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Abstract
In this work we study the stability of a stationary solution to the thin-film equation

with linear mobility and partial wetting boundary conditions. The method used is strongly
based on the gradient-flow structure of the problem. We obtain natural relaxation rates
of perturbations to the stationary solution by showing that the energy is in fact convex
in a neighborhood around the stationary solution.

1 Introduction

The thin-film equation

ht + (hnhxxx)x = 0, (1.1)

describes the evolution of a fluid on a substrate, given by its height h. The dynamics are
driven only by surface tension and viscosity. Equation (1.1) can be derived by a lubrication
approximation in the case of thin viscous films. Various values of n correspond to different
slip conditions at the solid, for an in detail discussion of the underlying physics, see [9]. We
are restricting our considerations to the case n = 1. Mathematically speaking the thin-film
equation is a fourth-order degenerate parabolic equation with a moving free boundary

ht + (hhxxx)x = 0 in {h > 0},

which is complemented by three boundary conditions

h2x = α, h = 0 on ∂{h > 0}, (1.2)
lim

{h>0}3y→∂{h>0}
hxxx(y) = V, (1.3)

where V denotes the velocity of the moving boundary. Depending on the ratio of the surface
tensions of different phases, different values for α arise. In this work here we are treating the
so called partial wetting regime α = 1, the complete wetting regime α = 0 is fundamentally
different.
Our equation thus reads

ht + (hhxxx)x = 0 in {h > 0},

h2x = 1, h = 0 on ∂{h > 0},

lim{h>0}3y→∂{h>0} hxxx(y) = V.

(1.4)

∗elias.esselborn@mis.mpg.de
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The literature for the partial wetting case (1.4) is not so extensive, let us recall some results.
A first important result is the existence of weak solutions to (1.4) first shown in [10]. The proof
therein relies, as the present work, heavily on the gradient-flow structure of the problem. More
recently in [8] it was shown that (1.4) arises rigorously as the lubrication approximation of a
Hele-Shaw flow. Furthermore the authors provide a first existence and uniqueness result for
classical solutions to (1.4), see [8, Theorem 3.5].

Let us explain in more detail the gradient flow structure of (1.4). It is known since the
work [1] that (1.4) is the gradient flow with respect to the Wasserstein metric and the energy

F (h) :=
1

2

∫
h2x dx+

1

2
|{h > 0}| = 1

2

∫
{h>0}

h2x + 1 dx, (1.5)

in the case of solutions h ≥ 0 satisfying ∫
R
h dx = 1.

The situation we are interested in is the case where the free boundary at every time t is given
by a single contact point χ(t, 0),

ht + (hhxxx)x = 0 in ]χ(t, 0),+∞[,

hxxx(x) = χ̇(t, 0), hx(x) = 1, h(x) = 0 for x = χ(t, 0).
(1.6)

Note that (1.6) admits a family of stationary solutions hc0,c1 given by

hc0,c1(x) = (x− c0)+ + c1(x− c0)2+, for x ∈ {hc0,c1 > 0} =]c0,+∞[.

Since equation (1.6) is mass-preserving, by prescribing the initial mass we are determining the
constants c0, c1 of the possible limit profiles, and thus by a possible rescaling and shifting of
the initial data, it suffices to restrict our attention to perturbations of the simplest stationary
solution

h0(t, x) =

 x, x > 0,

0, otherwise.
(1.7)

Equation (1.6) can be seen to be a gradient flow with respect to the energy

E(h) =
1

2

∫ ∞
χ(0)

(hx − 1)2 dx. (1.8)

This energy at least formally arises as the energy gap with respect to the above energy F
in the following sense. Since for h0 we know F (h0) = +∞, we are defining the cut-off energies

FR(h) :=
1

2

∫ χ(R)

χ(0)

(
h2x + 1

)
dx.

Now we can define the energy gap with respect to FR by

ER(h) := FR(h)− FR(h0) =
1

2

∫ χ(R)

χ(0)

(
h2x + 1

)
dx−R

=
1

2

∫ χ(R)

χ(0)

(
h2x − 1

)
dx− χ(0) + (χ(R)−R).
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Taking the limit R→∞ we obtain

Ē(h) := lim
R→∞

ER(h) = lim
R→∞

1

2

∫ χ(R)

χ(0)

(
h2x − 1

)
dx− χ(0),

This can be reformulated as

Ē(h) = E(h) =
1

2

∫ ∞
χ(0)

(hx − 1)2 dx ≥ 0.

Here and in the following we are assuming that h(t, x) is a smooth solution of (1.6) so that
h(t, ·) is supposed to be admissible, meaning it satisfies

∃χ(0) : {h > 0} = ]χ(0),+∞[,

h ∈ C∞([χ(0),∞[),

hx(χ(0)) = 1,

W 2
2 (h, h0) < ∞.

(1.9)

Let us quickly comment on those admissibility criteria. The first one is requiring that there is
no touchdown of the film to zero and thus no topological change of the set {h > 0}, the second
one is that solutions are smooth in the set {h > 0} up to the boundary. By the regularity result
in [8] both can be achieved by assuming the initial data to be small in the appropriate norms
used in [8, Theorem 3.5]. The third one is just saying that h satisfies the partial wetting
boundary conditions. The fourth one can be seen as prescribing the initial mass and thus
determining to which of the stationary solutions we actually converge.

Let us now define the crucial quantities we are interested in. They all arise naturally from
the gradient-flow structure of the problem.

Definition 1.1. Let h0(x) = x+ be the stationary solution and let h be a smooth solution to
(1.6) such that h(t, ·) satisfies (1.9). We define the following three time-dependent quantities:

• the squared distance

H(t) := H(h(t, ·)) := W 2
2 (h(t, ·), h0(·)) = inf

T :T#h(t,·)=h0(·)

∫
|T (x)− x|2 h(t, x) dx.

• the energy gap

E(t) := E(h(t, ·)) =
1

2

∫ ∞
χ(0)

(hx(t, x)− 1)2 dx.

• the dissipation

D(t) := D(h(t, ·)) :=

∫ ∞
χ(t,0)

h(t, x)(hxxx(t, x))2 dx = “ |∇E|2 (h(t, x))”.
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Note that each of the above quantities measures how far away we are from the global
minimum (corresponding to the stationary solution) in a way adapted to the energy landscape
given by E and the Wasserstein metric. It should be in principle also possible to develop an
existence theory based on our work here so that we would not have to rely on prior existence
results. For this reason and to make the work more consistent, in the following we will only
use that h is an admissible smooth solution such that H(h), E(h), D(h) <∞ and we will not
assume the finiteness of other norms, such as the norms used in [8, Theorem 3.5]. We will
obtain relaxation rates for these quantities under the additional assumption that the initial
data is close to the stationary solution measured in terms of a combination of the above
intrinsic quantities. Namely we assume that

E0D0

1
2 � 1. (1.10)

Observe that (1.10) is meaningful since E0D0

1
2 is scaling invariant with respect to the scaling

of equation (1.6), which is given by

hλ(t, x) = λ−1h(λ3t, λx).

The main result of this work are the following relaxation rates.

Theorem 1.2. Let h be a smooth solution to (1.6) satisfying (1.9), such that

E0D0

1
2 � 1.

Then

H(t) ≤ H0,

E(t) ≤ H0

t
,

D(t) ≤ 4H0

t2
.

One interesting consequence of these estimates is that they imply certain convergence rates
of the contact point χ(t, 0) to zero, the contact point of the stationary solution. Those are
stated in the following Corollary.

Corollary 1.3. Let h be a solution to (1.6) satisfying (1.9), such that

E0D0
1
2 � 1.

Then the contact point satisfies

|χ(t, 0)| .
(
E(t)H(t)

1
2

) 1
3
.

1

t
1
3

.

The strategy of proof for the main theorem relies on certain algebraic and differential
relationships between H, E and D.
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Lemma 1.4. Let h be smooth solution to (1.6) satisfying (1.9), such that

E0D0
1
2 � 1.

Then the following relationships hold

∂tH ≤ 0, (1.11)
∂tE = −D, (1.12)
∂tD ≤ 0, (1.13)
E ≤

√
HD. (1.14)

Note that (1.12) and (1.13) ensure that if we start close to the stationary solution in the
sense

E0D0
1
2 � 1,

then we stay close for all times t ≥ 0 in the sense of

E(t)D(t)
1
2 � 1.

This strategy is inspired by the recent work [11], where the authors establish effectively
the same relationships as we do here. This work was itself inspired by an observation in [4]
that these relationships hold in the case when the energy is convex, and imply by an ODE
argument the rates of Theorem 1.2, as seen in the next lemma.

Lemma 1.5. Suppose the quantities H, E ,D ≥ 0 satisfy

∂tH ≤ 0,

∂tE = −D,
∂tD ≤ 0,

E ≤
√
HD.

Then it holds

H(t) ≤ H0, (1.15)

E(t) ≤ H0

t
, (1.16)

D(t) ≤ 4H0

t2
. (1.17)

Our work here is in spirit close to the setting of [4], since we show (see Lemma 3.7) that the
energy is indeed convex in a neighborhood of the stationary solution. In the complete wetting
case (i.e. α = 0 in (1.2)), there are several known stability results for specific solutions. In [3],
calculating the spectrum of the linear stability problem, estimates on the rate of convergence
to the self-similar solution are made. In [6] the authors show that in the case of finite mass or
finite second moment, we have convergence in L1 and L∞ of all strong solutions to the unique
self-similar solution with the same mass (see [6, Theorem 5.1.]). Under additional assumptions
and in the framework of classical solutions it is shown in [5] that there is also convergence in
H1 to the self-similar solution(see [5, Theorem 1.1.]). In [7] it is shown that if the initial data
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is close to the stationary solution, which in the case of complete wetting is given by x2+
2 , the

free boundary converges to zero (see [7, Theorem 1.4]), comparable to Corollary 1.3.
Let us give a quick overview over the structure of the paper. Instead of working in the original
h-variables of equation (1.6), it turns out to be more convenient to think in terms of the
variable χh defined by ∫ χh(z)

−∞
h(y) dy =

z2

2
, (1.18)

which can be seen as a transformation into Lagrangian coordinates. Section 2 is devoted to
reformulating the quantities from Definition 1.1 in terms of the corresponding quantities in
χ-variables, denoted by Ĥ, Ê and D̂. The main merit of this transformation is that the initial
intrinsic metric of the problem, the non-Euclidean Wasserstein metric is transformed into a
Euclidean weighted L2-metric. More precisely, recall that the Wasserstein metric tensor at h
is given by

〈δh, δh〉h :=

∫
v2h dx,

where
δh+ (vh)x = 0.

For an account of the optimal transport problem and the Wasserstein metric, see [2]. Therefore
〈·, ·〉h obviously depends on h and thus is apparently non-Euclidean. In comparison to this,
the transformed metric is given by (see the discussion in Lemma 2.1)

〈δχ, δχ〉χ =

∫
δχ2z dz,

independent of χ. This simplifies the proof of the geodesic convexity of the energy, since in a
Euclidean space geodesics are just straight lines.

Exactly this fact is also the reason why we limit our discussion to the case n = 1 instead
of more general mobilities: the case n 6= 1 leads to a non-Euclidean metric in the Lagrangian
coordinates and thus the strategy applied here does not easily generalize to these cases. For a
further discussion of the gradient flow structure in the case n 6= 1 see [12].
Section 3 is the main part of this work. The main statement is Lemma 3.7, which says that
the energy Ê is convex in a neighborhood of the stationary solution, i.e. for χ such that

Ê(χ)D̂(χ)
1
2 � 1,

which is, as noted above, scaling invariant and stable under the differential inequalities stated
in Lemma 1.4. To prove this, we need that in this regime we have certain L∞-bounds on the
first and second derivative of χ, as stated in Lemma 3.3 and 3.6, given by

|χz − 1|∞ .
(
Ê(χ)D̂(χ)

1
2

) 1
3 � 1, (1.19)

|zχzz|∞ .
(
Ê(χ)D̂(χ)

1
2

) 1
3 � 1. (1.20)

The main technical problem lies in understanding the rather complicated non-linear quantity
D̂(χ), which is needed for proving (1.19) and (1.20). This is the content of Lemma 3.5, which
states that close to the stationary solution, D̂(χ) controls a certain semi norm of χ, namely

D̂(χ) &
∫
z3χ2

zzzz dz.
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This turns out (see Lemma 3.6) to be enough to conclude estimate (1.20). Lemma 3.8 then
gives an estimate of the contact point χ(0) in terms of the quantities Ĥ and Ê. This establishes
Corollary 1.3. In Section 4 we establish inequalities (1.11), (1.12), (1.13) and (1.14), which are
by then easy consequences of the convexity of the energy as stated in Lemma 3.7. This proves
Lemma 1.4. For completeness a proof of Lemma 1.5 is provided there as well. In the Appendix
we prove Lemmas concerning the boundary behavior of χ (Lemma 5.1, 5.3 and Lemma 5.4).
We are also providing a self-contained proof of a Bernis-like estimate which was already proved
in [10] in a slightly different setting, namely

|h′(x)− h′(y)| . D
1
3 |x− y|

2
3 ,

see Lemma 5.6.

Throughout the chapter we will write a . b if a ≤ cb for some universal constant c. We
will also write a ≈ b if a . b . a. We will furthermore write: if L � 1 then a . b and mean
that there exists universal δ > 0 such that if L ≤ δ then a . b.
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2 The problem in different coordinates

The next lemma states precisely how our main quantities H,E and D transform under the
reparametrization (1.18).

Lemma 2.1. For h satisfying (1.9) define χ := χh via∫ χh(z)

−∞
h(y) dy =

z2

2
. (2.1)

Denote for simplicity

u := χz(z),

p := χzz(z).

Let χh0(z) =: χ0(z) = z denote the transformation corresponding to the stationary solution
h0(x) = x+. Then the functionals from Definition 1.1 in these coordinates read

H(h) = Ĥ(χ) =

∫ ∞
0

z(χ(z)− χ0(z))
2 dz,

E(h) = Ê(χ) =
1

2

∫ ∞
0

z2p2

u5
+

1

3u3
− 4

3
+ u dz =:

∫ ∞
0

L(z, u, p) dz,

D(h) = D̂(χ) =

∫ ∞
0

1

z

(
−
(

(∂2L) (z, u, p)
)
z

+
(

(∂3L) (z, u, p)
)
zz

)2
dz.

In particular this implies that the time-dependent quantities from Definition 1.1 can be ex-
pressed in terms of χ as

H(t) = Ĥ(χ(t, ·)),
E(t) = Ê(χ(t, ·)),
D(t) = D̂(χ(t, ·)).

Proof. Let us start by rewriting E.
First observe that differentiating (2.1) yields

h(χ(z))χz(z) = z, hx(χ(z)) =
χz(z)− zχzz(z)

(χz(z))3
.

Using this to rewrite the energy we obtain

E(h) =
1

2

∫ ∞
χ(0)

(hx − 1)2 dx

=
1

2

∫ ∞
0

(hx(χ(z))− 1)2 χz(z) dz

=
1

2

∫ ∞
0

(
χz(1− χ2

z)− zχzz
)2

χ5
z

dz

=
1

2

∫ ∞
0

z2χ2
zz

χ5
z

+
1

χ3
z

+ χz − 2
zχzz
χ4
z

− 2

χz
+

2zχzz
χ2
z

dz

=
1

2

∫ ∞
0

z2χ2
zz

χ5
z

+
1

3χ3
z

+ χz −
4

3
+

2

3

(
z(1− χ2

z)

χ3
z

+ 2

(
z − z

χz

))
z

dz.
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Observe that ∫ ∞
0

(
z(1− χ2

z)

χ3
z

+ 2

(
z − z

χz

))
z

dz = 0,

which is due to

z(1− χ2
z)

χ3
z

+ 2

(
z − z

χz

)
=

1 + 2χz(z)

χz(z)3
z (1− χz(z))2 → 0, for z →∞,

which follows from Lemma 5.3. Plugging this in yields

E(h) = Ê(χ) =
1

2

∫ ∞
0

z2χ2
zz

χ5
z

+
1

3χ3
z

− 4

3
+ χz dz

=:

∫ ∞
0

L(z, χz(z), χzz(z)) dz.

Now let us reformulate H.
To understand why H and D transform to Ĥ and D̂ in the way they do, let us do some

formal computations to motivate the resulting expressions.
For this let us derive the correct metric tensor in the new coordinates, corresponding to

the Wasserstein metric tensor. First we will investigate how we identify perturbations of χ in
terms of perturbations of h. Let δh denote a perturbation of h, i.e.∫

δh dx = 0.

This defines a perturbation δχ of χ by∫ (χ+sδχ)(z)

−∞
(h+ sδh)(x) dx =

1

2
z2.

differentiating with respect to s at s = 0 yields

δχ(z)h(χ(z)) +

∫ χ(z)

−∞
δh(x) dx = 0.

Thus we can identify a perturbation δh of h with a perturbation δχ of χ by

δχ(z) = − 1

h(χ(z))

∫ χ(z)

−∞
δh(x) dx. (2.2)

Next we transform the metric tensor. For this let δh1, δh2 be perturbations of h. The Wasser-
stein metric tensor is then defined by

〈δh1, δh2〉h =

∫
v1(x)v2(x)h(x) dx,

with
δhi + (hvi)x = 0, for i = 1, 2.

Observe that this and (2.2) yield that

δχi(z) = vi(χ(z)), for i = 1, 2.
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Thus we can transform the metric tensor

〈δh1, δh2〉h =

∫ ∞
−∞

v1(x)v2(x)h(x) dx =

∫ ∞
0

v1(χ(z))v2(χ(z))h(χ(z))χz(z) dz

=

∫ ∞
0

v1(χ(z))v2(χ(z))z dz =

∫ ∞
0

δχ1(z)δχ2(z)z dz =: 〈δχ1, δχ2〉χ.

As it is well known, by the Benamou-Brenier formula we can rewrite the Wasserstein distance
by use of this tensor as

W 2
2 (h, h0) = inf

∫ 1

0
〈∂sgs, ∂sgs〉gs ds,

the infimum being taken over all curves s 7→ gs with

g0 = h, g1 = h0.

By the above transformation of the metric this can be written in χ coordinates as

inf

∫ 1

0
〈∂sχsg, ∂sχsg〉 ds = inf

∫ 1

0

∫ ∞
0

(∂sχ
s
g)

2(z)z dz ds,

the infimum being taken over all curves s 7→ χsg with

χ0
g = χ, χ1

g = χ0.

This infimum is equal to

Ĥ(χ) =

∫ ∞
0

(χ− χ0)
2 (z)z dz,

as conjectured. To prove this rigorously we use that as in the case of probability measures we
know that in one dimension the optimal transport map T is given by the monotone map

Topt = h̄0
−1 ◦ h̄,

where as before
h̄(x) =

∫ x

−∞
h(y) dy,

and in particular
h̄0
−1

(x) =
√

2x.

Thus

H(h) =

∫
R

(√
2h̄(x)− x

)2

h(x) dx. (2.3)

Substituting χ(z) for x we obtain as desired

H(h) =

∫ ∞
0

(z − χ(z))2h(χ(z))χz(z) dz =

∫ ∞
0

(z − χ(z))2z dz =

∫ ∞
0

(χ0(z)− χ(z))2z dz.

To motivate the expression D̂ we use the defining identity

∂tE(h(t, ·)) = −D(h(t, ·)).
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For this we first identify the equation solved by χ by using the fact that it is a gradient
flow with respect to Ê and the metric tensor calculated above. This means that for every
perturbation δχ we have∫∞

0 χt(z)δχ(z)z dz = −∂s|s=0Ê(χ+ sδχ)

= −
∫∞
0 (∂2L)(z, χz, χzz)(δχ)z + (∂3L)(z, χz, χzz)(δχ)zz dz

= −
∫∞
0 −

(
(∂2L)(z, χz, χzz)

)
z
(δχ) +

(
(∂3L)(z, χz, χzz)

)
zz

(δχ) dz.

Thus we get that χ satisfies the equation

χt(z) = −1

z

(
−
(

(∂2L)(z, χz, χzz)
)
z

+
(

(∂3L)(z, χz, χzz)
)
zz

)
. (2.4)

Since we know that D is defined by the identity

∂tE(h(t, ·)) = −D(h(t, ·)),

using (2.4) we obtain

D(h(t, ·)) =

∫ ∞
0

1

z

(
−
(

(∂2L)(z, χz, χzz)
)
z

+
(

(∂3L)(z, χz, χzz)
)
zz

)2
dz =: D̂(χ(t, ·)).

as desired.
For a rigorous proof we need to use the defining identity of χ

h̄(χ(z)) =
z2

2
, (2.5)

and take the derivative four times to identify hxxx(χ(z)), which turns out to be given by

hxxx(χ(z)) =
1

u5

(
15
p2

u
− 4pz − 15

zp3

u2
+ 10

zppz
u
− zpzz

)
=

1

z

(
(∂2L) (z, u, p)z − (∂3L) (z, u, p)zz

)
.

Using this we can rewrite

D(h) =

∫
hh2xxx dx =

∫ ∞
0

h(χ(z))hxxx(χ(z))2χz(z) dz

=

∫
z

u

1

u10

(
15
p2

u
− 4pz − 15

zp3

u2
+ 10

zppz
u
− zpzz

)2

u dz

=

∫ ∞
0

1

z

(
−
(

(∂2L) (z, u, p)
)
z

+
(

(∂3L) (z, u, p)
)
zz

)2
dz.

Also taking first the x and then the t-derivative of (2.5) we obtain that if h is a solution to
(1.6), then its corresponding χ satisfies

χt(t, z) = −u(z)2

z
ht(t, χ(t, z)).

Using this we can obtain that indeed (2.4) holds.
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3 Convexity of the energy by critical norm estimates

In this section we will ultimately prove the convexity of the energy E close to the stationary
solution, see Lemma 3.7. For this we need L∞-control on the distance of χ to the stationary
solution χ0 in the first and second derivative in terms of our scaling invariant quantity ED

1
2 .

We start out with two estimates which are suboptimal, Lemmas 3.1 and 3.2. The first of these
estimates is the content of the next lemma, which gives control of the L∞ distance of the
first derivative of χ to the stationary solution. It is non optimal in the scaling with respect to
ED

1
2 , the optimal scaling is then achieved later in Lemma 3.6. In this section χ is supposed

to be admissible, i.e. belonging to an h which satisfies (1.9).

Lemma 3.1. Let χ be close to the stationary solution in the sense of

Ê(χ)D̂(χ)
1
2 � 1.

Then it holds

sup
z≥0
|(χ(z)− χ0(z))z| = |χz − 1|∞ .

(
Ê(χ)D̂(χ)

1
2

) 2
9 � 1.

Proof. Let us for convenience write in the following as always

u := χz, p := χzz.

Let first z be such that

z ≥

(
Ê

D̂

) 1
3

.

This in particular implies that
z ≥ 2Ê,

since
ÊD̂

1
2 � 1.

Observe that using Lemma 5.1

u
3
2 − 1

u
3
2

(z) =

∫ ∞
z

(
1− 1

u
3
2

)
z

(y) dy .

(∫
p2y2

u5
dy

∫ ∞
z

1

y2
dy

) 1
2

.

(
Ê(χ)

z

) 1
2

.

Here we used that

Ê(χ) =

∫ ∞
0

L(z, χz(z), χzz(z)) dz =
1

2

∫ ∞
0

z2p2

u5
+ f(u) dz,

with
f(u) ≥ 0, for u ≥ 0.

From this we obtain

|u(z)− 1|
3
2 . |u

3
2 (z)− 1| . Ê(χ)

1
2
u

3
2 (z)

z
1
2

.
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Since z ≥ 2Ê we obtain u . 1 and thus

|u(z)− 1| .

(
Ê

z

) 1
3

≤ (ÊD̂
1
2 )

2
9 � 1. (3.1)

This is the desired estimate for z such that

z ≥

(
Ê

D̂

) 1
3

.

Now let z be such that

z ≤

(
Ê

D̂

) 1
3

,

and let us work in the original h coordinates and use Lemma 5.6, which states that

[hx] 2
3
,[0,r] . D(h)

1
3 , (3.2)

where
r = C−1D−

1
2 ,

for a constant C.
Let us now assume without loss of generality that

χ(0) = 0,

i.e.
h(0) = 0.

This can be achieved by looking at the function

h̃(x) := h(x+ χ(0)).

Using (3.2) implies for x . D−
1
2 (using hx(0) = 1)

1−D
1
3x

2
3 ≤ hx(x) ≤ 1 +D

1
3x

2
3 .

Integrating yields

x
(

1−D
1
3x

2
3

)
≤ h(x) ≤ x

(
1 +D

1
3x

2
3

)
, (3.3)

which holds for all
x ≤ C−1D−

1
2 .

Since χ(0) = 0 and χ is continuous we know that for z � 1 also χ(z)� 1 and in particular

χ(z) ≤

(
Ê

D̂

) 1
3

= (ÊD̂
1
2 )

1
3 D̂−

1
2 ≤ 1

C
D̂−

1
2 ,

since
ÊD̂

1
2 � 1.

13



Thus integrating from 0 to χ(z) gives by the definition of χ

1

2
z2 =

∫ χ(z)

0
h(x) dx, (3.4)

and using (3.3)

1

2
χ(z)2

(
1−D

1
3χ(z)

2
3

)
≤ 1

2
z2 ≤ 1

2
χ(z)2

(
1 +D

1
3χ(z)

2
3

)
. (3.5)

Using the fact that for δ � 1 we have

√
1 + δ ≈ 1 +

δ

2
,

or more precisely for 0 ≤ δ ≤ 1
2 we have

1− δ ≤
√

1− δ,

and √
1 + δ ≤ 1 + δ,

so that we obtain that for z � 1

χ(z)
(

1−D
1
3χ(z)

2
3

)
≤ z ≤ χ(z)

(
1 +D

1
3χ(z)

2
3

)
. (3.6)

Since for z � 1 also χ(z)� 1 this yields

1

2
χ(z) ≤ z ≤ 2χ(z).

But using this in (3.6) then yields

χ(z)− cD
1
3 z

5
3 ≤ z ≤ χ(z) + cD

1
3 z

5
3 ,

which implies

z
(

1− cD
1
3 z

2
3

)
≤ χ(z) ≤ z

(
1 + cD

1
3 z

2
3

)
. (3.7)

This was true for z � 1 since then we knew that χ(z)� 1, but (3.7) implies that for all

z ≤
(
E

D

) 1
3

,

we know that

χ(z) ≤ 2

(
E

D

) 1
3

.

This allows us to use (3.4) for all z ≤
(
E
D

) 1
3 , and thus repeating above arguments, (3.7) holds

for all those z. Thus we have, combining (3.7) and (3.3)

|z − h(χ(z))| ≤ D
1
3 z

5
3 ,

14



and thus using again (3.3) ∣∣∣∣z − h(χ(z))

h(χ(z))

∣∣∣∣ ≤ D 1
3 z

2
3 .

This means

|χz(z)− 1| . D
1
3 z

2
3 ≤

(
ED

1
2

) 2
9
. (3.8)

Together we obtained for all z ≥ 0

|χz(z)− 1| .
(
ED

1
2

) 2
9
.

The next aim is to prove Lemma 3.6, which states that we have control of the second
derivative of χ in the form of

|zχzz(z)|∞ .
(
ÊD̂

1
2

) 1
3
. (3.9)

For this the main step is to understand that in the regime where

ÊD̂
1
2 � 1,

the dissipation D̂ controls a certain norm of χzz. This is the content of Lemma 3.5, which
states that

D̂(χ) &
∫
z3χ2

zzzz dz.

Once we have this, using implicitly a kind of linear estimate for large z

|zχzz(z)|∞ .

(∫
z3χ2

zzzz dz

) 1
6
(∫

z2χ2
zz dz

) 1
3

,

we can deduce Lemma 3.6. The following lemma is a sub-optimal estimate for |zχzz(z)|, but
a first important step towards proving (3.9) since for small z, meaning

z ≤

(
Ê

D̂

) 1
3

,

it already implies (3.9).

Lemma 3.2. Let χ be close to the stationary solution in the sense of

Ê(χ)D̂(χ)
1
2 � 1.

Then it holds

|zχzz(z)| .
(
ÊD̂ z

) 1
4

+ |χz − 1|(z). (3.10)
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Proof. Let us for convenience write in the following as always

u := χz, p := χzz.

Note first that since
Ê(χ)D̂(χ)

1
2 � 1,

Lemma 3.1 yields
u ≈ 1,

and thus

z2p2 .
z2p2(z)

2u5(z)
. z2p2. (3.11)

Note also that

D̂ =

∫ ∞
0

U2
z

z
dz,

with

U := −∂2L+ (∂3L)z = −5z2p2

2u6
+

2zp

u5
+
z2pz
u5

+
1

2

(
1

u4
− 1

)
.

As a first estimate we obtain

U(z) =

∫ z

0
Uy(y) dy ≤

(∫ ∞
0

U2
z (y)

y
dy

∫ z

0
y dy

) 1
2

. D̂
1
2 z. (3.12)

Here we used that

lim
z↘0

U(z) = 0,

which is due to the fact that

limz↘0(u− 1)(z) = 0,

limz↘0 zp(z) = 0,

limz↘0 z
2pz(z) = 0.

(3.13)

The fact that
lim
z↘0

(u− 1)(z) = 0,

is just due to the partial wetting and for example seen in (3.8). The other two limits are just
due to the fact that by Lemma 5.4 we know that χ ∈ C∞([0,∞[), which in particular implies
that for all n

| lim
z↘0

∂nz χ(z)| <∞.

In the following we will write

L(z) = L(z, u(z), p(z)) =
z2p2(z)

2u5(z)
+

1

2
f(u(z)).
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with
f(u) =

1

3u3
− 4

3
+ u.

Start with the quantity∫ z

0
U(y)p(y) dy

=

∫ z

0
(−∂2L(y) + ∂y∂3L(y)) p(y) dy = −

∫ z

0
∂2L(y)p(y) + ∂3L(y)∂yp(y) dy + ∂3L(z)p(z)

= −
∫ z

0
∂yL(y)− ∂1L(y, u(y), p(y)) dy + ∂3L(z)p(z) = −L(z) +

∫ z

0

yp2

u5
dy +

z2p2(z)

u5(z)

=
z2p2(z)

2u5(z)
− 1

2
f(u(z)) +

∫ z

0

yp2

u5
dy.

Here we used that

lim
z↘0

∂3L(z)p(z) = 0,

lim
z↘0

L(z) = 0,

which is due to (3.13). On the other hand we use estimate (3.12) and (3.11) to get∫ z

0
U(y)p(y) dy ≤

∫ z

0
yp(y) dy D̂

1
2 ≤

(∫ ∞
0

y2p2 dy z

) 1
2

D̂
1
2 .

(
ÊD̂ z

) 1
2
.

Thus we obtain

z2p2(z)

2u5(z)
≤ z2p2(z)

2u5(z)
+

∫ z

0

yp2

u5
dy .

(
ÊD̂ z

) 1
2

+
1

2
f(u(z)).

This turns into the desired estimate by using again (3.11) and since it holds that

f(u(z)) . |u(z)− 1|2.

With the sub-optimal Lemmas 3.1 and 3.2, we are in the position to prove the estimate of
|χz − 1|∞ which is optimal in powers of ÊD̂

1
2 .

Lemma 3.3. Let χ be close to the stationary solution in the sense of

Ê(χ)D̂(χ)
1
2 � 1.

Then it holds

sup
z≥0
|(χ(z)− χ0(z))z| = |χz − 1|∞ .

(
Ê(χ)D̂(χ)

1
2

) 1
3 � 1.
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Proof. Write as always

u := χz, p := χzz.

Let first z be such that

z ≥

(
Ê

D̂

) 1
3

.

Then using Lemma 3.1, we know that |u− 1|∞ � 1, which implies∫
z2p2 dz . Ê.

Using this we obtain immediately by Hölder

|(u− 1)(z)| ≤
∫ ∞
z
|p(y)| dy .

(
Ê

z

) 1
2

≤
(
Ê(χ)D̂(χ)

1
2

) 1
3
.

For

z ≤ z∗ =

(
Ê

D̂

) 1
3

,

we will use Lemma 3.2 which implies

|p(z)| .

(
ÊD̂

z3

) 1
4

+
1

z
|(u− 1)(z)|. (3.14)

Estimate for some δ � 1

|u(z)− 1| ≤
∫ z

δ
|p(y)| dy + |u(δ)− 1| . |u(δ)− 1|+ (ÊD̂)

1
4

∫ z

0
y−

3
4 dy + |u− 1|∞,[0,z∗] ln

(z
δ

)
.
(
Ê(χ)D̂(χ)

1
2

) 1
3

+ |u(δ)− 1|+ |u− 1|∞,[0,z∗]
z

δ
.

Now since |u(z)− 1| → 0 for z → 0, by using (3.8) we observe that for

δ := Ê(χ)
1
2 D̂(χ)−

1
4 ,

it holds

|u(δ)− 1| .
(
Ê(χ)D̂(χ)

1
2

) 1
3
.

Also observe that
z

δ
≤
(
Ê(χ)D̂(χ)

1
2

)− 1
6
,

which yields, using Lemma 3.1

z

δ
|u− 1|∞,[0,z∗] .

(
Ê(χ)D̂(χ)

1
2

) 1
18 � 1.

Thus we can obtain for all z ≤ z∗

|u(z)− 1| .
(
Ê(χ)D̂(χ)

1
2

) 1
3

+
(
Ê(χ)D̂(χ)

1
2

) 1
18 |u− 1|∞,[0,z∗].

Now taking the supremum over all z ≤ z∗ and then absorbing the last term into the left-hand
side, we obtain the desired result.
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The next lemma contains a linear estimate which is used in the proof of Lemma 3.5.

Lemma 3.4. Let χ be such that
Ê(χ)D̂(χ)

1
2 � 1.

Then we have ∫
|χzz|3 dz . |χz − 1|∞

∫
zχ2

zzz dz.

Proof. Let as always
u := χz, p := χzz,

By proving ∫
|gz|3 dz . |g|∞

∫
zg2zz dz,

and considering
g := u− 1,

we obtain the above desired estimate.
Define

z∗ := |g|∞
(∫

zg2zz dz

)− 1
2

.

First observe that Hölder with (2, 3, 6) yields

g2z(z∗) = −2

∫ ∞
z∗

gzgzz dz .

(∫
zg2zz dz

) 1
2
(∫
|gz|3 dz

) 1
3 1

z
1
3
∗

. (3.15)

Here we used that
gz(z) = p(z)→ 0, for z →∞,

which follows e.g. from estimate (3.10).
Estimate via integration by parts using this∫ ∞
z∗

g3z dz = −g2z(z∗)g(z∗)−
∫ ∞
z∗

2gzgzzg dz . |g|∞2

(∫
zg2zz dz

) 1
2
(∫
|gz|3 dz

) 1
3 1

z
1
3
∗

.

Here we used (u− 1)(z)p2(z)→ 0 for z → 0 which follows e.g. from (3.1) and (3.10).
Then use Young’s inequality with (3, 32) to obtain

∫ ∞
z∗

g3z dz ≤ δ
∫
|gz|3 dz + c(δ)|g|

3
2∞

(∫
zg2zz dz

) 3
4 1

z
1
2
∗

= δ

∫
|gz|3 dz + c(δ)|g|∞

∫
zg2zz dz,

where in the last step we used the definition of z∗. Writing∫ ∞
z∗

|gz|3 dz =

∫
gz>0∩]z∗,∞[

g3z dz −
∫
gz<0∩]z∗,∞[

g3z dz,

we conclude ∫ ∞
z∗

|gz|3 dz ≤ δ
∫
|gz|3 dz + c(δ)|g|∞

∫
zg2zz dz.
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On the other hand first observe that∫ z∗

0
|gz(z∗)− gz(z)|3 dz =

∫ z∗

0

∣∣∣∣∫ z∗

z
gzz(y) dy

∣∣∣∣3 dz
≤
∫ z∗

0

∣∣∣∣∣
(∫

yg2zz(y) dy

) 1
2
(∫ z∗

z

1

y2
dy

) 1
4

(z∗ − z)
1
4

∣∣∣∣∣
3

dz

≤
(∫

zg2zz dz

) 3
2
∫ z∗

0

(z∗ − z)
3
2

(zz∗)
3
4

dz

.

(∫
zg2zz dz

) 3
2

z∗ = |g|∞
∫
zg2zz dz.

Using (3.15) we obtain

z∗g
3
z(z∗) .

(
|g|∞

∫
zg2zz dz

∫
|gz|3 dz

) 1
2

.

Young’s inequality then yields∫ z∗

0
|gz(z∗)|3 dz . c(δ)|g|∞

∫
zg2zz dz + δ

∫
|gz|3 dz.

Putting this together leads to∫ z∗

0
|gz(z)|3 dz .

∫ z∗

0
|gz(z∗)− gz(z)|3 dz +

∫ z∗

0
|gz(z∗)|3 dz

. c(δ)|g|∞
∫
zg2zz dz + δ

∫
|gz|3 dz.

So altogether ∫ ∞
0
|gz(z)|3 dz . c(δ)|g|∞

∫
zg2zz dz + δ

∫
|gz|3 dz.

Absorbing the last term on the left-hand side yields the desired estimate.

Now with the help of Lemma 3.2 and 3.4 we are in the position to prove the following
lemma, which states that the non-linear quantity D̂ controls in our regime a semi-norm of χ,
see (3.16).

Lemma 3.5. If χ is such that

Ê(χ)D̂(χ)
1
2 � 1,

then we have the estimate

D̂(χ) &
∫
z3χ2

zzzz dz. (3.16)
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Proof. We will in the following prove

D̂(χ) &

(
1− c

(
Ê(χ)D̂(χ)

1
2

) 8
3

)∫
z3χ2

zzzz dz,

which then implies the desired estimate.
Denote as always

u := χz, p := χzz.

Recall that D̂ is given by

D̂ =

∫
1

z
(−∂2L+ (∂3L)z)

2
z dz.

Note that

∂2L = − 5

2u6
z2p2 +

1

2

(
1− 1

u4

)
,

∂3L =
z2p

u5
.

Thus

(∂3L)z =
2zp

u5
− 5z2p2

u6
+
z2pz
u5

,

and so

−∂2L+ (∂3L)z = −5z2p2

2u6
+

2zp

u5
+
z2pz
u5

+
1

2

(
1

u4
− 1

)
.

Thus we compute

(−∂2L+ (∂3L)z)z = −10
z2ppz
u6

+ 15
z2p3

u7
− 15

zp2

u6
+ 4

zpz
u5

+
z2pzz
u5

.

Since by Lemma 3.3 it holds |u− 1|∞ � 1 we can rewrite this as

D̂ =

∫
1

z

(
−10

z2ppz
u6

+ 15
z2p3

u7
− 15

zp2

u6
+ 4

zpz
u5

+
z2pzz
u5

)2

dz

=

∫
z

u10

(
−10

zppz
u

+ 15
zp3

u2
− 15

p2

u
+ 4pz + zpzz

)2

dz

≈
∫
z

(
−10

zppz
u

+ 15
zp3

u2
− 15

p2

u
+ 4pz + zpzz

)2

dz.

We divide this into the terms linear and nonlinear in p by defining

A := 4pz + zpzz,

B := 5

(
−2

zppz
u

+ 3
zp3

u2
− 3

p2

u

)
.

Then this reads

D̂ ≈
∫
z (A+B)2 dz =

∫
zA2 dz +

∫
zB2 dz + 2

∫
zAB dz.
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A short calculation using zpz(z)→ 0 for z → 0 which follows from Lemma 5.4 shows∫
zA2 dz = 8

∫
z2pzpzz dz + 16

∫
zp2z dz +

∫
z3p2zz dz

= 4
∫
z2(pz)

2
z dz + 16

∫
zp2z dz +

∫
z3p2zz dz

= −8
∫
zp2z dz + 4z2p2z|∞0 + 16

∫
zp2z dz +

∫
z3p2zz dz

≥ 8
∫
zp2z dz +

∫
z3p2zz dz ≥

∫
z3p2zz dz.

(3.17)

Obviously ∫
zB2 dz ≥ 0.

Thus the remaining term is

2

∫
zAB dz =10

∫
z (4pz + zpzz)

(
−2

zppz
u

+ 3
zp3

u2
− 3

p2

u

)
dz

=10

(
−8

∫
z2pp2z
u

dz + 12

∫
z2p3pz
u2

dz − 12

∫
zp2pz
u

dz

)
+ 10

(
−2

∫
z3ppzpzz

u
dz + 3

∫
z3p3pzz
u2

dz − 3

∫
z2p2pzz

u
dz

)
.

In the following we are estimating the above six terms. Observe that the above terms can be
written as

c0

∫ √
zg
√
zp (p(zp− 1)− c1zpz) dz,

for
g = c2pz,

or
g = zpzz,

with c0, c1, c2 > 0. Since we are just interested in estimates and not in the constants, let us
for convenience drop c0. As a first step use Young’s inequality to obtain∣∣∣∣∫ √zg√zp (p(zp− 1)− c1zpz) dz

∣∣∣∣ ≤ δ ∫ zg2 dz +
1

δ

∫
zp2 (p(zp− 1)− c1zpz)2 dz.

Observe that by Hardy’s inequality (Lemma 5.8 with k = 1, ψ = pz) we have∫
zp2z dz .

∫
z3p2zz dz. (3.18)

To use Lemma 5.8 we need pz(zn)→ 0 for a subsequence zn →∞. This can be seen e.g. using
the estimate ∣∣∣∣z2pzu5

− 5z2p2

2u6
+

2zp

u5
+

1

2

(
1

u4
− 1

)∣∣∣∣ = |−∂2L+ (∂3L)z| (z) . D̂
1
2 z.
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Dividing by z2 and using that p . 1

z
3
4
→ 0, which itself follows from (3.10), we obtain as

desired

pz(z)→ 0, for z →∞. (3.19)

Thus for small δ we can absorb this term into the term we get from (3.17). For the following
we choose a cut-off function η1 such that

0 ≤ η1 ≤ 1,

η1(z) = 0 for z ≤ z∗
2
,

η1(z) = 1 for z ≥ z∗,

as well as

|(η1)z| .
1

z∗
χ]z∗/2,z∗[, (3.20)

where we choose

z∗ :=

(
Ê

D̂

) 1
3

.

Also define η0 = 1− η1, such that
η0 + η1 = 1.

We will heavily use Lemma 3.2 which using Lemma 3.3 reads

|zp(z)| . (z ÊD̂)
1
4 + (ÊD̂

1
2 )

1
3 . (3.21)

This in particular implies that for z ≤ z∗ we have

|zp(z)| . (ÊD̂
1
2 )

1
3 , (3.22)

which is the reason we chose the cut-off at this threshold.
Now first estimate∫

η0zp
2 (p(zp− 1)− c1zpz)2 dz .

∫
η0zp

4 dz +

∫
η0z

3p6 dz +

∫
η0z

3p2p2z dz.

Then using (3.22)∫
η0zp

2 (p(zp− 1)− c1zpz)2 dz

.
∫
η0zp

4 dz +

∫
η0z

3p6 dz +

∫
η0z

3p2p2z dz

.
(
|zp|∞,[0,z∗] + |zp|3∞,[0,z∗]

)∫
|p|3 dz + |zp|2∞,[0,z∗]

∫
zp2z dz

.
(

(ÊD̂
1
2 )

1
3 + ÊD̂

1
2

)∫
|p|3 dz + (ÊD̂

1
2 )

2
3

∫
zp2z dz.

Now with the help of Lemma 3.4 we obtain∫
|p|3 dz . (ÊD̂

1
2 )

1
3

∫
zp2z dz.
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Therefore we get∫
η0zp

2 (p(zp− 1)− c1zpz)2 dz .
(

(ÊD̂
1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)∫
zp2z dz. (3.23)

It remains to estimate ∫
η1zp

2 (p(zp− 1)− c1zpz)2 dz

.
∫
η1zp

4 dz +

∫
η1z

3p6 dz +

∫
η1z

3p2p2z dz.

Let us treat those three terms separately. For this we write∫
η1
(
zp4 + z3p6

)
dz =

∫ (
z2

2

)
z

p4η1 +

(
z4

4

)
z

p6η1 dz,

and integrate by parts to obtain∫
η1
(
zp4 + z3p6

)
dz = −

∫
z2

2

(
η1p

4
)
z

+ z4

4

(
η1p

6
)
z
dz

.
∫
|(η1)z|

(
z2p4 + z4p6

)
dz +

∫
η1z

2|p|3|pz|
(
1 + |pz|2

)
dz.

(3.24)

Observe that using as before p . z−
3
4 which follows from (3.10) we know that

z2p4(z) + z4p6(z)→ 0, for z →∞,

and thus there are no boundary terms appearing. Using (3.20) and (3.22) we can estimate∫
|(η1)z|

(
z2p4 + z4p6

)
dz . 1

z∗

∫ z∗
z∗/2

z2p4 + z4p6 dz

.
∫
z2p2 dz 1

z3∗

(
|zp|2∞,[0,z∗] + |zp|4∞,[0,z∗]

)
. D̂

(
(ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)
.

(3.25)

Estimate the second term of (3.24) using (3.21) and choosing in the following g = pz∫
η1z

2|p|3|g|
(
1 + |pz|2

)
dz

.
∫
η1|pg|

(
(ÊD̂)

1
2 z

1
2 + ÊD̂z

)
dz +

(
(ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3

) ∫
η1|pg| dz.

(3.26)

Estimate right-hand side’s terms individually by using that η1(z) = 0 for z . z∗ and Hölder∫
η1|pg|

(
(ÊD̂)

1
2 z

1
2 + ÊD̂z

)
dz .

(
(ÊD̂)

1
2

1

z∗
+ (ÊD̂)

1

z
1
2
∗

)∫
z

3
2 |pg| dz

.

(
(ÊD̂)

1
2

1

z∗
+ (ÊD̂)

1

z
1
2
∗

)(∫
z2p2 dz

∫
zg2 dz

) 1
2

. D̂
1
2

(
(ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)(∫
zg2 dz

) 1
2

. D̂ +
(

(ÊD̂
1
2 )

4
3 + (ÊD̂

1
2 )

8
3

)∫
zg2 dz.
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Calling
ε := (ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3 ,

the other term in (3.26) can be estimated in a similar fashion, since

ε

∫
η1|pg| dz .

ε

z
3
2
∗

(∫
z2p2 dz

∫
zg2 dz

) 1
2

. D̂
1
2 ε

(∫
zg2 dz

) 1
2

. D̂ + ε2
∫
zg2 dz.

Thus we obtain∫
η1z

2|p|3|pz|
(
1 + |pz|2

)
dz . D̂ +

(
(ÊD̂

1
2 )

4
3 + (ÊD̂

1
2 )

8
3

)∫
zp2z dz,

and therefore∫
η1
(
zp4 + z3p6

)
dz .

(
1 + (ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)
D̂ +

(
(ÊD̂

1
2 )

4
3 + (ÊD̂

1
2 )

8
3

)∫
zp2z dz.

It remains to estimate∫
η1z

3p2p2z dz = −
∫ (

η1z
3p2pz

)
z
p dz = −

∫
(η1)zz

3p3pz + 3η1z
2p3pz + η1z

3p3pzz + 2η1z
3p2p2z dz

.
∫
|(η1)z|z3|p|3|pz|+ η1z

2|p|3|pz|+ η1z
3|p|3|pzz| dz.

To argue that there are no boundary terms appearing due to the integration by parts, we use
the fact that since Ê <∞, we know that for a subsequence zn →∞

znp(zn)→ 0,

as well as (3.19). The term ∫
η1z

2|p|3|pz| dz

is already estimated starting from (3.26) for g = pz. The term∫
η1z

3|p|3|pzz| dz

is estimated starting from (3.26) for g = zpzz. We estimate the remaining term by Young’s
inequality for some small δ∫

|(η1)z|z3|p|3|pz| dz ≤
1

δ

∫
|(η1)z|z4p6 dz + δ

∫
|(η1)z|z2p2z dz.

The first term is already estimated in (3.25), the second one can be estimated using (3.20) by

δ

∫
|(η1)z|z2p2z dz . δ

1

z∗

∫ z∗

z∗/2
z2p2z dz ≤ δ

∫
zp2z dz.
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Thus together we obtain∫
η1zp

2 (p(zp− 1)− c1zpz)2 dz

.
(

1 + (ÊD̂
1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)
D̂ +

(
(ÊD̂

1
2 )

4
3 + (ÊD̂

1
2 )

8
3

)∫
zp2z dz + δ

∫
zp2z dz,

and using (3.23)∫
zp2 (p(zp− 1)− c1zpz)2 dz

.
(

1 + (ÊD̂
1
2 )

2
3 + (ÊD̂

1
2 )

4
3

)
D̂ +

(
(ÊD̂

1
2 )

2
3 + (ÊD̂

1
2 )

4
3 + (ÊD̂

1
2 )

8
3

)∫
zp2z dz + δ

∫
zp2z dz.

Thus we estimate using Young∫
z|AB| dz ≤ cD̂ + c(ÊD̂

1
2 )

8
3

∫
z3p2zz dz + δ

∫
z3p2zz dz.

Choosing δ small enough we have thus proven

D̂ ≥
∫
zA2 dz − 2

∣∣∣∣∫ zAB dz

∣∣∣∣ & (1− c(ÊD̂
1
2 )

8
3

)∫
z3p2zz dz,

which proves the claim.

Lemma 3.6. If χ is close to the stationary solution in the sense of

ÊD̂
1
2 � 1,

then it holds

|zχzz(z)|∞ .
(
ÊD̂

1
2

) 1
3
. (3.27)

Proof. As usual denote
u := χz, p := χzz.

Define

z∗ :=

(
Ê

D̂

) 1
3

.

For z0 ≤ z∗ we know by Lemma 3.2 and 3.3 that (3.27) holds. Let

g := zp.

Now let z0 ≥ z∗ and use that in the first step we already showed the desired estimate for
g2(z∗), so that by the triangle inequality it suffices to estimate

|g2(z0)− g2(z∗)| .
∫ z0

z∗

η1|gzg| dz .
(
Ê

∫
η1g

2
z dz

) 1
2

.
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Via integration by parts we observe∫ ∞
0

η1g
2
z dz = −

∫
η1gzzg dz −

∫
gzg(η1)z dz. (3.28)

To ensure that there are no boundary terms while integrating by parts, we use that since
Ê <∞ there exists a sequence zn →∞ such that znp(zn)→ 0. Also∣∣∣∣z2npzu5

− 5z2np
2

2u6
+

2znp

u5
+

1

2

(
1

u4
− 1

)∣∣∣∣ = |−∂2L+ (∂3L)z| (zn) . D̂
1
2 zn,

from where we then obtain, by dividing by zn, that znpz(zn) stays bounded. Thus

(gzg)(zn) = (p(zn) + znpz(zn))znp(zn)→ 0.

Now the first term of (3.28) can be estimated by

−
∫
η1gzzg dz ≤

1

z
1
2
∗

(∫
η1zg

2
zz dz

∫
η1g

2 dz

) 1
2

≤ D̂
2
3 Ê

1
3 ,

where we used that by Hardy’s inequality (see (3.18))∫
zg2zz dz .

∫
z3p2zz dz,

as well as by Lemma 3.5 ∫
z3p2zz dz . D̂.

The second term can be estimated by∫
gzg(η1)z dz .

∫ z∗

z∗/2
ggz dz

1

z∗
=

1

z∗

∫
zp2 dz +

1

z∗

∫
z2ppz dz

.
1

z2∗
Ê +

1

z
1
2
∗

Ê
1
2

(∫
zp2z dz

) 1
2

. D̂
2
3 Ê

1
3 .

Altogether we obtain

g2(z0) . |g2(z0)− g2(z∗)|+ g2(z∗) .

(∫ ∞
z∗

g2z dzÊ

) 1
2

+ D̂
1
3 Ê

2
3 . D̂

1
3 Ê

2
3 .

This closes the proof.

Lemma 3.7. Let
B =

{
χ
∣∣∣ Ê(χ)D̂(χ)

1
2 � 1

}
.

Then for every χ0, χ1 ∈ B and z ∈ R+ the map

s 7→ L(z, χsz(z), χ
s
zz(z))

is convex, where
χs := (1− s)χ0 + sχ1.

Furthermore the energy

Ê : χ 7→
∫
L(z, χz(z), χzz(z)) dz

is geodesically convex on the convex hull of the set B, seen as a subset of L2(z dz).
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Proof. Let c1, c2 � 1 be such that if

|χz(z)− 1|∞ ≤ c1, |zχzz(z)|∞ ≤ c2,

then
z2χzz(z)

2

χz(z)2
≤ 1

5
.

Let
A =

{
χ
∣∣∣ |χz(z)− 1|∞ ≤ c1, |zχzz(z)|∞ ≤ c2

}
.

By Lemma 3.3 and 3.6 we know that if

Ê(χ)D̂(χ)
1
2 � 1,

it holds that
B ⊂ A.

Since A is convex this implies that also for the convex hull we have that

conv(B) ⊂ A.

Thus we know that χs ∈ A. It therefore suffices to show that for all χ ∈ A

D2
2,3L (z, χz(z), χzz(z)) ≥ 0.

This is equivalent to showing that

tr
(
D2

2,3L
)

(z, χz(z), χzz(z)) ≥ 0,

and
det
(
D2

2,3L
)

(z, χz(z), χzz(z)) ≥ 0.

Denote as always
u := χz, p := χzz.

Remark that D2
2,3L(z, u, p) is given by

∂22L (z, u, p) = 15
z2p2

u7
+

2

u5
,

∂2∂3L (z, u, p) = −5z2p

u6
,

∂23L (z, u, p) =
z2

u5
.

Then

tr
(
D2

2,3L
)

(z, u, p) =
15z2p2 + (2 + z2)u2

u7
≥ 0,

since by definition
u =

z

h(χ(z))
≥ 0.
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Furthermore

det
(
D2

2,3L
)

(z, u, p) =
2z2

u10

(
1− 5z2p2

u2

)
≥ 0,

since A is chosen in such a way that
5z2p2

u2
≤ 1.

This proves the first part of the lemma. The second part easily follows by the fact that the
constant speed geodesic on L2(z dz) connecting χ0 and χ1 is indeed given by χs as above and
integration is a linear and monotone operation.

The next lemma provides a proof of Corollary 1.3.

Lemma 3.8. Let χ be close to the stationary solution, in the sense of

Ê(χ)D̂(χ)
1
2 � 1.

Then we have the estimate

|χ(0)| . Ê(χ)
1
3 Ĥ(χ)

1
6 . (3.29)

Proof. Start by observing that Lemma 3.3 yields |χz − 1|∞ � 1, and thus we have that∫ ∞
0

z2χ2
zz dz . Ê(χ).

Also it holds ∫ ∞
0

(χ− z)2z dz . Ê(χ),

by Hardy’s inequality (Lemma 5.8 with k = 0, g = u − 1, (u − 1)(z) → 0 for z → 0 due to
(3.1)). Thus ∫

(χz − 1)2 dz .
∫
z2χ2

zz dz . Ê(χ). (3.30)

To obtain (3.29) as before we treat separately the cases for small and large z. Let z∗ be defined
by

z∗ =

(
Ĥ

Ê

) 1
3

.

Using that since Ĥ(χ) <∞ we know that for a subsequence zn →∞ we have

χ(zn)− zn → 0.

Using this we estimate first

(χ(z∗)− z∗)2 .
∫ ∞
z∗

|(χ− z)z(χ− z)| dz ≤
(∫ ∞

0
(χ− z)2z dz

∫ ∞
z∗

z

z
(χ− z)2 dz

) 1
2

. (ÊĤ)
1
2 z
− 1

2
∗ .

This yields

|χ(z∗)− z∗| .

(
ÊĤ

z∗

) 1
4

= Ê
1
3 Ĥ

1
6 .
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Now observe

|χ(z∗)− z∗ − χ(0)| ≤
∫ z∗

0
|(χ− z)z| dz ≤

(∫ z∗

0
(χ− z)2z dz z∗

) 1
2

. (Êz∗)
1
2 = Ê

1
3 Ĥ

1
6 .

Thus we combine

|χ(0)| ≤ |χ(0)− (χ(z∗)− z∗)|+ |χ(z∗)− z∗| . Ê
1
3 Ĥ

1
6 ,

as desired.

30



4 Establishing the differential and algebraic relationships

In this section we are first proving Lemma 1.4, in which the main differential and algebraic
relationships are established. These relationships are in fact an easy consequence of the con-
vexity as stated in Lemma 3.7. For completeness we are recalling the proof nevertheless. Note
that as noted in Lemma 3.7

Φ : s 7→ L(z, χsz(z), χ
s
zz(z)) (4.1)

is convex, where
χs := (1− s)χ0 + sχ.

Proof of Lemma 1.4. Let us first prove the relation (1.12). For this we work in h coordinates.
Let without loss of generality χ(0) = 0. Choose a cut-off function η = ηR ∈ C∞ such that

ηR(x) =

 1, for x ≤ R,

0, for x ≥ 2R,

as well as

|(ηR)′|∞ . R−1,

|(ηR)′′|∞ . R−2.

Now calculate

d

dt

1

2

∫
η(hx − 1)2 dx =

∫
(hx − 1)hxtη dx = −

∫
(hx − 1)(hhxxx)xxη dx

=

∫
hxx(hhxxx)xη + (hx − 1)(hhxxx)xηx dx

= −
∫
hh2xxxη dx−

∫
hxxhhxxxηx dx+

∫
(hx − 1)(hhxxx)xηx dx.

Now for R→∞ this yields

d

dt
E(h) = −D(h) + lim sup

R→∞

(
−
∫
hxxhhxxxηx dx+

∫
(hx − 1)(hhxxx)xηx dx

)
.

It thus remains to show that

lim sup
R→∞

(
−
∫
hxxhhxxxηx dx+

∫
(hx − 1)(hhxxx)xηx dx

)
= 0. (4.2)

For this observe that

−
∫
hxxhhxxxηx dx+

∫
(hx − 1)(hhxxx)xηx dx =

∫ (
(hx − 1)−1hhxxx

)
x

(hx − 1)2ηx dx

= −
∫

(hx − 1)−1hhxxx
(
(hx − 1)2ηx

)
x
dx = −

∫
hhxxx(hx − 1)ηxx dx− 2

∫
hhxxxhxxηx dx.

Note that
|h(x)− x| . E

1
2x

1
2 .
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This yields that for x� 1 we know that

h(x)

x
≈ 1. (4.3)

we can therefore estimate∫
hhxxx(hx − 1)ηxx dx .

1

R
3
2

∫ 2R

R

∣∣∣h 1
2hxxx(hx − 1)

∣∣∣ ( h
R

) 1
2

dx

. (ED)
1
2

1

R
3
2

.

For the other term start by estimating∫
hhxxxhxxηx dx .

(∫
hh2xxx dx

∫
hh2xxη

2
x dx

) 1
2

.

Using (4.3) we know that ∫
hh2xxη

2
x dx ≈

∫
xh2xxη

2
x dx.

We therefore estimate∫
xh2xxη

2
x dx = −

∫
(xhxxη

2
x)x(hx − 1) dx

= −
∫
hxxη

2
x(hx − 1) dx−

∫
xhxxxη

2
x(hx − 1) dx− 2

∫
xhxxηxηxx(hx − 1) dx.

Estimating term by term we have∫
hxxη

2
x(hx − 1) dx .

1

R

∫
ηxhxx(hx − 1) dx .

1

R
3
2

∫
ηxx

1
2hxx(hx − 1) dx

≤ δ
∫
xh2xxη

2
x dx+

c

δ
E

1

R3
,

as well as∫
xhxxxη

2
x(hx − 1) dx .

(∫
xh2xxx dx

∫
(hx − 1)2 dx

) 1
2 1

R
3
2

. (ED)
1
2

1

R
3
2

,

and ∫
xhxxηxηxx(hx − 1) dx ≤ δ

∫
xh2xxη

2
x dx+

c

δ
E

1

R3
.

Choosing δ � 1 and absorbing, we obtain that for R →∞∫
hh2xxη

2
x dx ≈

∫
xh2xxη

2
x dx→ 0.

This proves (4.2) and thus (1.12) is proved.
It remains to show that the three other relations (1.11), (1.14) and (1.13) hold under the

hypothesis that

E0D0
1
2 � 1.
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Observe that it is enough to show (1.11),(1.14) and (1.13) for all t0 under the assumption

E(t0)D(t0)
1
2 � 1.

since then (1.12) and (1.13) guarantee that this is satisfied for all t0 ≥ 0 if it is true for t0 = 0.
Thus we can assume that (4.1) is convex. Let us in the following drop the boundary terms
when integrating by parts, since we can argue in the same manner as seen above in the proof
of (1.12) that they indeed vanish. Start by proving (1.11).
Using the thin-film equation in χ coordinates (2.4) we obtain

∂t

(
H(t)

2

)
= ∂t

1

2

∫ ∞
0

z(χ(t, z)− χ0(z))
2 dz =

∫ ∞
0

zχt(t, z)(χ(t, z)− χ0(z)) dz

= −
∫ ∞
0

(∂2L)(z, u, p)(χ− χ0)z + (∂3L)(z, u, p)(χ− χ0)zz dz

= −
∫ ∞
0
〈(∇2,3L)(z, u, p)− (∇2,3L)(z, u0, p0), (u, p)− (u0, p0)〉 dz ≤ 0.

The last step is true since the integrand is positive due to the fact that the map (4.1) is convex.
Next we show (1.14), i.e.

E ≤
√
HD.

For this note that due to the convexity of (4.1), we have

Φ(1) ≤ Φ(0) + Φ′(1),

which translates into

L(z, χz, χzz) ≤ (∂2L)(z, χz, χzz)(χ− χ0)z + (∂3L)(z, χz, χzz)(χ− χ0)zz.

Integrating this yields

E(t) = Ê(χ(t)) =

∫ ∞
0

L(z, χz, χzz) dz

≤
∫ ∞
0

(∂2L)(z, χz, χzz)(χ− χ0)z + (∂3L)(z, χz, χzz)(χ− χ0)zz dz

=

∫ ∞
0

√
z

z
(χ− χ0)

(
−
(

(∂2L)(z, u, p)
)
z

+
(

(∂3L)(z, u, p)
)
zz

)
dz

≤
√
H(t)D(t),

by Hölder’s inequality. Thus as claimed it holds

E(t) ≤
√
H(t)D(t).

Next we prove
∂tD(t) ≤ 0.
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Start by computing

∂t

(
D(t)

2

)
=

∫ ∞
0

1

z
(−(∂2L)z + (∂3L)zz)

(
−
(
∂22Lχtz + ∂2∂3Lχtzz

)
z

)
dz

+

∫ ∞
0

1

z
(−(∂2L)z + (∂3L)zz)

(
∂2∂3Lχtz + ∂23Lχtzz

)
zz
dz

=−
∫ ∞
0

(χtz)
(
∂22Lχtz + ∂2∂3Lχtzz

)
dz

−
∫ ∞
0

(χtzz)
(
∂2∂3Lχtz + ∂23Lχtzz

)
dz

=−
∫ ∞
0

V (z) · (D2
2,3L)(z, u, p)V (z) dz,

where we used (2.4) and defined

V (z) = (χtz, χtzz) (z).

Again using the convexity of (4.1) in the form of

D2
2,3L(z, u, p) ≥ 0,

we conclude. This closes the proof of Lemma 1.4.

Now for completeness we are giving the ODE argument which is the content of Lemma
1.5.

Proof of Lemma 1.5. Estimate (1.15) follows directly by (1.11).
To show (1.16) use (1.12), (1.14) and (1.15) to obtain

∂tE(t) = −D(t) ≤ −E
2(t)

H(t)
≤ −E

2(t)

H0
.

Thus
∂tE−1(t) ≥

1

H0
,

and integrating
E−1(t) ≥ E−1(t)− E−1(0) ≥ t

H0
,

or
E(t) ≤ H0

t
.

To prove (1.17), observe that (1.13) implies for all s ≤ 2T

D(s) ≥ D(2T ).

Using this, as well as (1.12) and (1.16) we obtain

H0

T
≥ E(T ) = −

∫ ∞
T

∂tE(s)ds =

∫ ∞
T
D(s)ds ≥

∫ 2T

T
D(s)ds ≥ D(2T )T,

which yields as desired (1.17)

D(T ) ≤ 4H0

T 2
.
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5 Appendix

In the following we are proving several statements about the boundary behavior of admissible
functions in the sense of (1.9) with finite E,H,D.

Lemma 5.1. Let h be admissible in the sense of (1.9) and

E(h) <∞.

Then
lim

z→+∞
χz(z) = 1.

Proof. We will use the identity
χz(z) =

z

h(χ(z))
,

which follows by taking the derivative of the defining equation of χ.

Let us first show that

lim
z→+∞

∣∣∣∣χ(z)

z
− 1

∣∣∣∣ = 0. (5.1)

Observe that for x ≥ χ(0)

(h(x)− x) + χ(0) =

∫ x

χ(0)
(hx(y)− 1) dy ≤

(∫
(hx − 1)2 dy

) 1
2

(x− χ(0))
1
2

≤ (E(h))
1
2 (x− χ(0))

1
2 .

From this we obtain

h(x)− h0(x) ≤ C(x− χ(0))
1
2 − χ(0). (5.2)

Integrating this and using the definition of χ(z) we obtain

1

2
(z − χ(z))(z + χ(z)) =

z2 − χ(z)2

2
=

∫ χ(z)

−∞
(h− h0) dx (5.3)

. (χ(z)− χ(0))
3
2 − χ(0)(χ(z)− χ(0)). (5.4)

For z � 1 this yields
|z − χ(z)| . χ(z)

1
2 .

Dividing by z this yields ∣∣∣∣χ(z)

z
− 1

∣∣∣∣ . 1

z

(
|χ(z)− z|

1
2 + z

1
2

)
.

Thus by Young for z � 1 ∣∣∣∣χ(z)

z
− 1

∣∣∣∣ . 1

z
1
2

→ 0.
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Now from (5.2) we can deduce ∣∣∣∣h(x)

x
− 1

∣∣∣∣ . 1

x
1
2

→ 0.

Thus we can conclude

lim
z→+∞

χz(z) = lim
z→+∞

z

h(χ(z))
= lim

z→+∞

χ(z)

h(χ(z))

z

χ(z)
= 1.

Lemma 5.2. Let h be admissible in the sense of (1.9) and

H(h) <∞, E(h) <∞.

Then for x0 � 1 ∫ ∞
x0

(h− h0)2
1

x
dx . H(h).

Proof. As noted before in (2.3), we know that

H(h) =

∫ ∞
χ(0)

(√
2h̄(x)− x

)2

h(x) dx,

with
h̄(x) =

∫ x

−∞
h(y) dy.

This can be rewritten as

H(h) =

∫ ∞
χ(0)

(
2h̄(x)− x2

)2 h(x)(√
2h̄(x) + x

)2 dx &
∫ ∞
χ(0)

(
2h̄(x)− x2

)2 h(x)(
2h̄(x) + x2

) dx.
Now observe that for x ≥ χ(0)

(h(x)− x) + χ(0) =

∫ x

χ(0)
(hx(y)− 1) dy ≥ −

(∫
(hx − 1)2 dy

) 1
2

(x− χ(0))
1
2

≥ − (E(h))
1
2 (x− χ(0))

1
2 .

From this we obtain
h(x) ≥ (x− χ(0))− C(x− χ(0))

1
2 .

Similarly we obtain
2h̄(x) ≤ (x− χ(0))2 + C(x− χ(0))

3
2 .

Thus

H(h) &
∫ ∞
χ(0)

(
2h̄(x)− x2

)2( (x− χ(0))− C(x− χ(0))
1
2

x2 + (x− χ(0))2 + C(x− χ(0))
3
2

)
+

dx =:

∫ ∞
χ(0)

(h− h0)2g(x) dx.
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Since g(x) ≥ 0 and

g(x) ≈ 1

x
, x� 1,

we obtain ∫ ∞
x0

(h− h0)2
1

x
dx . H(h),

as desired.

Lemma 5.3. Let h be admissible in the sense of (1.9) and

H(h) <∞, E(h) <∞.

Then
lim
z→∞

z (1− χz(z))2 = 0.

Proof. Let x1 ≥ x0 � 1, then∫ x1

x0

(h− h0)2 dx =

∫ x1

x0

(h− h0)x(h− h0) dx = −
∫ x1

x0

(h− h0)(h− h0)xdx+ (h− h0)(h− h0)|x1x0

≤ x
1
2
1

(∫ x1

x0

(h− h0)2
1

x
dxE(h)

) 1
2

+ |h− h0||h− h0|(x0) + |h− h0||h− h0|(x1)

. x
1
2
1 + |h− h0||h− h0|(x0) + |h− h0||h− h0|(x1).

Using this we obtain

(h− h0)2(x1)− (h− h0)2(x0) = 2

∫ x1

x0

(h− h0)(h− h0)xdx .

(∫ x1

x0

(h− h0)2 dxE(h)

) 1
2

. x
1
4
1 +

(
|h− h0||h− h0|

) 1
2 (x0) +

(
|h− h0||h− h0|

) 1
2 (x1).

Now using Young with with p = 4, q = 4
3 we obtain

(h− h0)2(x1) . x
1
4
1 + ε(h− h0)2(x1) + (h− h0)2(x0) + |h− h0|

2
3 (x0) + |h− h0|

2
3 (x1),

and absorbing into the right hand side we get

(h− h0)2(x1) . x
1
4
1 + (h− h0)2(x0) + |h− h0|

2
3 (x0) + |h− h0|

2
3 (x1).

We can also estimate

(h− h0)2(x1)− (h− h0)2(x0) = 2

∫ x1

x0

(h− h0)(h− h0)xdx .

(∫ x1

x0

(h− h0)2 dx
∫ x1

x0

(h− h0)2 dx
) 1

2

.

(
x1H(h)

∫ x1

x0

(h− h0)2 dx
) 1

2

. x
1
2
1

(
x

1
4
1 +

(
|h− h0||h− h0|

) 1
2 (x0) +

(
|h− h0||h− h0|

) 1
2 (x1)

)
.
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This yields (for fixed x0) by Young∣∣h− h0∣∣ 23 (x1) . 1 + x
1
4
1 + ε

(
|h− h0||h− h0|

) 1
2 (x1).

Using this and absorbing in the left hand side implies

(h− h0)2(x1) +
∣∣h− h0∣∣ 23 (x1) . 1 + x

1
4
1 .

This yields

(h− h0)2(x1)
x1

.
1

x
3
4
1

→ 0, for x1 →∞. (5.5)

and ∣∣h− h0∣∣ (x1)
x1

.
1

x
5
8
1

→ 0, for x1 →∞,

which using the identity

1

2
|(z − χ(z))(z + χ(z))| =

∣∣h− h0∣∣ (χ(z)),

implies

|z − χ(z)| . 1

χ(z)
5
8

. (5.6)

Putting things together start by rewriting

z (1− χz(z))2 = z

(
z − h(χ(z))

h(χ(z))

)2

= z

(
χ(z)

h(χ(z))

)2(z − h(χ(z))

χ(z)

)2

.

Since by Lemma 5.1 (
χ(z)

h(χ(z))

)2

→ 1,

it remains to estimate

z

(
z − h(χ(z))

χ(z)

)2

.

(
z

χ(z)

)(
(z − χ(z))2

χ(z)
+

(χ(z)− h(χ(z)))2

χ(z)

)
.

Since also by Lemma 5.1
z

χ(z)
→ 1,

using (5.5) and (5.6) for the last two terms then yields as desired

z (1− χz(z))2 → 0, for z →∞.
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Lemma 5.4. Let χ be such that it belongs to an h satisfying (1.9), as well as E(h) <∞ and
D(h) <∞. Then we know that

χ ∈ C∞([0,∞[).

Proof. Let without loss of generality be χ(0) = 0. The defining identity for χ is

h̄(χ(z)) =
z2

2
.

Consider the k-th Taylor approximation of h given by

h(x) = h(0) + h′(0)x+

k∑
j=2

h(j)(0)
xj

j!
+

∫ x

0

(x− z)k

k!
h(k+1)(z) dz

= x+
k∑
j=2

h(j)(0)
xj

j!
+

∫ x

0

(x− z)k

k!
h(k+1)(z) dz.

Then we obtain that

h̄(x) =

∫ x

0
h(y) dy =

x2

2
+

k∑
j=2

h(j)(0)
xj+1

(j + 1)!
+

∫ x

0

∫ y

0

(y − z)k

k!
h(k+1)(z) dz dy

=
x2

2

1 +
k∑
j=2

h(j)(0)
2xj−1

(j + 1)!
+

1

x2

∫ x

0

∫ y

0

2(y − z)k

k!
h(k+1)(z) dz dy

 =:
x2

2
(1 +Rk(x)).

Thus taking the square root we obtain√
2h̄(χ(z)) = z,

with
G(x) :=

√
2h̄(x) = x (1 +Rk(x))

1
2 =: xL(x).

We thus know that
χ′(z) =

1

G′(χ(z))
,

or more generally for some polynomial Pn and some N ≤ n

χ(n)(z) =
Pn(G′, . . . , G(n))(χ(z))

(G′)N (χ(z))
, (5.7)

where f (n) denotes the n-th derivative. Since G ∈ C∞(]0,∞[) we thus know that χ ∈
C∞(]0,∞[). What remains to show is that

| lim
z↘0

χ(n)(z)| <∞. (5.8)

By formula (5.7) we thus just have to show that

lim
x↘0

G′(x) > 0,
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and ∣∣∣∣ limx↘0
G(n)(x)

∣∣∣∣ <∞. (5.9)

For this first observe that for l < k

R
(l)
k (x) = ∂lx

 k∑
j=2

h(j)(0)
2xj−1

(j + 1)!

+ ∂lx

(
1

x2

∫ x

0

∫ y

0

2(y − z)k

k!
h(k+1)(z) dz dy

)
.

Obviously the first term is always bounded, the second one can be estimated by

∂lx

(
1

x2

∫ x

0

∫ y

0

2(y − z)k

k!
h(k+1)(z) dz dy

)
. |h(k+1)|∞,[0,x]xk−l.

Thus for l < k

lim
x↘0
|R(l)

k (x)| <∞. (5.10)

Also it holds
lim
x↘0

Rk(x) = 0,

and thus
lim
x↘0

L(x) = 1.

Observe that
L′(x) =

R′(x)

2L(x)

and thus for some polynomial P̄l and some M ≤ l

L(l)(x) =
P̄l(R

′, . . . , R(l))(x)

(L(x))M
,

which yields by (5.10) that
lim
x↘0
|L(l)(x)| <∞.

Now taking the derivative of G yields

G′(x) = L(x) + xL′(x)→ 1 > 0, for x→ 0.

Since
G(l)(x) = lL(l−1)(x) + xL(l)(x),

we thus obtain (5.9) as desired and thus (5.8) for all n = l < k. Since k was arbitrary, the
claim is proven.

Apart from minor changes the next two lemmas are basically already contained in Propo-
sition 2.2 and Proposition 2.3 of[10]. For convenience we are nevertheless recalling their proof
including minor modifications.
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Lemma 5.5. Let h be admissible as in (1.9), and E(h) <∞. Let also w.l.o.g. χ(0) = 0. Then
there exists a C such that

1

2
≤ h′(x) ≤ 3

2
, for x ∈ [0, r],

with
r ≥ 1

C
D−

1
2 (h).

Proof. First observe that E(h) <∞ implies the existence of a sequence xn → +∞ such that

lim
n→+∞

h′(xn) = 1.

Assume that r is maximal with the property that

1

2
≤ h′(x) ≤ 3

2
, for x ∈ [0, r].

Then it holds that
h′(r) ∈

{
1

2
,
3

2

}
.

After possible rescaling
h̃(x) := r−1h(rx),

we know that

h̃(0) = 0, h̃′(0) = 1, ∃xn →∞ : h̃′(xn)→ 1, h̃′(1) ∈
{

1

2
,
3

2

}
, (5.11)

1

2
≤ h̃′(x) ≤ 3

2
, for x ∈ [0, 1]. (5.12)

Since
D(h̃) = r2D(h),

we have to show that
D(h̃) ≥ 1

C
.

Let us from now on for convenience write h instead of h̃. The first case is

h′(1) =
3

2
.

Define h̄ to be the second order polynomial

h̄(x) =
1

4
(x+ 2)2 − 1.

This is made in such a way that

(
h̄(0), h̄′(0), h̄′(1)

)
=

(
0, 1,

3

2

)
=
(
h(0), h′(0), h′(1)

)
.

The claim is now that

∀ε > 0 ∃ δ > 0 such that: D(h) < δ ⇒ |h′′ − h̄′′|∞,[1,+∞[ < ε. (5.13)
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Because of (5.11) we know that for every x ∈ [0, 1]

x

2
≤
∫ x

0
h′(y) dy ≤ 3x

2
,

which yields

x

2
≤ h(x) ≤ 3x

2
. (5.14)

Since ∫ 1

0
yh′′′(y) dy = h′′(1)−

∫ 1

0
h′′(y) dy, (5.15)

and ∫ 1

0
h′′(y) dy =

1

2
,

we obtain using (5.14) ∣∣∣∣h′′(1)− 1

2

∣∣∣∣ ≤ (∫ 1

0
y(h′′′)2

) 1
2

. D
1
2 .

Also ∫ 1

0
hh′′′ dy = h(1)h′′(1)−

∫ 1

0
h′h′′ dy = h(1)h′′(1)− 1

2
(h′)2(1) +

1

2
, (5.16)

yields using (5.14)∣∣∣∣h(1)h′′(1)− 5

8

∣∣∣∣ ≤ ∫ 1

0
h|h′′′| dy ≤ D

1
2

(∫
h dy

) 1
2

. D
1
2 .

Thus if D(h)� 1 we know that

h′′(1) ≈ 1

2
= h̄′′(1), h′(1) =

3

2
= h̄′(1), h(1) ≈ 5

4
= h̄(1),

and in particular

h(1) ≥ 1, h′(1) =
3

2
, h′′(1) >

1

4
. (5.17)

Let x1 be maximal such that
h′′(x) ≥ 1

4
, for x ∈ [1, x1].

This implies that for x ∈ [1, x1] we have for a ξ ∈ [1, x]

h(x) = h(1) + h′(1)(x− 1) + h′′(ξ)
(x− 1)2

2
≥ 1 +

1

8
(x− 1)2.

Using this we can estimate for x ∈ [1, x1]

|h′′(x)− h′′(1)| ≤
∫ x

1
|h′′′| dy ≤

(∫ ∞
0

1
1
8y

2 + 1
dyD

) 1
2

. D
1
2 .
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Thus for x ∈ [1, x1]

|h′′(x)− h̄′′(x)| ≤ |h′′(x)− h′′(1)|+ |h′′(1)− 1
2 | . D

1
2 .

Thus for all ε > 0 ∃ δ > 0 such that

D(h) < δ ⇒ |h′′ − h̄′′|∞,[1,x1] < ε.

But then for ε < 1
4 this implies

h′′(x1) > h̄′′(x1)− ε =
1

4
.

This is a contradiction to the maximality of x1 if x1 < ∞, thus x1 = +∞ and we proved
(5.13). But now since there exists xn →∞ such that h′(xn)→ 1, choose R ≥ 1 such that

h′(R) ≤ 3

2
.

Then
1

R− 1

∫ R

1
h′′ dy =

h′(R)− h′(1)

R− 1
≤ 0.

But ifD � 1 due to (5.13) the right-hand side would be close to 1
2 > 0, which is a contradiction.

Thus there exists C such that
D ≥ 1

C
,

as desired.
It remains to prove

D ≥ 1

C
,

in the case that
h′(1) =

1

2
.

Similar to the other case we will compare to a second order polynomial, which is given by

h̄(x) = −1

4
(x− 2)2 + 1.

This is made in such a way that

(
h̄(0), h̄′(0), h̄′(1)

)
=

(
0, 1,

1

2

)
=
(
h(0), h′(0), h′(1)

)
.

Use in a similar fashion as above (5.15) and (5.16) to obtain∣∣∣∣h′′(1) +
1

2

∣∣∣∣ . (∫ 1

0
h(h′′′)2 dy

) 1
2

,

and ∣∣∣∣h(1)h′′(1) +
3

8

∣∣∣∣ . (∫ 1

0
h(h′′′)2 dy

) 1
2

.
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Thus if
∫ 1
0 h(h′′′)2 dy � 1 we know that

h′′(1) ≈ −1

2
= h̄′′(1), h′(1) =

1

2
= h̄′(1), h(1) ≈ 3

4
= h̄(1). (5.18)

Let x0 ∈]1, 4[ arbitrary. Choose
∫ 1
0 h(h′′′)2 dy � 1 such that

h(1) >
5

8
,

then
h(1) >

1

2
=

1

2
max
y∈]1,4[

h̄(y) ≥ 1

2
h̄(x0) > 0.

Now let x1 ∈]1, x0] be maximal such that

h(x) ≥ 1

2
h̄(x0) ∀x ∈ [1, x1].

Then for x ∈ [1, x1] we obtain

|h′′(x)− h′′(1)| ≤
∫ x1

1
|h′′′| dy .

(
x0 − 1

h̄(x0)

∫ x1

1
h(h′′′)2 dy

) 1
2

,

and thus together with (5.18) we get for all ε > 0, ∃ δ > 0 such that∫ x1

0
h(h′′′)2 dy < δ ⇒ |h′′ − h̄′′|∞,[1,x1] < ε.

Since x0 < 4 this implies together with (5.18)∫ x1

0
h(h′′′)2 dy < δ ⇒ |h− h̄|C2([1,x1]) < ε.

But then for ε ≤ 1
4 h̄(x0) we obtain by using the explicit form of h̄ that

h(x1) > h̄(x1)−
1

4
h̄(x0) ≥

1

2
h̄(x0).

This yields x1 = x0. Thus for all x0 ∈]1, 4[ we know that for all ε > 0, ∃ δ > 0∫ x0

0
h(h′′′)2 dy < δ ⇒ |h− h̄|C2([1,x0]) < ε. (5.19)

Now observe that (
h̄(4), h̄′(4), h̄′′(4)

)
=

(
0,−1,−1

2

)
.

Let us prove that for all δ > 0 there exists x0 ∈ [1, 4[ and ε > 0 such that

|h− h̄|C2([1,x0]) < ε⇒
∫ ∞
x0

h(h′′′)2 dy >
1

16
− δ. (5.20)

Let δ be given. For this let x0 be close to 4 and ε small enough such that

|h− h̄|C2([1,x0]) < ε
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implies

h(x0) + 4h′(x0) < 0, h′′(x0) < 0.

Now let x1 ∈]x0, 8] such that

h′(x) < h′(x0) for x ∈ ]x0, x1[ and h′(x1) = h′(x0). (5.21)

Such an x1 does indeed exist since on the one hand h′′(x0) < 0 implies that there exists an
x̃ > x0 such that

h′(x) < h′(x0) for x ∈]x0, x̃[.

on the other hand assume that this holds for x̃ = 8. Then using that h′(x0) ≤ 0 and x0 ≤ 4
leads to

0 ≤ h(8) = h(x0) +

∫ 8

x0

h′(y) dy ≤ h(x0) + h′(x0)(8− x0) ≤ h(x0) + 4h′(x0) < 0,

a contradiction. Thus an x1 as in (5.21) exists. Let x ∈ [x0, x1]. Since h′(x) ≤ h′(x0) < 0, we
know that h is monotone decreasing on [x0, x1]. Using this we compute

h′′(x) = h′′(x0) +

∫ x

x0

h′′′ dy ≤ h′′(x0) +

(∫ ∞
x0

h(h′′′)2 dy

) 1
2
(∫ x

x0

1

h(y)
dy

) 1
2

. h′′(x0) +

(∫ ∞
x0

h(h′′′)2 dy

) 1
2
(
x1 − x0
h(x)

) 1
2

.

Multiplying this by h′(x) < 0 yields(
1

2
(h′(x))2

)′
≥ h′′(x0)h′(x) +

(∫ ∞
x0

h(h′′′)2 dy

) 1
2

(x1 − x0)
1
2 2(h

1
2 )′(x).

Now integrating from x0 to x1 and using (5.21) yields

0 =
1

2
(h′(x1))

2 − 1

2
(h′(x0))

2

≥ h′′(x0)(h(x1)− h(x0)) +

(∫ ∞
x0

h(h′′′)2 dy

) 1
2

(x1 − x0)
1
2 2
(
h

1
2 (x1)− h

1
2 (x0)

)
.

Observe that
h(x0) =

∫ x1

x0

(−h′(y)) dy + h(x1) ≥ (x1 − x0)(−h′(x0)).

Using this as well as h(x1) ≤ h(x0) we obtain

∫ ∞
x0

h(h′′′)2 dy ≥

 h′′(x0)(h(x1)− h(x0))

(x1 − x0)
1
2 2
(
h

1
2 (x1)− h

1
2 (x0)

)
2

= h′′(x0)
2 (h

1
2 (x0) + h

1
2 (x1))

2

4(x1 − x0)

≥ h′′(x0)2
h(x0)

4(x1 − x0)
≥ h′′(x0)2

−h′(x0)
4

.
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Now since x0 is close to 4 and
|h− h̄|C2([1,x0]) < ε,

we know that
h′′(x0) ≈ −

1

2
, h′(x0) ≈ −1.

Using this we derive ∫ ∞
x0

h(h′′′)2 dy >
1

16
− δ,

as desired. Thus we know that (5.19) and (5.20) hold which imply the existence of a C such
that

D(h) ≥ 1

C
.

This closes the proof of the lemma.

Lemma 5.6. Let h be admissible and E(h) <∞. Let

r =
1

C
D−

1
2 ,

where C is the constant from Lemma 5.5. Then

[h′] 2
3
,[0,r] . D

1
3 .

Proof. Using Lemma 5.5 we know that for

r =
1

C
D−

1
2

and for x ∈ [0, r] we have

h(x) ≥ x

2
(5.22)

and ∣∣∣∣∫ r

0
h′′ dy

∣∣∣∣ ≤ 1

2
. (5.23)

Using the formula

h′′(x)− 1

r

∫ r

0
h′′ dy =

∫ x

0

y

r
h′′′(y) dy +

∫ r

x

(y
r
− 1
)
h′′′(y) dy

=

∫ r

0
y

(
χ[0,x[

1

r
+ χ[x,r]

(
1

r
− 1

y

))
h′′′(y) dy,

we obtain

|h′′(x)| ≤
∣∣∣∣1r
∫ r

0
h′′ dy

∣∣∣∣+

(∫ r

0
y(h′′′(y))2 dy

∫
y

(
χ[0,x[

1

r
+ χ[x,r]

(
1

r
− 1

y

))2

dy

) 1
2

.
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Compute ∫
y

(
χ[0,x[

1

r
+ χ[x,r]

(
1

r
− 1

y

))2

dy =
1

r2

∫ r

0
y dy −

∫ r

x

2

r
dy +

∫ r

x

1

y
dy

= −3

2
+

2x

r
+ ln

( r
x

)
≤ 1

2
+ ln

( r
x

)
.

Using this as well as (5.22) and (5.23) we obtain

|h′′(x)| .
(

1 + ln
r

x

)( 1

2r
+D

1
2

)
.

Since for 0 ≤ y0 ≤ y1 ≤ 1 it holds∫ y1

y0

1 + ln
1

y
dy = y1 ln

1

y1
+ 2y1 − y0 ln

1

y0
− 2y0 . |y1 − y0|

2
3 ,

we thus estimate for 0 ≤ x0 ≤ x1 ≤ r

|h′(x1)− h′(x0)| ≤
∫ x1

x0

|h′′(y)| dy . |x1 − x0|
2
3 r

1
3

(
1

2r
+D

1
2

)
. D

1
3 |x1 − x0|

2
3 ,

since
r =

1

C
D−

1
2 .

Remark 5.7. Observe that
E

1
3D−

1
3 = (ED

1
2 )

1
3 D−

1
2 .

Thus for
x ≤ E

1
3D−

1
3 ,

we know that for
ED

1
2 � 1,

it holds that
x ≤ 1

C
D−

1
2 = r,

and the above estimate holds.

Lemma 5.8 (Hardy’s Inequality). Let k 6= 1. Assume

∃ zn ↘ 0 : ψ(zn)→ 0 if k < −1,

∃ zn ↗∞ : ψ(zn)→ 0 if k > −1.

Then ∫ ∞
0

zkψ2 dz ≤ 4

(k + 1)2

∫ ∞
0

zk+2ψ2
z dz.

Proof. See for example [7, Lemma A.1].
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