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THE FREE ENERGY METHOD FOR THE FOKKER-PLANCK EQUATION1

OF THE WRIGHT-FISHER MODEL2

TAT DAT TRAN, JULIAN HOFRICHTER, JÜRGEN JOST3

Abstract. We use the free energy functional associated with the Fokker-Planck (forward Kol-

mogorov) equation to investigate the convergence to equilibrium of the Wright-Fisher model
of population genetics in the case of positive mutation rates.
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1. Introduction19

In this paper, we shall systematically construct free energy functionals for the Kolmogorov20

forward equations (Fokker-Planck equations) for the Wright-Fisher model of population genetics21

with mutation and possibly also selection (see [10]). We shall then use them to construct a22

necessary and sufficient condition for the Wright-Fisher diffusion processes to have a unique23

stationary reversible probability measure. When this condition is satisfied, we show that the24

flow of probability measures (densities) exponentially converges to the stationary reversible one25

under various notions of distance (total variation, entropy, L1, etc.).26

The stationary distribution is an important quantity in conservative Markov processes. These27

processes include the diffusion processes derived from population genetics. However, in general28

it is not so easy to get the explicit form of a stationary distribution. A more tractable but29

much stronger condition is reversibility. Reversibility means that at stationarity the process30

has the same distribution as its time reversal. Typically, stationary distributions that can be31

computed explicitly turn out to be also reversible. In population genetics, reversibility concerns32
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the prospective and retrospective aspects of the process; this is discussed in [10] p.107. See also,1

for example, [21], [24], [28] for various applications of reversibility in population genetics models.2

For jump processes, the reversibility condition for a distribution µ can be usually localized3

and one gets equalities connecting jump rates with point masses (if µ is Gibbsian, this type4

of equalities is called the condition of detailed balance in the physics literature). For diffusion5

processes, such a localization is just integration by parts, and conditions for existence of a6

reversible distribution have been studied in great detail (see, for example, [18]).7

In [29], Wright found a sufficient condition for a Wright-Fisher model with general mutation8

rates to have a unique stationary distribution. The sufficient condition for the Wright-Fisher9

model of 2 alleles with mutation and selection was also proved by Ethier and Kurtz ([9], p. 417).10

These sufficient conditions are the positivity and the uniformness of mutations (i.e. mutations11

depend only on the target alleles or independent parent; this is automatically satisfied in the12

case of 2 alleles). This then leads to question whether these conditions are also necessary. This13

kind of question has also been asked in more general models such as Fleming-Viot models and14

the answer is affirmative. In [22], a necessary and sufficient condition for the Fleming-Viot15

process with mutation, selection to be reversible is studied by using moment calculations. In16

[14], a necessary and sufficient condition for the Fleming-Viot process with mutation, selection17

and recombination to be reversible is studied by using quasi-invariant measures with a cocycle.18

In this paper, by using the free energy functional method, we show that the uniformness of19

mutations is the necessary and sufficient condition for the Wright-Fisher model with general20

mutation and selection to have a unique stationary reversible distribution.21

The evolution of many physical or biological systems is driven by the interplay between diffu-22

sion and drift mechanisms. In particular, the competition between them may lead the system to23

a thermodynamical equilibrium. A currently very active research direction consists in studying24

the rate of convergence to equilibrium for a class of such Fokker Planck type equations (see,25

for example, [1], [5] for spatially homogeneous systems, [7], [15], [8] for spatially inhomogeneous26

systems). In particular, the connection between the convergence to equilibrium for the Fokker-27

Planck equations and inequalities from functional analysis, like logarithmic Sobolev, spectral gap,28

curvature-dimension has been recently actively studied (see, for example, [2], [23], [6], [3]). Here,29

we shall use such techniques to consider the rate of convergence to the stationary reversible dis-30

tribution for Wright-Fisher diffusion models. The difference and also difficulty is that our state31

space is a non-smooth manifold (simplex) and the diffusion coefficients of the Fokker Planck32

operator are singular, i.e., they vanish on the boundary.33

The rest of this paper is organized as follows. In Section 2, after some preliminaries, we obtain34

the first main result of a necessary and sufficient condition to have a unique stationary reversible35

density (Theorem 2.10). In Section 3, we systematically construct free energy functionals for36

the Wright-Fisher diffusion process with general mutation and selection. Combining this with37

Theorem 2.10, we prove that the necessary and sufficient condition for the existence of a unique38

stationary reversible distribution is that mutations are uniform (Theorems 3.2, 3.3). In Section39

4, we shall consider the evolution of the free energy functional constructed in Section 3 in40

the case of uniform mutations (to guarantee that there exists a unique stationary reversible41

distribution). We shall prove that the difference of the current and the final (minimal/Gibbs)42

free energy is nothing but the relate entropy of the corresponding densities (Theorem 4.6) and43

the rate of change of this difference is the negative of the entropy production (also called Fisher44

information in the terminology of information geometry) (Theorem 4.7). In Section 5, under some45

conditions on the mutation coefficients, we shall show that the current distribution will converge46

in various senses to the stationary distribution, which is a Gibbs distribution (a distribution of47

the type of an exponential family in the terminology of information geometry) (Theorem 5.12,48

and Corollaries 5.15, 5.13, 5.14).49
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2. Preliminaries1

We begin with some general concepts in order to introduce the theoretical context; a good2

reference is [3]. In this paper, we denote by Ω a Polish space (complete metric and separable).3

Definition 2.1. A probability measure µ on Ω is called stationary (invariant) with respect to4

the (Markov) diffusion process Xt with semigroup (Tt)t≥0 on Ω and generator Ln if5

(2.1)

∫
Ω

Ttf(x)µ(dx) =

∫
Ω

f(x)µ(dx), ∀t ≥ 0, f ∈ C∞0 (Ω),

or equivalently (due to [11] Theorem 2.3)6

(2.2)

∫
Ω

Lnf(x)µ(dx) = 0, ∀f ∈ C∞0 (Ω).

It is called reversible if7

(2.3)

∫
Ω

g(x)Ttf(x)µ(dx) =

∫
Ω

f(x)Ttg(x)µ(dx), ∀t ≥ 0, f, g ∈ C∞0 (Ω),

or equivalently8

(2.4)

∫
Ω

g(x)Lnf(x)µ(dx) =

∫
Ω

f(x)Lng(x)µ(dx), ∀f, g ∈ C∞0 (Ω).

Definition 2.2. For a nonnegative functional f(x) defined on a σ−finite measure space (Ω, µ),9

we define its (negative) entropy functional by10

Sµ(f) :=

∫
Ω

f log fdµ−
(∫

Ω

fdµ
)

log
(∫

Ω

fdµ
)
.(2.5)

If f(x) is a density with respect to µ, i.e.
∫

Ω
fdµ = 1 then this reduces to the standard11

negative entropy functional,12

Sµ(f) =

∫
Ω

f log fdµ.(2.6)

Definition 2.3. We say that the family of densities {u(·, t)}t≥0 on a σ−finite measure space13

(Ω, µ) satisfies the condition I(A,ψ) if it solves a diffusion equation of the form14

∂tu(x, t) = ∂i

(
Aij(x)∂ju(x, t) +Aij(x)u(x, t)∂jψ(x)

)
= ∇x ·

(
A(x)∇xu(x, t) +A(x)u(x, t)∇ψ(x)

)
= ∇x ·

(
A(x)u(x, t)∇x

(
log u(x, t) + ψ(x)

))
,

(2.7)

where15

Aij(x) = Aji(x),

and it satisfies the condition II(A,ψ) if in addition to I(A,ψ), ψ, we also have16 ∫
Ω

e−ψ(x)µ(dx) <∞.
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Definition 2.4. For a family of densities {u(·, t)}t≥0 on a σ−finite measure space (Ω, µ) with1

condition I(A,ψ), we define the potential energy functional by2

Ψ(u(·, t)) :=

∫
Ω

u(x, t)ψ(x)µ(dx).(2.8)

and the free energy functional by3

F (u(·, t)) :=

∫
Ω

u(x, t)
(

log u(x, t) + ψ(x)
)
µ(dx)

= Sµ(u(·, t)) + Ψ(u(·, t)).
(2.9)

We can extend this functional to the space of all densities D as4

Fψ(q) :=

∫
Ω

q(x)
(

log q(x) + ψ(x)
)
µ(dx)(2.10)

Remark 2.5. In the important paper [19], the relation between a Fokker-Planck equation and5

the associated free energy functional was systematically explored. In particular, it was demon-6

strated that a Fokker-Planck equation with gradient drift term may be interpreted as a gradient7

flux, or a steepest descent, of a free energy functional with respect to a certain (Wasserstein)8

metric.9

Definition 2.6. Let f1, f2 be densities on a σ−finite measure space (Ω, µ). The relative entropy10

(Kullback–Leibler divergence) of f1 with respect to f2 is11

DKL(f1‖f2) :=

{∫
Ω
f1(x) log f1(x)

f2(x)µ(dx), if supp(f1) ⊂ supp(f2)

∞, otherwise

Definition 2.7. The measure µ satisfies the logarithmic Sobolev inequality LSI(ρ) (see also12

[13]) if for all densities f we have13 ∫
Ω

f log fdµ ≤ 1

ρ

∫
Ω

1

2f
|∇f |2dµ.

Definition 2.8. The measure µ satisfies the spectral gap condition SG(ρ) if for all functions h14

with
∫

Ω
h(x)µ(dx) = 0, we have15 ∫

Ω

h2dµ ≤ 1

ρ

∫
Ω

|∇h|2dµ.

Definition 2.9. A family of densities {u(·, t)}t≥0 on a σ−finite measure space (Ω, µ) is called16

hypercontractive with respect to µ if for all pt satisfying17

pt − 1 = e2ρt(p0 − 1),

we have18 (∫
Ω

∣∣u(x, t)
∣∣ptdµ(x)

) 1
pt

≤

(∫
Ω

∣∣u(x, 0)
∣∣p0dµ(x)

) 1
p0

.
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Theorem 2.10. The condition II(A,ψ) is necessary and sufficient for the existence of a unique1

stationary reversible density.2

Proof. ⇒: We assume that {u(·, t)}t≥0 satisfies the condition II(A,ψ), i.e. ∂tu = Lu with3

Lu = ∇ · (A(x)∇u) +∇ · (A(x)u∇ψ(x)),

where ψ(x) satisfies4

(2.11)

∫
Ω

e−ψ(x)dx <∞.

Then the generator L∗ is of the form5

(2.12) L∗f = ∇ · (A(x)∇f)−A(x)∇ψ(x) · ∇f

By (2.11), µ∞(dx) = e−ψ(x)

Z dx is well-defined. By Lemma 4.5 below, µ∞(dx) = e−ψ(x)

Z dx is6

reversible with respect to L∗. Then µ∞(dx) = e−ψ(x)

Z dx is also stationary with respect to L∗, by7

applying the reversibility condition, which we have just observed, with an arbitrary f and g = 18

and using L∗1 = 0.9

We now want to show that µ∞(dx) = e−ψ(x)

Z dx is the unique absolutely continuous stationary10

density reversible with respect to L∗. Thus, assume that ν is absolutely continuous, stationary11

and reversible with respect to L∗. Then ν(dx) = k(x)µ∞(dx) for some positive function k and12

of course we also have µ∞(dx) = k(x)−1ν(dx). Therefore13

(2.13)

0 =

∫
Ω

L∗fdν

=

∫
Ω

L∗fkdµ∞

=

∫
Ω

fL∗kdµ∞, due to the symmetry of µ∞

This implies that L∗k = 0. Similarlly, because of the symmetry of ν, we also have L∗(k−1) = 0.14

Thus15

(2.14)

0 = L∗(1)− kL∗(k−1)− k−1L∗k

= Aij(x)∂ik∂jk
−1

= −A
ij(x)∂ik∂jk

k2

which implies that k is constant. Because ν and µ∞ are probability measures, k = 1. This means16

that ν = µ∞, which is the desired uniqueness.17

⇐: Assume that ν(dx) = v(x)dx is an absolute continuous stationary probability measure18

that is reversible with respect to L∗. This implies that Lv = 0, where19

Lv = ∇ · (A(x)∇v) +∇ · (A(x)vZ(x))

for some vector Z depending on bi(x) and Aij(x). Solving it we have20

∇ log v = −Z(x).

Thus, Z is of the form ∇ψ for some ψ. Thus, v = Ce−ψ. Because of
∫

Ω
vdx = 1 we obtain21

C = 1
Z <∞, which means that {u(·, t)t≥0} satisfies the condition II(A,ψ). This completes the22

proof.23

�24
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3. The free energy of Wright–Fisher models1

3.1. Mutation only. For reasons of exposition, we first present the case where there is no2

selection. In fact, as we shall see below, selection can be easily incorporated, because in contrast3

to mutation, it does not produce any potential singularities. Selection, however, introduces4

additional terms that make the notation more complicated without touching the essence of the5

mathematics.6

For a diploid Wright Fisher population of N individuals with n+ 1 alleles A0, . . . , An under-7

going mutations from Ai to Aj with rates
θij
4N ∈ R for all i 6= j ∈ {0, 1, · · · , n}, the expectation8

values for the change of the relative frequencies Xt = (X1
t , . . . , X

n
t ) of the alleles (A1, . . . , An)9

and X0
t = 1−X1

t − · · · −Xn
t for allele A0 at generation 2Nt satisfy (see, for instance, [10])10

E(δXi
t |Xt) = bi(Xt)(δt) + o(δt);

E(δXi
tδX

j
t |Xt) = aij(Xt)(δt) + o(δt), ∀i, j = 1, . . . , n;

E((δXt)
α|Xt) = o(δt), for |α| ≥ 3,

(3.1)

with the drift term11

bi(x) = −
( n∑
j=0

1

2
θij

)
xi +

n∑
j=0

1

2
θjix

j , i = 1, . . . , n;

and the diffusion term12

aij(x) = xi(δij − xj) i, j = 1, . . . , n.

Remark 3.1. Putting13

b0(x) = −1

2

( n∑
j=0

θ0j

)
x0 +

1

2

n∑
j=0

θj0x
j

we have14

n∑
i=0

bi(x) = 0.

We shall prove that15

Theorem 3.2. In a diploid Wright–Fisher model of N individuals with n+1 alleles with general16

mutation rates, a necessary and sufficiency condition to have a unique stationary distribution is17

(3.2) θij = θj > 0 for all i 6= j, i, j = 0, . . . , n.

The stationary distribution in this case is of the form18

(3.3) µm∞(dx) = fm∞(x)dx =
e−ψ(x)

Z(θ)
dx =

Πn
i=0(xi)θi−1

Z(θ)
dx.

Proof. Again, we consider the Kolmogorov forward equation for the density function u(x, t)19

(3.4) ∂tu(x, t) =

n∑
i,j=1

∂2

∂xi∂xj

(aij(x)

2
u(x, t)

)
−

n∑
i=1

∂

∂xi

(
bi(x)u(x, t)

)
.
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To use the free energy method, we rewrite this equation in divergence form:1

∂tu(x, t) =

n∑
i=1

∂

∂xi

(
n∑
j=1

∂

∂xj

(aij(x)

2
u(x, t)

))
−

n∑
i=1

∂

∂xi

(
bi(x)u(x, t)

)

=

n∑
i=1

∂

∂xi

(
n∑
j=1

(
Aij(x)

∂

∂xj
u(x, t)

))
+

n∑
i=1

∂

∂xi

(( n∑
j=1

∂

∂xj
Aij(x)− bi(x)

)
u(x, t)

)

=

n∑
i=1

∂

∂xi

(
n∑
j=1

(
Aij(x)

∂

∂xj
u(x, t)

))
+

n∑
i=1

∂

∂xi

((1− (n+ 1)xi

2
− bi(x)

)
u(x, t)

)
= ∇ · (A(x)∇u(x, t)) +∇ · (A(x)u(x, t)∇ψ(x)),

(3.5)

with the gradient2

∇ =
( ∂

∂x1
, . . . ,

∂

∂xn

)
and the diffusion coefficients3

A(x) =
(
Aij(x)

)n
i,j=1

=
1

2

(
aij(x)

)n
i,j=1

.

ψ then has to satisfy4 (
A(x)∇ψ(x)

)
i

=
1− (n+ 1)xi

2
− bi(x)

and hence5

∂iψ(x) =

n∑
j=1

2

(
δij
xj

+
1

x0

)(
1− (n+ 1)xj

2
− bj(x)

)

=
1− 2bi(x)

xi
− 1− 2b0(x)

x0

= fi(x)− f0(x).

(3.6)

We are looking for conditions for the rates θij so that there is a potential function.6

Such a ψ exists if and only if (see [16] page 253)7

∂j

(
fi(x)− f0(x)

)
= ∂i

(
fj(x)− f0(x)

)
.

This is equivalent to8

−θji
xi

+
θ0i

xi
+
θj0
x0

= −θij
xj

+
θ0j

xj
+
θi0
x0
, ∀i 6= j,x ∈ int∆n.

Here, ∆n is the probability simplex {x = (x0, . . . , xn) : xi ≥ 0,
∑
j x

j = 1}. Letting xi → 0 while9

keeping xj , x0 fixed, we conclude that θji = θ0i for all j 6= i. Similarly, we obtain θij = θ0j and10

θj0 = θi0. It follows that11

(3.7) θij = θj for all i 6= j, i, j = 0, . . . , n.

From (3.6), we then get12

ψ(x) =

n∑
i=0

(1− θi) log(xi).
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Moreover, ψ then satisfies1 ∫
∆n

e−ψ(x)dx <∞

if and only if θi > 0 for all i. �2

For a diploid Wright–Fisher population with uniform mutation rates
θj
4N ∈ R for all i 6= j ∈3

{0, 1, · · · , n}, the free energy functional then is4

(3.8) F (q)︸︷︷︸
free energy

:=

∫
∆n

ψ(x)q(x)dx︸ ︷︷ ︸
potential energy

+

∫
∆n

q(x) log q(x)dx︸ ︷︷ ︸
negative entropy

for a density function q on ∆n.5

As we assume θi > 0 for all i, the partition function6

Z(θ) :=

∫
∆n

e−ψ(y)dy =

∫
∆n

(y1)θ1−1(y2)θ2−1 · · · (yn)θn−1(1− y1 − · · · − yn)θ0−1dy

= Beta(θ)

(3.9)

is finite, and the minimizer of the free energy is the Gibbs density7

(3.10) q∞(x) :=
e−ψ(x)

Z(θ)
.

Below, we shall consider the evolution of the free energy functional along the flow of densities8

(3.11) F (u(·, t)) :=

∫
∆n

ψ(x)u(x, t)dx +

∫
∆n

u(x, t) log u(x, t)dx

3.2. Mutation and selection. We return to the case of general mutation rates
θij
4N ∈ R for9

i 6= j ∈ {0, 1, · · · , n}. In addition, we now also include selection and assume that the genotype10

AiAj has fitness 1 +
sij
2N . Then Xt satisfies (see, for instance, [10])11

E(δXi
t |Xt) = bi(Xt)(δt) + o(δt);

E(δXi
tδX

j
t |Xt) = aij(Xt)(δt) + o(δt), ∀i, j = 1, . . . , n;

E((δXt)
α|Xt) = o(δt), for |α| ≥ 3,

(3.12)

with the drift term12

(3.13) bi(x) = −
( n∑
j=0

1

2
θij

)
xi +

n∑
j=0

1

2
θjix

j + si(x)xi − s(x)xi, i = 1, . . . , n;

with13

(3.14) si(x) =

n∑
j=0

sijx
j

and14

(3.15) s(x) =

n∑
i=0

si(x)xi;

and the diffusion term15
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aij(x) = xi(δij − xj) i, j = 1, . . . , n.

We then have the following extension of Theorem 3.2.1

Theorem 3.3. In a diploid Wright–Fisher model of N individuals with n+ 1-alleles with muta-2

tion and selection, a necessary and sufficient condition for the existence of a unique stationary3

distribution is4

(3.16) θij = θj > 0 for all i 6= j, i, j = 0, . . . , n

and5

(3.17) sij = sji for all i, j.

The stationary distribution in this case is of the form6

(3.18) µm,s∞ (dx) = fm,s∞ (x)dx =
e−ψ(x)

Z(θ, s)
dx =

Πn
i=0(xi)θi−1es(x)

Z(θ, s)
dx,

with the partition function7

Z(θ, s) =

∫
∆n

Πn
i=0(xi)θi−1es(x)dx

While the condition on the uniformity of the mutation rates is somewhat restrictive, and in8

fact, biologically not entirely plausible (but standard in mathematical population genetics), the9

symmetry condition (3.17) is much more harmless. It simply that the allele combination AiAj10

has the same fitness as AjAi, i.e., that the fitness does not depend on the order of the alleles.11

Proof. As in the proof of Theorem 3.2, ψ exists if and only if for all i 6= k12

(3.19) ∂k

(
fi(x)− f0(x)

)
= ∂i

(
fk(x)− f0(x)

)
,

where13

(3.20) fi(x) =
1− 2bi(x)

xi
.

Since we have already handled the mutation terms in (3.19) and shown that for them, (3.2) is14

necessary and sufficient, we only need to look at the contributions from selection. From (3.13),15

(3.14), this contribution is16

∂
∂xk

(si(x)− s(x)− s0(x)− s(x))− ∂
∂xi (sk(x)− s(x)− s0(x)− s(x))

= ∂si(x)
∂xk

− ∂s0(x)
∂xk

− ∂sk(x)
∂xi + ∂s0(x)

∂xi

= sik − s0k − si0 + s00 − ski + s0i + sk0 − s00

which vanishes if and only if the symmetry condition (3.17) holds for all indices.17

In the case of uniform mutation rates, then18

bi(x) =
θi
2
− |θ|

2
xi + si(x)xi − s(x)xi.

Therefore we can easily calculate the potential energy function as19

(3.21) ψ(x) =

n∑
i=0

(1− θi) log(xi)− s(x).
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which follows from1

(3.22)

∂iψ(x) =
1− 2bi(x)

xi
− 1− 2b0

x0

=

(
1− θi
xi

+ |θ| − 2(si(x)− s(x))

)
−

(
1− θ0

x0
+ |θ| − 2(s0(x)− s(x))

)

=
1− θi
xi

− 1− θ0

x0
− 2(si(x)− s0(x))

�2

We now assume that the selection coefficients are of the form3

(3.23) sij =
si + sj

2
.

This means that the fitness of a pair AiAj is the average of the fitness values of the individual4

alleles. In biological terms, this assumption is much more restrictive than the simple symmetry5

condition (3.17).6

When (3.23) holds, (3.14), (3.15) become7

(3.24) s(x) =
∑
j,k

sj + sk
2

xjxk =
∑
j

sjx
j

since
∑
k x

k = 1.8

Therefore, (3.21) becomes9

ψ(x) =

n∑
i=0

(1− θi) log(xi)−
n∑
i=0

six
i, where x0 = 1− x1 − · · · − xn.

In this case, the partition function for the free energy becomes10

(3.25)

Z(θ, s) :=

∫
∆n

e−ψ(y)dy =

∫
∆n

(y1)θ1−1(y2)θ2−1 · · · (yn)θn−1(1− y1 − · · · − yn)θ0−1e

n∑
i=0

siy
i

dy,

and Z is finite if and only if θi > 0 for all i = 0, . . . , n. In that case again, the minimizer of the11

free energy is the Gibbs density12

(3.26) q∞(x) :=
e−ψ(x)

Z(θ, s)
.

4. Flow of free energies13

Now we consider the evolution of the free energy along the flow of densities {u(·, t)}t≥014

(4.1) F (u(·, t)) :=

∫
∆n

ψ(x)u(x, t)dx +

∫
∆n

u(x, t) log u(x, t)dx

We know from the last section that in order to have a unique stationary reversible density we15

need to assume uniform positive mutation rates. So, in this section we shall alway assume that.16

First, we recall an integration by parts formula.17
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Proposition 4.1.

(4.2)

∫
∆n

f(x)∇ · (A(x)Z(x))dx = −
∫

∆n

A(x)∇f(x) · Z(x)

for all f ∈ C2(∆n) and Z is a vector field on ∆n.1

Proof. See [26] Proposition 2.4. �2

We then prove that the free energy functional plays the role of the Lyapunov functional.3

Lemma 4.2. F (u(·, t)) decreases along the flow of densities.4

Proof. Using the divergence form of the flow (3.5), we have5

∂

∂t
F (u(·, t)) =

∫
∆n

ψ(x)
∂

∂t
u(x, t)dx +

∫
∆n

log u(x, t)
∂

∂t
u(x, t)dx +

∫
∆n

∂

∂t
u(x, t)dx︸ ︷︷ ︸
=0

=

∫
∆n

ψ(x)∇ · (A(x)∇u(x, t))dx + ψ(x)∇ · (A(x)u(x, t)∇ψ(x))dx

+

∫
∆n

log u(x, t)∇ · (A(x)∇u(x, t))dx + log u(x, t)∇ · (A(x)u(x, t)∇ψ(x))dx

= −
∫

∆n

∇ψ(x) · (A(x)∇u(x, t))dx−∇ψ(x) · (A(x)u(x, t)∇ψ(x))dx

−
∫

∆n

∇ log u(x, t) · (A(x)∇u(x, t))dx−∇ log u(x, t) · (A(x)u(x, t)∇ψ(x))dx

(due to (4.2))

= −
∫

∆n

∇ψ(x) · (A(x)∇u(x, t))dx−∇ψ(x) · (A(x)u(x, t)∇ψ(x))dx

−
∫

∆n

∇u(x, t) · (A(x)∇u(x, t))

u(x, t)
dx−∇u(x, t) ·A(x)∇ψ(x)dx

= −
∫

∆n

I(x, t)dx

(4.3)

where6

I(x, t) = u(x, t)∇ψ(x) · (A(x)∇ψ(x)) +
1

u(x, t)
∇u(x, t) · (A(x)∇u(x, t))

+ 2∇ψ(x) · (A(x)∇u(x, t))

= u < ∇ψ,∇ψ >A(x) +
1

u
< ∇u,∇u >A(x) +2 < ∇ψ,∇u >A(x)

≥ 0.

(4.4)

This completes the proof. �7

Remark 4.3. We note that in our case A(x) does not satisfy a uniform ellipticity condition as8

in [4]. In fact, when x goes to the boundary ∂∆n, the Fisher information metric goes to infinity,9

and therefore A(x) goes to 0.10

We assume that there exists a unique stationary distribution µ∞(dx) = u∞(x)dx. We focus11

on the rate of the convergence of u to u∞. Putting12
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h :=
u

u∞
,

we shall investigate the rate of the convergence of h to 1.1

The stationary density is the Gibbs density function2

u∞(x) =
e−ψ(x)

Z
,

which is an exponential family.3

Thus4

log u∞ + ψ = − logZ.

Since Z is independent of x, this implies5

∂j(log u+ ψ) = ∂j

(
log

u

u∞

)
+ ∂j(log u∞ + ψ) = ∂j(log h).

We now derive a partial differential equation for h from that of u6

Lemma 4.4.

∂th = ∇ · (A(x)∇h)−∇ψ ·A(x)∇h = L∗h.

Proof. We have7

(4.5)

∂th = u−1
∞ ∂tu

= u−1
∞ ∂i

(
Aiju∂j

(
log u+ ψ

))
= u−1

∞ ∂i

(
Aiju∞h∂j

(
log h

))
= ∂i

(
Aijh∂j

(
log h

))
+ u−1
∞ ∂i(u∞)

(
Aijh∂j

(
log h

))
= ∂i

(
Aij∂jh

)
+ ∂i(log u∞)∂i

(
Aij∂jh

)
= ∇ · (A(x)∇h)−∇ψ ·A(x)∇h

This completes the proof. �8

Then, we can easily see that9

µ∞(dx) = u∞(x)dx =
e−ψ(x)

Z
dx

is reversible with respect to L∗.10

Lemma 4.5. ∫
∆n

fL∗gdµ∞ =

∫
∆n

gL∗fdµ∞, ∀f, g ∈ C2(∆n).
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Proof.
(4.6)∫

∆n

fL∗gdµ∞ =

∫
∆n

f
(
∇ · (A(x)∇g)

)
u∞(x)dx−

∫
∆n

f
(
∇ψ ·A(x)∇g

)
u∞(x)dx

= −
∫

∆n

A(x)∇g · ∇
(
f
e−ψ(x)

Z

)
dx−

∫
∆n

(
∇ψ ·A(x)∇g

)
fu∞(x)dx

(due to (4.2))

= −
∫

∆n

A(x)∇g ·
(
∇f − f∇ψ(x)

)e−ψ(x)

Z
dx−

∫
∆n

(
∇ψ ·A(x)∇g

)
fu∞(x)dx

= −
∫

∆n

A(x)∇g · ∇f e
−ψ(x)

Z
dx

= −
∫

∆n

A(x)∇g · ∇fdµ∞(x).

which is symmetric between f and g. This yields the proof. �1

We can now compute the decay rate of the free energy functional towards its asymptotic limit2

along the evolution of the probability density function u. For simplicity, we shall write F (t) in3

place of F (u(·, t)).4

Theorem 4.6. The difference of the current and the final free energy is equal to the relative5

entropy (Kullback-Leibler divergence) between the corresponding densities and also equal to the6

(negative) entropy of their ratio with respect to the stationary probability measure:7

F (t,θ)− F∞(θ) = DKL(u‖u∞) = Sµ∞(h) ≥ 0.

Proof. We have8

(4.7)

F (t,θ) =

∫
∆n

u(log u+ ψ)dx

=

∫
∆n

u(log u∞ + ψ)dx +

∫
∆n

u(log u− log u∞)dx

=

∫
∆n

u(− logZ)dx +

∫
∆n

u log
u

u∞
dx

= − logZ +

∫
∆n

u log
u

u∞
dx

= − logZ +

∫
∆n

h log hdµ∞

and9

F∞(θ) = F (u∞) =

∫
∆n

u∞(log u∞ + ψ) = − logZ.

This implies the proof. �10
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Theorem 4.7. The rate of change of the free energy functional is equal to the negative of the1

entropy production or the negative of the Fisher information:2

d

dt
Sµ∞(h) = ∂tF (t,θ) = −Jµ∞(h) := −

∫
∆n

A(x)∇h · ∇h
h

dµ∞.

Proof. We have3

(4.8)

∂tF (t,θ) =

∫
∆n

∂tu(log u+ ψ)dx +

∫
∆n

u∂t(log u+ ψ)dx

=

∫
∆n

∂i

(
Aiju∂j

(
log u+ ψ

))
(log u+ ψ)dx +

∫
∆n

∂tudx

( because ∂tψ = 0)

= −
∫

∆n

(
Aiju∂j

(
log u+ ψ

))
∂i(log u+ ψ)dx + ∂t

(∫
∆n

udx
)

( due to (4.2) )

= −
∫

∆n

Aiju∂j(log h)∂i(log h)dx

= −
∫

∆n

Aij∂jh∂ih

h
u∞dx.

Since F (u∞) is independent of t, this completes the proof. �4

5. Curvature-dimension conditions5

5.1. General setting. We start with some general notions, see [3] again.6

We consider an operator (L,D(L)) defined on a measure space (Ω, µ) of the form7

Lf = aij(x)∂i∂jf + bi(x)∂if, ∀f ∈ A = L2(Ω, µ) ∩D(L).

Definition 5.1. The carré du champ operator of L is defined by8

(5.1) Γ(f, g) =
1

2

(
L(fg)− fLg − gLf

)
, ∀f, g ∈ A

and the iterated carré du champ operator of L is defined by9

(5.2) Γ2(f, g) =
1

2

(
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

)
, ∀f, g ∈ A.

We will also denote Γ(f, f) = Γ(f) and Γ2(f, f) = Γ2(f) for short.10

Definition 5.2. We say that L satisfies the curvature-dimension condition CD(ρ, n) for ρ > 011

and n ∈ [1,∞] if for all f ∈ A12

(5.3) Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2, µ− a.e.

We recall some background results.13
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Proposition 5.3 (Bochner-Lichnerowicz formula). For a Riemannian manifold (Ω, g), the Lapla-1

cian and the Ricci curvature are related via2

(5.4)
1

2
∆g

(
|∇f |2

)
= ∇f · ∇

(
∆gf

)
+ |∇∇f |2 +Ricg(∇f,∇f),

for all smooth functions f : Ω→ R.3

Proof. See [20], for instance. �4

Proposition 5.4 (Hessian formula). For a Riemannian manifold (Ω, g), we have the Hessian5

formula6

(5.5) ∇∇f(∇g,∇h) =
1

2

(
Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h))

)
,

for all smooth functions f, g, h : Ω→ R.7

Proof. See [3], for instance. �8

Proposition 5.5. Consider an n−dimensional Riemannian manifold (Ω, g) with Riemannian9

measure µg. Let m ≥ n, then L = ∆g + Z satisfies CD(ρ,m), i.e.10

Γ2(f) ≥ ρΓ(f) +
(Lf)2

m
,∀f ∈ A µg − a.e

if and only if11

Ric(L) := Ricg −∇SZ ≥ ρg +
1

m− n
Z ⊗ Z,

where12

(∇SZ)ij :=
1

2

(
∂iZ

j + ∂jZ
i
)
, i, j = 1, · · · , n,

is the symmetric covariant derivative of the vector field Z in the metric g. Ric(L) is often called13

the generalized Ricci tensor.14

Remark 5.6. (1) The case m = n can only occur when Z = 0;15

(2) The case m =∞, L ∈ CD(ρ,∞), i.e. Γ2(f) ≥ ρΓ(f), occurs if and only if Ric(L) ≥ ρg;16

(3) If Z = −∇W · ∇ then Ric(L) = Ricg +∇∇W . Therefore L ∈ CD(ρ,∞) if and only if17

Ricg +∇∇W ≥ ρg which is a general result of Bakry and Emery[2] in the Riemannian18

setting. Moreover by denoting wm−n1 = e−W we have the more general criterion L ∈19

CD(ρ,m) if and only if Ricm(L) := Ricg − m−n
w1
∇∇w1 ≥ ρg.20

Proof. This follows from the Bochner-Lichnerowicz and Hessian formulas. �21

We note that for the above operator L, we always have22

Γ(f, g) = aij∂if∂jg.

We now recall some known transport inequalities, which will be helpful for our entropy esti-23

mates.24

Proposition 5.7 (Csiszár-Kullback-Pinsker Inequality). If µ and ν are two probability distribu-25

tions, then26

(5.6) ‖µ− ν‖TV ≤
√

1

2
DKL(µ‖ν)
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where1

‖µ− ν‖TV = sup{|µ(A)− ν(A)| : A is an event to which probabilities are assigned.}

is the total variation distance (or statistical distance) between µ and ν.2

Proof. The following proof is taken from [12] (see also [6] for a more general setting). We may3

assume DKL(µ‖ν) < +∞. With f = dµ
dν and u = f − 1 we have4 ∫
u dν =

∫
dµ−

∫
dν = 0.

Therefore5

DKL(µ‖ν) =

∫
X

f log f dν =

∫
X

(
(1 + u) log(1 + u)− u

)
dν.

The function ϕ(t) = (1 + t) log(1 + t) − t, satisfies ϕ′(t) = log(1 + t) and ϕ′′(t) = 1
1+t , t > −1.6

So, using a Taylor expansion,7

ϕ(t) =

∫ t

0

(t− x)ϕ′′(x) dx = t2
∫ 1

0

1− s
1 + st

ds, t > −1.

So,8

DKL(µ‖ν) =

∫
X×[0,1]

u2(x)(1− s)
1 + su(x)

ds dν(x).

By the Cauchy-Schwarz inequality,9

(∫
X×[0,1]

|u|(x)(1− s) dν(x)ds
)2

≤
∫
X×[0,1]

u(x)2(1− s)
1 + su(x)

dν(x)ds ·
∫
X×[0,1]

(1− s)(1 + su(x)) dν(x)ds

=
DKL(µ‖ν)

2
.

Since ‖ν − µ‖TV = 1
2

∫
|1 − f | dµ, the left-hand side equals ‖ν − µ‖2TV and this completes the10

proof.11

�12

Proposition 5.8. If µ and ν are two probability distributions with Radon-Nikodym derivatives13

f and g with respect to ρ, then14

(5.7) ‖f − g‖L1(ρ) ≤
√

2DKL(µ‖ν).

Proof. It follows from (5.6) and the equality15

‖ν − µ‖TV =
1

2
‖f − g‖L1(ρ).

�16
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5.2. Applications. We now consider the Kolmogorov backward operator on Ω = ∆n with1

A = C2(∆n):2

L∗h = Aij(x)∂i∂jh+ bi(x)∂ih.

where3

Aij =
1

2
xi(δij − xj)

and4

bi =
θi
2
− |θ|

2
.

We have gij = 2(
δij
xi + 1

x0 ) as our Riemannian metric on ∆n which is the inverse of Aij(x). We5

note that this metric is twice the metric in [25] p. 82 (also see in [17] Chapter 3), but because6

the Ricci curvature tensor Rij does not change when we change the metric by multiplying by a7

constant λ (although the sectional curvature will change by λ), then from the relation Rij = ρgij8

(which holds since we have a constant curvature metric), the Ricci curvature ρ becomes n−1
8 .9

With this Riemannian metric, we can write our Kolmogorov backward operator in the form10

L∗ = ∆g −∇W · ∇,
where e−W is the density of the reversible measure µ with respect to the Riemannian measure11

µg(dx) = |det(A(x))|− 1
2 dx. We know that the only reversible measure in this case is µ∞.12

Therefore we can obtain W (x), w1(x) by13

e−W (x) =
Γ(θ0) . . .Γ(θn)

2
n
2 Γ(|θ|)

n∏
i=0

(xi)θi−
1
2 = wm−n1 (x)

We have14

(5.8) Γ(w1, f) = Aij(x)∂iw1∂jf =
w1

2(m− n)
Zf,

where15

Zf :=

n∑
i=1

(ci − |c|xi)∂if

is a vector field on ∆n with ci = θi − 1
2 , |c| =

∑n
i=0 ci = |θ| − n+1

2 .16

Therefore17

(5.9)

Ricm(L)(∇f,∇f) = Ricg(∇f,∇f)− m− n
w1

∇∇w1(∇f,∇f)

=
n− 1

8
(∇f,∇f)− 1

2

(
2Γ(f,Γ(w1, f))− Γ(w1,Γ(f, f))

)
by the Hessian formula (5.5)

=
n− 1

8
(∇f,∇f)−

( 1

4(m− n)
(Zf)2 +

1

2
Aij(x)∂if∂j(Zf)

− 1

2
Z(Aij(x)∂if∂jf)

)
by (5.8)

=
n− 1 + 2|c|

8
Γ(f) +

1

8
[ci(∂if − xi∂if)2 + c0(xi∂if)2]− (Zf)2

4(m− n)
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Therefore, if ci ≥ 0 for all i = 0, . . . , n i.e. θi ≥ 1
2 for all i = 0, . . . n, then for m→∞ we have1

Ric∞(L∗) ≥ n− 1 + 2|c|
8

g = ρng.

Thus, L∗ ∈ CD(ρn,∞).2

Remark 5.9. For θi = 1
2 , i.e. ci = 0, then Zf = 0 and L∗ = ∆g is the Laplacian; moreover3

Ricm(L) = Ricg =
n− 1

8
g

for all m ≥ n. Therefore in this case, L∗ satisfies CD(n−1
8 , n).4

We can also directly calculate5

(5.10)
Γ2(f) = |∇∇f |2 +Ric(L∗)(∇f,∇f)

= |∇∇f |2 +Ricg(∇f,∇f) +∇∇W (∇f,∇f)

We now apply the Hessian formula (5.5) to calculate ∇∇W . We have6

W (x) = − log
2−

n
2

Z
+

n∑
i=0

(
1

2
− θi) log xi = − log c+

∑
i=0

di log xi

where7

di =
1

2
− θi, |d| =

n∑
i=0

di =
n+ 1

2
− |θ|.

Then8

∂jW =
dj
xj
− d0

x0

and9

Aij∂jW =
1

2
(xiδij − xixj)(

dj
xj
− d0

x0
) =

1

2
(di − |d|xi).

This implies that10

Γ(W, f) = Aij∂iW∂jf =
1

2
(dj − |d|xj)∂jf.

Therefore11
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(5.11)

∇∇W (∇f,∇f) = Γ(f,Γ(W, f))− 1

2
Γ(W,Γ(f, f))

=
1

2
Aij∂if∂j((dk − |d|)∂kf)− 1

4
(dk − |d|xk)∂k

(
Aij∂if∂jf

)
=

1

2
Aij∂if

(
− |d|∂jf

)
− 1

4
(dk − |d|xk)∂kA

ij∂if∂jf

= −|d|
2
|∇f |2 − 1

8
(dk − |d|xk)(δikδij − δikxj − δjkxi)∂if∂jf

= −|d|
2
|∇f |2 − 1

8

(
di(∂if)2 − |d|xi(∂if)2 − 2di∂ifx

j∂jf + 2|d|(xi)2(∂if)2
)

= −|d|
2
|∇f |2 − 1

8

((
di(∂if)2 − 2di∂ifx

j∂jf + |d|(xi)2(∂if)2
)
− 2|d||∇f |2

)

= −|d|
4
|∇f |2 − 1

8

(
di(∂if − Z1f)2 + d0(Z1f)2

)
,

=
|c|
4
|∇f |2 +

1

8

(
ci(∂if − Z1f)2 + c0(Z1f)2

)
,

with the vector field1

Z1f = xi∂if.

This implies that2

Γ2(f) = |∇∇f |2 +Ricg(∇f,∇f) +
|c|
4
|∇f |2 +

1

8

(
ci(∂if − Z1f)2 + c0(Z1f)2

)
.

If ci ≥ 0 for all i = 0, . . . n, i.e. θi ≥ 1
2 for all i = 0, . . . n then we obtain3

(5.12) Γ2(f) ≥ n− 1 + 2|c|
8

Γ(f) = ρnΓ(f).

It means that we have the curvature-dimension condition CD(ρn,∞), and that µ∞ satisfies the4

LSI(ρn,∞).5

Note that6

ρn =
n− 1 + 2|c|

8
is not optimal, because we have used the rather coarse estimate7

ci(∂if − Z1f)2 + c0(Z1f)2 ≥ 0.

Remark 5.10. Let us try to find the optimal value for the case of 2 alleles (n = 1) (see also8

[27]). In this case, the Ricci curvature n−1
8 vanishes. We have9

W (x) = − log
Γ(θ1)Γ(θ0)√
2Γ(θ1 + θ0)

+ (
1

2
− θ1) log x+ (

1

2
− θ0) log(1− x).

With the Riemannian metric g(x) = 2
x(1−x) on ∆1 = (0, 1), we have Γ(f) = |∇f |2 = 1

2x(1 −10

x)(∂xf)2 and the Hessian of W11
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(5.13) ∇∇W (∇f,∇f) =
c1 + c0

4
|∇f |2 +

1

8

(
c1(1− x)2 + c0x

2
)

(∂xf)2,

where c1 = θ1 − 1
2 and c0 = θ0 − 1

2 .1

When θ1, θ0 ≥ 1
2 , i.e. c0, c1 ≥ 0, by the Cauchy inequality the minimal eigenvalue of the2

Hessian of W is3

ρ1 =
(√c1 +

√
c0

2

)2

.

Proposition 5.11. If L is symmetric with respect to the stationary measure µ and satisfies the4

CD(ρ,∞) condition then µ satisfies LSI(ρ,∞).5

Proof. From the preceding calculations. �6

These results will allow us to reach very precise conclusions. For instance, we have7

Theorem 5.12. For the Wright–Fisher model with n + 1 alleles and positive uniform muta-8

tion rates satisfying θi >
1
2 for all i = 0, . . . , n, the stationary distribution f∞dx satisfies the9

LSI(ρn,∞) with10

ρn =
n− 1 + |c|

4
=
n− 3 + 2|θ|

8
.

Proof. Applying the results of (5.12) and (5.11). �11

Corollary 5.13. Under the above assumptions, the family of densities {u(·, t)}t≥0 is hypercon-12

tractive with respect to µ∞, i.e., for all pt satisfying13

pt − 1 = e2ρt(p0 − 1),

we have14

(∫
Ω

∣∣u(x, t)
∣∣ptdµ∞(x)

) 1
pt

≤

(∫
Ω

∣∣u(x, 0)
∣∣p0dµ∞(x)

) 1
p0

.

Corollary 5.14. Under the above assumptions, the measure µ∞ has the spectral gap SG(ρ).15

Corollary 5.15. Under the above assumptions, the rate of convergence of the relative entropy16

DKL(u‖u∞) is17

DKL(u(t)‖u∞) ≤ e−2ρtDKL(u(0)‖u∞).

Combining this with (5.6) and (5.7) implies that18

(1) u(t)dx exponentially converges to u∞dx with respect to total variation distance;19

(2) u(t)dx exponentially converges to u∞dx with respect to L1-norm.20
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