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DIRAC-GEODESICS AND THEIR HEAT FLOWS

QUN CHEN, JÜRGEN JOST, LINLIN SUN, AND MIAOMIAO ZHU

Abstract. Dirac-geodesics are Dirac-harmonic maps from one dimensional domains. In this paper, we introduce the
heat flow for Dirac-geodesics and establish its long-time existence and an asymptotic property of the global solution.
We classify Dirac-geodesics on the standard 2-sphere S 2(1) and the hyperbolic plane H2, and derive existence results on
topological spheres and hyperbolic surfaces. These solutions constitute new examples of coupled Dirac-harmonic maps
(in the sense that the map part is not simply a harmonic map).

1. Introduction

Dirac-harmonic maps were introduced in [4;5] as a geometric analytic model corresponding to the supersymmetric
nonlinear σ-model of quantum field theory [9;12].

Let us describe the geometric setting. Let (M, g) be a spin manifold with a fixed spin structure, and ΣM the spinor
bundle over M, on which we chose a Hermitian metric 〈·, ·〉. The Levi-Civita connection ∇ on ΣM is compatible
with 〈·, ·〉. Let (N, h) be a Riemannian manifold, Φ a map from M to N, and Φ−1T N the pull-back bundle of T N by
Φ. On the twisted bundle ΣM ⊗ Φ−1T N there is a metric (still denoted by 〈·, ·〉) induced from the metrics on ΣM
and Φ−1T N. There is a connection, still denoted by ∇, on ΣM ⊗ Φ−1T N naturally induced from those on ΣM and
Φ−1T N.

The Dirac operator along the map Φ is defined as

/DΨ B ei · ∇eiΨ

= ∂/ψα ⊗ θα + ei · ψα ⊗ ∇eiθα,

where we write a cross-section Ψ of ΣM ⊗ Φ−1T N locally as Ψ = ψα ⊗ θα, {ψα} are local cross-sections of ΣM, and
{θα} are local cross-sections of Φ−1T N, {ei} is a local orthonormal basis on M, ∂/ B ei · ∇ei is the usual Dirac operator
on M and “X·” stands for the Clifford multiplication by the vector field X on M. Here and in the sequel, we use the
usual summation convention.

Consider the functional

L(Φ,Ψ) =
1
2

∫
M

(
‖dΦ‖2 + 〈

Ψ, /DΨ
〉)
.

The critical points (Φ,Ψ) have to satisfy in M◦ the following Euler-Lagrange equations for L(Φ,Ψ) (c.f. [4]):

(1.1)

 τ(Φ) =
1
2

〈
ψα, ei · ψβ

〉
RN(θα, θβ)Φ∗(ei) ≡ R(Φ,Ψ),

/DΨ =0,

where RN(X,Y) B [∇X ,∇Y ]−∇[X,Y], for X,Y ∈ Γ(T N), stands for the curvature operator of N, and τ(Φ) is the tension
field of Φ. Solutions of (1.1) are called Dirac-harmonic maps from M to N. When M has nonempty boundary ∂M,
then we need to impose appropriate boundary conditions for (Φ,Ψ), see e.g. [6;7;22].
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When the dimension of the domain manifold M is one, Dirac-harmonic maps are called Dirac-geodesics. The
corresponding functional is of the form

(1.2) L(γ,Ψ) =
1
2

(∫
M
‖γ̇‖2 + 〈

Ψ, /DΨ
〉)
,

where γ̇ denotes the spatial derivative dγ/ds, M is an interval, say [0, 1] in R1.

In [11], Isobe introduced a modified functional

LF(γ,Ψ) =
1
2

(∫
S 1
‖γ̇‖2 + 〈

Ψ, /DΨ
〉) − ∫

S 1
F(γ,Ψ),

where F is some suitable function. The critical points (γ,Ψ) are called the nonlinear Dirac-geodesics. Existence
results were obtained in [11] via an approach from critical point theory, under some conditions on the function F > 0
and assumptions on the metric of the target N.

Recently, Branding [2;3] introduced the following regularized functional:

Lε(γ,Ψ) =
1
2

(∫
S 1
‖γ̇‖2 + 〈

Ψ, /DΨ
〉
+ ε| /DΨ|2

)
,

where ε > 0 is a parameter; critical points of it are called regularized Dirac-geodesics. He proved the global
existence and convergence of the heat flow of closed regularized Dirac-geodesic when ε is large. However, the final
existence of Dirac-geodesics cannot be obtained by removing the regularization, i.e., by letting ε→ 0.

It is thus a natural question to define a suitable heat flow for Dirac-geodesics and study its global existence and
asymptotic behavior. This is the main purpose of the present paper.

Let σ : [0, 1] −→ N be a smooth curve. For γ : [0, 1] × [0,T ) −→ N and X(·, t),Y(·, t) vector fields along the
curve γ(·, t), consider the system

(1.3)


γ′ = ∇γ̇γ̇ + R(X, Y)γ̇, on (0, 1) × (0,T ),
∇γ̇X = 0, on (0, 1] × [0,T ),
∇γ̇Y = 0, on [0, 1) × [0,T ),

with initial-boundary value conditions

(1.4)


γ(s, 0) = σ(s), s ∈ (0, 1),
γ(0, t) = x0, γ(1, t) = y0, t ∈ [0,T ),
X(0, t) = X0, t ∈ [0,T ),
Y(0, t) = Y0, t ∈ [0,T ),

where x0, y0 are two fixed points in N, X0,Y0 ∈ Tx0 N are two fixed tangent vectors, γ′ denotes the time derivative

γ′ =
∂γ

∂t
.

The system (1.3) constitutes the heat flow for the Euler-Lagrange equation of the functional (1.2), see Lemma 2.1
in section 2. In fact, (1.3) can be viewed as a parabolic system with extra constraining equations satisfied by the field
Ψ, which can be reduced to equations for two parallel vector fields X and Y along the underlying curve γ and hence
can be easily solved. The fact that with this elliptic-parabolic system we get a better handle on the existence than
other approaches seems to indicate that this is the right parabolic version of the Dirac-geodesic problem. Instead of
trying to also turn the first-order Dirac equations for X and Y into parabolic equations, we rather treat them as first
order constraints along the second order parabolic flow for γ. Thus, in particular, we can apply elliptic estimates for
X and Y along the flow and thereby control the inhomogeneous term in the flow for γ.

The reason why we only consider the flow of Dirac-geodesics (γ,Ψ) defined on an interval [0, 1] rather than on
the circle S 1 is that, in general, one can not expect that the parallel vector fields X,Y can be defined on the whole
S 1. Nevertheless, γ could be a closed curve. For the heat flow of Dirac-harmonic maps from higher dimensional
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manifolds with boundary, see [6]. We will prove the following global existence result for the Dirac-geodesic heat
flow:

Theorem 1.1. Let Nn be a Riemannian manifold. Then there exists a unique solution of (1.3) and (1.4) for all
t ∈ [0,+∞).

Recall that for the usual geodesic heat flow, Ottarsson [18] proved the long-time existence and uniqueness of a
solution for smooth initial data, which has been recently extended by Lin and Wang [17] to W1,2 initial data. However,
the convergence of the geodesic flow is unexpectedly subtle. Although it is proved in [18] that there is a sequence
{tk} with tk → +∞ (k → +∞), such that γ(tk) → γ∞, the convergence of γ(t) need not to be true in general, see
the example of Topping (c.f. [8;23]). Choi and Parker [8] proved the convergence of the geodesic heat flow for generic
metrics, the so-called bumpy metrics on the target manifold N.

In [15] Koh proved the global existence of the magnetic geodesic heat flow:

γ′ = ∇γ̇γ̇ + Z(γ),

where Z ∈ Hom(T M,T M) is the so-called Lorenze force, namely, Ω B h(·,Z(·)) is a closed 2-form on the target
(N, h). Examples show that the convergence is also not true in general.

If N is the round 2-sphere S 2(1) and x0, y0 ∈ N with d(x0, y0) = π, then one can find initial-boundary data
(σ, X0,Y0) such that the Dirac-geodesic flow (1.3) and (1.4) cannot converge to a Dirac-geodesic connecting x0 and
y0 (see Theorem 3.3 and Remark 3.1). This means that in general one cannot expect the convergence of the global
solution of the Dirac-geodesic heat flow (1.3) and (1.4).

A natural problem is then to study the asymptotic behavior of the above global solution. Notice that if N is a
Riemann surface, then X[ ∧ Y[ = cωγ for some constant c under the boundary conditions (see Remark 4.1), where
X[ denotes the 1-form dual to the vector field X and ω is the volume form of N. This special property in the surface
case is useful for estimating the kinetic energy, but it does not hold in general in higher dimensions. We will prove
the following:

Theorem 1.2. Let N2 be a surface with negative Gauss curvature κ. If

(1.5) |c| < 2π√
κ2 + 4

∥∥∥∇√−κ∥∥∥2 − κ
,

then the kinetic energy density k(γ) = 1
2 ‖γ′‖

2 decays exponentially, i.e.,

k(γ(s, t − 1)) ≤ Ce
(
2c2‖∇N √−κ‖2+2π|cκ|−2π2

)
t
∫ 1

0
k(σ)ds, ∀t > 1,

where C is a positive constant dependent only on the geometry of N.

Remark 1.1. We note that it follows from (1.5) that

c2
∥∥∥∇N √−κ

∥∥∥2
+ π |cκ| − π2 < 0.

The rest of the paper is organized as follows: in section 2 we derive the Euler-Lagrange equations of the function
L; in section 3, we discuss Dirac-geodesics on surfaces and classify Dirac-geodesics on the standard 2-sphere S 2(1)
(Theorem 3.3) and the hyperbolic plane H2 (Theorem 3.5), and derive existence results on topological spheres
(Theorem 3.4) and hyperbolic surfaces (Theorem 3.6). These solutions constitute new examples of nontrivially
coupled Dirac-harmonic maps; see [14] for an explicit example of coupled Dirac-harmonic map from surfaces and [1;5]

for constructions and existence of uncoupled Dirac-harmonic maps (in the sense that the map part is an ordinary
harmonic map) from surfaces and high dimensional manifolds; in section 4, we prove the global existence of the
Dirac-geodesic flow (Theorem 1.1) and the asymptotic property of the solution (Theorem 1.2).

The authors would like to thank the referee for his/her careful reading of our paper and the constructive and
helpful comments.
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2. Preliminaries

2.1. Spin bundle ΣR. First, let us recall some basic notions from spin geometry. We refer to [10;11;13;16] for additional
references. Consider the real line Rwith the standard metric and let d

dr be the unit tangent vector. The Clifford bundle
Cl(R) is the quotient bundle

Cl(R) =
∞∑

k=0

⊗kR/I(R)

where I(R) is the bundle of ideals, i.e., the bundle whose fibre at r ∈ R is the two-sided I(TrR) in
∑∞

k=0 ⊗kR generated
by elements v ⊗ v + ‖v‖2 for v ∈ TrR. It is easy to check that Cl(R) = R × C, i.e., a trivial bundle with fibre the
complex line. Obviously, the principal SO-bundle PSO(R) of R is just the real line R, and the principal Spin-bundle
of R becomes to R × Z2. By definition, a spin structure on R is a lift of PSO(R) to PSpin(R). Thus, there are two spin
structures on R, the trivial one and the non-trivial one. However, these two spin structures are equivalent to each
other.

Notice that Cl1 � Cl02 (the even parts of Cl2) via the correspondence Cl1 3 x = x0 + x1 7→ x0 + e2 · x1 ∈ Cl2,
where x0 and x1 are the even parts and odd parts of x respectively. Identify R as a subspace of R2 via the canonical
inclusion R 3 x 7→ (x, 0) ∈ R2. It is well known that Cl2 is isomorphic to the 2 × 2-matrix algebra over C via

1 7→
(
1 0
0 1

)
, e1 7→

(√
−1 0
0 −

√
−1

)
, e2 7→

(
0

√
−1√

−1 0

)
, e1 · e2 7→

(
0 −1
1 0

)
.

Introduce the spinor space ∆2 B C2 and the chiral operator G B
√
−1e1 · e2, then Cl2 acts on the spinor space.

Moreover, this chiral operator splits ∆2 into ±-eigenspaces ∆±2 . It is easy to see that ∆+2 = C
(

1√
−1

)
� C and

∆−2 = C

(
1

−
√
−1

)
� C. Thus, we get two representation spaces of Cl1, i.e., ∆±2 , and in particular, of Spin1. Moreover,

as a representation of Spin1, ∆±2 are equivalent to each other. This ∆+2 is the spinor space of Spin1 and we write
S = ∆+2 . The associated bundle of PSpin(R) via the representation of Spin1 is called the spinor bundle and is
denoted by ΣR � R × S. By this convention, we know that the Clifford product on spinors is given through

Cl(R) 3 d
dr 7→

(
0 1
1 0

)
. Since ∆+2 � C, this Clifford product is simply given by the complex multiplication by

√
−1.

The connection on the spinor bundle ΣR is the canonical lift of the Levi-Civita connection d
dr on TR � R × R to

ΣR � R × C. The Dirac operator then is /∂ =
√
−1 d

dr .

2.2. Dirac-geodesics on Riemannian manifolds. Let N be a Riemannian manifold, and γ : [0, 1] −→ N be a
curve and Ψ ∈ Γ

(
Σ[0, 1] ⊗ γ−1T N

)
be a spinor along the curve γ. We identify the spinor Ψ as a complex vector field

along the curve γ and introduce Ψ = X +
√
−1Y where X,Y are two vector fields along the curve γ. By (1.1), the

Dirac-harmonic map (γ,Ψ) satisfies the following systemτ(γ) = R(γ,Ψ),
/DΨ = 0.

(2.1)

Lemma 2.1. (2.1) is equivalent to the following system

(2.2)


∇γ̇γ̇ + R(X,Y)γ̇ = 0,
∇γ̇X = 0,
∇γ̇Y = 0,

where γ̇ denotes the tangent vector field of γ.
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Proof. Choose a local orthonormal frame fields {ei} of N and denote the unit tangent vector field over [0, 1] by ∂t,
then a direct computation implies that

τ(γ) − R(γ,Ψ) =∇γ̇γ̇ −
1
2

〈
Ψi, ∂t · Ψ j

〉
R(ei, e j)γ̇ = ∇γ̇γ̇ −

1
2

〈
Ψi,
√
−1Ψ j

〉
R(ei, e j)γ̇

=∇γ̇γ̇ +
√
−1
2
ΨiΨ̄ jR(ei, e j)γ̇

=∇γ̇γ̇ +
√
−1
2

(Xi +
√
−1Y i)(X j −

√
−1Y j)R(ei, e j)γ̇

=∇γ̇γ̇ +
√
−1
2

((
XiX j + Y iY j

)
+
√
−1

(
Y iX j − XiY j

))
R(ei, e j)γ̇

=∇γ̇γ̇ + R(X,Y)γ̇,

and

/DΨ = ∂t · ∇∂tΨ =
√
−1∇γ̇(X +

√
−1Y) =

√
−1∇γ̇X − ∇γ̇Y.

�

Definition 2.1. A Dirac-harmonic map (γ, X,Y) as in (2.2) is called a Dirac-geodesic on N. We say that (γ, X,Y) is
closed if γ is closed.

Remark 2.1. By a “closed” Dirac-geodesic, we mean that the curve is closed, but the spinor need not close up on S 1.
On the other hand, it is also interesting to consider closed Dirac-geodesics defined on S 1, which can be equipped
with two different spin structures.

Lemma 2.2. If (γ, X,Y) is a Dirac-geodesic, then ‖γ̇‖ , ‖X‖ , ‖Y‖ , 〈X,Y〉 are all constant along γ.

Proof. Since X and Y are parallel vector fields along the curve γ, it follows that ‖X‖ , ‖Y‖ and 〈X,Y〉 are all constant.
On the other hand,

1
2

d
dt
‖γ̇‖2 =

〈
∇γ̇γ̇, γ̇

〉
= − 〈R(X,Y)γ̇, γ̇〉 = 0,

which implies that ‖γ̇‖ is a constant. �

Remark 2.2. Suppose (γ̃, X̃, Ỹ) is a Dirac-geodesic defined in (0, 1) with
∥∥∥ ˙̃γ

∥∥∥ = ε−1 > 0. Define γ(t) = γ̃(εt) and
Ψ(t) = θ

√
εΨ̃(εt) where θ ∈ C is a constant with ‖θ‖ = 1, then (γ, X,Y) is a Dirac-geodesic with unit-speed defined

in [0, ε].

Suppose σ : [0, 1] −→ N is a C1-curve so that σ([0, 1]) is bounded in N, then there exists an open neighborhood
N′ ofσ([0, 1]) with compact closure so that N′ can be (smoothly) isometrically embedded into some Euclidean space
Rq. If necessary, by choosing a smaller neighborhood, we may assume that there is a bounded tubular neighborhood
Ñ of N′ in Rq. Let π : Ñ −→ N′ be the nearest point projection denoted by π = (π1, π2, . . . , πq) = (πA)1≤A≤q. By
choosing an even smaller N′, we may assume that π can be extended smoothly to the whole Rq so that each πA is
compactly supported. Hence, in particular, πA, πA

B =
∂πA

∂ZB , π
A
BC =

∂2πA

∂ZB∂ZC , π
A
BCD =

∂3πA

∂ZB∂ZC∂ZD , etc. are bounded, where
Z = (ZA) are standard coordinates of Rq. Notice that dπN′ is an orthogonal projection.

The functional L can be written as

L(γ, X,Y) =
1
2

(∫ 1

0

(
γ̇A

)2
+ ẊAYA − XAẎA

)
.

Next, we want to derive the Euler-Lagrange equations of L. For any smooth map η : [0, 1] −→ Rq and any
smooth real functions ξA, ζA on (0, 1), we consider the variation

γt = π(γ + tη), XA
t = π

A
N(γt)(XB + tξB), YA

t = π
A
B(γt)(YB + tζB).

It is easy to check that

γ0 = γ, X0 = X, Y0 = Y,

∂γA
t

∂t

∣∣∣∣∣∣
t=0
= πA

B(γ)ηB,
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and

∂XA
t

∂t

∣∣∣∣∣∣
t=0
= πA

B(γ)ξB + πA
BC(γ)πC

D(γ)XBηD,
∂YA

t

∂t

∣∣∣∣∣∣
t=0
= πA

B(γ)ζB + πA
BC(γ)πC

D(γ)YBηD.

Moreover, if γ ⊂ N and X,Y are two vector fields on N along the curve γ, then

νA
B(γ)γ̇B = 0, νA

B(γ)XB = 0, νA
B(γ)YB = 0,

where νA
B B δA

B − πA
B. The following relationship will be used later:

πA
B(γ)πB

C(γ) = πA
C(γ), πA

BC(γ) = πA
CB(γ), πA

B(γ) = πB
A(γ), πA

BC(γ)γ̇C = πB
AC γ̇

C .

Theorem 2.3. Using the above notations, the Euler-Lagrange equations for L become
γ̈A − πA

BC γ̇
Bγ̇C +

(
πA

Bπ
C
BDπ

C
EFYDXE − πA

Bπ
C
BDπ

C
EF XDYE

)
γ̇F = 0,

ẊA − πA
BC γ̇

BXC = 0,
ẎA − πA

BC γ̇
BYC = 0.

Remark 2.3. Denote

ΩA
B B

(
πA

C(γ)πC
BD(γ) − πA

CD(γ)πC
B(γ)

)
γ̇D, RA

GDE B πA
Bπ

C
BDπ

G
Fπ

C
EF − πG

Bπ
C
BDπ

A
Fπ

C
EF ,

then the Euler-Lagrange equations for L can be rewritten as
γ̈A + ΩA

Bγ̇
B − RA

BCD(γ)γ̇BXCYD = 0,
ẊA + ΩA

BXB = 0,
ẎA + ΩA

BYB = 0.

Moreover, ΩA
B = −ΩB

A.

Proof of Remark 2.3. First, we check that ΩA
B = −ΩB

A.

ΩA
B =

(
πA

Cπ
C
BD − πA

CDπ
C
B

)
γ̇D = πC

Aπ
B
CDγ̇

D − πC
ADγ̇

DπB
C = −

(
πB

Cπ
C
AD − πB

CDπ
C
A

)
γ̇D C −ΩB

A.

Second,

ΩA
Bγ̇

B =
(
πA

Cπ
C
BD − πA

CDπ
C
B

)
γ̇Dγ̇B = πA

Cπ
C
BDγ̇

Dγ̇B − πA
CDπ

C
B γ̇

Dγ̇B = −πA
BC γ̇

Bγ̇C .

Here we have used πA
C(γ)πC

BD(γ)γ̇Dγ̇B = 0. To see this identity, we begin with the identity πA
B(γ)πB

C(γ) = πA
C(γ), then

πA
BDπ

B
C γ̇

D + πA
Bπ

B
CDγ̇

D = πA
CDγ̇

D.

Hence, multiplying both sides by γ̇C , we get that

πA
C(γ)πC

BD(γ)γ̇Dγ̇B = 0.

Third, notice that πA
B(γ)XB = XA, we have

πA
BC γ̇

C XB + πA
BẊB = ẊA,

then multiplying both sides by πD
A (γ), we get that πA

B(γ)πB
CD(γ)γ̇C XD = 0. By a similar computation,

ΩA
BXB = −πA

BC(γ)γ̇BXC , ΩA
BYB = −πA

BC(γ)γ̇BYC .

Finally,

RA
GDE γ̇

GXDYE =
(
πA

Bπ
C
BDπ

G
Fπ

C
EF − πG

Bπ
C
BDπ

A
Fπ

C
EF

)
γ̇GXDYE = πA

Bπ
C
BDγ̇

FπC
EF XDYE − γ̇BπC

BDπ
A
Fπ

C
EF XDYE

=
(
πA

Bπ
C
BDπ

C
EF XDYE − πA

Bπ
C
BDπ

C
EFYDXE

)
γ̇F .

�
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Proof of Theorem 2.3. Suppose η, ξ, ζ has compact support in (0, 1). Then

dL(γt, Xt,Yt)
dt

∣∣∣∣∣
t=0
=

∫ 1

0
γ̇′Aγ̇A +

1
2

∫ 1

0

(
Ẋ′AYA + ẊAY ′A

)
− 1

2

∫ 1

0

(
X′AẎA + XAẎ ′A

)
=

∫ 1

0

∂
(
πA

Bη
B
)

∂s
γ̇A +

∫ 1

0

∂
(
πA

B(γ)ξB + πA
BC(γ)πC

D(γ)XBηD
)

∂s
YA

∫ 1

0
ẊA

(
πA

B(γ)ζB + πA
BC(γ)πC

D(γ)YBηD
)
− 1

2

(
X′AYA + XAY ′A

)∣∣∣∣1
0

=

∫ 1

0

(
πA

Bη̇
B + πA

BC γ̇
CηB

)
γ̇A −

∫ 1

0

(
πA

B(γ)ξB + πA
BC(γ)πC

D(γ)XBηD
)

ẎA

∫ 1

0
ẊA

(
πA

B(γ)ζB + πA
BC(γ)πC

D(γ)YBηD
)

+
1
2

(
πA

B(γ)ξB + πA
BC(γ)πC

D(γ)XBηD
)

YA
∣∣∣∣1
0

− 1
2

(
πA

B(γ)ζB + πA
BC(γ)πC

D(γ)YBηD
)

XA
∣∣∣∣1
0

= −
∫ 1

0

(
γ̈A − πA

BC γ̇
Bγ̇C +

(
πA

Bπ
C
BDπ

C
EFYDXE − πA

Bπ
C
BDπ

C
EF XDYE

)
γ̇F

)
ηA

+

∫ 1

0

(
πD

BCπ
C
AYB

(
ẊD − πD

EF γ̇
E XF

)
− πD

BCπ
C
A XB

(
ẎD − πD

EF γ̇
EYF

))
ηA

+

∫ 1

0

(
ẊA − πA

BC γ̇
BXC

)
ζA −

∫ 1

0

(
ẎA − πA

BC γ̇
BYC

)
ξA

+

(
γ̇AηA +

1
2

YAξA − 1
2

XAζB
)∣∣∣∣∣∣1

0

= −
∫ 1

0

(
γ̈A − πA

BC γ̇
Bγ̇C +

(
πA

Bπ
C
BDπ

C
EFYDXE − πA

Bπ
C
BDπ

C
EF XDYE

)
γ̇F

)
ηA

+

∫ 1

0

(
πD

BCπ
C
AYB

(
ẊD − πD

EF γ̇
E XF

)
− πD

BCπ
C
A XB

(
ẎD − πD

EF γ̇
EYF

))
ηA

+

∫ 1

0

(
ẊA − πA

BC γ̇
BXC

)
ζA −

∫ 1

0

(
ẎA − πA

BC γ̇
BYC

)
ξA.

�

3. Dirac-geodesics on surfaces

Assume dim N = 2, i.e., N is a surface. Put X[ ∧ Y[ = cωγ, where ω is the volume form of N and c is a function
of t (see Lemma 2.2). Let Jx be the rotation by π/2 in TxN measured with the metric and the orientation chosen on
N.

Lemma 3.1. (γ, X,Y) is a Dirac-geodesic on a surface N if and only if∇γ̇γ̇ = cκ(γ)Jγ(γ̇),
∇γ̇X = ∇γ̇Y = 0,

where c is a constant such that X[ ∧ Y[ = cωγ and κ is the Gauss curvature of N.

Proof. The proof follows easily from the following identity:

R(X,Y)γ̇ = R(X ∧ Y)γ̇ = R(cωγ)γ̇ = −cκ(γ)Jγ(γ̇).

�
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Recall that a curve γ satisfying ∇γ̇γ̇ = cκ(γ)Jγ(γ̇) is called a (cκ-)magnetic geodesic and models the motion of a
charge in a magnetic field with magnetic form cκω. Therefore, each Dirac-geodesic on a surface can be viewed as a
cκ-magnetic geodesic coupled with two parallel tangent vector fields along the magnetic geodesic.

According to Remark 2.2, we can choose an orthonormal basis e1 = γ̇, e2 along the curve γ. Denote

X(t) =a(cos( f (t))e1 + sin( f (t))e2),(3.1)
Y(t) =b(cos( f (t) + θ)e1 + sin( f (t) + θ)e2),(3.2)

where a, b > 0 and θ are three constants, and f , g ∈ C1[0, ε].
The following theorem gives a geometric description of Dirac-geodesics.

Theorem 3.2. Let γ be a unit-speed curve with geodesic curvature κg on a surface M, a, b, θ constants with a, b ≥ 0.
If κ is the Gauss curvature of M, then (γ, X,Y) is a Dirac-geodesic if and only if

κg = κab sin θ, ḟ = −κab sin θ,

where X,Y are given by the formulae (3.1) and (3.2).

Proof. Suppose (γ, X,Y) is a Dirac-geodesic, by Lemma 2.2, X,Y are of the form (3.1) and (3.2). By a direct
computation, one gets that

∇γ̇γ̇ + R(X,Y)γ̇ =∇e1 e1 + abR(cos( f )e1 + sin( f )e2, cos( f + θ)e1 + sin( f + θ)e2)e1

=
〈∇e1 e1, e2

〉
e2 + ab (cos( f ) sin( f + θ) − sin( f ) cos( f + θ))) R(e1, e2)e1

=
〈∇e1 e1, e2

〉
e2 − abκ sin(θ)e2

=
(〈∇e1 e1, e2

〉 − abκ sin θ
)

e2,

∇γ̇X = − a sin( f ) ḟ e1 + a cos( f )∇e1 e1 + a cos( f ) ḟ e2 + a sin( f )∇e1 e2

= − a sin( f ) ḟ e1 + a cos( f )
〈∇e1 e1, e2

〉
e2 + a cos( f ) ḟ e2 + a sin( f )

〈∇e1 e2, e1
〉

e1

= − a sin( f ) ḟ e1 + a cos( f )
〈∇e1 e1, e2

〉
e2 + a cos( f ) ḟ e2 − a sin( f )

〈∇e1 e1, e2
〉

e1

=
(
−a sin( f ) ḟ − a sin( f )

〈∇e1 e1, e2
〉)

e1 +
(
a cos( f ) ḟ + a cos( f )

〈∇e1 e1, e2
〉)

e2

=a (− sin( f )e1 + cos( f )e2)
(

ḟ +
〈∇e1 e1, e2

〉)
,

and

∇γ̇Y = b (− sin( f + θ)e1 + cos( f + θ)e2)
(

ḟ +
〈∇e1 e1, e2

〉)
.

Notice that
〈∇e1 e1, e2

〉
is just the geodesic curvature κg of γ in M, and we finish the proof of the necessity. The

sufficiency is obvious. �

3.1. Dirac-geodesics on spheres. First, we consider the unit sphere S 2(1) with the standard metric and let ω be the
volume form.

Theorem 3.3 (Dirac-geodesic on the round 2-sphere). Any Dirac-geodesic (γ, X,Y) with non-constant γ on the
round sphere S 2(1) locally can be defined by

γ(s) =

√1 − ρ2 cos

 λs√
1 − ρ2

 , √1 − ρ2 sin

 λs√
1 − ρ2

 , ρ ,
X(s) = aλ

− sin

 λs√
1 − ρ2

− cs + c0

 , cos

 λs√
1 − ρ2

− cs + c0

 , 0 ,
and

Y(s) = bλ

− sin

 λs√
1 − ρ2

− cs + θ + c0

 , cos

 λs√
1 − ρ2

− cs + θ + c0

 , 0
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where c = abλ2 sin θ and a, b, λ, θ, c0 are constants. Moreover, for p, q ∈ S 2(1) and constants c ∈ R, λ > 0, there is
a Dirac-geodesic (γ, X,Y) such that γ connects p, q with speed λ and the oriented area of X +

√
−1Y is c if and only

if the following condition is satisfied:

(3.3) |c| ≤ λ cot
(

dist(p, q)
2

)
.

Proof. Equip the sphere S 2(1) with the standard metric, i.e., the pull-back of the metric in R3. In this case, the
Dirac-geodesic equation becomes 

γ̈ + λ2γ = cγ × γ̇,
Ẋ + 〈X, γ̇〉 γ = 0,
Ẏ + 〈Y, γ̇〉 γ = 0,

where λ = ‖γ̇‖ is a constant. First, we claim that γ is a planar curve and a circle with radius λ/
√
λ2 + c2 and centered

at c√
λ2+c2

(γ × γ̇ + cγ). In fact,

γ × γ̈ = cγ × (γ × γ̇) = c (〈γ, γ̇〉 γ − 〈γ, γ〉 γ̇) = −cγ̇,

which means that γ × γ̇ + cγ is a constant since
d
ds

(γ × γ̇ + cγ) = γ × γ̈ + cγ̇ = 0.

Moreover, the length of this vector is
‖γ × γ̇ + cγ‖ =

√
λ2 + c2.

Suppose λ , 0, i.e., γ is not a constant. Then〈
γ − c

λ2 + c2 (γ × γ̇ + cγ) , γ × γ̇ + cγ
〉
= 0.

Thus we have proved the claim.
Now by Lemma 2.2, we have that

X = a (γ̇ cos( f (s)) + γ × γ̇ sin( f (s))) ,

and

Y = b (γ̇ cos( f (s) + θ) + γ × γ̇ sin( f (s) + θ)) ,

where a, b, θ are constants such that c = abλ2 sin θ. A direct computation implies that

0 = Ẋ + 〈X, γ̇〉 γ = a (−γ̇ sin( f ) + γ × γ̇ cos( f )) ( ḟ + c),

and

0 = Ẏ + 〈Y, γ̇〉 γ = a (−γ̇ sin( f + θ) + γ × γ̇ cos( f + θ)) ( ḟ + c)

which implies that f = −cs + c0 for some constant c0.
For every constant c and two points p, q ∈ S 2(1), one can check directly that there exists a Dirac-geodesic (γ, X,Y)

with X[ ∧ Y[ = cωγ such that p, q ∈ γ if and only if

|c|
√
λ2 + c2

≤ cos
(

dist(p, q)
2

)
,

i.e.,

|c| ≤ λ cot
(

dist(p, q)
2

)
.

In fact, embedding S 2 into R3. Suppose γ centered at C and let Q be the midpoint of p and q in R3, then

|OC| ≤ |OQ| .
This means

|c|
√
λ2 + c2

= |ρ| ≤ cos
(

dist(p, q)
2

)
.
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�

Remark 3.1. Notice that γ is just the parametrization of a circle up to orientation-preserving isometries and X,Y are
two parallel vector fields along the curve γ.

The inequality (3.3) is exactly the fact the distance between p and q is less than the diameter of the the circle γ.
When the inequality (3.3) is strict, there exists only one shortest Dirac-geodesic (γ, X,Y) connecting p, q with

speed λ = ‖γ̇‖ and X[ ∧ Y[ = cωγ. In the case of equality. there exist exactly two shortest Dirac-geodesic (γ, X,Y)
with speed λ and X[ ∧ Y[ = cωγ connecting p, q unless c = 0. Of course, there exist infinitely many shortest
geodesics connecting the north pole and the south pole.

Hence, if dist(p, q) < π, there always exist infinitely many constants λ such that (3.3) holds. In other words, there
exists an infinite number of Dirac-geodesics (γ, X,Y) with X[ ∧ Y[ = cωγ such that γ connects p, q. However, if
dist(p, q) = π, then c must be zero and γ must be a geodesic.

Next, for topological spheres S 2, Schneider (c.f. [20]), and Rosenberg-Schneider (c.f. [19]) proved the following
existence theorems for closed magnetic geodesics (solutions of ∇γ̇γ = h(γ)Jγ(γ̇)) on S 2.

Theorem A (c.f. [20], [19] )
(1) Let h be a positive smooth function on S 2, and c > 0 a constant. Suppose that one of the following three

assumptions is satisfied: (i) c
(
2π + (sup κ−) Vol(S 2)

)
≤ 4(inf h)in jS 2 , (ii) κ > 0 and c

√
sup κ ≤ 2(inf h), (iii)

sup κ < 4 inf κ. Then there exist at least two simple closed magnetic geodesics γ such that ‖γ̇‖ = c.
(2) Suppose that S 2 has positive Gauss curvature. There exists a constant ε > 0 such that for all smooth functions

h : S 2 −→ R satisfying 0 < h ≤ cε for some constant c, there are two embedded distinct simple closed magnetic
geodesics γ with ‖γ̇‖ = c.

We have the following

Theorem 3.4. Suppose the sphere S 2 has positive Gauss curvature κ. Suppose one of the following four assumptions
is satisfied: (1) π ≤ 2 |c| (inf κ)in jS 2 ; (2) sup

√
κ ≤ 2 |c| inf κ; (3) sup κ < 4 inf κ; (4) |c| κ ≤ ε, where c is some

constant and ε > 0 is a suitable constant. Then there are at least two simple closed unit-speed Dirac-geodesics
(γ, X,Y) such that X[ ∧ Y[ = cωγ where ω is the volume form of S 2.

Proof of Theorem 3.4. It is a direct consequence of the theorem mentioned above and Lemma 3.1. In fact, in our
case, h = cκ and the speed is one. Hence, our conditions become

(1) π ≤ 2 |c| (inf κ)in jS 2 ,
(2)
√

sup κ ≤ 2 |c| inf κ,
(3) sup κ < 4 inf κ,
(4) for small ε > 0, |c| κ ≤ ε.

Hence there are at least two simple closed unit-speed curves γ satisfying

∇γ̇γ̇ = ck(γ)Jγ(γ̇).

For such a γ, choose some point x ∈ γ. Choose two vectors X0,Y0 ∈ TxS 2 with

X0 ∧ Y0 = cωx

Define X,Y to be the parallel vector fields along γ with X(x) = X0,Y(x) = Y0. Then according to our definition,
(γ, X,Y) is a Dirac-geodesic. Moreover, X[ ∧ Y[ = cωγ. �

3.2. Dirac-geodesics on the hyperbolic plane. Let H2 be the standard hyperbolic plane with constant curvature
−1, that is, the upper half plane

H2 =
{
(x, y) ∈ R2 : y > 0

}
,

with the metric

ds2 =
1
y2

(
dx2 + dy2

)
.
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Next we will derive the local representation of constant geodesic curvature curves in H2. Let

ω1 =
dx
y
, ω2 =

dy
y
, e1 = y

∂

∂x
, e2 = y

∂

∂y
.

Then a direct computation implies that

ω12 =
dx
y
.

Let γ(s) = (x(s), y(s)) be a curve in H2 with geodesic curvature κg, then

γ̇ = ẋ
∂

∂x
+ ẏ

∂

∂y
C ξ1e1 + ξ

2e2.

In other words,

ξ1 =
ẋ
y
, ξ2 =

ẏ
y
.

Now according to the definition of geodesic curvature, we getξ̇1 =
(
ξ1 − κg

√
(ξ1)2 + (ξ2)2

)
ξ2,

ξ̇2 = −
(
ξ1 − κg

√
(ξ1)2 + (ξ2)2

)
ξ1.

Then (ξ1)2 + (ξ2)2 is a constant. Without loss of generality, (ξ1)2 + (ξ2)2 = 1. Thenξ̇1 =
(
ξ1 − κg

)
ξ2,

ξ̇2 = −
(
ξ1 − κg

)
ξ1.

Suppose now κg is a constant, then

(1) If ξ1 = κg, then ξ̇2 = 0, i.e., either y = y0 > 0 with κg = ±1 or x = κg√
1−κ2

g
y +C with

∣∣∣κg

∣∣∣ < 1.

(2) If ξ1 , κg, then from
dξ1

ξ1 − κg
= ξ2ds =

dy
y
,

we get that ξ1 = κg + ay (a , 0). By the assumption (ξ1)2 + (ξ2)2 = 1, we have

(κg + ay)2 +

(
ẏ
y

)2

= 1.

Therefore

ds =
dy

y
√

1 − (κg + ay)2
.

Setting κg + ay = sin t, we know that

ds =
dt

sin t − κg
.

Hence

ξ2 =
ẏ
y
=

1
y

dy
dt

dt
ds
= cos t.

Hence ξ1 = sin t. Then

x = −1
a

cos t + x0.

Thus,

(x − x0)2 +

(
y +

κg

a

)2
=

1
a2 .

As a consequence, we have

Theorem 3.5. In the hyperbolic plane H2, there exists a contractible closed Dirac-geodesic (γ, X,Y) with speed one
and X[ ∧ Y[ = cωγ for a constant c if and only if |c| > 1.
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�
Now suppose (M, g) is a hyperbolic surface with negative Gauss curvature κ. Let B ⊂ R2 denote the open ball of

radius 1 centered at 0 ∈ R2. An immersion γ ∈ C1(∂B,M) will be called oriented Alexandrov embedded, if there
exists an immersion F ∈ C1(B̄,M), such that F|∂B = γ and F is orientation preserving in the sense that for all x ∈ ∂B
there holds 〈

DFx(x), Jγ(x)(γ̇(x))
〉
> 0.

Matthias Schneider proved

Theorem B (c.f. [21]) Let M be a closed oriented surface with negative Euler characteristic χ(M) and let h be a
positive function. Assume that there exists a constant h0 > 0 such that

h ≥
√

h0 and κ ≥ −h0.

Then for every positive constant c ∈ (0, 1), there exists an oriented Alexandrov embedded closed magnetic geodesic
and the number of such closed magnetic geodesics is at least −χ(M) provided they are all non-degenerate and
‖γ̇‖ = c.

As a direct consequence of Lemma 3.1 and the above theorem, one can get the following

Theorem 3.6. Let (M, g) be a closed oriented surface with negative Euler characteristic χ(M) and negative Gauss
curvature κ. For every constant c , 0 with

h0 ≥ |κ| ≥
√

h0

|c| ,

where h0 > 0 is some constant, there exist at least −χ(M) non-degenerate and oriented Alexandrov embedded closed
unit speed Dirac-geodesics (γ, X,Y) with X[ ∧ Y[ = cωγ.

Proof. Suppose (γ, X, Y) is a Dirac-geodesic with unit speed and X[ ∧ Y[ = cωγ. Then (γ̃(s) = γ(λs), X̃(s) +√
−1Ỹ(s) =

√
λX(λs) +

√
−1
√
λY(λs)) is a Dirac-geodesic with speed λ and X̃ ∧ Ỹ = cλωγ̃. Since

h0 ≥ |κ| ≥
√

h0

|c| ,

we have for λ ∈ (0, 1)

h0 ≥ |κ| ≥
√

h0

|c| λ .

Then Theorem B tells us that there exist at least −χ(M) non-degenerated and oriented Alexandrov embedded closed
magnetic curves with h = cκλ. The rest of the proof is similar to Theorem 3.4. �

4. The Dirac-geodesic heat flow on RiemannianManifolds

In this section, we will consider the Dirac-geodesic flow on Riemannian manifolds.
For γ : [0, 1] × [0,T ) −→ N and X(·, t),Y(·, t) vector fields along the curve γ(·, t), we consider the following

system

(4.1)


γ′A = γ̈A + ΩA

Bγ̇
B − RA

BCD(γ)γ̇BYC XD, on (0, 1) × (0,T ),
ẊA + ΩA

BXB = 0, on (0, 1] × [0,T ),
ẎA + ΩA

BYB = 0, on (0, 1] × [0,T ),

satisfying the initial conditions

(4.2)


γ(s, 0) = σ(s), s ∈ (0, 1),
γ(0, t) = x0, γ(1, t) = y0, t ∈ [0,T ),
X(0, t) = X0, t ∈ [0,T ),
Y(0, t) = Y0, t ∈ [0,T ),

where x0 and y0 are two fixed points, and X0,Y0 are two fixed vectors. We observe
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Lemma 4.1. Suppose the image of γ lies in N′, then the Dirac-geodesic heat flow (1.3) is equivalent to the system
(4.1).

Lemma 4.2. Let (γ, X,Y) be a solution of the system (4.1) with the initial conditions (4.2) satisfying σ ⊂ N′ and
x0, y0 ∈ N′, and X0 ∈ Tx0 N′,Y0 ∈ Tx0 N′. If the image of γ lies in Ñ, then γ ⊂ N′ and X,Y are vector fields of N′

along the curve γ for every time 0 ≤ t < T.

Proof. Denote ρ(γ) = π(γ) − γ, then a direct computation implies that

1
2

(
∂

∂t
− ∂2

∂s2

)
‖ρ(γ)‖2 = 〈

ρ′ − ρ̈, ρ〉 − ‖ρ̇‖2
=

〈
νA

B(γ)
(
−ΩB

C γ̇
C + RB

CDE γ̇
CYDXE

)
− πA

BC(γ)γ̇Bγ̇C , ρA(γ)
〉
−

∥∥∥νA
B(γ)γ̇B

∥∥∥2
.

Notice that if γ ⊂ N′, then 〈
νA

B(γ)
(
−ΩB

C γ̇
C + RB

CDE γ̇
CYDXE

)
− πA

BC(γ)γ̇Bγ̇C , ρA(γ)
〉
.

Hence by using the mean value theorem, we get that(
∂

∂t
− ∂2

∂s2

)
‖ρ(γ)‖2 ≤ C ‖ρ(γ)‖2 .

Thus, if σ ⊂ N′ and x0, y0 ∈ N′, then γ must be in N′ according to the maximum principle.
On the other hand, if γ ∈ N′, then

d
ds

(
νA

B(γ)XB
)
= − πA

BC γ̇
C XB + νA

BẊB = −πA
BC γ̇

BXC + νA
B

(
πB

DEπ
D
C − πB

Dπ
D
CE

)
γ̇E XC

= − πA
BC γ̇

BXC + πA
DEπ

D
C γ̇

E XC = −πA
Dπ

D
BC γ̇

BXC .

Moreover,
−ΩA

Bν
B
C XC =

(
πA

DEπ
D
B − πA

Dπ
D
BE

)
γ̇EνB

F XF = −πA
Dπ

D
FE γ̇

E XF .

Hence
d
ds

(
νA

B(γ)XB
)
+ ΩA

Bν
B
C XC = 0.

Therefore, if X0 ∈ Tx0 N′, then νA
B(γ(0))XB(0) = 0 for all A and we get that νA

BX = 0 for all A. In other words, X is a
vector field along the curve γ. Similarly, Y is a vector field of N′ along the curve γ. �

Now we can give the

Proof of Theorem 1.1. First, we shall use Lemma 4.1 and Lemma 4.2 to obtain short time existence.

Claim. A solution of the system (4.1) with the initial conditions (4.2) is equivalent to the following system of
differential equations for a curve γ : (0, 1) × [0, T ) −→ Rq given by

γ′A = γ̈A + ΩA
B(γ)γ̇B − RA

BCD(γ)γ̇BYC XD

on (0, 1) × (0,T ), satisfying the initial conditionγ(s, 0) = σ(s), s ∈ (0, 1),
γ(0, t) = x0, γ(1, t) = y0, t ∈ [0,T ),

where X and Y are smooth vector-valued function of (X0, γ, γ̇) and (Y0, γ, γ̇) determined byẊA + ΩA
BXB = 0, on (0, 1] × [0,T ),

X(0, t) = X0, t ∈ [0,T ),

and ẎA + ΩA
BYB = 0, on (0, 1] × [0,T ),

Y(0, t) = Y0, t ∈ [0,T ),

respectively.
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Claim (Short time existence). A solution of the system (1.3) with the initial condition (1.4) exists at least on some
short time interval [0, t0) for some t0 > 0 according to Lemma 4.1 and Lemma 4.2. Moreover, the maximum time t0
is characterized by the condition

sup
t<t0
‖γ̇(s, t)‖ = ∞.

Second, we shall derive a differential equation for the energy density. As a consequence, the energy density
grows at most exponentially, implying the long time existence.

Claim (long time existence). Define the energy density e(γ) of γ by

e(γ) =
1
2
‖γ̇‖2 ,

then (
∂

∂t
− ∂2

∂s2

)
e(γ) ≤

∥∥∥X[ ∧ Y[
∥∥∥2

sup ‖R‖2

2
e(γ).

Thus, a solution of (1.3) and (1.4) exists for all time.

Proof. (
∂

∂t
− ∂2

∂s2

)
e(γ) =

〈
∇γ′ γ̇ − ∇γ̇∇γ̇γ̇, γ̇

〉
−

∥∥∥∇γ̇γ̇∥∥∥2
=

〈
∇γ̇

(
γ′ − ∇γ̇γ̇

)
, γ̇

〉
−

∥∥∥∇γ̇γ̇∥∥∥2

=
〈
R(X,Y)γ̇,∇γ̇γ̇

〉
−

∥∥∥∇γ̇γ̇∥∥∥2 ≤
∥∥∥X[ ∧ Y[

∥∥∥2
sup ‖R‖2

2
e(γ).

Notice that at the boundary ∂[0, 1] × [0,T ),

∂e(γ)
∂s
=

〈
∇γ̇γ̇, γ̇

〉
=

〈
γ′ − R(X,Y)γ̇, γ̇

〉
=

〈
γ′, γ̇

〉
= 0.

Hence,

e(γ) ≤ exp


∥∥∥X[ ∧ Y[

∥∥∥2
sup ‖R‖2

2
t

 sup e(σ).

�

Finally, the uniqueness of this flow is obvious. �

To prove Theorem 1.2, we need some preliminary lemmas.

Lemma 4.3. Let Nn be a Riemannian manifold, (γ, X,Y) be a global solution of (1.3) and (1.4). Then the energy of
γ is a decreasing function of t, precisely,

dE(γ)
dt
= −

∫ 1

0

∥∥∥γ′∥∥∥2
.

Proof. Notice that∫ 1

0

〈
γ′,R(X,Y)γ̇

〉
=

∫ 1

0

〈
R(γ′, γ̇)X,Y

〉
=

∫ 1

0

〈
∇γ′∇γ̇X − ∇γ̇∇γ′X,Y

〉
= −

∫ 1

0

〈
∇γ̇∇γ′X,Y

〉
= −

〈
∇γ′X,Y

〉
|10 +

∫ 1

0

〈
∇γ′X,∇γ̇Y

〉
= 0.

As a consequence,

dE(γ)
dt
=

∫ 1

0

〈
∇γ′ γ̇, γ̇

〉
=

∫ 1

0

〈
∇γ̇γ′, γ̇

〉
= −

∫ 1

0

〈
γ′,∇γ̇γ̇

〉
+

〈
γ′, γ̇

〉 |10
= −

∫ 1

0

∥∥∥γ′∥∥∥2
+

∫ 1

0

〈
γ′,R(X, Y)γ̇

〉
= −

∫ 1

0

∥∥∥γ′∥∥∥2
.

�
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Based on this lemma, we know that γ is contained in some bounded subset of N. To see this, for every s, s′ ∈
(0, 1), we have

dist(γ(s, t), γ(s′, t)) ≤
∣∣∣∣∣∣
∫ s′

s
‖γ̇‖

∣∣∣∣∣∣ ≤ ∣∣∣s − s′
∣∣∣1/2 (∫ s′

s
‖γ̇‖2

)1/2

≤
∣∣∣s − s′

∣∣∣1/2 (2E(γ))1/2

≤
∣∣∣s − s′

∣∣∣1/2 (2E(σ))1/2 .

Hence, there exists a sequence γ(·, ti) such that γ(·, ti) absolutely converges to a C1/2 curve in Cα for 0 < α < 1/2 as
ti → ∞.

The kinetic energy density of γ is defined by

k(γ) =
1
2

∥∥∥γ′∥∥∥2
.

Remark 4.1. If N is a surface, then there must be a constant c such that

R(X,Y)γ̇ = R(X ∧ Y)γ̇ = −cκN Jγ(γ̇).

To see this, first we have X ∧ Y = c(t)ωN(γ) since X and Y are parallel vector fields along the curve γ. Second, at
the fixed point x0, we know that c(t) does not change the value since X0 and Y0 are given.

Now we claim the following inequality

Lemma 4.4. Assume that N is a Riemann surface with negative Gauss curvature κ, then for any ε ∈ (0, 1),(
∂

∂t
− ∂2

∂s2

)
k(γ) ≤

(
2c2

∥∥∥∇N √−κ
∥∥∥2
+

c2κ2

2ε

)
k(γ) − 2(1 − ε)

∥∥∥∥∇√
k(γ)

∥∥∥∥2
.

Proof. (
∂

∂t
− ∂2

∂s2

)
k(γ) =

〈
∇γ′γ′ − ∇γ̇∇γ̇γ′, γ′

〉
−

∥∥∥γ̇′∥∥∥2

=
〈
∇γ′

(
γ′ − ∇γ̇γ̇

)
, γ′

〉
−

∥∥∥γ̇′∥∥∥2
+ R(γ̇, γ′, γ̇, γ′)

=
〈
∇γ′ (R(X ∧ Y)γ̇) , γ′

〉
−

∥∥∥γ̇′∥∥∥2
+ κN(γ)

∥∥∥γ̇ ∧ γ′∥∥∥2

=
〈
(∇γ′R)(X ∧ Y)γ̇ + R(X ∧ Y)γ̇′, γ′

〉
−

∥∥∥γ̇′∥∥∥2
+ κN(γ)

∥∥∥γ̇ ∧ γ′∥∥∥2
.

Suppose now κN < 0, then(
∂

∂t
− ∂2

∂s2

)
k(γ) ≤2 |c|

∥∥∥∇N √−κ
∥∥∥ ∥∥∥γ′∥∥∥ √−κ ∥∥∥γ̇ ∧ γ′∥∥∥ − |c| κ ∥∥∥γ̇′∥∥∥ ∥∥∥γ′∥∥∥ − ∥∥∥γ̇′∥∥∥2

+ κ
∥∥∥γ̇ ∧ γ′∥∥∥2

≤
(
2c2

∥∥∥∇N √−κ
∥∥∥2
+

c2κ2

2ε

)
k(γ) − (1 − ε)

∥∥∥γ̇′∥∥∥2
.

Noting that

‖∇k(γ)‖2 = 〈
γ̇′, γ′

〉2 ≤ 2
∥∥∥γ̇′∥∥∥2

k(γ),

namely, ∥∥∥∥∇√
k(γ)

∥∥∥∥2
≤ 1

2

∥∥∥γ̇′∥∥∥2
,

and substituting this into the above inequality, we get the desired conclusion. �

We recall the Poincaré’s inequality

π2
∫ 1

0
‖ f ‖2 ≤

∫ 1

0

∥∥∥ ḟ
∥∥∥2

for smooth functions f with f (0) = f (1) = 0. Now we can give the
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Proof of Theorem 1.2. Denote

C = 2c2
∥∥∥∇N √−κ

∥∥∥2
+

c2κ2

2ε
,

then we have

0 ≥ d
dt

∫ 1

0
e−Ctk(γ)ds + 2(1 − ε)

∫ 1

0

∥∥∥∥∥∇√
e−Ct/2k(γ)

∥∥∥∥∥2

ds

≥ d
dt

∫ 1

0
e−Ctk(γ)ds + 2(1 − ε)π2

∫ 1

0
e−Ctk(γ)ds.

Hence,
d
dt

(
e(2(1−ε)π2−C)t

∫ 1

0
k(γ)ds

)
≤ 0.

Therefore, if

2c2
∥∥∥∇N √−κ

∥∥∥2
+

c2κ2

2ε
< 2(1 − ε)π2

for some ε ∈ (0, 1), then the kinetic energy of γ decays exponentially. Obviously, |cκ| < 2π, hence we can choose

ε =
|cκ|
2π
∈ (0, 1).

That is, if we make the assumption

c2
∥∥∥∇N √−κ

∥∥∥2
+ π |cκ| < π2,

or equivalently the assumption (1.5), then

(4.3)
∫ 1

0
k(γ)ds ≤ e

(
2c2‖∇N √−κ‖2+2π|cκ|−2π2

)
t
∫ 1

0
k(σ)ds.

Let h(x, y, t) be the Dirichlet heat kernel of [0, 1]. Applying the differential inequality of k(γ)(
∂

∂t
− ∂2

∂s2

)
k(γ) ≤

(
2c2

∥∥∥∇N √−κ
∥∥∥2
+ π |cκ|

)
k(γ)

we get that (
∂

∂t
− ∂2

∂s2

) (
e
−
(
2c2‖∇N √−κ‖2+π|cκ|

)
t
k(γ)

)
≤ 0.

For every τ > 1, denote F(s, t) = e
−
(
2c2‖∇N √−κ‖2+π|cκ|

)
t
k(γ(s, t + τ − 1)), then

F(s, 1) ≤
∫ 1

0
h(s, x, 1)F(x, 0) dx

≤
∫ 1

0
h(s, x, 1)k(γ(x, τ − 1)) dx

≤ C
∫ 1

0
k(γ(x, τ − 1)) dx.(4.4)

With Lemma 4.3, and (4.3) and (4.4), we have

k(γ(s, τ − 1)) ≤Ce2π2−2π|cκ|e
(
2c2‖∇N √−κ‖2+2π|cκ|−2π2

)
τ
∫ 1

0
k(σ)ds

≤Ce
(
2c2‖∇N √−κ‖2+2π|cκ|−2π2

)
τ
∫ 1

0
k(σ)ds.

�
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