnetization branches at insta-
bility.

Figure 4 predicts a strong interaction of neighboring wall
tails as soon as the domain period w falls below ∼ 0.2t/Q.
This threshold decreases with increasing reduced film
thickness t/d.

Finally, Figure 5 shows the relative amount of rotation
θopt/α in wall core and tails for the parameters from sam-
ples 1 and 2 in percent as a function of the reduced ex-
ternal field. One observes that for small reduced external
field H ≈ 0.3, in both samples and independent of the do-
main width, about 90−95% of the rotation falls upon the
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Figure 4. (Color online) The hard-axis magnetization (3) at
zero field H = 0 for Néel wall cores serves as prediction for
the magnetization jump between the almost linear Bloch and
Néel wall branches. The curves for amorphous CoFeB (solid
lines, Q = 1.5 · 10−3) and nanocrystalline Permalloy (dashed
lines, Q = 2.5 · 10−4) are virtually indistinguishable.

core. At larger fields, the tails gain importance until at
fields HAS ≈ 0.75− 0.9, depending on the film thickness
and domain width, the asymmetric wall core vanishes.
The critical field HAS increases with the normalized film
thickness t/d, domain width w/t, and inverse anisotropy
quality factor 1/Q. It can be shown to have the value

HAS ≈ 1− 4
π+2Qw

t
ln w

t

( t
d
)2Qw

t

,

provided this number is non-negative.

Note that formally, for w = t/Q, Q ≪ 1, we obtain

HAS ≈ 1− 8(dt )
2 ln 1

Q

as critical field for the transition from asymmetric to sym-
metric Néel wall in an infinitely extended soft ferromag-
netic film without interaction of neighboring wall tails.

III. EXPERIMENTS

In this section, we are going to address the transition be-
tween the asymmetric wall types in a varying hard-axis
field from an experimental point of view. In particular,
we will compare the predicted hard-axis magnetization
mx(w/2) in the domain center (cf. Figure 3) and the
magnetization jump ∆mx(w/2) (cf. Figure 4) to the cor-
responding experimental data (cf. Figures 7 and 9).

In fact, the experimental observation of strongly hys-
teretic wall transitions in the presence of nearby walls
has originally motivated the theoretical study of inter-
acting walls.

Instead of Permalloy, the most popular material used for
soft magnetic film studies, we have chosen amorphous
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Figure 5. (Color online) A prediction according to (4) of the
relative amount of rotation in the asymmetric wall cores for
the samples 1 (solid lines) and 2 (dashed lines) for various
domain wall spacings, cf. Table I.

CoFeB films for the experimental part. Compared to
Permalloy with a typical nanocrystalline microstructure,
they have similar magnetic properties, but are lacking
significant ripple modulations of magnetization within
the domains. The absence of such disturbing inhomogene-
ity is favorable for subtle domain wall studies.

A. Sample Preparation

Ferromagnetic films of amorphous Co40Fe40B20 of vary-
ing thicknesses were prepared on glass wafers by means
of ultrahigh-vacuum magnetron sputtering at room
temperature19. An in-plane magnetic field of µ0Hdep =
25mT was applied during film deposition to induce a
uniaxial magnetic anisotropy. When studying the interac-
tion between adjacent magnetic domain walls one should
ideally consider different magnetic domain configurations
in extended films as the effects of domain wall pinning
at domain wall triple junctions and structural edges are
reduced1. However, lateral patterning was found to be re-
quired to allow for the creation of well defined magnetic
domains with antiparallel magnetization and a narrow
distribution of magnetic domain wall spacings. Therefore,
arrays of stripe-shaped structures with in-plane dimen-
sions of 60 µm×9500 µm and the long axis perpendicu-
lar to the induced anisotropy axis were patterned using
photolithography. A stripe width of 60 µm was found to
be a good compromise between sufficiently small domain
wall spacings and large edge-to-edge-separation. The lat-
eral spacing between individual stripes was chosen to be
90 µm to minimize effects originating from interelement
magnetostatic interaction. A saturation magnetization of
µ0Ms = 1.48T was extracted from out-of-plane mag-
netization curve measurements of an unpatterned ref-
erence film (not shown). Table I summarizes the dif-

ferent samples, including the film thickness and uniax-

ial anisotropy field Ha = | ~Ha| as derived from in-plane
magneto-optical hysteresis measurements along the mag-
netic hard axis of reference films (not shown). Slight vari-
ations of anisotropy strength may be due to slightly dif-
ferent deposition conditions.

B. Magneto-optical Kerr Magnetometry

Flux-closed domain patterns were initialized by demag-
netizing the samples in an alternating external magnetic

field ~Hdem of decreasing amplitude at a frequency of

50 Hz. By varying the in-plane angle α of ~Hdem with re-
spect to the anisotropy axis the magnetic domain wall
spacing w was systematically altered from broad domain
states (for small α) to narrow domain states with small
domain wall spacings (for α → 90◦), see exemplarily
Fig. 6 (a). The domain states, studied by longitudinal
magneto-optical Kerr microscopy1, comprise basic do-
mains with alternating magnetization direction parallel
to the induced magnetic easy axis and a closure struc-
ture that consists of easy-axis spike domains and closure

domains with ~M parallel to the stripe edges. The vertical
bright and dark lines in the domain image with transverse
Kerr sensitivity (Fig. 6 (b)) represent the surface mag-
netization of the 180◦-domain walls. From literature1,20

and due to the fact that the walls appear equally black
and white in the images one can conclude for zero ap-
plied field and for the chosen film parameters that these
domain walls are asymmetric Bloch walls. A slight mis-
match between the induced easy axis of magnetization
and the short axis of the elements was introduced during
patterning. However, this should not effect the magneti-
zation behavior in hard axis fields in a field range, where
closure domains are still present.

Subsequently, a static magnetic field ~H was applied per-
pendicular to the 180◦ domain walls, i.e. parallel to the
hard axis of magnetization. The domain structure adapts
to the increasing hard axis field by rotational magnetiza-
tion processes inside the basic domains and by growth of

the preferentially magnetized ( ~M along ~H) closure do-
mains. The evolution of the Kerr intensity parallel to
the applied field was recorded for the center area of the
basic domains (compare red frame in Fig. 6 (b)). The lo-
cal magnetization curves of several domains with similar
domain wall spacing were averaged and normalized with
respect to the Kerr intensity at saturation. As during this
hysteresis measurement the maximum applied field am-
plitude was always smaller than the saturation field of the
stripes, any irreversible effects originating from domain
nucleation have been reduced. This procedure allows for
the local recording of minor domain magnetization curves
depending only on the domain wall spacing and the film
thickness. Minor domain magnetization loops are demon-
strated in Fig. 7 for different domain wall spacings w and
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a)

30 µm

b)

α = 0°

45°

90°

20 µm

Hdem

w

Ha
α

stripe axis

Figure 6. (Color online) a) Kerr images of a stripe section

with a thickness of 153 nm after demagnetization with ~Hdem

under α = 0◦, 45◦ and 90◦, arrows indicate the magnetization
direction within the domains. b) The closure domain state
studied with transversal Kerr sensitivity shows that the sur-
face magnetization of neighboring 180◦ domain walls appears
equally dark and bright. Dotted arrows indicate the domain
wall magnetization at the bottom surface of the film. In or-
der to extract local magnetization curves only the area high-
lighted by the red frame was considered.

a film thickness of 102 nm.

For sufficiently small domain wall spacings a jump in
the transverse domain magnetization is observed at fields
HBN and HNB for increasing and decreasing field, respec-
tively, with |HBN| > |HNB| (see inset in Fig. 7). With de-
creasing domain wall spacing this hysteresis gets broader
and the corresponding jump in the transverse magneti-
zation component increases. Studying the corresponding
domain images (see Fig. 8), a superdomain structure ap-
pears around HBN which expands progressively from the
stripe center towards its edges as the transversal field
amplitude is increased.

High resolution imaging of the domain walls (not shown
due to weak contrast) revealed that the surface inten-
sity of the former dark domain walls changed to be
bright within the area of the brighter superdomains.
Consequently, the magnetization jump observed in the
local domain magnetization curves under the influence
of a transversal magnetic field goes along with the ex-
pected transformation of the domain walls from asym-
metric Bloch walls to asymmetric Néel walls. This con-

Figure 7. (Color online) Minor magnetization loops for three
different basic domain widths measured (thick solid lines)
in fields perpendicular to the easy axis of magnetization in
a sample of 102 nm thickness. In comparison the calculated
hysteresis branches (thin solid lines) for cases of asymmet-
ric Néel walls and asymmetric Bloch walls are shown. The
inset schematically illustrates the quantification of the mag-
netization changes that go along with a wall transformation
at transition fields HBN and HNB.

0 mT 0.4 mT 0.45 mT

0.5 mT 0.7 mT

µ H0 0

Hk

20 µm

NW

BW

Figure 8. (Color online) Kerr images of a Co40Fe40B20 stripe
section (thickness: 102 nm). The left image in the first row cor-

responds to the demagnetized state with ~Hdem applied at an
angle of α = 90◦ with respect to ~Hk. Subsequently a transver-
sal field of increasing amplitude is applied as indicated in the
domain images. At µ0H0 = 0.4mT a superdomain structure
emerges, which is highlighted by a dotted line for better visi-
bility. The superdomain expands towards the stripe edges as
the transversal field amplitude increases. The formation of a
superdomain structure is provoked by the transition of the
center wall segments from asymmetric Bloch wall (BW) to
asymmetric Néel wall (NW).

clusion is supported by the quantitative agreement be-
tween the experimental magnetization change and the
theoretically predicted magnetization change from the
asymmetric Bloch to the asymmmetric Néel wall branch
(compare thin solid lines in Fig. 7). Upon decreasing the
field amplitude the process is reversed (not shown): At
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Figure 9. (Color online) Change of the transversal magneti-
zation due to the transition between asymmetric Bloch and
asymmetric Néel walls under the action of an applied transver-
sal field. The theoretical values are calculated using the re-
duced model (4) with experimentally determined material pa-
rameters and an exchange constant of A = 1.3 × 10−11 J/m
(d ≈ 3.86 nm for µ0Ms = 1.48 T).21

a critical field |HNB | < |HBN | darker superdomains ap-
pear close to both stripe edges and expand towards the
stripe center as H is further decreased. Consequently,
HBN corresponds to the reconversion of asymmetric Néel
to asymmetric Bloch walls. The jump of the domain mag-
netization constitutes an additional contribution to the
transversal magnetization component due to the inter-
action of neighboring Néel wall tails. In order to quan-
tify the strength of the interaction between adjacent
asymmetric Néel walls for different film thicknesses and
domain wall spacings w the magnetization change ∆m
(∆mx(w/2) in the notation of Section II) was deduced
from the corresponding domain magnetization curves as
sketched in the inset in Fig. 7. By linearly extrapolating
the Néel wall branch of the minor magnetization curves
to H = 0 the magnetization change due to the wall tran-

sition ∆m = M(H=0)
Ms

is quantified independently of the
transition fields HBN and HNB, similar to the applied
procedure resulting in Fig. 4. Thereby ∆m can be com-
pared to the values derived by the presented model where
the wall transition fields are not known. Figure 9 com-
pares the experimental and theoretical values of ∆m ob-
tained for stripes with a thickness of 102 nm, 153 nm and
212 nm.

As already obvious from Fig. 7 the interaction strength
between neighboring Néel wall segments qualitatively in-
creases as the domain wall spacing is reduced which re-
sults in an increase of ∆m. For a film thickness of 102 nm
and 153 nm the experimental values scatter around the
theoretical values calculated by using the reduced model
(see Sec. II). Hence, quantitative agreement between
model and experiment is observed for a film thickness of
102 nm and 153 nm. Whereas the model predicts a slight

decrease of the interaction strength between neighboring
Néel wall tails (reduction in ∆m) when increasing the
film thickness to 212 nm, the experimental values do not
follow this trend. On the one hand, this may mean that
the reduced model is not suited for the description of
domain walls in CoFeB films that exceed a critical thick-
ness. The fact that the samples in Table I do not clearly
satisfy the regime Q(t/d)2 ≪ 1 might indicate that the
breakdown of the reduced model occurs within the range

1.5 ≈ 0.93 · 10−3 · (153/3.86)2

/ Q(t/d)2

/ 1.16 · 10−3 · (212/3.86)2 ≈ 3.5.

On the other hand, this deviation could be due to slightly
varying material parameters for the different depositions,
in particular the exchange constant and saturation mag-
netization. It has been observed that the theoretical pre-
dictions of ∆m are very sensitive to slight changes of the
material parameters.

IV. CONCLUSION

Both, for a single wall in an extended ferromagnetic film
as well as a system of interacting domain walls we have
reviewed mathematically rigorous reduced models that
describe and quantify the splitting of asymmetric domain
walls into a stray-field free core and extended logarithmic
tails. In addition, the reduced model for interacting walls
predicts the average hard-axis magnetization within the
domains.

In order to verify the prediction (3), hard-axis mag-
netization loops for the hysteretic transition between
asymmetric Bloch and interacting asymmetric Néel walls
have been measured in Co40Fe40B20 films of thicknesses
102 nm, 153 nm and 212 nm. While the instability fields
for the transition from asymmetric Bloch to Néel wall and
vice versa seem inaccessible within the reduced model, it
reliably predicts the magnetization curves for asymmet-
ric Bloch and Néel walls in the two thinner samples. In
the film of thickness 212 nm, the reduced model underes-
timates the measured data by a factor of 2, which may
indicate that the validity limit of the reduced models can
be found within the range 1.5 / Q(t/d)2 / 3.5.

By evaluating (5) for various field strengths and
anisotropies Q ∈ {2.5 ·10−4, 1.5 ·10−3} (corresponding to
CoFeB and Permalloy) and determining the energetically
favored domain wall among symmetric (characterized by
θ = 0) and asymmetric (θ > 0) Néel and asymmetric
Bloch walls, we have obtained phase diagrams that qual-
itatively agree with the previously available results (see
Ref. 1, Fig. 3.80). Since the latter are based on numeri-
cal simulations, some of them not properly including the
effect of extended tails of asymmetric Néel walls, we pro-
pose using the reduced models (4) and (5) as an easy-to-
use and potentially more precise means of determining
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the energy and internal structure of domain walls in fer-
romagnetic films of medium thickness. In particular, we
propose using (5) as wall energy density in domain the-
ory. In this way, employing the well-known ansatz for the
cross-tie configuration, also an estimate for the energy
of this domain wall microstructure can presumably be
obtained.

Furthermore, by presenting a new derivation of the peri-
odic reduced model (4), we demonstrate the equivalence
of the energy-12,13 and torque-balance based approaches
to studying the structure of asymmetric domain walls.

Possible and desirable extensions consist in a verification

of the reduced models and their estimated range of va-
lidity in a larger class of samples and ferromagnetic ma-
terials, as well as deriving predictions for the instability
fields marking the transition between the two asymmetric
wall types.
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