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Abstract. A mode of a probability vector is a local maximum with
respect to some vicinity structure on the set of elementary events. The
mode inequalities cut out a polytope from the simplex of probability
vectors. Related to this is the concept of strong modes. A strong mode of
a distribution is an elementary event that has more probability mass than
all its direct neighbors together. The set of probability distributions with
a given set of strong modes is again a polytope. We study the vertices,
the facets, and the volume of such polytopes depending on the sets of
(strong) modes and the vicinity structures.

1 Introduction

Many probability models used in practice are given in a parametric form. Some-
times it is useful to also have an implicit description in terms of properties that
characterize the probability distributions that belong to the model. Such a de-
scription can be used to check whether a given probability distribution lies in
the model or, otherwise, to estimate how far it lies from the model. For example,
if a given model has a parametrization by polynomial functions, then one can
show that it has a semialgebraic description; that is, an implicit description as
the solution set of polynomial equations and polynomial inequalities. Finding
this description is known as the implicitization problem, which in general is very
hard to solve completely. Even if it is not possible to give a full implicit descrip-
tion, it may be possible to confine the model by simple polynomial equalities and
inequalities. Here we are interested in simple confinements, in terms of natural
classes of linear equalities and inequalities.

We consider polyhedral sets of discrete probability distributions defined by
prescribed sets of modes. A mode is a local maximum of a probability vector.
Locality is with respect to a given a vicinity structure in the set of coordinate
indices; that is, x is a (strict) mode of a probability vector p if and only if
px > py, for all neighbors y of x. The vicinity structure depends on the setting.
For probability distributions on a set of fixed-length strings, it is natural to
call two strings neighbors if and only if they have Hamming distance one. For
probability distributions on integer intervals, it is natural to call two integers



neighbors if and only if they are consecutive. In general, a vicinity structure is
just a graph with undirected edges.

Modes are important characteristics of probability distributions. In partic-
ular, the question whether a probability distribution underlying a statistical
experiment has one or more modes is important in applications. Also, many
statistical models consist of “nice” probability distributions that are “smooth”
in some sense. Such probability distributions have only a limited number of
modes. Another motivation for studying modes was given in [2], where it was
observed that mode patterns are a practical way to differentiate between certain
parametric model classes.

Besides from modes, we are also interested in the related concept of strong
modes introduced in [2]. A point x is a (strict) strong mode of a probability
distribution p if and only if px >

∑
y∼x py, where the sum runs over all neighbors

y of x. Strong modes offer similar possibilities as modes for studying models of
probability distributions. While strong modes are more restrictive than modes,
they are easier to study.

One observation is: Suppose that p =
∑k
i=1 λip

i is a mixture of k probability
distributions. If p has a strict strong mode x ∈ V , then x must be a mode of
one of the distributions pi, because if pi(x) ≤ pi(yi) for some neighbor yi of
x for all i, then

∑
i λip

i(x) ≤
∑
i λip

i(yi) ≤
∑
y∼x

∑
i λip

i(y). For example, a
mixture of k uni-modal distributions has at most k strong modes. Surprisingly,
the same statement is not true for modes: A mixture of k product distributions
may have more than k modes [2]. Still, the number of modes of a mixture of
product distributions is bounded, although this bound is not known in general.
As another example, in [2] it was shown that a restricted Boltzmann machine
with m hidden nodes and n visible nodes, where m < n and m is even, does
not contain probability distributions with certain patterns of 2m strict strong
modes.

In this paper we derive essential properties of (strong) mode polytopes, de-
pending on the vicinity structures and the considered patterns of (strong) modes.
In particular, we describe the vertices, the facets, and the volume of these poly-
topes. It is worth mentioning that mode probability polytopes are closely related
to order and poset polytopes. We describe this relation at the end of Section 2.

This paper is organized as follows: In Section 2 we study the polytopes of
modes and in Section 3 the polytopes of strong modes.

2 The polytope of modes

We consider a finite set of elementary events V and the set of probability distri-
butions on this set, ∆(V ). We endow V with a vicinity structure described by a
graph. Let G = (V,E) be a simple graph (i.e., no multiple edges and no loops).
For any x, y ∈ V , if (x, y) ∈ E is an edge in G, we write x ∼ y. Since we assume
that the graph is simple, x ∼ y implies x 6= y.
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Fig. 1. Above: The graph G from Examples 1 and 2, with C marked in gray. Below:
The corresponding polytopes M(G, C) and S(G, C). Each vertex of these polytopes is a
uniform distribution supported on a subset of G, as explained in Propositions 1 and 3.

Definition 1. A point x ∈ V is a mode of a probability distribution p ∈ ∆(V )
if px ≥ py for all y ∼ x.

Definition 2. Consider a subset C ⊆ V . The polytope of C-modes in G is the
set M(G, C) of all probability distributions p ∈ ∆(V ) for which every x ∈ C is a
mode.

The set M(G, C) is always non-empty, since it contains the uniform distribution.
It is a polytope, because it is a closed convex set defined by finitely many linear
inequalities and, as a subset of ∆(V ), it is bounded. We are interested in the
properties of this polytope, depending on G and C.

Recall that a set of vertices of a graph is independent, if it does not contain two
adjacent elements. If C is not independent, then M(G, C) is not full-dimensional
as a subset of ∆(V ); that is, dim M(G, C) < dim(∆(V )) = |V |−1. For, if x, y ∈ C
are neighbors, then the defining equations of M(G, C) imply that px ≥ py ≥ px;
that is, any p ∈ M(G, C) satisfies px = py. In the following we will ignore this
degenerate case and assume that the set of modes is independent.

In some applications, for example those mentioned in the introduction, it is
more natural to study strict modes; i.e. points x ∈ V with px > py for all y ∼ x.
A description of the set of distributions with prescribed strict modes is easy to
obtain from a description of M(G, C).

Example 1. Let G be a square with vertices V = {00, 01, 10, 11} and edges E =
{(00, 01), (00, 10), (01, 11), (10, 11)}. The polytope M(G, C) for C = {01, 10} is
given in Figure 1.



Vertices. We have defined M(G, C) by linear inequalities (H-representation).
Next we determine its vertices (V-representation). For any non-empty W ⊆ V \C
and y ∈ V write y ∼ W if y ∼ x for some x ∈ W . Moreover, let NC(W ) = {y ∈
C : y ∼ W} (this is the set of declared modes which are neighbors of W ), and
let eWC be the uniform distribution on NC(W ) ∪W .

Proposition 1.

1. M(G, C) is the convex hull of {eWC : ∅ 6= W ⊆ V \ C} ∪ {δx : x ∈ C}, where
δx denotes the point distribution concentrated on x.

2. For any x ∈ C, the distribution δx is a vertex of M(G, C).
3. eWC is a vertex of M(G, C) iff for any x, y ∈ W , x 6= y, there is a path x =

x0 ∼ x1 ∼ · · · ∼ xr = y in G with x0, x2, · · · ∈W and x1, x3, · · · ∈ NC(W ).

Proof. Clearly, for every non-empty W ⊆ V \ C, the vector eWC belongs to
M(G, C), and the same is true for the vectors δx with x ∈ C (C is independent).
Next we show that each p ∈ M(G, C) can be written as a convex combination
of {eWC : ∅ 6= W ⊆ V \ C} ∪ {δx : x ∈ C}. We do induction on the cardinal-
ity of W := supp(p) \ C. If |W | = 0, then p ∈ ∆(C) is a convex combination of
{δx : x ∈ C}. Now assume |W | > 0. Let λ = min{px : x ∈W}. Then, p−λeWC ≥ 0
(component-wise) and

∑
x(px − λeWC (x)) = (1− λ). Therefore,

p′ :=
1

1− λ
(p− λeWC ) ∈ ∆(V ).

Moreover, one checks that p′ ∈M(G, C). By definition, supp(p′)\C ( supp(p)\C.
By induction, supp(p′) is a convex combination of {eWC : ∅ 6= W ⊆ V \ C}∪ {δx :
x ∈ C}, and so the same is true for p.

It remains to check which elements of {eWC : ∅ 6= W ⊆ V \C}∪{δx : x ∈ C} are
vertices of M(G, C). Since δx is a vertex of ∆(V ), it is also a vertex of M(G, C).
Let W ⊂ V \C be non-empty. Call a path such as in the statement of the proposi-
tion an alternating path. Suppose that there is no alternating path from x to y for
some x, y ∈ W . Let W1 = {z ∈ W : There is an alternating path from x to z}
and let W2 = W \ W1. Then W1,W2 are non-empty, and NC(W1) ∩ ÑC(W2)
is empty. Hence eWC is a convex combination of eW1

C and eW2

C , and eWC is not a
vertex.

Let W be a non-empty subset of V \C such that any pair of elements of W is
connected by an alternating path. To show that eWC is a vertex, for any different
non-empty set W ′ ⊆ V \C we need to find a face of M(G, C) that contains eWC but

not eW
′

C . If there exists x ∈W ′\W , then eW
′

C (x) > 0 = eWC (x). Hence, eWC lies on

the face of M(G, C) defined by px ≥ 0, but eW
′

C does not. Otherwise, W ′ ( W .
Let x′ ∈ W \W ′ and y′ ∈ W ′ 6= ∅. By assumption, there exists an alternating
path from x′ to y′ in W . On this path, there exist x ∈ W \W ′ and y ∈ C with
y ∼ x and y ∈ NC(W ′). Therefore, eW

′

C (y)− eW ′C (x) > 0 = eWC (y)− eWC (x). ut

Corollary 1. M(G, C) is a full-dimensional sub-polytope of ∆(V ).

Proof. The convex hull of {δx : x ∈ C}∪ {e{y}C : y ∈ V \ C} is a (|V | − 1)-simplex
and a subset of M(G, C). ut



Facets. M(G, C) is defined, as a subset of ∆(V ), by the inequalities

px ≥ 0, for all x ∈ V, (positivity inequalities)

px ≥ py, for all x ∈ C and y ∼ x. (mode inequalities)

Next we discuss, which of these inequalities define facets.

Proposition 2.

1. For any x ∈ V \ C, the positivity inequality px ≥ 0 defines a facet.
2. If x ∈ C, then px ≥ 0 defines a facet iff x is isolated in G.
3. For any x ∈ C and y ∼ x, the mode inequality px ≥ py defines a facet.

Proof. 1. The inequality px ≥ 0 defines a facet of the subsimplex from the proof
of Corollary 1, and hence also of M(G, C).

2. If x is isolated, then x is a mode of any distribution. Therefore, M(G, C) =
M(C \ {x}), and the statement follows from 1.

Otherwise, suppose there exists y ∈ V with x ∼ y. Since C is independent,
y /∈ C. Then px = (px − py) + py; that is, the inequality px ≥ 0 is implied by
the inequalities px ≥ py and py ≥ 0, and px ≥ 0 defines a sub-face of the facet
py ≥ 0, which is a strict sub-face, since it does not contain δx. Therefore, px ≥ 0
does not define a facet itself.

3. Let W := {z ∈ C : z ∼ y} \ {x}. The uniform distribution on W ∪ {y}
satisfies all defining inequalities of M(G, C), except px ≥ py. ut

Triangulation and volume. The polytope M(G, C) has a natural triangu-
lation that comes from a natural triangulation of ∆(V ). Let N = |V | be the
cardinality of V . For any bijection σ : {1, . . . , N} → V let

∆σ = {p ∈ ∆(V ) : pσ(i) ≤ pσ(i+1) for i = 1, . . . , N − 1}.

Clearly, the ∆σ form a triangulation of ∆(V ). In particular, ∆(V ) =
⋃
σ∆σ and

vol(∆σ ∪∆σ′) = vol(∆σ) + vol(∆σ′) whenever σ 6= σ′.

Lemma 1. Let Σ(G, C) be the set of all bijections σ : {1, . . . , N} → V that sat-
isfy σ−1(x) < σ−1(y) for all y ∈ C and x ∼ y. Then M(G, C) =

⋃
σ∈Σ(G,C)∆σ.

Proof. If σ ∈ Σ and p ∈ ∆σ, then p ∈ M(G, C) by definition. Conversely, let
p ∈M(G, C). Choose a bijection σ : {1, . . . , N} → V that satisfies the following:

1. pσ(i+1) ≥ pσ(i) for i = 1, . . . , N − 1,
2. If x ∈ C and y ∼ x, then σ−1(x) ≤ σ−1(y).

Clearly, σ ∈ Σ, and p ∈ ∆σ. ut

Corollary 2. vol(M(G, C)) = |Σ|
|V |! vol(∆(V )).

Proof. All simplices ∆σ have the same volume. Moreover, vol(∆σ ∩∆σ′) = 0 for
σ 6= σ′. Thus, vol(M(G, C)) = |Σ| vol(∆σ) and vol(∆(V )) = |V |! vol(∆σ). ut



It remains to compute the cardinality of Σ(G, C). It is not difficult to enumer-
ate Σ(G, C) by iterating over the set V . However, Σ(G, C) may be a very large,
and so, enumerating it can take a very long time. In fact, this is a special instance
of the problem of counting the number of linear extensions of a partial order (see
below); a problem which in many cases is known to be #P -complete [1]. In our
case, a simple lower bound is |Σ(G, C)| ≥ |C|!|V \ C|! (equality holds only when
G is a complete bipartite graph and C is one of the maximal independent sets).

Relation to order polytopes. The results in this section can also be derived
from results about order polytopes. To explain this, it is convenient to slightly
generalize our settings. Instead of looking at a graph G and an independent
subset C of nodes, consider a partial order � on V and let

M(�) := {p ∈ ∆(V ) : px ≥ py whenever x � y}.

The polytope M(G, C) arises in the special case where � is defined by

x � y :⇐⇒ x ∼ y and x ∈ C.

The relation � defined in this way from G and C is a partial order precisely if C is
independent. Our results about vertices, facets and volumes directly generalize
to M(�). We omit further details at this point.

The order polytope of a partial order arises by looking at subsets of the unit
hypercube instead of subsets of the probability simplex (see [3] and references):

O(�) := {p ∈ [0, 1]V : px ≥ py whenever x � y}.

One can show that M(�) is the vertex figure of O(�) at the vertex 0. This
observation allows to transfer the results from [3] to M(G, C).

3 The polytope of strong modes

Definition 3. A point x ∈ V is a strong mode of a probability distribution
p ∈ ∆(V ) if px ≥

∑
y∼x py.

Definition 4. Consider a subset C ⊆ V . The polytope of strong C-modes in G
is the set S(G, C) all probability distributions p ∈ ∆(V ) for which every x ∈ C is
a strong mode.

Again, in applications one may be interested in strict strong modes that are
characterized by strict inequalities of the form px >

∑
y∼x py.

If x ∼ y for two strong modes of p ∈ ∆(V ), then px = py and pz = 0 for
all other neighbors z of x or y. In order to avoid such pathological cases, in the
following we always assume that C is an independent subset of G.

Example 2. Consider the graph from Example 1. For C = {01, 10}, the polytope
S(G, C) is given in Figure 1.



Again, we are interested in the vertices of the polytope S(G, C). For any
x ∈ V let NC(x) = {y ∈ C : y ∼ x} (this is the set of strong modes which are
neighbors of x) and let fxC be the uniform distribution on NC(x) ∪ {x}.

Proposition 3. If C is independent, then S(G, C) is a (|V | − 1)-simplex with
vertices fxC , x ∈ V .

Proof. To see that {fxC : x ∈ V } is linearly independent, observe that the matrix
with columns fxC is in tridiagonal form when V is ordered such that the vertices
in C come before the vertices in V \ C. Therefore, the probability distributions
fxC span a (|V | − 1)-dimensional simplex.

It is easy to check that fxC ∈ S(G, C) for any x ∈ V . It remains to prove
that any p ∈ S(G, C) lies in the convex hull of {fxC : x ∈ V }. We do induction
on the cardinality of W := supp(p) \ C. If |W | = 0, then p ∈ ∆(C) is a convex
combination of {δx : x ∈ C} = {fxC : x ∈ C}. Otherwise, let x ∈W . Then

p′ :=
1

1− px
(p− pxfxC ) ∈ ∆(V ),

since p ∈ M(G, C). Moreover, p′ ∈ M(G, C). The statement now follows by
induction, since supp(p′) \ C = W \ {x}. ut

Proposition 4. The facets of S(G, C) are px ≥
∑
y∼x py for all x ∈ C and

px ≥ 0 for all x ∈ V \ C.

Proof. It is easy to verify that each of the faces defined by these inequalities
contains |V | − 1 vertices. ut

Proposition 5. vol(S(G, C)) =
( ∏
x∈V

1

|NC(x)|+ 1

)
vol(∆(V )).

Proof. After rearrangement of columns, the matrix

(fxC )x∈V =

(
(δx)x∈C ,

(
1

|NC(x)|+11NC(x)

)
x∈V \C,x∼C

, (δx)x∈V \C,x6∼C

)
is in upper triangular from, with diagonal elements 1

|NC(x)|+1 , x ∈ V . The state-

ment now follows from the next Lemma 2. ut

Lemma 2. Let ∆ = conv{e0, . . . , ed} be the standard d-simplex in Rd+1 and let
s0, . . . , sd ∈ ∆. Then the d-volume of S = conv{s0, . . . , sd} satisfies

vol(S) = |det(s0, . . . , sd)| vol(∆).

Proof. The (d + 1)-volume of the parallelepiped spanned by s0, . . . , sd ∈ Rd+1

is |det(s0, . . . , sd)|. The volume of an n-simplex with vertices v0, . . . , vn in Rn
is 1

n! |det(v1 − v0, . . . , vn − v0)|. Hence the volume of the (d + 1)-simplex P
with vertices (0, s0, . . . , sd) is vol(P ) = 1

(d+1)! |det(s0, . . . , sd)|. Note that P is a

pyramid over S of height h = 1√
d+1

. Thus vol(P ) = h
d+1 vol(S). The volume of

the regular d-simplex is vol(∆) =
√
d+1
d! . The statement follows by combining

these formulas. ut



Example 3. Generalizing Examples 1 and 2, let G be the edge graph of an n-
cube, such that V = {0, 1}n and two points are adjacent if their Hamming
distance is one.

a) If C ⊆ V has cardinality |C| = k and minimum distance 3, then S has 2n

vertices and volume vol(S) = 2−kn vol(∆), whereas M has k(2n − 1) + 2n − kn
vertices and volume vol(M) = |Σ|

2n! vol(∆) ≥ k!2−kn vol(∆).
b) If C is the set of all even-parity strings, then S has 2n vertices and volume

vol(S) = (n + 1)−2
n−1

vol(∆), whereas M has 22
n−1 − 1 + 2n−1 vertices and

volume vol(M) = |Σ|
2n! vol(∆) ≥

(
2n

2n−1

)−1
vol(∆). For n = 2 and n = 3 we have

|Σ| = 4 and |Σ| = 720. The next open case is n = 4.
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