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We quantify the relationship between the dynamics of a time-discrete dynamical system, driven by a uni-
modular map T : [0, 1] → [0, 1] on the unit interval and its iterations Tm, and the induced dynamics at a
symbolic level in information theoretical terms. The symbolic dynamics are obtained by a threshold crossing
technique. A binary string s of length m is obtained by choosing a partition point α ∈ [0, 1] and putting
si = 1 or 0 depending on whether T i(x) is larger or smaller than α.
First, we investigate how the choice of the partition point α determines which symbolic sequences are forbid-
den, that is, cannot occur in the symbolic dynamics. The periodic points of T mark the choices of α where
the set of those forbidden sequences changes. Second, we interpret the original dynamics and the symbolic
ones as di�erent levels of a complex system. This allows us to quantitatively evaluate a closure measure that
has been proposed for identifying emergent macro-levels of a dynamical system. In particular, we see that
this measure necessarily has its local minima at those choices of α where also the set of forbidden sequences
changes. Third, we study the limit case of in�nite binary strings and interpret them as a series of coin tosses.
These coin tosses are not i.i.d. but exhibit memory e�ects which depend on α and can be quanti�ed in terms
of the closure measure.

Keywords: Markov Chains, Information Theory, Chaotic Systems, Aggregation, Time-Discrete Dynamical
Systems

In order to deal with chaotic dynamical systems
induced by unimodular maps one often converts
an analog time series into a binary sequence by
introducing a threshold. The choice of the max-
imum of the unimodular map provides a gener-
ating partition, i.e., the one with maximal topo-
logical entropy, and the powerful techniques of
kneading theory are available. Nearly nothing is
known if the choice of the threshold di�ers from
the maximum. The induced partition have been
simply considered as "misplaced".
Our approach is entirely di�erent because we do
not consider the symbolic sequence merely as a
vehicle to get information about the original, ana-
log time series where choices of the threshold dif-
ferent from the maximum are only considered
as those which lead to unnecessary information
losses. We think of the symbolic dynamics as new,
macroscopic ones in their own right which are de-
rived from a microscopic time series � the initial
analog signal � by means of an aggregation which
assigns the same symbol to all elements in a cell
of the partition.
Due to this new point of view choices of the
threshold di�erent from the maximum lead to
interesting macroscopic dynamics in their own
right. They exhibit a rich structure which can
be captured by information theoretical measures
proposed by the authors and others.

a)Electronic mail: pfante@mis.mpg.de

I. INTRODUCTION

Studying one-dimensional dynamical systems, that is,
time-discrete xn → xn+1 = T (xn) dynamics with a map
T : [0, 1] → [0, 1], has a long tradition in mathematics
�8 is the standard textbook or24 for a short exposure.
Among one-dimensional maps, the unimodular maps are
the best studied ones. A map T : [0, 1] → [0, 1] is called
unimodular i� it is continuous, T (0) = T (1) = 0 and
has a unique maximum c s.t. that T is monotonically
increasing on [0, c] and decreasing on [c, 1].
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FIG. 1. The graph of a unimodular map on the unit interval
[0, 1].

The focus on unimodular maps is due to the powerful
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results provided by kneading theory, see for instance9

for a short exposure, to analyse the properties of time-
discrete, one-dimensional dynamical systems driven by
those maps. Essentially, kneading theory suggests an in-
vestigation of a symbol dynamics which are derived from
a threshold crossing technique, i.e., one simply replaces
the real valued data with symbolic data: 1 if the value is
larger than the threshold α and 0 otherwise. This pro-
vides a map φNα : [0, 1]→ {0, 1}N;φNα(x) = (s0, s1, s2, . . .)
from the unit interval into the set of binary sequences of
in�nite length with sn = 1 if Tn(x) > α and 0 otherwise.
In order to attain a one-to-one correspondence between
the initial real valued dynamics and the symbolic ones,
research was in particular focused on the problem
�nding generating partitions, i.e., partitions whose
corresponding topological entropy is maximal. For a
unimodular one-dimensional map, the threshold en-
coding provides a generating partition if the maximum
c of the map is used as the threshold5. The in�nite
symbolic sequence φNc (c) of c is called the kneading
sequence of the map T . It allows for a determination of
the support φNc ([0, 1]) ⊂ {0, 1}N of the encoding. These
supports may exhibit a rather di�cult structure as
shown by E. Friedman11 who proves that the supports
of a one-parameter family of logistic maps with di�erent
heights are even no longer Turing computable.
In informal terms, a generating partitions allows for an
entire reconstruction of the real valued, initial dynamics
from the symbolic ones. But in more than one dimension
generating partitions are di�cult to �nd (see e.g.4)
and the threshold crossing technique turned out to
be a widely used method to detect partitions whose
corresponding symbolic sequence allows for all possible
strings of a certain length and the occurrence of all
these strings is equally distributed. These partitions
to which one refers in the literature often as statistical
partitions were introduced in21 and22 to get best pos-
sible approximations of a generating partition. These
methods became popular in the physics literature and
were applied to the quantitative analysis of the death
rate of patients with coronary disease13, describing
non-linear dynamics in an internal combustion engine7,
and in cognitive sciences to study movement control10.
Despite these achievements attained by the threshold
technique in the case of unimodular maps, the symbol
dynamics derived from thresholds α which are di�er-
ent from the maximum c were always considered as
"misplaced"2 or as misrepresentations of the original
dynamics. There is a thorough analysis in2 to capture
quantitatively the information loss resulting from choos-
ing a non-generating partition and to which extent the
derived symbol dynamics re�ects the dynamics of the
original system. The authors of2 voted for the tent map
as a test ground to perform their explicit computations.
As a reaction to2 the author of14 presented enhanced
methods to improve the quality of the non-generating
partitions obtained from the threshold technique.

Here, we develop a completely di�erent point of view
on the problem of non-generating partitions. We do
not try to �nd generating partitions of unimodular
dynamical system, or to improve already existing "im-
perfect" ones. Rather than trying to reconstruct the
original real valued dynamics from the symbolic ones,
we consider the symbol dynamic in its own right as a
macroscopic level derived from a microscopic one whose
time-discrete dynamics are determined by iterating
the underlying dynamical system. From this point of
view, the threshold crossing technique takes over the
role of a coarse-graining which links the microscopic
level with the macroscopic, symbolic one, whereas
in the previous papers this method was more or less
considered as an encoding. The choice of a generating
partition is then justi�ed by the fact that it yields
the symbolic dynamics of highest entropy, that is, the
most random looking symbolic dynamics. Therefore,
observing it provides most information about the initial
value of the microscopic dynamics. In contrast, for
non-generating partitions, dependencies show up in the
sense that certain symbolic sequences do not occur, i.e.,
are �forbidden�1. In particular, such symbolic dynamics
then indicate that the underlying microscopic process is
not completely random itself. Our considerations will
elucidate this phenomenon.
In statistical mechanics coarse-graining is one method
to overcome the contradiction between the reversibility
of the Hamiltonian dynamics and the second law of
thermodynamics. For instance, according to Poincaré's
recurrence theorem a trajectory in the phase space
will return arbitrarily close to its initial state after
su�ciently long time. Hence, any smooth state function
including the entropy cannot be a strictly monotonic
function in time, as proposed by the second law of
thermodynamics. But if one introduces a certain kind of
coarse-graining of the phase space, which can be consid-
ered to be a consequence of the unavoidable inaccuracy
in the measurement, an increase of the entropy of the
coarse-grained process can be observed, see3 for more
details. Beside their importance in the foundations of
statistical physics, coarse-graining techniques play also
an important role in biology, chemistry and material
science to bridge the gap between the temporal and spa-
tial scales that can be achieved by atomistic molecular
dynamics simulations and the scales that are relevant
for the macroscopic properties of the studied systems,
see18 for a recent review.
But if one considers the threshold crossing method
as a coarse-graining the question arises how to �nd
emergent levels whose dynamics allow for a self-su�cient
description.

In17 we tackled this problem by proposing and inves-
tigating several information theoretical measures to de-
tect those emergent levels. More precisely, we consid-
ered a dynamical system T : X → X on a probability
space X with measure µ where T can be a measurable
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map, a Markov kernel, etc. Suppose we have an operator
φα : X → X̂ � for instance a coarse-graining, aggrega-
tion, averaging, etc. � of the lower, microscopic level
X onto an upper, macroscopic level X̂. As the dynam-
ics evolve on the lower level, induced dynamics can be
observed on the upper state space X̂. We say that the
upper level is closed if it can be also represented by a
dynamical system: there is a measurable map, a Markov
kernel, etc. T̂ : X̂ → X̂ such that φα ◦T = T̂ ◦φα. α ≥ 0

X̂ X̂

X X

T̂

T

φα φα

FIG. 2. Basic setup of multilevel dynamical system.

may stand for a scalar parameter that distinguishes the
di�erent scales where the coarse-graining, etc. is carried
out. We characterize a relevant scale as one where spe-
cial structural or dynamical regularities can be detected.
Closure measures provide a link between the two con-
cepts of "levels" and "scales" because they should al-
low us to identify emergent levels, i.e., scales for which
a(n approximately) closed description exists, by means of
quantifying to which extent the induced system deviates
from being closed. The following closure measures have
been proposed so far: in20 Shalizi and Moore, and in12

Görnerup and Jacobi proposed Markovianity of the upper
process st → st+1 as a property of an emergent level; in
his PhD thesis Shalizi19 proposed to measure the "predic-
tive e�ciency" to identify emergent levels. Here, we shall
evaluate the measure in17 which tests for informational
closure. We called the upper process to be information-
ally closed if there is no information �ow from the lower
to the higher level. In that case, knowledge of the mi-
crostate will not improve predictions of the macrostate,
i.e., for st = φα(xt) we have

I(st+1 : xt|st) = H(st+1|st)−H(st+1|st, xt) = 0 , (I.1)

where I denotes the conditional mutual information, and
H the entropy.
The entropy of a random variable Y : X → R on a prob-
ability space X with measure µ is de�ned by

H(Y ) = −
∑
y

p(y) log(p(y))

where p(y) = µ(Y = y) denotes the distribution on R
induced by Y � the probability mass function of Y . We
use logarithms with base 2 so that the entropy will be
measured in bits. The entropy is a measure of the aver-
age uncertainty in the random variable.
The conditional entropy H(Z|Y ) for two random vari-
ables Z and Y with conditional distribution p(z|y) is de-
�ned as

H(Z|Y ) = −
∑
y

p(y)
∑
z

p(z|y) log(p(z|y)) ,

which is the average uncertainty of the random variable
Z conditional on the knowledge of the other random vari-
able Y .
The reduction in uncertainty due to another random vari-
able is called the mutual information

I(Z : Y ) = H(Z)−H(Z|Y ) .

The mutual information I(Z : Y ) is a measure of the
dependence between the two random variables. It is
symmetric in Z and Y and always non negative and is
equal to zero if and only if Z and Y are independent, see6.

In16 we have already studied the closure measures of17

for a concrete example: X = [0, 1] is the unit interval,
µ = λ the Lebesgue measure, and T : [0, 1] → [0, 1] is
the full tent map, that is, T (x) = 2x if x ∈ [0, 1/2] and
T (x) = 2x − 2 else. For an integer m ≥ 0 we got a
one-parameter family of m-th order coarse-grainings

φmα : [0, 1]→ {0, 1}m+1

x 7→ (sm, . . . , s0)

with sk =

{
1 if T k(x) > α
0 else

, (I.2)

with α ∈ [0, 1]. This concept of a re�nement of a given
coarse-graining � in the present case the one derived
from the partition threshold technique � is crucial in16

and in the present paper because it links the concept
of relevant scales with the one that certain sequences
of length m + 1 do not occur any longer. That is, the
support φmα ([0, 1]) of the macro-dynamics is di�erent
from {0, 1}m+1, the extended state space. Beside the
results on the closure measures introduced in17, there
were also beautiful �ndings on the chaotic dynamics
driven by the tent map itself: we found all Markovian
partitions with a full support, even Markovian symbol
dynamics whose underlying partition is not Markovian at
all, and conditions on the thresholds α s.t. all sequences
of length m + 1 occur, i.e., we could determine a subset
I of [0, 1] s.t. for all α ∈ I we have φmα = {0, 1}m+1.
Even though the results in16 justi�ed the choice of
the tent map as a nice toy model and test ground for
our closure measures they were all restricted to the
case when the one-dimensional map T is the full tent
map. We begin the present paper with abandoning this
restriction and showing that most of the results in16 hold
even true in the case of arbitrary unimodular maps. We
then move on and discover a tight relationship between
the occurrence of forbidden sequences, i.e., the fact that
φmα 6= {0, 1}m+1, and the periodicity of the threshold α
w.r.t. the unimodular map T . Furthermore, we provide
a link between these results and the local minima of
one of the information theoretical measures de�ned in17:
the measure Eq. (I.1) quantifying the informational
�ow. Finally, we apply these insights to derive results
on the in�nite symbol dynamics, that is, m =∞, as well.
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17 dealt with di�erent notions of closure and their in-
terdependencies in general, and16 with the investigation
of these measures on a toy model where the microdynam-
ics is de�ned by the tent map T : [0, 1] → [0, 1]. In this
paper we consider unimodular maps T in general and the
properties of their symbolic sequences derived from the
partition threshold technique. We investigate the image
of the m-th order coarse grainings φmα ([0, 1]) of Eq. (I.2),
which is the set of all sequences of length m + 1 which
may occur and which is a subset of the extended state
space {0, 1}m+1. More precisely, we prove that all points
α where a shift of the support φmα ([0, 1]) occur � i.e., for
α0 < α < α1 we have φα0([0, 1]) 6= φα1([0, 1]) � are peri-
odic points of the map T , local maxima, or local minima
of the maps T k, for k = 1, . . . ,m.
In the third section, we relate these results to the measure
Eq. (I.1) testing for the informational closure. We prove
that the local minima of the informational �ow occur at
points α where the support φmα ([0, 1]) of the correspond-
ing symbolic sequences of length m + 1 shifts, and that
such a shift is a necessary but not a su�cient condition
for the occurrence of a local minimum. Initially, the proof
is done only for coarse-grainings which provide a piece-
wise linear dependency of the distribution induced on the
extended state space {0, 1}m+1. Let

A(s, α) = {x ∈ [0, 1] : φα◦
T k(x) = sk; k = 0, . . . ,m} \ T m(α) (I.3)

be the support of a symbolic sequence s =
(sm, sm−1, . . . , s0) ∈ {0, 1}m+1 of length m + 1 for the
coarse-graining φmα . Every sequence s ∈ {0, 1}m+1 pro-
vides a non-negative function α 7→ p(s, α) = λ(A(s, α))
on [0, 1] where λ denotes the uniform Lebesgue measure
on the unit interval. By piecewise linear we mean that
for all s ∈ {0, 1} the mappings α 7→ p(s, α) are piecewise
linear on [0, 1]. The de�nition of these non-negative func-
tions has a dual aspect: if one keeps the threshold param-
eter α ∈ [0, 1] �xed, then the mapping s 7→ p(s, α) de�nes
a distribution on the extended state space {0, 1}m+1.
This duality is �nally one of two reasons why the oc-
currence of forbidden sequences is so closely related to
the minima of the informational �ow. The second one
is the close link between the information �ow I(smn+1 :
xn|smn ) of an m − th order coarse-graining φmα , with
smn = (sm+n, sm+n−1, . . . , sn) = φmα (x), and the entropy
rate h(T, α) of the unimodular map for the partition
{[0, α], (α, 1]} of the unit interval induced by the thresh-
old α � see23 for a precise de�nition. More precisely, we
prove that I(smn+1 : xn|smn ) = H(s0|s1, . . . , sm+1), i.e.,
the information �ow of the m-th order coarse-graining is
the m-th order proxy of the entropy rate h(T, α). Since
the proof on the characterization of the local minima of
the informational �ow makes only use of the concept of
entropy, the results generalise to one-dimensional dynam-
ical systems which are conjugate to ones whose coarse-
graining provide piecewise linear functions α 7→ p(s, α)
for all sequences s ∈ {0, 1}m+1. It turns out that due to
this invariance under conjugacy all well known chaotic

maps on the unit interval are covered by this result: the
tent map, the logistic map, and even the non-unimodular
Bernoulli shift.
Finally, we unify the assembled results on m-th order
coarse-grainings to interpret the information theoreti-
cal behaviour of the in�nite symbolic sequence sN =
(s0, s1, s2, . . .) = φNα(x) discussed at the beginning of the
introduction where sk = 0 i� T k(x) ≤ α. We inter-
pret this symbolic sequence as a coin toss with a certain
memory. It turns out that this memory is given by the
mutual information I(s0 : s1, s2, . . .) between the initial
state s0 and its future trajectory sN≥1

= (s1, s2, s3, . . .).
Furthermore, we have I(s0 : s1, s2, . . .) = H(s0)−h(T, α),
that is, the mutual information is the di�erence between
the entropy of the single symbol space and the entropy
rate which is � as we have seen in the previous section
� in the limit identical with the informational �ow from
the micro to the macro level {0, 1}N. We conclude this
section by numerics performed in the case that the uni-
modular map T is the tent map. The numerical results
indicate that for the threshold α = 2/3 the memory of
the sequences sN turns out to be maximal. α = 2/3
is the unique periodic point of the tent map T with pe-
riod length 1 and the induced single step macro-dynamics
s0 = φ02/3(x)→ sn+1 = φ02/3 ◦ T (x), with the notation of

Eq. (I.2), is Markovian and considered as a right candi-
date for an emergent level � see17.
Most of the technical proofs are relegated to the ap-
pendix, except for those that are needed to follow the
main line of reasoning in the text.

II. FORBIDDEN SEQUENCES

We consider a continous unimodal map T on the unit
interval [0, 1]. That is, T (0) = T (1) = 0 and there is a
unique maximum at c ∈ [0, 1] s.t. T is strictly increasing
on [0, c] and strictly decreasing on [c, 1]. The space unit
interval is a measurable space endowed with the Borel
σ-algebra and the Lebesgue measure λ.
Every choice of a partition threshold α ∈ [0, 1] induces
a coarse-graining φα = χ(α,1], the characteristic func-
tion on the interval (α, 1], of the dynamics T : [0, 1] →
[0, 1]. From the sequence xn = Tn(x), for an initial
value x ∈ X, one obtains derived symbol dynamics
sn = φα(xn) ∈ {0, 1}, and the probability of �nding
sn in the state 0 or 1 is given by the probability that
xn lies in the interval [0, α] or (α, 1], respectively. One
can go further and compute the symbol dynamics de-
rived from more than one consecutive time step, i.e.,
one can consider the dynamics of the extended state
(sn+m, sn+m−1, . . . , sn) and its support, that is, all sym-
bol sequences s = (sm, sm−1, . . . , s0) ∈ {0, 1}m+1 of
length m+ 1 s.t. λ(A(s, α)) > 0 with

A(s, α) = {x ∈ [0, 1] : φα◦
T k(x) = sk; k = 0, . . . ,m} \ T m(α) (II.1)

where the set T m(α) is de�ned as follows:
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De�nition II.1. Let α ∈ [0, 1] and m ∈ N0. We de�ne

T m(α) =

m⋃
k=0

T−k(α) ∪ {0, 1} . (II.2)

T m(α) is the union of all preimages of α under the iter-
ated maps T k, with k = 0, . . . ,m, including {0, 1}, where
T 0 = id[0,1] denotes the identity map on [0, 1].

The following lemma gives an impression of the form
of the supports Eq. (II.1).

Lemma II.1. The sets A(s, α) for s ∈ {0, 1}m+1 are
a (possibly empty) union of intervals whose boundary
points are adjacent elements of T m(α).

De�nition II.2. We de�ne the map

p : {0, 1}m+1 × [0, 1]→ [0, 1]

(s, α) 7→ λ(A(s, α)) .

p(·, α) is a probability measure on {0, 1}m+1 for all
α ∈ [0, 1], whereas p(s, ·) de�nes a non-negative function
on [0, 1] for all s ∈ {0, 1}m+1 which is even continous.

Lemma II.2. The map α 7→ p(s, α) is continous for all
s ∈ {0, 1}m+1.

For α, β ∈ [0, 1] we de�ne α ∼ β i� p(s, α) > 0 for
a sequence s ∈ {0, 1}m if and only if p(s, β) > 0. One
checks immedately that ∼ de�nes an equivalence relation
on [0, 1]. We write [α] for the equivalence class of α.

Furthermore, in the sequel, for U ⊂ [0, 1] let Ů denote
the largest open subset of U .

De�nition II.3. For all m ≥ 1 and α ∈ [0, 1] let Sm
denote the set containing all periodic points T with pe-
riod less or equal to m, {0, 1} and all local maxima and
minima of T k for k = 1, . . . ,m.

The following theorem provides a characterization of
the equivalence classes {[α] : α ∈ [0, 1]}.

Theorem II.3. Let α ∈ [0, 1]. The set [̊α] consists of a
union of intervals whose boundary points are in Sm.

From this theorem, we can easily derive the main result
of16 where it had required a much longer proof.

Corollary II.4. Let T : [0, 1] → [0, 1] be the tent map,
i.e., T (x) = 2x if x ∈ [0, 1/2] and T (x) = 2 − 2x else.
Then for

α ∈
(

2m−1

2m + 1
,

2m−1

2m − 1

)
.

all sequences of length m+1 occur, i.e., we have p(s, α) >
0 for all s ∈ {0, 1}m+1.

Proof. Since the choice α = 1/2 provides the generating
partition, all sequences of length m + 1 occur. Hence,
the equivalence class [1/2] contains all α ∈ [0, 1] where all
sequences of length m+1 occur. One checks immediately
that the points 2m−1/2m + 1 and 2m−1/2m − 1 are not
only m-periodic points but also that there are no further
periodic points with period less or equal to m contained
in (2m−1/2m + 1, 2m−1/2m − 1). Combining this with
theorem II.3 yields the corollary.

III. INFORMATIONAL FLOW

Since the results of this section hold true in a more
general context than that of unimodular maps on unit
intervals and their binary encoding, we formulate them
beyond the scope of the introduction and the second sec-
tion in terms of Fig. (2).
Consider a dynamical system T : X → X on a probabil-
ity space X with a measure µ where T is a measurable
and measure preserving map. Let us consider a family of
deterministic coarse grainings φα : X → X̂ parametrized
by α ∈ [0, 1] and the space X̂ = {1, . . . , r−1} is assumed
to be �nite.
From the sequence xn = Tn(x), for an initial value x ∈
X, one obtains derived symbol dynamics sn = φα(xn) ∈
{0, 1, . . . , r − 1}, and the probability of �nding sn in the
state i is given by the probability pi = µ(φ−1α (i)).
Given this initial coarse-graining family φα one can de�ne
a re�ned coarse-graining in the spirit of Eq. (I.2).

De�nition III.1. Let φα : X → X̂ be a family of coarse-
grainings. For every m we obtain a a family of coarse-

grainings φmα : X →ˆ̂Xm by

x 7→ (φα ◦ Tm(x), φα ◦ Tm−1(x), . . . , φα(x))

for all x ∈ X, which we call the m-th order coarse-
graining.

In the sequel we want to characterize the local minima
of the information �ow, see Eq. (I.1),

I(smn+1 : xn|smn )(α) = H(smn+1|smn )(α)−H(smn+1|smn , xn)(α) .

of the coarse-graining φmα of order m which measures
the information contained in the macrostate smn+1 =
(sm+n+1, . . . , sn+1) = φmα (T (xn)) about the microstate
xn if smn is known. Since smn+1 is fully determined by xn,
the second term vanishes and we have

I(smn+1 : xn|smn )(α) = H(smn+1|smn )(α)

=H(smn+1, s
m
n )(α)−H(smn )(α)

=H(smn+1, s
m
n )(α)−H(smn+1)(α)

=H(sn+m+1, . . . , sn)(α)−H(sn+m, . . . , sn)(α)

=H(sm+1, . . . , s0)(α)−H(sm+1, . . . , s1)(α)

=H(s0|s1, . . . , sm+1)(α)
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where the next-to-last identity follows from the station-
arity of the process. Hence, the information �ow is equal
to the m + 1th order proxy of the entropy rate of the
stationary process T : X → X � see23 for a de�nition.
These proxies constitute a decreasing sequence. Hence,
with every additional order of the coarse-graining of the
extended states smn , the information �ow decreases.

Lemma III.1. The information �ow I(smn+1 : xn|smn )(α)
of the extended state dynamics smn → smn+1 is
H(s0|s1, . . . , sm+1)(α), i.e., the m + 1-th order proxy of
the entropy rate h(T,A) where A = {{φ−1α (i) : i =
0, . . . , r−1}} is the partition of the microstate X induced

by the coarse-graining φα : X → X̂.

The domains of the symbol sequences s =
(sm, . . . , s1, s0), with si ∈ {0, . . . , r − 1} is

A(s, α) =
{
x ∈ X : φα ◦ T k(x) = sk; k = 0, . . . ,m

}
,

We de�ne, as in the previous section, p(s, α) = µ(Aa)
for s ∈ {0, . . . , r − 1}m, i.e., the probability that the
sequence s occurs for a given α ∈ [0, 1]. For α, β ∈ [0, 1]
we de�ne the equivalence relation α ∼ β i� p(s, α) > 0
for a sequence s ∈ {0, . . . , r−1}m implies p(s, β) > 0 and
vice versa.

De�nition III.2. We call the coarse-graining φα linear
i� for all sequences s ∈ {0, . . . , r− 1}m the function α 7→
p(s, α) depends piecewise linearly and continuously on α.

Example III.1. Let T : [0, 1] → [0.1] be a unimodular
map with linear slopes and φα : [0, 1]→ {0, 1} the coarse
graining induced by the choice of a partition thresh-
old α ∈ [0, 1]. Consider the support A(s, α) of a sym-
bol sequence s ∈ {0, 1}m+1. Lemma II.1 provides that
A(s, α) =

⋃
n(bn, cn) is a �nite union of disjoint open in-

tervals where bn and cn are in T m(α). Since the slopes of
T are linear, the preimages T−m(α) depend also linearly
on α. Therefore, λ((bn, cn)) depends linearly on α for
all n, and so does the sum

∑
λ((bn, cn)) = λ(A(s, α)) =

p(s, α) for all s ∈ {0, 1}m. Furthermore, due to lemma
II.2, the functions α 7→ p(s, α) are continuous.

The following theorem links the local minima of the
information �ow, i.e., possible candidates for emergent
levels induced by them-th order coarse-graining φmα , with
the results of the previous section. It tells us that in
the case of a piecewise linear coarse-graining III.2 the
information �ow, i.e., the m + 1-th order proxy of the
entropy rate H(s0|s1, . . . , sm+1)(α), see III.1, is either
strictly convex in the parameter α or linear as long as it is
di�erentiable. But the only points where the conditional
entropy α 7→ H(s0|s1, . . . , sm+1)(α) is not di�erentiable

are those where a shift in the support φmα (X) ⊂ X̂m+1

of the macrostate dynamics appears because then one
of the probabilities which occur in the logarithm of the
conditional entropy vanishes.

Theorem III.2. Let α ∈ [0, 1] be s.t. [̊α] 6= ∅ and the
coarse-graining φα is assumed to be linear. The condi-
tional entropy β 7→ H(β) = H(s0|s1, . . . , sm+1)(β) is dif-

ferentiable in [̊α] and we have

H ′(β) = −
∑

p′(s) log p(s|ŝ)

H ′′(β) ≤ 0

with s = (sm+1, . . . , s0) and ŝ = (sm, . . . , s0). Further-

more, there is a point α0 ∈ [̊α] with H ′′(α0) = 0 if and
only if H(β) is a linear function on [α].

Let U ⊂ R be a subset of the real numbers. We call an
element of the set U \Ů , i.e., the di�erence of the smallest
closed subset of R which contains U and the biggest open
subset contained in U , a boundary point of the set U .

Corollary III.3. Assume that the coarse-graining φα is
linear. The information �ow has a local minimum in α0

if it is a boundary point or α 7→ H(α) is constant on [α].

Proof. Let α ∈ [0, 1] be a local minimum of β 7→ H(β).

Assume that α ∈ [̊α]. The function β 7→ H(β) is di�er-

entiable in [̊α] and strictly concave or linear. Since there
is a local minimum in [α], the �rst case cannot hold. Fur-
thermore, we have H ′(α0) = 0. Hence, β 7→ H(β) is not
only linear on [α] but even constant.

Lemma III.1 provides an identity between the infor-
mation �ow of the m-th order coarse-graining and the
m + 1-th order proxy H(s0|s1, . . . , sm+1)(α) of the en-
tropy rate of the stationary, deterministic dynamical sys-
tem T : X → X. But this proxy is invariant under con-
jugacy. Recall, a dynamical system S : Y → Y on a
measurable space Y with measure λ is called conjugate
to the dynamical system T : X → X if there is a mea-
surable and measure preserving map Φ : Y → X which
has a measurable inverse Φ−1 s.t. Φ ◦ S = T ◦ Φ.
The family φα : X → X̂ of coarse-grainings de�nes
a family ψα : Y → X̂ of those for the dynamical
system S : Y → Y via ψα = φα ◦ Φ for all α ∈
[0, 1]. We de�ne the m-th order coarse-graining ψmα (y) =
(ψα ◦ Sm(y), . . . , ψα(y)) = (tm, . . . , t0) for y ∈ Y . One
can prove23 that φmα and ψmα induce partitions on X
with the same entropy. Hence, H(t0|t1, . . . , tm)(α) =
H(s0|s1, . . . , sm)(α) for all m. Since the proof of corol-
lary III.3 incorporates only computations of the condi-
tional entropy, it holds also for systems which are only
conjugate to a linear system.

Corollary III.4. Suppose that we have stationary, de-
terministic dynamics S : Y → Y with a family of coarse
graining ψα : Y → Ŷ for α ∈ [0, 1], and that there is
a conjugate system T : X → X with conjugacy map Φ
s.t. ψα ◦ Φ which is a linear coarse graining. Then, the
information �ow of the m-th order coarse graining ψmα
has a local minimum in α if it is a boundary point or
α 7→ H(α) is constant on [α].
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If we combine these results with II.3 we obtain a nice
description of the local minima of the information �ow
if the dynamics are induced by a unimodular map and
the family of coarse-grainings comes from the partition
threshold technique.

Corollary III.5. Let T : [0, 1] → [0, 1] be a unimodular
map conjugate to a unimodular one with linear slopes and
φα : [0, 1]→ {0, 1} the coarse-grainings obtained from the
threshold technique. The local minima of the information
�ow of the m-th order coarse grainings φmα are elements
of the set Sm, i.e., the set of all periodic points with
period less or equal to m or local extrema of the maps T s

with s ≤ m.

The previous corollary provides a characterization of
the local minima of the information �ow if the multilevel
dynamical system comes from a unimodular map and the
coarse-grainings are obtained from the partition thresh-
old technique and its m-th orders, respectively. Unfortu-
nately, being an element of the set Sm is only a necessary
condition for the information �ow to be minimal in this
point but not su�cient.

Example III.2. Let Tc : [0, 1] → [0, 1] be a skewed
version of the full tent map, that is, we de�ne

Tc(x) =


1

c
x if x ∈ [0, c]

1− 1

1− c
(x− c) else

for a parameter c ∈ (0, 1). The choice c = 1/2 yields
the tent map. We compute the information �ow of
the 1-st order coarse-graining, that is, the 1-st order
proxy H(s0|s1)(α) of the entropy rate. The value of the
joint distribution p((s1, s0), α) of the di�erent symbol se-
quences (s1, s0) ∈ {0, 1}2 for di�erent partition thresh-
olds α ∈ [0, 1] is listed in the following table.

α ≤ 1/(2− c) α > 1/(2− c)
p(0, 0) αc 2α− 1
p(1, 0) α(1− c) 1− α
p(0, 1) α(1− c) 1− α
p(1, 1) 1− α(2− c) 0

From these joint distributions one obtains the conditional
information H(s0|s1)(α). Since the skewed tent maps are
full, that is, Tc(c) = 1, the only minima and maxima of
T sc are 0 and 1. Hence, the only possible candidate for a
local minimum of the information �ow is the �xed point
of Tc which is c0 = 1/(2− c). One can check analytically
that c0 provides a local minimum of the information �ow
if and only if c ≤ 1/2 + 1/2

√
1/5. The conditional en-

tropy H(s0|s1)(α) whose properties were thoroughly in-
vestigated in1 is plotted for di�erent values of c in Fig. (3)

IV. CHAOTIC COINS

From the general setting of the previous section we re-
turn to the case where the micro-dynamics are induced

0 2/3 4/5 1
α

1

b
it

c=1/2

c=3/4

FIG. 3. The conditional entropy H(s0|s1)(α) for two di�erent
values of the parameter c. The choice c = 1/2 yields a local
minimum of at the �x point 2/3 whereas for c = 3/4 we do
not have a local minimum at the �x point 4/5.

by a unimodular map T : [0, 1] → [0, 1]. So far we
have considered coarse-grainings obtained from symbol
sequences s ∈ {0, 1}m of �nite length only. This sec-
tion tackles symbol sequences of in�nite length, that is,
for a given partition threshold α ∈ [0, 1] we de�ne the
coarse-graining φNα : [0, 1]→ Σ2 = {0, 1}N via

φNα(x) = (s0, s1, . . . , sm, . . .)

= (φα(x), T ◦ φα(x), . . . , Tm ◦ φα(x), . . .) .

The dynamics on Σ2 induced by T : [0, 1] → [0, 1] is
the shift operator which maps sN ∈ {0, 1}N onto s′N s.t.
s′n = sn+1 for all n ≥ 0.
In order to derive insights for this limit case of the sce-
naria considered in the previous sections, it is intriguing
to think of an in�nite symbol sequence φNα(x), induced by
a point x ∈ [0, 1] and a choice α ∈ [0, 1], as an in�nite se-
quence of coin tosses, where head indicates that the point
x is mapped to the right of α and tail to the left of it. The
results of the second subsection then mean that for cer-
tain choices of the partition threshold α some sequences
of heads and tails may not appear at all. Assuming er-
godicity of the unimodular map allows for estimating the
frequency of 1s and 0s in such an in�nite sequence.

Proposition IV.1. Let T : [0, 1]→ [0, 1] be ergodic. For
almost all x ∈ [0, 1] the image φα(x) is a sequence where
0s occurs with frequency α.

Proof. From Birkho�'s ergodicity theorem it follows that

1

n

∞∑
n=0

φα ◦ Tn(x) =

∫
φa(y) dy = 1− α
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and the sum on the left hand side counts precisely the
frequency of 1s in the image φNα(x).

The result might indicate that the in�nite symbol se-
quence results from a coin toss with a biased coin. This
actually does not hold true because the sequence (sn)n
is not independent in general.
With the notation of de�nition II.2, the entropy rate
h(T, α) for the partition induced by α ∈ [0, 1] is the limit

lim
m→∞

H(s0|s1, . . . , sm+1)(α) (IV.1)

of the conditional entropies H(s0|s1, . . . , sm+1)(α), that
is, the uncertainty left about the the initial state s0 if
the future trajectory s1, . . . , sm+1 of length m + 1 is
known.
If the symbol dynamics sn → sn+1 result from an
i.i.d. process � like for a coin toss, the conditional
entropy H(s0|s1, . . . , sm+1)(α) is H(s0)(α) because no
information about the initial state s0 can be derived
from the subsequent outcomes s1, . . . , sn−1. Hence, the
entropy rate h(T, α)is H(s0)(α) as well. This does not
hold in general as one can read o� Fig. (4) where a
proxy of the entropy rate h(T, α) and the di�erence
H(s0)(α) − h(T, α) is plotted when T : [0, 1] → [0, 1]
is the full tent map, i.e., T (x) = 2x if x ≤ 1/2 and
T (x) = 2− 2x else.
The di�erence H(s0)(α) − h(T, α) = I(s0 : s1, s2, . . .)
is the mutual information between the in�nite fu-
ture trajectory s1, s2, . . . of the symbol sequence
sN = (s0, s1, s2, . . .) ∈ Σ2 and its initial state s0, i.e.,
the memory of the sequence about its original state
s0. Since this di�erence is greater than 0 except for
α = 0, 1/2, 1, the sequences sN ∈ φNα([0, 1]) in the image
of the symbol map have a memory in contrast to a
sequence that results from simply tossing a biased coin.
From lemma III.3 we know that the information �ow
I(smn+1 : xn|smn )(α) of the m-th order coarse-graining
is H(s0|s1, . . . , sm+1)(α), the m + 1-st order proxy of
the entropy rate h(T, α). Therefore, we can interpret
h(T, α) = limm→∞ I(smn+1 : xn|smn ) as the information

�ow of the coarse-graining φNα : [0, 1] → Σ2. Hence, the
memory of the sequences s ∈ φα([0, 1]) in the macro
space is the information left about the original micro
dynamics T : [0, 1]→ [0, 1].

If the map T is the full tent map, Fig. (4) indicates
that at α = 2/3 the memory of the in�nite sequence
sN = φNα(x) about its microstate x is largest among all
possible choices of the partition threshold α ∈ [0, 1]. We
know from16 that at α = 2/3 the single step symbol
dynamics sn → sn+1 are Markovian. This implies
h(T, 2/3) = H(s0|s1). From the explicit computation
in16 we obtain H(s0) − h(T, 2/3) = H(s0) −H(s1|s0) =
I(s0 : s1) = log(3)− 4/3 ≈ 0.251 bit.

The entropy rate α 7→ h(T, α) plays a crucial role if we
want to quantify the quality of the corresponding coarse-

0 12/3
α

1

b
it

H(s0 )−h(T,α)
h(T,α)

FIG. 4. The entropy rate h(T, α) computed as 7-th order
proxyH(s0|s1, . . . , s7)(α) and the memoryH(s0)(α)−h(T, α)
of a sequence where T : [0, 1]→ [0, 1] is the tent map.

graining x 7→ φNα(x) because it is its information �ow. An
explicit computation of the entropy rate is quite hard.
There are results available for the skewed tent maps of
example III.2, see15. Even though we are not able to pro-
vide an explicit expression for the entropy h(T, ·) depend-
ing on α, we can prove that the mapping α 7→ h(T, α) is
continuous (see the appendix).
Furthermore, from the perspective of the second section,
which discussed thoroughly the phenomenon of vanishing
sequences, it is an interesting question which in�nite se-
quences sN ∈ Σ2 are attainable, that is, which sequences
are in the image φNα([0, 1]) ⊂ Σ2. We speculate that the
support φNα([0, 1]) of the macro-dynamics are even not
Turing computable: there are α ∈ [0, 1] for which one
cannot decide whether an in�nite sequence s ∈ Σ2 is an
element of φNα([0, 1]) or not. A similar result is already
known for the logistic maps of di�erent heights, see11.
Even though we have not been able to prove this result
we could at least prove (see the appendix for details)
that the support φNα([0, 1]) is at least uncountable when
the map T is not only assumed to be ergodic but also
weakly mixing � see23 for a precise de�nition.

V. CONCLUSIONS

First, as far as we know, the present paper provides
the �rst general treatment of non-generating partitions
of unimodular maps. Previous papers � see14,2 � provide
only numerical computations for the full tent map. Sec-
ond, we uncovered a close relationship between the phe-
nomenon of forbidden sequences and the local minima of
the information �ow, a closure measure proposed in17 in



9

order to detect emergent levels in multilevel dynamical
systems. Third, we considered also in�nite binary se-
quences which are popular among mathematicians in or-
der to study the underlying chaotic dynamics driven by a
unimodular map (see9). We could interpret the entropy
rate as the information �ow from the lower level, the
time-discrete dynamics driven by the unimodular map,
to the macro level, the in�nite binary sequences and their
dynamics de�ned via the shift map.
But there is still much work left. First, we believe that
theorem II.3 can be improved: the equivalence classes
[α] are not only unions of intervals whose boundaries
are in the set Sm but consist only of a single interval
whose boundaries are adjacent elements in the set Sm.
If we could prove this, we would be able to show that
in the limit m → ∞, that is, in the case of in�nite
symbolic dynamics on the space {0, 1}N = Σ2, we have
φNα([0, 1]) 6= φNβ([0, 1]) for all α 6= β. This would imply

that the family of supports (φNα([0, 1]))α∈[0,1] is uncount-

able and due to similar reasons as in11 no longer Turing
computable for all α ∈ [0, 1]. Hence, the distribution
induced by φNα on Σ2 is not Turing computable either
and therefore neither is the entropy rate h(T, α) for all
α ∈ [0, 1]. Second, these results would provide insights
into the predictive e�ciency19 of the coarse-grainings
(φα)α∈[0,1], because they suggest that this information
measure is already incomputable in the simple case that
the multilevel dynamical systems is de�ned by a unimod-
ular map and coarse-grainings induced by the partition
threshold technique.
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Appendix A: Proofs of the results

Proof. Lemma II.1 For all s = (sm, . . . , s0) ∈ {0, 1}m+1

we have

A(s, α) =

m⋂
k=0

(φa ◦ T k)−1(sk) .

But we have either (φa ◦ T k)−1(sk) = T−k([0, α]) or
(φα ◦ T k)−1(sk) = T−k(α, 1]). Let γ0 < . . . < γr be
the elements of the set T−k(α) ∪ {0, 1}. Then we have

˚(φa ◦ T k)
−1

(sk) =


⋃
j=0(γ2j , γ2j+1) if sk = ε⋃
j=0(γ2j+1, γ2j+2) if sk =

ε+ 1 mod 2

where ε ∈ {0, 1} has to be chosen adequately. Hence,
(φa ◦ T k)−1(sk) is a disjoint union of intervals whose
boundary points are elements of T m(α). Since the in-
tersection of intervals yields a (possibly empty) interval

again, the same holds true for the support A(s, α).
Assume further that there is an interval (a, b) ⊂
A(s, α) which contains an element of γ ∈ T m(α).
There is a k ≤ m s.t. γ ∈ T−k(α). This im-
plies not only λ

(
T−k([0, α]) ∩ (a, b)

)
> 0 but also

λ
(
T−k((α, 1]) ∩ (a, b)

)
> 0. But we have φa ◦ T k(a, b) =

sk which is either 0 or 1 � a contradiction.

Proof. Lemma II.2 Let us assume the opposite. Then
there is an s = (sm, . . . , s0) ∈ {0, 1}m+1 and an α0 ∈
[0, 1] s.t. α 7→ p(s, α) is not left- or right-continuous at
α0. We assume the �rst case, the second can be disproved
analogously. Then there is a monotonically increasing se-
quence (αn)N converging to α0 s.t. (p(s, αn))n∈N does not
converge to p(s, α0).
De�ne the monotonically increasing sequence of functions
f0,kn = φαn ◦ T k. From the monotone convergence the-
orem, we obtain the existence of a measurable function
f ≤ 1 s.t. f0,kn → f0,k a.s. and∫

f0,kn dλ→
∫
f0,k dλ (A.1)

for all k ≥ 0. We de�ne f1,kn = 1 − f0,kn and f1,k =
1 − f0,k for all k and n. De�ne Akn = (fsk,kn )−1(sk),
Ak = (fsk,k)−1(sk) and Bk = (φα ◦ T k)−1(sk). (Akn)n∈N
is an increasing or decreasing sequence of sets if sk = 0
or sk = 1, respectively. Eq. (A.1) provides

⋃
nA

k
n = Ak

or
⋂
nA

k
n = Ak a.s. if sk = 0 or sk = 1, respectively. As-

sume that for all k the symmetric di�erences Ak∆Bk are
sets of measure zero. This implies λ(Akn∆Bk) → 0 for
n → ∞. Since λ

(⋂
k B

k
)

= p(s, α0) and λ
(⋂

k A
k
n

)
=

p(s, αn) this implies p(s, αn) → p(s, α0) � a contradic-
tion. Hence, there is a k0 s.t. λ(Ak0∆Bk0) > 0. We
assume that sk0 = 0. Then Ak0 ⊂ Bk0 and φαn ◦ T k0 =
f0,kn does not converge a.s. to φα ◦ T k0 . This implies
λ(T−k0(α)) > 0 which is not possible because T is a
unimodal map which implies that T−k0(α) consists of at
most 2k0 points.

Proof. Theorem II.3 If [̊α] = ∅, there is nothing to

prove. Hence, we assume [̊α] 6= ∅. This implies in par-
ticular that α 6= ε for ε ∈ {0, 1} because in both cases

we get [ε] = {ε}. Since [̊α] is an open subset of [0, 1]
there is a sequence of open intervals (Im = (am, bm))m
s.t. [̊α] =

⋃
m Im. Consider an interval Im = (am, bm)

s.t. bm < 1. For all n ∈ N there is a βn ∈ [0, 1] \ [α]
s.t. 0 < βn − bm < 1/n. For every n ∈ N, there
exists a sequence an ∈ {0, 1}m s.t. p(an, β) > 0 for
all β ∈ Im and p(an, βn) = 0 or p(an, βn) > 0 and
p(an, bm) = 0, respectively. Since there are only �nitely
many sequences we can assume � choosing a proper sub-
sequence � that all sequences an are the same sequence a.
In both cases we obtain a sequence (αn)n∈N converging
to bm s.t. p(a, αn) > 0 for all n ∈ N and p(a, bm) = 0.
In the �rst case, this sequence is taken from the interval
Im, in the second case, we simply set αn = βn for all n.
From II.1 we know that the support A(a, αn) of the
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sequence a is a non-empty disjoint union of intervals
with endpoints contained in T m(αn). Hence for all
n ≥ 1 there is a pair (rn, sn), with rn, sn ∈ {0, . . . ,m}
s.t. (γ0n, γ

1
n) ⊂ A(a, αn) with γ0n ∈ T−rn(αn) and

γ1n ∈ T−sn(αn). Since {0, . . . ,m}2 is a �nite set, we
can choose a subsequence of (αn)n, which we again de-
note with (αn)n, s.t. (rn, sn) = (r, s) for all n and
�xed r and s. W.l.o.g. we assume r ≤ s which im-
plies T s−r(αn) = T s(γ0n), αn = T s(γ1n) ∈ I for all n.
But λ([γ0n, γ

1
n]) ≤ p(a, αn) → 0 implies γ1n − γ0n → 0 for

n→∞. Since [0, 1] is compact there is a convergent sub-
sequence of (γ1n)n, which we again denote by (γ1n)n, with
limit γ. Hence, also γ0n converges to γ. This implies

T s−r(bm) = lim
n→∞

T s−r(αn) = lim
n→∞

T s(γ0n)

= T s(γ) = lim
n→∞

T s(γ1n) = lim
n→∞

αn = bm .

(A.2)

If s > r, this implies that bm a periodic point with
period less or equal to s − r. Suppose r = s. Then
T s(γ0n) = T s(γ1n) = αn. From lemma II.1, it follows
that the preimages γ0n, γ

1
n are adjacent in T m(αn). This

implies that [γ0n, γ
1
n] contains either a local minimum or

a maximum of T s for all n. Since there are only �nitely
many of them we can assume, by choosing a subsequence,
that it is the same local extremum for all n. But Eq. (A.2)
implies in this case that bm is precisely this local ex-
tremum of T s.
The proof that the lower bound am of the interval Im is
an element of Sm works analogously.

Proof. Theorem III.2 Suppose α0 ∈ [̊α]. Then there
is an ε > 0 s.t. p(s, α0) > 0 for a sequence s ∈
{1, . . . , r − 1}m+1 implies p(s, β) > 0 for all β ∈ I =
[α0 − ε, α0 + ε]. Let A ⊂ {0, . . . , r − 1}m+1 be the col-
lection of all those sequences. If a = (am, . . . , a0), we
de�ne ŝ = (sm−1, . . . , s0). The functions β → p(s, β)
and β → p(ŝ, β) depend linearly on β and have for I
values di�erent from zero if and only if s ∈ A. Since
I is compact there is a γ > 0 s.t. p(s, β), p(ŝ, β) > γ
for all β ∈ I and s ∈ A. This implies that the condi-
tional entropy β 7→ H(β) is smooth on I̊ and therefore
di�erentiable in α0. If we take the derivative we obtain

H ′(β) = −
∑

p′(s) log p(s|ŝ) +
p(s)

p(s|ŝ)
p′(s|ŝ)

= −
∑

p′(s) log p(s|ŝ) + p(ŝ)p′(s|ŝ)

= −
∑

p′(s) log p(s|ŝ)−
∑
ŝ

p(ŝ)

r−1∑
i=0

p′(s0 = i|ŝ) .

But
∑r−1
i=0 p(s0 = i|ŝ) = 1 for all β, hence

∑r−1
i=0 p

′(s0 =
i|ŝ) = 0 and the second term vanishes. Computing the
second derivative, we �rstly observe that the linearity of

p(s) yields p′′(s) = 0 and therefore

H ′′(β) = −
∑

p′(s)
p′(s|ŝ)
p(s|ŝ)

=−
∑ p′(s)p(ŝ)

p(s)

(
p(s)

p(ŝ)

)′
=−

∑ p′(s)p(ŝ)

p(s)

p′(s)p(ŝ)− p(s)p′(ŝ)
p2(ŝ)

=−
∑ p′2(s)

p(s)
− p′(s)p′(ŝ)

p(ŝ)

=−
∑
ŝ

r−1∑
i=0

p′2(ŝ, s0 = i)

p(ŝ, s0 = i)

−
∑r−1
i=0 p

′(ŝ, s0 = i)
∑r−1
i=0 p(ŝ, s0 = i)

p(ŝ)

=−
∑
ŝ

r−1∑
i=0

p′2(ŝ, s0 = i)

(
1

p(ŝ, s0 = i)
− 1

p(ŝ)

)
−
∑
i6=j

p′(ŝ, s0 = i)p′(ŝ, s0 = j)

p(ŝ)

=−
∑
ŝ

1

p(ŝ)

r−1∑
i 6=j

p′2(ŝ, s0 = i)p(ŝ, s0 = j)

p(ŝ, s0 = i)

− 1

p(ŝ)

∑
i 6=j

p′(ŝ, s0 = i)p′(ŝ, s0 = j)

=−
∑
ŝ

1

p(ŝ)

r−1∑
i 6=j

(
p′2(ŝ, s0 = i)p2(ŝ, s0 = j)

− p′(ŝ, s0 = i)p′(ŝ, s0 = j)p(ŝ, s0 = i)p(ŝ, s0 = j)
)

/
p(ŝ, s0 = i)p(ŝ, s0 = j)

=−
∑
ŝ

1

p(ŝ)

r−1∑
i<j

(
p′(ŝ, s0 = i)p(ŝ, s0 = j)

− p′(ŝ, s0 = j)p(ŝ, s0 = i)
)2 /

p(ŝ, s0 = i)p(ŝ, s0 = j)

and the last term is zero if

p′(ŝ, s0 = i)

p(ŝ, s0 = i)
=
p′(ŝ, s0 = j)

p(ŝ, s0 = j)
for all i, j = 0, . . . , r−1 .

This implies

p′(ŝ) =

r−1∑
i=0

p′(ŝ, s0 = i) =

r−1∑
i=0

p′(ŝ, s0 = i)

p(ŝ, s0 = i)
p(ŝ, s0 = i)

=
p′(ŝ, s0 = j)

p(ŝ, s0 = j)

r−1∑
i=0

p(ŝ, s0 = i) =
p′(ŝ, s0 = j)

p(ŝ, s0 = j)
p(ŝ) .
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for all j = 0, . . . , r − 1 and ŝ. Hence, we obtain

p′(s|ŝ) =

(
p(s)

p(ŝ)

)′
=
p′(ŝ, s0 = j)p(ŝ)− p(ŝ, s0 = j)p′(ŝ)

p2(ŝ)
= 0 .

for all s. But we have p(s|ŝ) = f(β)/g(β) for two func-
tions f and g which are linear in β. This implies

p′(s|ŝ) =
f ′(β)g(β)− g′(β)f(β)

g2(β)

where the numerator does no longer depend on β. Hence,
the existence of a single point α0 where the derivative
p′(s|ŝ) is zero implies that f ′(β)g(β) = g′(β)f(β) for all

β ∈ I. This proves that p(s|ŝ) = f ′(β)
g′(β) ∈ R is constant

for all β ∈ [̊α] and sequences s. Hence, the �rst deriva-
tive H ′(β) of the conditional entropy is constant and the
entropy H(β) itself is a linear function in β.

Proof. Continuity of the entropy rate in α: Let
α < β ∈ [0, 1]. We denote by Aα = {[0, α], (α, 1]}
and Aβ = {[0, β], (β, 1]} the partitions induced from the
thresholds α and β. Due to corollary 4.12.1 in23 we
have |h(T, α)−h(T, β)| ≤ H(Aα|Aβ)+H(Aβ |Aα) where
H(Aα|Aβ) denotes the entropy of the partition Aα con-
ditioned on the partition Aβ and analogously H(Aβ |Aα).
This implies

H(Aα|Aβ) +H(Aβ |Aα)

=− α log

(
α

β

)
− (β − α) log

(
β − α
β

)
− (β − α) log

(
β − α
1− α

)
− (1− β) log

(
1− β
1− α

)
which converges to 0 if α→ β.

Proof. The image φNα([0, 1]) is uncountable: Since T
is weakly mixing we obtain from theorem 1.24 in23 that
T × T is ergodic. From theorem 1.7 in23 we obtain the
existence of a set A ⊂ [0, 1] × [0, 1] s.t. λ(A) = 1 and
for all (x, y) ∈ A the orbit (Tn(x), Tn(y))n∈N is dense in
[0, 1]× [0, 1].
Suppose that the image φα([0, 1]) = {sn : n ∈ N} ⊂
{0, 1}N is countable for an α ∈ (0, 1). We denote by
An = φ−1α (sn) the domain of the symbol sn for all n ∈ N.
The set {An : n ∈ N} is a partition of the set [0, 1] and
from σ-additivity, it follows that∑

n∈N
λ(An) = λ([0, 1]) = 1

which implies the existence of an integer i ∈ N s.t.
λ(Ai) > 0. This implies λ(A ∩ Ai × Ai) = λ(Ai)

2 > 0.

This implies that the intersection A ∩ Ai × Ai is not
empty. Let (x, y) ∈ A ∩ Ai × Ai. Since the orbit of
(x, y) is dense in [0, 1] × [0, 1] there is an n ∈ N s.t.
(Tn(x), Tn(y)) ∈ (0, α) × (α, 1). Hence, φα ◦ Tn(x) = 0
and φα ◦Tn(y) = 1 and φα(x) 6= φα(y) which contradicts
the fact that x, y ∈ Ai, that is, φα(x) = φα(y).
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