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Abstract. It is well-known that thermal equilibrium states in quan-
tum statistical mechanics and quantum field theory can be described
in a mathematically rigorous manner by means of the so-called Kubo-
Martin-Schwinger (KMS) condition, which is based on certain analyt-
icity and periodicity properties of correlation functions. On the other
hand, the characterization of non-equilibrium states which only locally
have thermal properties still constitutes a challenge in quantum field
theory. We discuss a recent proposal for characterization of such states
by a generalized KMS condition. The connection of this proposal to a
proposal by D. Buchholz, I. Ojima and H.-J. Roos for characterizing
local thermal equilibrium states in quantum field theory is discussed
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1. Introduction

Soon after the introduction of the algebraic approach to quantum field theory,
developed by Araki, Haag and Kastler in the 60’s [1,15], it became clear that
this framework allows for an immediate adoption to non-relativistic quantum
systems, for example spin lattice models. This led to the conclusion that equi-
librium states in quantum statistical mechanics should be described in the
operator-algebraic framework by the Kubo-Martin-Schwinger (KMS) condi-
tion, which was first envisaged by Haag, Hugenholtz and Winnink in [16].
The mathematically rigorous formulation of equilibrium quantum statisti-
cal mechanics based on the KMS condition has offered many insights into
the structural properties of equilibrium states and at the same time has re-
vealed previously unexpected connections to pure mathematics, in particular
to Tomita-Takesaki modular theory, which had a huge influence on the un-
derstanding of quantum field theory, see e.g. the review article of Borchers [3].
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For references and an extensive discussion of non-relativistic quantum statis-
tical mechanics in the operator algebraic formulation, the reader is referred
to the monograph by Bratteli and Robinson [4]. Interestingly, it took almost
20 years until the KMS condition was used in the rigorous investigation of
thermal properties of relativistic quantum fields. This was initiated by Buch-
holz and Junglas [8, 9], leading to a fully relativistic version of the KMS
condition [5] and an axiomatic approach to thermal field theory (à la Wight-
man [25]), in which the relativistic spectrum condition is replaced by the
relativistic KMS condition [6].

Although the KMS condition turned out to be fruitful in this respect, it
is clear from the outset that, in general, an arbitrary state of a quantum sys-
tem will not be an equilibrium (KMS) state, since in nature there also arises
a variety of non-equilibrium states ranging from mild perturbations of equi-
librium states to steady states (e.g. a steady heat flow through a metal bar)
and hydrodynamic flows (for example water in a pipe), up to states which
do not admit any thermal interpretation at all. On the side of relativistic
QFT, Buchholz, Ojima and Roos [10] developed a method for distinguishing
between states which are out of equilibrium but locally still have a thermo-
dynamical interpretation. Heuristically speaking, a local thermal equilibrium
(LTE) state is defined as a state for which certain (point-like) observables,
representing intensive thermal quantities like temperature, pressure and ther-
mal stress-energy, take the same values as they take if the quantum field is
in some thermal reference state (a KMS state or a mixture of such). Below
we will discuss how this can be made precise and review several aspects of
the LTE condition in quantum field theory.

The KMS condition is based on given analyticity and periodicity prop-
erties of correlation functions and yields an intrinsic characterization of equi-
librium states. In contrast, the LTE condition of Buchholz, Ojima and Roos
has to be regarded an extrinsic condition, since it is based on the comparison
of a state with the members of an a priori fixed family of thermal reference
states. It seems to be natural to ask if one could characterize such local equi-
librium states in a manner similar to the KMS condition, i.e. by an intrinsic
condition also based on analyticity and periodicity properties of the corre-
lation functions of LTE states. In fact, recent results of Gransee, Pinamonti
and Verch show that this is possible. Motivated by the analysis of correlation
functions of KMS states of the free quantized scalar field, in [14] a gener-
alized version of the KMS condition, called local KMS (LKMS) condition,
is introduced. Following this, it is shown that a certain class of LTE states
in the sense of [10] can be equivalently described by this condition. We will
discuss the LKMS condition and its relation to the LTE condition in section
3 below.

1.1. Preliminaries
The QFT model. For simplicity we consider an uncharged free scalar quan-
tum field on Minkowski spacetime M = R4, with the Minkowski pseudo-
metric η of diagonal form η = diag(+1,−1,−1,−1). The field is regarded
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as an operator-valued distribution f 7→ φ(f) on the space S(M) of Schwartz
functions f , where the operators are all defined on a common dense and stable
domain D of the underlying Hilbert space H. The algebra of local observables
is the ∗-algebra A(M), generated by multiples of 1 and finite sums as well
as products of the field operators. This algebra is stable under the action
of the proper, orthochronous Poincaré group P↑+, implemented on the field
operators by

τ(Λ,a)(φ(f)) = φ(f(Λ,a)), (1.1)

where f(Λ,a)(x) = f(Λ−1(x − a)), and stable under the action of the gauge
group Z2, acting as γ(φ(f)) = −φ(f). Furthermore, we assume that

i) f 7→ φ(f) is linear.
ii) φ(f)∗ = φ(f̄) for all f ∈ S(M).
iii) Klein Gordon equation: φ((� + m2)f) = 0 for all f ∈ S(M), where �

denotes the d’Alembert operator and m ≥ 0 is the mass parameter.
iv) Canonical Commutation Relations (CCR): [φ(f), φ(g)] = iE(f, g)1 for

all f, g ∈ S(M), where E denotes the causal propagator, which is de-
fined as the difference of the advanced minus the retarded fundamental
solution of the Klein-Gordon equation. Einstein causality is expressed
by E(f, g) = 0 if f and g have mutually spacelike separated supports.

A state on A(M) is a continuous normalized positive linear functional ω :
A(M) → C. The n-point “functions‘” of a state are distributions in S ′(Mn),
formally given by

ωn(x1, . . . , xn) := ω(φ(x1) · · ·φ(xn)), n ∈ N. (1.2)

Mostly, we will focus on quasifree states which are determined by their
two-point functions ω2 through

ω
(
eitφ(f)

)
= e−

1
2ω2(f,f)·t2 , (1.3)

where the equation is to interpreted as equating terms of equal order in t.
Furthermore, we assume that the states are gauge invariant, which means
ω ◦ γ = ω.

In the following we will only consider (quasifree) states fulfilling the
Hadamard condition, characterized by the following restriction on WF(ω2),
the wave front set of their two-point functions,

WF(ω2) = {(x, x′, k,−k) ∈ T ∗M2 : x ∼k x′, k0 > 0}, (1.4)

or even analytic Hadamard states, characterized by a restriction on the ana-
lytic wave-front set of their two-point functions:

WFA(ω2) = {(x, x′, k,−k) ∈ T ∗M2 : x ∼k x′, k0 > 0}. (1.5)

For a discussion of the properties and a definition, the reader is referred
to [19, 26] and references therein. For a motivation why one would prefer to
consider Hadamard states, see e.g. [2].
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Definition 1.1. Let A be a ∗-algebra, αt a one-parameter group of auto-
morphisms on A, ω a state on A and β > 0. Define the open strip Sβ by
Sβ := {z ∈ C : 0 < =z < β} and denote by S̄β the closed strip. Then ω is
called a KMS state at value β with respect to αt (or (β, αt)-KMS state, for
short), iff for any A,B ∈ A there exists a function FA,B , which is defined and
holomorphic on Sβ , and continuous on S̄β , with boundary values

FA,B(t) = ω (Aαt(B)) , (1.6)
FA,B(t+ iβ) = ω (αt(B)A) , (1.7)

for all t ∈ R.
A Lorentz frame is fixed by the choice of a future-directed timelike unit

vector e; this means e ∈ V+, where V+ denotes the open forward lightcone,
and e2 ≡ eµeµ = 1. The set of those vectors will be denoted by V 1

+ in the
following. In the present model the one-parameter group of time evolution
on A(M) with respect to the Lorentz frame fixed by some e ∈ V 1

+ is given by

α
(e)
t = τ(1,te), t ∈ R. (1.8)

A KMS state ωβ with respect to α(eβ)
t is regarded as a thermal equi-

librium state at inverse temperature β with respect to the rest system (or
Lorentz frame) specified by some eβ ∈ V 1

+. Therefore thermal equilibrium
states in relativistic QFT are indicated by both inverse temperature β and
time direction eβ of the rest system. It is convenient to combine the two
quantities into the inverse temperature four-vector β = βeβ ∈ V+ so that ωβ
denotes a (β, α

(eβ)
t )-KMS state on A(M). We therefore call call ωβ simply

a β-KMS state. To rule out possible phase transitions, we assume that for
any given β there is a unique gauge-invariant β-KMS state ωβ on A(M).
This assumption also implies that ωβ is invariant under spacetime transla-
tions. Furthermore we point out that β-KMS states are quasifree states and
fulfill the analytic microlocal spectrum condition [26], in particular they are
analytic Hadamard states.

It has been shown in [5] that the correlation functions

FA,B(x) = ωβ(Aτ(1,x)(B)), x ∈ R4

of β-KMS states ωβ on A(M) have in fact stronger analyticity properties
than those implied by the KMS condition. These analyticity properties can
be seen as a remnant of the relativistic spectrum condition in the case of a
thermal equilibrium state.

Definition 1.2. A state ωβ on A(M) satisfies the relativistic KMS condition
at inverse temperature β > 0 iff there exists some eβ ∈ V 1

+, such that for any
A,B ∈ A(M) there exists a function FA,B which is defined and holomorphic
in the tube Tβeβ = {z ∈ C4 : =z ∈ V+ ∩ (βeβ + V−)}, where V− = −V+, and
continuous at the boundary sets =z = 0 and =z = βeβ with

FA,B(x) =ωβ(Aτ(1,x)(B)), (1.9)

FA,B(x+ iβeβ) =ωβ(τ(1,x)(B)A), x ∈ R4. (1.10)
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2. The LTE condition of Buchholz, Ojima and Roos

The first key step in the analysis of Buchholz, Ojima and Roos in [10] is the
construction of spaces Qq of idealized observables (density-like quantities)
located at q ∈M. Those observables are well-defined as quadratic forms and
their expectation values can be calculated in all states with an appropriate
high-energy behaviour. From the spaces Qq one then selects subspaces Sq ⊂
Qq of local thermal observables s(q). The thermal interpretation of these
observables is justified by evaluating them in thermal reference states. The
set of these reference states is denoted by CB and consists of mixtures of KMS
states ωβ, with β contained in some compact subset B ⊂ V+. A generic state
ωB ∈ CB is represented in the form

ωB(A) =

∫
B

dµ(β)ωβ(A), A ∈ A(M), (2.1)

where µ is a positive normalized measure on V+, with support contained in
B.

The connection between the local thermal observables from the spaces
Sq and the macroscopic thermal properties of a reference state is provided
as follows: As discussed explicitly in [7], the local observables s(q) yield the
same information on the thermal properties of the reference states as certain
macroscopic observables S, namely for certain sequences fn ∈ D(R4) with
fn ↗ 1R4 the limit

S = lim
n→∞

s(fn) (2.2)

exists in all thermal reference states and defines a macroscopic (central) ob-
servable, i.e. S is commuting with any element A ∈ A as well as with the
spacetime translations τ(1,a), a ∈ R4. One assumes that all macroscopic in-
tensive thermal parameters of a β-KMS state are given by maps β 7→ S(β)
which are called thermal functions. For any s(q) ∈ Sq we can define such
functions by

β 7→ S(β) := ωβ(s(q)), (2.3)

which are Lorentz tensors with the tensorial character depending on s(q). Fur-
thermore, as a consequence of spacetime translation invariance of the states
ωβ, they do not depend on the specific choice of the point q ∈ M. The ther-
mal functions yield the central decomposition of the macroscopic observables
S [7]. Thus, we can identify S with the respective thermal function S(β)
and the states ωB can be lifted to the space of macroscopic observables via

ωB(S)(q) := ωB(s(q)), s(q) ∈ Sq. (2.4)

In the present model the spaces of thermal observables are defined as the
spaces Snq , spanned by the so-called balanced derivatives of the Wick square
up to order n. Those are defined as

ðµ1...µn : φ2 : (q) := lim
ξ→0

∂ξµ1 . . . ∂ξµn [φ(q + ξ)φ(q − ξ)− ωvac(φ(q + ξ)φ(q − ξ)) · 1] ,

(2.5)
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where ωvac is the unique vacuum state on A(M) and the limit is taken along
spacelike directions ξ. Of particular interest is the space S2

q which contains
(besides the unit 1) two thermal observables which play a prominent role.
The first one is : φ :2 (q), the Wick square of φ at the point q ∈ M, which is
usually regarded as corresponding to a point-like ”thermometer observable“
Θ(q). This is due to the fact that its evaluation in a β-KMS state yields for
the Klein-Gordon field with m = 0:1

Θ(β) := ωβ(: φ2 : (q)) =
1

12β2
=
k2
B

12
T 2. (2.6)

The other thermal observable contained in S2
q is ðµν : φ2 : (q), the second

balanced derivative of : φ2 : (q). It is of special interest since its expectation
values in a β-KMS state ωβ are (up to a constant) equal to the expectation
values of the thermal stress-energy tensor [10]:

Eµν(β) := −1

4
ωβ(ðµν : φ2 : (q)) =

π2

90

(
4βµβν − β2ηµν

)
(β2)−3. (2.7)

For the Klein-Gordon field with m = 0 an easy computation yields [10]:

S(n)(β) := ωβ(ðµ1···µn : φ2 : (q)) = cn∂
β
µ1 . . . ∂

β
µn

(
β2
)−1

. (2.8)

This makes clear that the thermal functions S(n)(β) can be constructed
completely out of β.2 Thus they can be viewed as thermal functions corre-
sponding to the micro-observables s(q). Furthermore, due to the invariance
of ωβ under spacetime translations, they are independent of q. Note, that for
odd n the thermal functions are equal to 0.

The definition of local thermal equilibrium in the sense of [7, 10] can
now be stated for the quantized Klein-Gordon field3 as follows:

Definition 2.1. Let O ⊂M and ω a Hadamard state on A(M).
1.) We say that ω is a local thermal equilibrium state of order N in O with

sharp inverse temperature vector field β(O), or [β(O), N ]-LTE state for
short, iff there exists a continuous (resp. smooth, if O is open) map
β : O → V+ for any q ∈ O it holds

ω(s(q)) = ωβ(q)(s(q)) ∀s(q) ∈ Snq , n ≤ N, (2.9)

where ωβ(q) is the unique extremal β(q)-KMS state on A(M)
2.) We say that ω is a local thermal equilibrium state of order N in O with

mixed temperature distribution µ, or [µ,O, N ]-LTE state for short, iff
there exists a function µ : q 7→ µq, q ∈ O, where each µq is a probability
measure with support in some compact B(q) ⊂ V+, and for any q ∈ O

ω(s(q)) = ωB(q)(s(q)), ∀s(q) ∈ Snq , n ≤ N, (2.10)

1In the massive case the expression ωβ(: φ
2 : (q)) yields a slightly more complicated but

still monotonously decreasing function of β.
2This is also true in the massive case. Here, the thermal functions are given by a more
involved expression which is analytic in β [17].
3In [10] a definition has been given which is valid for more general quantum fields φ, also
including interacting ones.
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where the states ωB(q), q ∈ O are defined by

ωB(q)(A) =

∫
B(q)

dµq(β)ωβ(A), A ∈ A(M). (2.11)

We say that ω is a [µ,O]-LTE state iff (2.10) holds for all n ∈ N.

It is obvious from this definition that any β-KMS state ωβ is a β(M)-
LTE state with constant inverse temperature vector field given by β(q) ≡ β.
Although this should be the case for consistency reasons the noteworthy
feature of the above definition lies in the possibility of a varying inverse tem-
perature vector field β, so an LTE state can have varying inverse temperature
βq (resp. inverse temperature distribution µq) as well as varying rest frame
at each q ∈ O.

It is known from special relativistic thermodynamics that all relevant
macroscopic thermal parameters, in particular the entropy current density,
for a (local) equilibrium state can be constructed once the components of Eµν
are known [12, Chapter 4]. This means that in order to gain knowledge about
the coarse macroscopic properties of (local) equilibrium states it is sufficient
to analyze them by means of the subset S2

q of all thermal observables. For
increasing n the spaces Snq contain more and more elements, i.e. the higher
balanced derivatives of : φ2 : (q). Thus, the [β(O), N ]-LTE condition intro-
duces a hierarchy among the local equilibrium states in the following sense: If
we successively increase the order N in this condition we obtain an increas-
ingly finer resolution of the thermal properties of this state. For finite N we
obtain a measure of the deviation of the state ω from complete local thermal
equilibrium (which would amount to a β(O)-LTE state).

An example of a β(O)-LTE state onA(M) (massless case), withO = V+,
has been given in [10]. It is a quasifree state ωhb on A(M), the so-called hot
bang state defined via

ωhb
2 (x, y) =

1

(2π)3

∫
R4

d4p
ε(p0)δ(p2)

1− e−γ(x+y)p
e−ip(x−y), x+ y ∈ V+, (2.12)

where γ > 0 is a real parameter. One finds immediately that for all q ∈ V+

ωhb(ðµ1...µn : φ2 : (q)) = ωβ(q)(ðµ1...µn : φ2 : (q)), (2.13)

where ωβ(q) is the unique extremal β(q)-KMS state with β(q) = 2γq, q ∈ V+.
Thus, the state ωhb in fact is a β(V+)-LTE state in the sense of Definition
2.1. It describes the spacetime evolution of a “heat explosion” with infinite
temperature at the tip of the forward lightcone V+ which justifies the name
hot bang state. For a more thorough discussion of the properties of ωhb we
refer to the article by Buchholz [7]. Below we will see that such a state is
in fact the genereic example of an infinite-order and sharp-temperature LTE
state of the massless Klein-Gordon field.
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3. A local version of the KMS condition
The LTE condition of [10] is based on the heuristic assumption that one
should be able to obtain information about the (macroscopic) thermal prop-
erties of near-to-equilibrium states by comparing them pointwise to thermal
reference states (KMS states or mixtures of such) by means of localized ther-
mal observables. In the present model those observables were modelled by
the Wick square : φ2 : (q) and its balanced derivatives. This choice has been
largely motivated by the fact that the expectation value of the Wick square
in equilibrium is proportional to the square of the equilibrium temperature
(i.e. temperature in the sense of the 0th law of thermodynamics). It would
clearly be desirable to give further arguments for the special choice of the
thermal observables in the free field case. A physical motivation, based on
the investigation of the behaviour of moving detectors modelled by quantum
mechanical two-level systems (Unruh detectors), has been given in [20]. On
the mathematical side, in view of the definition of the balanced derivatives
of the Wick square, Eq. (2.5), one should be able to encode the thermal
properties of an LTE state ω on A(M) directly on the level of the two-point
functions ω2. This assumption is further strengthened by observing that the
correlation functions ωβ2 (q ∓ ξ, q ± ξ) for a β-KMS state are completely de-
termined by the expectation values ωβ(ðµ1···µn : φ2 : (q)) for all n ∈ N, as
discussed in [10]. In the following we will discuss a recent proposal by Gransee,
Pinamonti and Verch [14] for characterizing LTE states by properties of their
two-point function ω2 which are similar to the KMS condition. It will turn
out that under reasonable additional analyticity requirements this character-
ization yields the class of [β(O), N ]-LTE states, which were introduced in the
previous section.

A first observation in [14] is, that for any Hadamard state ω on A(M)
and any q ∈M the “function” wq, given by

wq(ξ) := ω2 (q − ξ, q + ξ) , ξ ∈ R4, (3.1)

can be meaningfully defined as a distribution in S ′(R4). In particular, for any
timelike future-pointing unit vector e ∈ V 1

+ the “function” uq,e, defined by

uq,e(t) := ω2 (q − te, q + te) , t ∈ R, (3.2)

is well-defined as a distribution in S ′(R). If ωβ is a β-KMS state on A(M)
it follows from the spacetime translation invariance of such states that the
distribution uβ, defined by

uβ(t) := ωβ2 (q − teβ , q + teβ) (3.3)

is independent of the choice of the point q ∈M. The role of the parameter t
is enlightened by the following observation: If ωβ is a β-KMS state on A(M),
then for arbitrary but fixed q ∈M there is a complex function fβ, holomorphic
on the strip Sβ, with (distributional) boundary values

fβ(t) = ωβ2 (q − teβ , q + teβ) and fβ(t+ iβ) = ωβ2 (q + teβ , q − teβ) .
(3.4)
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This is to be seen as a remnant of the KMS condition, in which the
parameter t plays the same role as the parameter of the one-parametric group
of time evolution on A(M), and where the boundary value conditions (1.6)
and (1.7) are replaced by the weaker property (3.4) above. However, the above
properties are surely not sufficient to imply the β-KMS condition. The main
point is that these properties are valid with respect to an a priori fixed point
q ∈ M and therefore do not tell us anything about spacetime translation
invariance of the state ωβ. Furthermore, the knowledge of the distribution
uq ∈ S ′(R) (which arises as the restriction of the distribution wq ∈ S ′(R4)
to the set {ξ ∈ R4 : ξ = teq, t ∈ R}) does not completely determine the
correlation functions ω(q ∓ ξ, q ± ξ) but only their restrictions to timelike
arguments ξ. However, if one makes the additional assumption that the state
ω fulfills the analytic Hadamard condition (1.5), one observes [14]:

Observation. An analytic Hadamard state ω fulfills the β(q)-LTE condition
if and only if there exists a β(q) ∈ V+ such that

wq(ξ) = wβ(q)(ξ) =
1

(2π)3

∫
d4p

ε(p0)δ(p2 −m2)

1− e−β(q)p
e−ipξ, (3.5)

which is to be understood in the sense of distributions.

This shows that the β(q)-LTE condition together with the analytic
Hadamard condition is sufficient to determine the correlation functions ω(q∓
ξ, q±ξ) completely. As mentioned above, the respective correlation functions
for the comparison equilibrium state ωβ(q) are completely fixed by the ex-
pectation values ωβ(q)(ðµ1...µn : φ2 : (q)) for any q ∈ O. This provides an
additional justification for the use of the balanced derivatives as the thermal
observables in the present model. Analyzing the analyticity properties of the
correlation functions wβ(q)(ξ), the above observation is used in [14] to relax
the KMS condition as follows:

Definition 3.1. Let q ∈ M and ω an analytic Hadamard state on A(M). We
say that ω fulfills the local KMS condition at q with respect to β(q), or β(q)-
LKMS condition for short, iff there exists a β(q) ∈ V+ and a complex function
Fq with the following properties:
(i) Fq is defined and holomorphic in the (flat) tube

Tq = {z ∈ C4 : =z = σeq, 0 < σ < βq}. (3.6)

(ii) For all compact K ⊂ (0, β) there exist constants CK > 0 and NK ∈ N0

such that

|Fq(ξ + iσeq)| ≤ CK(1 + |ξ + iσeq|)NK , ξ ∈ R4, σ ∈ K. (3.7)

(iii) We have in the sense of distributions:

Fq(ξ + iσeq) −−−−→
σ→0+

wq(ξ), (3.8)

Fq(ξ + i(βq − η)eq)) −−−−→
η→0+

wq(−ξ), (3.9)
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(iv) We have the following clustering property:

wq(teq) −−−−→
|t|→∞

0. (3.10)

Let O be a spacetime region. We say that ω fulfills the β(O)-LKMS condition,
iff there exists a continuous (resp. smooth, if O is open) map β : O → B ⊂ V+

such that ω fulfills the β(q)-LKMS condition for all q ∈ O.

Any β-KMS state ωβ is a β(O)-LKMS state with O = M, where βq ≡ β
and eq ≡ eβ are constant throughout Minkowski spacetime. However, the
natural question arises if there are other examples of nontrivial LKMS states.
We first note that the β(q)-LKMS condition can be shown [14] to have an
equivalent momentum-space formulation: A state ω on A(M) fulfills the β(q)-
LKMS condition if and only if there exists a β(q) = βqeq ∈ V+, such that in
the sense of distributions

ŵq(p) = eβ(q)pŵq(−p), (3.11)

and the cluster property (3.10) holds.
The relation (3.11) can be seen as a remnant of the β-KMS condition

in momentum space [6]. With the definition (2.12) of the hot-bang state ωhb
one sees that the latter is an example of a β(O)-LKMS state with O = V+

and β(q) = 2γq. Thus, the local KMS condition appears as a non-trivial
generalization of the KMS condition. More generally, relations (3.10) and
(3.11) yield

ŵq(p) =
1

2π

ε(p0)δ(p2 −m2)

1− e−β(q)p
= ŵβ(q)(p) (3.12)

This shows that the β(q)-LKMS condition (in position or in momentum
space) is sufficient to completely determine the correlation functions wq(ξ).
In consequence, this proves:

Theorem 3.2. Let q ∈M and ω an analytic Hadamard state on A(M). Then
the following are equivalent:
(i) ω is a β(q)-LTE state.
(ii) ω fulfills the β(q)-LKMS condition.

LKMS and finite-order LTE states. For LTE states of finite order (in the
sense of Definition 2.1) it seems to be clear that the relation (3.5) will not be
valid exactly, but that a similar relation might hold. Informally, in view of the
definition of the balanced derivatives (2.5), one would expect the following to
hold: The directional derivatives with respect to ξ of the correlation functions
ω(q∓ξ, q±ξ) at the point ξ = 0 coincide with those of the respective correlation
functions of a comparison equilibrium state ωβ(q), up to order N .

Of course, from a mathematical point of view, this statement is mean-
ingless, because the correlation functions are distributions in S ′(R4) and it
is not clear what is meant by “the directional derivatives of ω(q∓ ξ, q± ξ) at
the point ξ = 0”. Nevertheless, one has a mathematically well-defined version
of the above informal statement [14]:
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Observation. Let q ∈M. An analytic Hadamard state ω on A(M) fulfills the
[β(q), N ]-LTE condition if and only if there exists a β(q) ∈ V+ such that

[∂α(wβ(q) −wq)](0) = 0 ∀α ∈ {α ∈ N4
0 : |α| ≤ N}, (3.13)

where wβ(q)(ξ) = ω
β(q)
2 (q − ξ, q + ξ) for the unique β(q)-KMS state ωβ(q).

This observation can be used to further generalize the β(q)-LKMS con-
dition:

Definition 3.3. Let q ∈ M and N ∈ N. An analytic Hadamard state ω on
A(M) is said to fulfill the [β(q), N ]-LKMS condition iff there exists a β(q) ∈
V+ such that there is a complex function Fq with the following properties:

(i) Fq is defined and holomorphic in the (flat) tube

Tq = {z ∈ C4 : =z = σeq, 0 < σ < βq}. (3.14)

(ii) For all compact K ⊂ (0, βq) there exist constants NK ∈ N and CK > 0
such that

|Fq(ξ + iσeq)| ≤ CK(1 + |ξ + iσeq|)NK , ∀ σ ∈ K. (3.15)

(iii) There exists a symmetric Rq ∈ S ′(R4) with WFA(Rq) = ∅ and

[∂αRq(0)] = 0 ∀a ∈ {α ∈ N4
0 : |a| ≤ N}, (3.16)

(wq +Rq)(teq) −−−−→
|t|→∞

0 , (3.17)

such that in the sense of distributions

Fq(ξ + iσeq) −−−−→
σ→0+

(wq +Rq)(ξ), (3.18)

Fq(ξ + i(βq − η)eq)) −−−−→
η→0+

(wq +Rq)(−ξ). (3.19)

(iv) We have the following cluster property:

(wq +Rq)(teq) −−−−→
|t|→∞

0. (3.20)

This definition can also be generalized to open regions O of Minkowski
spacetime. An analogous analysis as for the β(q)-LKMS condition shows
that the [β(q), N ]-LKMS condition is sufficient to determine the correlation
functions ω(q ∓ ξ, q ± ξ), similar to (3.5), but only up to some real-analytic
“rest term” Rq : R4 → R4. Without going into details, we want to state that
this implies the following result:

Theorem 3.4. Let q ∈M and ω an analytic Hadamard state on A(M). Then
the following are equivalent:

(i) ω is a [β(q), N ]-LTE state.
(ii) ω fulfills the [β(q), N ]-LKMS condition.
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(iii) There exists a β(q) = βqeq ∈ V+ and a symmetric R̂q ∈ S ′(R4) with

F [pαR̂q(p)](0) = 0 ∀α ∈ {α ∈ N4
0 : |α| ≤ N}, (3.21)

(3.22)

such that the cluster property (3.20) holds and we have in the sense of
distributions:

eβ(q)p(ŵq + R̂q)(−p) = (ŵq + R̂q)(p). (3.23)

For a proof of Theorem 3.4 we again refer to [14].

Constraints from the Klein-Gordon equation. A further interesting question
is the following: Given a [β(O), N ]-LKMS state for some (open) subset O, is
the form of the map β : O → V+ completely arbitrary? Surely, this is not the
case if the comparison equilibrium states ωβ(q) ought to fulfill the (relativistic)
KMS condition. It turns out (cf. also [7,17]) that the equations of motion for
the field φ imply dynamical constraints on the correlation functions wq(ξ)
which give restrictions on the map β. For the case of the massless Klein-
Gordon field on can prove the following [14]:

Proposition 3.5. Let ω ⊂ M and ω a analytic Hadamard state on A(M)
which fulfills the β(O)-LKMS condition. Then there exists a b ∈ R4 such
that O ⊂ {V+ − b} (resp. O ⊂ {−V+ − b}) and

βµ(q) = cωq
µ + bµ ∀q ∈ O, (3.24)

where cω > 0 (resp. cω < 0) is a state-dependent constant.

If we exclude the somewhat unphysical case cω < 0 this makes clear that
the hot-bang state ωhb, defined by (2.12), is the generic example of a β(O)-
LKMS state. Namely, the analytic Hadamard condition on a β(O)-LKMS
state ω implies that wq = wβ(q) for all q ∈ {V+ − b} and, in consequence,
that ω fulfills the β({V+ − b})-LKMS condition, with

βµ(q) = cωq
µ + bµ ∀q ∈ {V+ − b}. (3.25)

The hot-bang state then corresponds to b = 0 and any other β(O)-LKMS
state arises from ωhb by ω = ωhb ◦ τ(1,−b), b ∈ R4.

For the massive Klein-Gordon field the situation is even more restrictive:
In this case it turns out that for ω ⊂ M the only states which can fulfill the
β(O)-LKMS condition are the states for which β(q) = const. for all q ∈ O.
The analytic Hadamard condition on O then implies that ω has to be the
unique β-KMS state ωβ on A(M). Thus, there are no nontrivial infinite-order
LTE states of the massive Klein-Gordon field.

LTE states with mixed temperature. The above discussion implies that states
of the massive Klein-Gordon field which are thermal in a subset O ⊂ M
always have to be mixed-temperature LTE states in the sense of Def. 2.1,
characterized at each q ∈ O by some probability measure µq. In [17] Hübener
succeeded in constructing a specific example of a [µq,O]-LTE state. Apart
from this, one has the following general existence result [10]:
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Proposition 3.6. Let q ∈ M. For every finite-dimensional subspace SNq of
all thermal observables and any compact Bq ⊂ V+ there exists a probability
measure µq, with support contained in Bq, and states ω on A(M) which are
[µq, N ]-thermal.

This result has been generalized by Solveen [23] as follows:

Proposition 3.7. Let O be a compact region of Minkowski spacetime. For every
finite-dimensional subspace SNq of all thermal observables there exists a map
µ : q 7→ µq, q ∈ O, where µq is a probability measure compactly supported in
V+, and states ω on A(M) which are [µ(O), N ]-thermal.

In view of these existence results, it seems to be desirable to give an in-
trinsic characterization of such states similar to the LKMS condition. Similar
to the case of sharp-temperature LTE states one observes the following [14]:

Observation. Let q ∈M. An analytic Hadamard state ω on A(M) fulfills the
[µ, {q}, N ]-LTE condition if and only if there exists a probability measure µq
with support in some compact B(q) ⊂ V+, such that

[∂α(wB(q) −wq)](0) = 0 ∀α ∈ {α ∈ N4
0 : |α| ≤ N}, (3.26)

where wB(q)(ξ) =
∫
B(q)

dµq(β)wβ(ξ).

Unfortunately, one immediately obtains that, although the distribution wB(q)

can be extended to a holomorphic function on a subset of C4, it does not have
periodicity properties in the imaginary space-time variable, since the state
ωB(q) does not fulfill the KMS condition with respect to some β ∈ V+. How-
ever, there might be the possibility to characterize such states by remnants
of the so-called auto-correlation inequalities, which yield another (equivalent)
characterization of equilibrium states in algebraic quantum statistical me-
chanics (see e.g. [4, Thm. 5.3.15 and Thm. 5.3.17]). This problem is currently
under investigation.

Summary and Outlook
In this article we reviewed some aspects of local thermal equilibrium states in
relativistic quantum field theory. The necessity to introduce such states arises
since one would like to describe the macroscopic properties of states in quan-
tum field theory which are not global equilibrium (KMS) states, but locally
still possess well-defined thermal parameters, like temperature and thermal
stress-energy. For the characterization of LTE states of the quantized Klein-
Gordon field on Minkowski spacetime one has in principle two options. One
could describe these states in operational way, as it has been done in [10],
which results in an (extrinsic) LTE condition. On the other hand, one could
aim at a more intrinsic characterization, based on properties of correlation
functions, in the spirit of the KMS condition. Such a generalized KMS condi-
tion, called local KMS condition, has been introduced in [14], and it turns out
that, under additional (physically motivated) analyticity assumptions on the
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two-point function, both approaches yield the same class of non-equilibrium
states of the quantized Klein-Gordon field on Minkowski spacetime.

Finally, we want to mention that the concept of LTE states has also been
generalized to include quantum fields on a generic curved spacetime [11, 22,
24] and some results concerning the thermal behaviour of quantum fields in
cosmological spacetimes of Friedmann-Robertson-Walker type [28] have been
established [13, 18, 21]. For an overview and a more in-depth discussion of
these results and other results concerning LTE states in quantum field theory,
we refer the interested reader to the exhaustive review article by Verch [27]
and the references therein. It clearly is a challenging task to try to generalize
the results concering the LKMS condition also to situations in which gravity
is present, i.e. in which space-time is curved.

Acknowledgements. The author wants to thank the organizers of the confer-
ence “Quantum Mathematical Physics” for their invitation and kind hospital-
ity during his stay in Regensburg. Parts of the work on the LKMS condition
have been carried out during a stay at the ESI in Vienna for the confer-
ence “Algebraic Quantum Field Theory - Its status and its future” in May
2014. Financial support from the International Max Planck Research School
“Mathematics in the Sciences” is gratefully acknowledged.

References
1. H. Araki, Mathematical theory of quantum fields, International series of mono-

graphs on physics , 101, Oxford University Press, 2009.
2. M. Benini, C. Dappiaggi, and T.-P. Hack, Quantum Field Theory on Curved

Backgrounds – A Primer, Int. Jour. Mod. Phys. A 28 (2013), 1330023.
3. H.J. Borchers, On revolutionizing quantum field theory with Tomita’s modular

theory, J.Math.Phys. 41 (2000), 3604–3673.
4. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical

Mechanics 2, Second Edition, Springer, 1997.
5. J. Bros and D. Buchholz, Towards a relativistic KMS-condition, Nucl.Phys.

B429 (1994), 291–318.
6. , Axiomatic analyticity properties and representations of particles in

thermal quantum field theory, Annales Poincare Phys.Theor. 64 (1996), 495–
522.

7. D. Buchholz, On Hot Bangs and the Arrow of Time in Relativistic Quantum
Field Theory, Commun.Math.Phys. 237 (2003), 271–288.

8. D. Buchholz and P. Junglas, Local Properties of Equilibrium States and the
Particle Spectrum in Quantum Field Theory, Lett.Math.Phys. 11 (1986), 51.

9. , On the Existence of Equilibrium States in Local Quantum Field Theory,
Commun.Math.Phys. 121 (1989), 255–270.

10. D. Buchholz, I. Ojima, and H. Roos, Thermodynamic properties of non-
equilibrium states in quantum field theory, Annals Phys. 297 (2002), 219–242.

11. D. Buchholz and J. Schlemmer, Local Temperature in Curved Spacetime,
Class.Quant.Grav. 24 (2007), F25–F31.



Local Thermal Equilibrium states in QFT 15

12. W.G. Dixon, Special Relativity, Cambridge University Press, 1978.
13. M. Gransee, Thermisches Verhalten des quantisierten Skalarfeldes auf

Friedmann-Robertson-Walker-Raumzeiten, Diploma Thesis, Universität Leipzig
(2010).

14. M. Gransee, N. Pinamonti, and R. Verch, Local Thermal Equilibrium as a Gen-
eralization of the KMS-condition, in preparation.

15. R. Haag, Local Quantum Physics, Springer, 1992.
16. R. Haag, N.M. Hugenholtz, and M. Winnink, On the Equilibrium states in

quantum statistical mechanics, Commun.Math.Phys. 5 (1967), 215–236.
17. R. Hübener, Lokale Gleichgewichtszustände massiver Bosonen, Diploma The-

sis, Universität Göttingen (2005).
18. A. Knospe, Lokales thermales Gleichgewicht und Quanten-Energie-

Ungleichungen für Dirac-Felder auf gekrümmten Raumzeiten, Diploma
Thesis, Universität Leipzig (2010).

19. H. Sahlmann and R. Verch, Microlocal spectrum condition and Hadamard
form for vector valued quantum fields in curved space-time, Rev.Math.Phys.
13 (2001), 1203–1246.

20. J. Schlemmer, Local Thermal Equilibrium States and Unruh Detectors in Quan-
tum Field Theory, arXiv preprint: hep-th/0702096 (2007).

21. J. Schlemmer, Local Thermal Equilibrium on Cosmological Spacetimes, PhD
Thesis, Universität Leipzig (2010).

22. J. Schlemmer and R. Verch, Local Thermal Equilibrium States and Quantum
Energy Inequalities, Annales Henri Poincare 9 (2008), 945–978.

23. C. Solveen, Local Thermal Equilibrium in Quantum Field Theory on Flat and
Curved Spacetimes, Class.Quant.Grav. 27 (2010), 235002.

24. , Local Thermal Equilibrium and KMS states in Curved Spacetime,
Class.Quant.Grav. 29 (2012), 245015.

25. R.F. Streater and A.S. Wightman, PCT, Spin and Statistics, and all that,
Princeton University Press, 2000.

26. A. Strohmaier, R. Verch, and M. Wollenberg, Microlocal analysis of quantum
fields on curved space-times: Analytic wavefront sets and Reeh-Schlieder theo-
rems, J.Math.Phys. 43 (2002), 5514–5530.

27. R. Verch, Local Covariance, Renormalization Ambiguity, and Local Thermal
Equilibrium in Cosmology, in "Quantum Field Theory and Gravity", F. Finster
et al. (eds.), Birkhäuser (2012), 229–256.

28. R. M. Wald, General Relativity, The University Of Chicago Press, 1984.

Michael Gransee
MPI für Mathematik in den Naturwissenschaften
Inselstrasse 22
04103 Leipzig
Germany
e-mail: gransee@mis.mpg.de


