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Abstract. We introduce a new systematic approach to the Wright-Fisher

model of population genetics based on the free energy functional. In the present
paper, the method is illustrated for the simplest case only, that of 2 alleles.
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1. Introduction15

The Wright-Fisher model is the basic model of mathematical population genetics.16

It is concerned with the time course of the distribution of different alleles that can17

occupy the same genetic locus in a population under the effects of random genetic18

drift, mutation, and selection. In this paper, in order to make the – somewhat19

difficult – mathematical content most transparent, we consider the case where there20

are only two alleles present in the population. Let us denote these alleles by A0 and21

A1. The population consists of N individuals which are periodically replaced by22

their offspring, the individuals of the next generation. The number N is kept fixed,23

but apart from this global constraint, the number of offspring that any individual24

can produce is variable. Here, we consider the case of diploid individuals, although25

the slightly simpler case of haploid individuals is not essentially different in this26

mathematical model. Thus, at the locus in question, each in! dividual carries two27

alleles which could be identical or different. In order to create the next generation,28

each potential offspring randomly seeks two parents (they could be identical, but29
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when N is large, the chance for that to occur becomes negligible).1 Each individual1

can be chosen as parent several times. Each parent then donates one of its alleles.2

Mathematically, this just means that the allele pool of the next generation is created3

by random sampling with replacement from the allele pool of the current generation.4

In the absence of selective differences, all individuals have the same chance of getting5

chosen as a parent. And when no mutations are possible, the offspring faithfully6

inherits its alleles from its paren! ts. In that case, the only stochastic effect is7

genetic drift.! Then, almost surely, after some number of generation steps, one of8

the alleles gets extinct, simply because it happens that none of its carriers is chosen9

as parent in some generation, and then it will remain absent from the population10

forever. Thus, since there were only two alleles to begin with, one of them will11

become extinct and the other will survive as the sole allele in the population. This12

naturally leads to question like the relative chances of the alleles to be the survivor or13

the expected extinction time. The answers are not too difficult. When 0 < p < 1 is14

the relative frequency of allele A1 in the original population, and hence 0 < 1−p < 115

is that of A0, then the chance of A1 to survive is p, and the expected extinction16

time is the entropy −p log p − (1 − p) log(1 − p). This is classical, but in fact, we17

have developed a new constructive approach based on concepts from information18

geometry. Anyway, for the mathematical analysis it is most expedient! to pass19

to the limit N → ∞ of an infinite population size and in turn to rescale the time20

between generations as 1/N . The advantage is that the limit can be described by21

a partial differential equation, the Fokker-Planck or forward Kolmogorov equation.22

Let x be the relative frequency of A1, and u(x, t) be the probability density that23

that frequence at time t is x. Then the evolution equation is24

(1.1) ∂tu(x, t) =
1

2

∂2

∂x2

(
x(1− x)u(x, t)

)
.

A mathematical difficulty arises from the fact that this equation becomes singular at25

the boundary, because the coefficient x(1−x) vanishes when x is 0 or 1. Of course,26

this precisely corresponds to the extinction of one of the alleles, A1 for x = 027

and A0 for x = 1. In particular, since one of the alleles will eventually become28

extinct almost surely, the process will run into a boundary singularity where u(x, t)29

becomes a delta distribution supported at x = 0 or x = 1.30

The situation becomes more interesting in a sense if we allow for mutations.31

That is, in the transmission from parent to offspring, an allele can mutate from32

A0 to A1 with some positive probability, and likewise from A1 to A0 with some,33

possibly different, probability. (1.1) is then replaced by34

(1.2) ∂tu(x, t) =
1

2

∂2

∂x2

(
x(1− x)u(x, t)

)
− ∂

∂x

((θ1
2
− θ1 + θ0

2
x
)
u(x, t)

)
where θ0 and θ1 are the rescaled mutation rates from A1 to A0 and from A0 to A1,35

resp. Thus, there is an additional first order term on the right hand side in (1.2).36

Mathematically, this is called a drift term.237

1Of course, this does not sound very biological, but this procedure simply serves to bring

out the mathematical aspects most clearly, by ignoring aspects like mate choice etc that are not
relevant for the formal properties of the basic model.

2We should point out an essential incompatibility between the mathematical and the biological
terminology here. Mathematically, in a Fokker-Planck type equation, the leading part which

contains second derivatives w.r.t. the spatial variables is called the diffusion part, and an additional
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In that case, the effect of random genetic drift can be compensated by the effect of1

mutation which may restore the number of the less frequent allele and thereby per-2

haps prevent its extinction. In more formal terms, one may ask about the existence3

of a stationary distribution where the two effects are in balance. Here, stationary4

means that the left hand side of the corresponding Fokker-Planck equation (which5

in addition to (1.1) contains a term on the right hand side that represents the effect6

of mutation) vanishes. And when such a stationary distribution exists, which it7

indeed does in the case of positive mutation rates, one may ask about the rate of8

convergence towards such a limiting distribution.9

One may then wonder what happens when there also selective effects. Here,10

selection simply means that the chances of an allele to be drawn as a parent allele11

depends on its type. The fitter type has a higher probability. When the fitness of12

genotype A1A1, A1A0, A0A0 is 1, 1 + sh
2N , 1 + s

2N , respectively, (1.2) is replaced by13

∂tu(x, t) =
1

2

∂2

∂x2

(
x(1− x)u(x, t)

)
− ∂

∂x

((θ1
2
− θ1 + θ0

2
x+

+ x(1− x)(h− 1 + x− 2hx)s
)
u(x, t)

)
.

(1.3)

The main purpose of this paper is to answer such questions with a powerful novel14

method, that of the free energy functional. This method was first introduced in15

connection with Fokker-Planck equations in [10]. A connection between statistical16

mechanics methods and population genetics was first applied in [9]. Here, we use17

these methods and ideas to bring them to bear on the classical model of population18

genetics, the Wright-Fisher model.19

For background on the Wright–Fisher model, we refer to [6]. The general math-20

ematical perspective is developed in [8]. The current paper can also be seen as a21

sequel to [13] where we have presented an introduction to the mathematical struc-22

ture of the Wright-Fisher model for the case of 2 alleles, that is, for the case also23

treated here.24

In more technical terms, in this paper, we shall systematically construct free25

energy functionals for the Fokker-Planck or Kolmogorov forward equation derived26

from the Wright-Fisher model with 2 alleles with mutation and selection, that is,27

(1.1) and its generalizations (1.2), (1.3). It will turn out that the positivity of28

the mutation rates is a necessary and sufficient condition for the Wright-Fisher29

diffusion process to have a unique stationary reversible probability measure. When30

this condition is satisfied, we show that the free energy plays the role of a Lyaponov31

functional along the flow of densities. The difference between the current and32

the final free energy is given by the relative entropy between the corresponding33

measures. The time derivative of this difference is the negative entropy production.34

When the two mutation rates (rescaled by the population size) are at least 1/2,35

one can reach a quantitative version; as we shall show in [14], in that case the36

flow of probability measures (densities) exponentially converges to the stationary37

reversible one under various notions of distance (total variation, entropy, L1, etc.).38

first term, which may or may not be present, is called a drift term. In the biological model,
random genetic drift, which is the most important component of the Wright-Fisher model, causes
the diffusion, and not the drift term in the Fokker-Planck equation.
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The stationary distribution is an important quantity in conservative Markov1

processes, in particular in diffusion processes derived from population genetics.2

However, it is not so easy to get its explicit form in general. A more tractable but3

much stronger condition is reversibility. This means that at stationarity the process4

has the same distribution as its time reversal. When stationary distributions can5

be found explicitly, they usually can be shown to be reversible. We refer the reader6

to [6] p.107 for an interesting role of reversibility in population genetics concerning7

the prospective and retrospective aspects of the processes. See also, for example,8

[11], [12], [15] for various applications of reversibility in population genetics models.9

In this paper, by using the free energy functional method, we show that the10

positivity of the mutation rates is the necessary and sufficient condition for the11

Wright-Fisher model with 2 alleles with mutation and selection to have a unique12

stationary reversible distribution.13

This fits into a wider framework. The evolution of many physical or biological14

systems is characterized by two kinds of driving mechanisms: diffusion and drift.15

The competition between these two types of dynamics may lead the system to a16

thermodynamical equilibrium. Recently, the rate of convergence to equilibrium17

has been studied in detail for a class of such Fokker Planck type equations (see,18

for example, [1], [3] for spatially homogeneous systems, [4], [7], [5] for spatially19

inhomogeneous systems). Here, we shall use such techniques to investigate the20

convergence to the stationary reversible distribution in the Wright-Fisher diffusion21

model with 2 alleles and positive mutation rates.22

2. The Kolmogorov (Fokker-Planck) equation23

We consider a diploid Wright Fisher population of N individuals with 2 alleles24

A0 and A1. Assume that there are mutations from A1 to A0 with rate θ0
4N and from25

A0 to A1 with rate θ1
4N (the time unit is 2N generations). Then the expecation26

values for the change of the frequency Xt of allele A1 at generation 2Nt satisfy27

E(δXt|Xt) =
(θ1

2
− θ1 + θ0

2
Xt

)
(δt) + o(δt),

E((δXt)
2|Xt) = Xt(1−Xt)(δt) + o(δt),

E((δXt)
α|Xt) = o(δt), for α ≥ 3.

(2.1)

The Kolmogorov forward equation for the family of density functions {u(·, t)}t≥028

in the probability measure space ([0, 1], dx) thus becomes (see [6], for instance)29

(2.2) ∂tu(x, t) =
1

2

∂2

∂x2

(
x(1− x)u(x, t)

)
− ∂

∂x

(
b(x)u(x, t)

)
with drift coefficient30

b(x) =
θ1
2
− θ1 + θ0

2
x.

Remark 2.1. We note that in our case A(x) does not satisfy a uniform ellipticity31

condition as in [2]. In fact, when x goes to the boundary ∂[0, 1], A(x) goes to 0.32

We first observe an integration by parts formula.33
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Lemma 2.2.

(2.3)

∫ 1

0

f(x)∂x(A(x)g(x))dx = −
∫ 1

0

A(x)g(x)∂xf(x)dx

for all f, g ∈ C1([0, 1]).1

Proof. This is easy to see because A(x) = 1
2x(1− x) = 0 as x = 0, 1. �2

To construct a free energy functional for this equation, we shall rewrite it in the3

following form4

∂tu(x, t) =
∂

∂x

(
x(1− x)

2

∂

∂x
u(x, t)

)
+

∂

∂x

((1− 2x

2
− b(x)

)
u(x, t)

)

=
∂

∂x

(
x(1− x)

2

∂

∂x
u(x, t)

)
+

∂

∂x

(
x(1− x)

2
u(x, t)

(1− θ1
x
− 1− θ0

1− x

))
= ∂x

(
A(x)∂xu(x, t)

)
+ ∂x

(
A(x)u(x, t)∂xψ(x)

)
= ∂x

(
A(x)u(x, t)∂x

(
log u(x, t) + ψ(x)

))
,

(2.4)

where5

A(x) =
x(1− x)

2
,

and6

(2.5) ψ(x) = (1− θ1) log x+ (1− θ0) log(1− x).

We shall also write (2.4) as7

(2.6) ∂tu = Lu

with8

(2.7) Lu := ∂x(A(x)∂xu) + ∂x(A(x)u∂xψ(x)),

We shall also need to consider the adjoint L∗ of L which is given by9

(2.8) L∗v = ∂x(A(x)∂xv)− ∂xψA(x)∂xv.

When in addition to mutation, there are also selection effects, things do not10

change much. Let the fitness of an individual of type A1A1, A1A0, A0A0 be 1, 1 +11

sh
2N , 1 + s

2N , resp. Then the frequency Xt of allele A1 at generation 2Nt satisfies12

E(δXt|Xt) =
(θ1

2
− θ1 + θ0

2
Xt + sXt(1−Xt)

(
1− h+ (1− 2h)Xt

))
(δt) + o(δt),

E((δXt)
2|Xt) = Xt(1−Xt)(δt) + o(δt),

E((δXt)
α|Xt) = o(δt), for α ≥ 3.

(2.9)

For the family of density functions {u(·, t)}t≥0 on the probability measure space13

([0, 1], dx), the Kolmogorov forward equation then is14
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(2.10) ∂tu(x, t) =
1

2

∂2

∂x2

(
x(1− x)u(x, t)

)
− ∂

∂x

(
b(x)u(x, t)

)
with drift coefficient1

b(x) =
θ1
2
− θ1 + θ0

2
x+ sx(1− x)

(
1− h+ (1− 2h)x

)
.

We thus see that, compared to the case without selection effects, selection only2

leads to addition term that do not become singular at the boundary. Therefore,3

the case with selection can be handled essentially in the same manner as the case4

without. Consequently, we shall not spell out all the details.5

As before, we rewrite (2.10) as6

∂tu(x, t) =
∂

∂x

(
x(1− x)

2

∂

∂x
u(x, t)

)
+

∂

∂x

((1− 2x

2
− b(x)

)
u(x, t)

)

=
∂

∂x

(
x(1− x)

2

∂

∂x
u(x, t)

)
+

∂

∂x

(
x(1− x)

2
u(x, t)

(1− θ1
x
− 1− θ0

1− x
−

2s
(
1− h+ (1− 2h)x

)))
= ∂x(A(x)∂xu(x, t)) + ∂x(A(x)u(x, t)∂xψ(x))

= ∂x

(
A(x)u(x, t)∂x

(
log u(x, t) + ψ(x)

))
,

(2.11)

where now7

ψ(x) = (1− θ1) log x+ (1− θ0) log(1− x)− 2s
(
(1− h)x+

1

2
(1− 2h)x2

)
.

3. Entropy and free energy8

Definition 3.1. For a nonnegative function f(x) defined on [0, 1] with
∫
[0,1]

fdx = 19

(i.e., f is a density), we define its (negative) entropy functional by10

S(f) =

∫
[0,1]

f log fdx.(3.1)

Definition 3.2. For a family of densities {u(·, t)}t≥0 on [0, 1] satisfying an evolution11

equation of the form (2.2), we define the potential energy functional by12

Ψ(u(·, t)) :=

∫
[0,1]

u(x, t)ψ(x)dx.(3.2)

and the free energy functional by13

F (u(·, t)) :=

∫
[0,1]

u(x, t)
(

log u(x, t) + ψ(x)
)
dx

= S(u(·, t)) + Ψ(u(·, t)).

(3.3)
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Remark 3.3. The connection between Fokker-Planck equations and free energy1

functionals was first established in [10]. In particular, in [10], it was demonstrated2

that a Fokker-Planck equation with gradient drift term may be interpreted as a3

gradient flux, or a steepest descent, of a free energy functional with respect to a4

certain (Wasserstein) metric.5

Definition 3.4. Let f1, f2 be densities on [0, 1]. The relative entropy (Kullback–6

Leibler divergence) of f1 with respect to f2 is7

DKL(f1‖f2) :=

{∫
[0,1]

f1(x) log f1(x)
f2(x)

dx, if supp(f1) ⊂ supp(f2)

∞, otherwise

The following observation will be important.8

Lemma 3.5.

Z(θ1, θ0) := Beta(θ1, θ0) :=

∫ 1

0

e−ψ(x)dx =

∫ 1

0

xθ1−1(1− x)θ0−1dx

or, when there is also selection present,9

Z(θ1, θ0, s, h) :=

∫ 1

0

e−ψ(x)dx =

∫ 1

0

xθ1−1(1− x)θ0−1e2s
(
(1−h)x+ 1

2 (1−2h)x
2
)
dx

is finite if and only if both θ1 and θ0 are positive.10

Here, the notation Z indicates that this expression is a partition function in the11

sense of statistical mechanics, whereas the notation Beta simply expresses the fact12

that we are dealing with a Beta-function.13

Definition 3.6. A probability measure µ on [0, 1] is called stationary (invariant)14

with respect to the Wright-Fisher diffusion ((2.2) or (2.10)) if15

(3.4)

∫
[0,1]

L∗f(x)µ(dx) = 0, ∀f ∈ C∞0 ([0, 1]).

It is called reversible if16

(3.5)

∫
[0,1]

g(x)L∗f(x)µ(dx) =

∫
[0,1]

f(x)L∗g(x)µ(dx), ∀f, g ∈ C∞0 ([0, 1]).

Theorem 3.7. In a diploid Wright–Fisher model of N individuals of 2 alleles17

A0, A1. Assume that there are mutations from A1 to A0 with rate θ0
4N and from A0

18

to A1 with rate θ1
4N . Then the necessary and sufficiency condition to have a unique19

stationary distribution is20

(3.6) θ0 > 0, θ1 > 0.

The stationary distribution then is of the form21

(3.7) µm∞(dx) = um∞(x)dx =
xθ1−1(1− x)θ0−1

Beta(θ1, θ0)
dx

in the absence of selection. In the presence of selection, this becomes22

(3.8) µms∞ (dx) = ums∞ (x)dx =
xθ1−1(1− x)θ0−1e2s

(
(1−h)x+ 1

2 (1−2h)x
2
)

Z(θ1, θ0, s, h)
dx.
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Proof. (1) (⇒): (3.6) is equivalent to1

(3.9)

∫
[0,1]

e−ψ(x)dx <∞.

Consequently, µ∞(dx) = e−ψ(x)

Z dx is well-defined. We now execute the2

following steps3

Step 1: µ∞(dx) = e−ψ(x)

Z dx is reversible with respect to L∗:4

5

(3.10)∫
[0,1]

fL∗gdµ∞ =

∫
[0,1]

f
(
∂x(A(x)∂xg)

)
u∞(x)dx−

∫
[0,1]

f
(
∂xψA(x)∂xg

)
u∞(x)dx

= −
∫
[0,1]

A(x)∂xg∂x

(
f
e−ψ(x)

Z

)
dx−

∫
[0,1]

(
∂xψA(x)∂xg

)
fu∞(x)dx

(due to (2.3))

= −
∫
[0,1]

A(x)∂xg
(
∂xf − f∂xψ(x)

)e−ψ(x)
Z

dx−
∫
[0,1]

(
∂xψA(x)∂xg

)
fu∞(x)dx

= −
∫
[0,1]

A(x)∂xg∂xf
e−ψ(x)

Z
dx

= −
∫
[0,1]

A(x)∂xg∂xfdµ∞(x).

which is symmetric between f and g.6

Step 2: µ∞(dx) = e−ψ(x)

Z dx is stationary with respect to L∗:7

By applying Step 1 with an arbitrary f and g = 1 and using L∗1 = 0.8

Step 3: µ∞(dx) = e−ψ(x)

Z dx is the unique absolutely continuous stationary9

density reversible with respect to L∗:10

Assume that ν is absolutely continuous, stationary and reversible with11

respect to L∗. Then ν(dx) = k(x)µ∞(dx) for some positive function k12

and of course we also have µ∞(dx) = k(x)−1ν(dx). Therefore13

(3.11)

0 =

∫
[0,1]

L∗fdν

=

∫
[0,1]

L∗fkdµ∞

=

∫
[0,1]

fL∗kdµ∞, due to the symmetry of µ∞

This implies that L∗k = 0. Similarly, because of the symmetry of ν,14

we also have L∗(k−1) = 0. Thus15

(3.12)

0 = L∗(1)− kL∗(k−1)− k−1L∗k
= A(x)∂xk∂xk

−1

= −A(x)∂xk∂xk

k2



THE FREE ENERGY METHOD AND THE WRIGHT-FISHER MODEL WITH 2 ALLELES 9

which implies that k is constant. Because ν and µ∞ are probability1

measures, k should be 1. This means that ν = µ∞.2

(2) (⇐): Assume that ν(dx) = v(x)dx is an absolute continuous stationary3

probability measure that is reversible with respect to L∗. This implies that4

Lv = 0, where5

Lv = ∂x(A(x)∂xv) + ∂x(A(x)vZ(x))

for some vector Z depending on b(x) and A(x). Solving it we have6

∂x log v = −Z(x).

Thus, Z is of the form ∂xψ for some ψ. Thus, v = Ce−ψ. Because of7 ∫
[0,1]

vdx = 1 we obtain C = 1
Z <∞, which means that {u(·, t)t≥0} satisfies8

(3.9) which is equivalent to (3.6). This completes the proof.9

�10

Thus, when the mutation rates are positive, the unique minimizer of the free11

energy functional is the Gibbs density12

(3.13) um∞(x) :=
e−ψ(x)

Z(θ1, θ0)
=
xθ1−1(1− x)θ0−1

Beta(θ1, θ0)
,

and it solves the stationary density equation13

0 = ∂x

(
A(x)u∞(x)∂x

(
log u∞(x) + ψ(x)

))
.(3.14)

We also observe14

Lemma 3.8. The minimum of the free energy F (3.3) is

F∞ =

∫ 1

0

f∞(x)(log f∞(x) + ψ(x))dx = − logZ(θ1, θ0) = − logBeta(θ1, θ0),

or, if selection is present,15

F∞ =

∫ 1

0

f∞(x)(log f∞(x) + ψ(x))dx = − logZ(θ1, θ0, s, h).

4. The evolution of the free energy16

We shall assume (3.6), that is, positive mutation rates, in order to have a unique17

stationary reversible density by Theorem 3.7, and want to show that our flow of18

density functions exponentially converges to this Gibbs density function and the19

free energy functional plays the role of the Lyapunov functional. We consider the20

evolution of the free energy along the flow of densities {u(·, t)}t≥021

(4.1) F (u(·, t)) :=

∫ 1

0

ψ(x)u(x, t)dx+

∫ 1

0

u(x, t) log u(x, t)dx.

We shall prove that the free energy functional is a Lyapunov functional.22

Lemma 4.1. F (u(·, t)) decreases along the flow of densities.23
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Proof. Using the divergence form of the flow, we have1

∂

∂t
F (u(·, t)) =

∫ 1

0

ψ(x)
∂

∂t
u(x, t)dx+

∫ 1

0

log u(x, t)
∂

∂t
u(x, t)dx+

∫ 1

0

∂

∂t
u(x, t)dx︸ ︷︷ ︸
=0

=

∫ 1

0

ψ(x)∂x(A(x)∂xu(x, t))dx+ ψ(x)∂x(A(x)u(x, t)∂xψ(x))dx

+

∫ 1

0

log u(x, t)∂x(A(x)∂xu(x, t))dx+ log u(x, t)∂x(A(x)u(x, t)∂xψ(x))dx

= −
∫ 1

0

∂xψ(x)(A(x)∂xu(x, t))dx− ∂xψ(x)(A(x)u(x, t)∂xψ(x))dx

−
∫ 1

0

∂x log u(x, t)(A(x)∂xu(x, t))dx− ∂x log u(x, t)(A(x)u(x, t)∂xψ(x))dx

(due to (2.3))

= −
∫ 1

0

∂xψ(x)(A(x)∂xu(x, t))dx− ∂xψ(x)(A(x)u(x, t)∂xψ(x))dx

−
∫ 1

0

∂xu(x, t)(A(x)∂xu(x, t))

u(x, t)
dx− ∂xu(x, t)A(x)∂xψ(x)dx

= −
∫ 1

0

I(x, t)dx

(4.2)

where2

I(x, t) = u(x, t)∂xψ(x)(A(x)∂xψ(x)) +
1

u(x, t)
∂xu(x, t)(A(x)∂xu(x, t))

+ 2∂xψ(x)(A(x)∂xu(x, t))

= u < ∂xψ, ∂xψ >A(x) +
1

u
< ∂xu, ∂xu >A(x) +2 < ∂xψ, ∂xu >A(x)

≥ 0.

(4.3)

This completes the proof. �3

By Theorem 3.7,4

µ∞(dx) = u∞(x)dx =
e−ψ(x)

Z
dx

is reversible with respect to L∗.5

We can now compute the decay rate of the free energy functional towards its6

asymptotic limit along the evolution of the probability density function u. For7

simplicity, we shall write F (t) in place of F (u(·, t)).8

Theorem 4.2. The difference of the present free energy and the final free energy is9

equal to the relative entropy (Kullback-Leibler divergence) between the corresponding10

densities and also equal to the (negative) entropy of their ratio with respect to the11

stationary probability measure:12
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F (t,θ)− F∞(θ) = DKL(u‖u∞) = Sµ∞(h) ≥ 0.

Proof. We have1

(4.4)

F (t,θ) =

∫
[0,1]

u(log u+ ψ)dx

=

∫
[0,1]

u(log u∞ + ψ)dx+

∫
[0,1]

u(log u− log u∞)dx

=

∫
[0,1]

u(− logZ)dx+

∫
[0,1]

u log
u

u∞
dx

= − logZ +

∫
[0,1]

u log
u

u∞
dx

= − logZ +

∫
[0,1]

h log hdµ∞

and2

F∞(θ) = F (u∞) =

∫
[0,1]

u∞(log u∞ + ψ) = − logZ.

This implies the proof. �3

Theorem 4.3. The rate of change of the free energy functional (3.3) is equal4

to the negative of the entropy production (equivalently, the negative of the Fisher5

information):6

d

dt
Sµ∞(h) = ∂tF (t,θ) = −Jµ∞(h) := −

∫
[0,1]

A(x)∂xh∂xh

h
dµ∞.

Proof. We have7

(4.5)

∂tF (t,θ) =

∫
[0,1]

∂tu(log u+ ψ)dx+

∫
[0,1]

u∂t(log u+ ψ)dx

=

∫
[0,1]

∂x

(
Au∂x

(
log u+ ψ

))
(log u+ ψ)dx+

∫
[0,1]

∂tudx

( because ∂tψ = 0)

= −
∫
[0,1]

(
Au∂x

(
log u+ ψ

))
∂x(log u+ ψ)dx+ ∂t

(∫
[0,1]

udx
)

( due to (2.3) )

= −
∫
[0,1]

Au∂x(log h)∂x(log h)dx

= −
∫
[0,1]

A∂xh∂xh

h
u∞dx.

Since F (u∞) is independent of t, this yields the proof. �8
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When the mutation rates have a suitable lower bound, we can reach more precise1

conclusions. This will be carried out in [14]. For instance, we have2

Theorem 4.4. For the Wright–Fisher model with 2 alleles with mutation rates3

θ0, θ1 >
1
2 , the stationary distribution f∞dx satisfies the LSI(ρ1,∞) with4

ρ1 =
(√θ1 − 1

2 +
√
θ0 − 1

2

2

)2
.

Corollary 4.5. Under the above assumptions, the rate of convergence of the relative5

entropy DKL(u‖u∞) is6

DKL(u(t)‖u∞) ≤ e−2ρtDKL(u(0)‖u∞).
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