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Hölder regularity for a non-linear parabolic equation driven by
space-time white noise

F. Otto, H. Weber

Abstract. We consider the non-linear equation u + ∂tu − ∂2
xπ(u) = ξ

driven by space-time white noise ξ, which is uniformly parabolic because
we assume that π′ is bounded away from zero and infinity. Under the fur-
ther assumption of Lipschitz continuity of π′ we show that the stationary
solution is — as for the linear case — almost surely Hölder continuous
with exponent α for any α < 1

2
w. r. t. the parabolic metric. More

precisely, we show that the corresponding local Hölder norm has almost
Gaussian moments.

On the stochastic side, we use a combination of martingale arguments to
get second moment estimates with concentration of measure arguments
to upgrade to Gaussian moments. On the deterministic side, we appeal
to finite and infinitesimal versions of the H−1-contraction principle and
a Campanato iteration.

1 Introduction and main result

We are interested in the stochastic nonlinear parabolic equation

T−1u+ ∂tu− ∂2
xπ(u) = ξ, (1)

where ξ denotes space-time white noise. The nonlinear character of (1) is that
of a fully nonlinear equation rather than a quasi-linear equation, since rewrit-
ing (1) as the quasi-linear equation (7) is not helpful as we explain below,
and since the deterministic estimates we need are related to the linearization
of a fully nonlinear equation, cf. (12), rather than to the linearization of a
quasi-linear equation (this distinction would be more pronounced in a multi-
dimensional case). We assume that the nonlinearity π is uniformly elliptic
in the sense that there exists a λ > 0 such that

λ ≤ π′(u) ≤ 1 for all u ∈ R. (2)

In particular, this rules out the degenerate case that goes under the name of
porous medium equation. Furthermore, we assume some regularity of π in
the sense that there exists L < ∞ such that

|π′′(u)| ≤ L for all u ∈ R. (3)

We are interested in Hölder regularity of solutions of (1); the simplest solution
to (1) is the space-time stationary solution u of (1) on which we shall focus
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in this paper. The main reason for including the massive term in (1) (i. e.
assuming T < ∞) is to ensure existence and uniqueness of this object; the
only other role is to provide a large-scale estimate through Lemma 1. In this
first version of the paper, we will be completely informal about why and in
which sense (1) is well-posed, and why the martingale and concentration of
measure arguments can be carried out (we will just motivate them when we
first need them).

A crucial insight is that the law of the (unique) stationary random field u is
invariant under the rescaling

x = Rx̂, t = R2t̂, u = R
1
2 û, (4)

provided, the nonlinearity and the massive term are adjusted according to

π̂(û) = R− 1
2π(R

1
2 û), T̂ = R−2T. (5)

For this observation we used that in view of its defining relation
〈( ∫

ζξdxdt
)2〉

=
∫

ζ2dxdt for a test function ζ (that is, loosely speaking
∫

ζ〈ξ(t, x)ξ(0, 0)〉dxdt =
ζ(0, 0)), space-time white noise rescales as ξ = 1√

RR2
ξ̂ = R− 3

2 ξ̂. From this

invariance property we learn that as we go to small scales (i. e. R ≪ 1), the
effective nonlinearity as measured by the Lipschitz constant L of π′ in (3)
decreases according to

L̂ = R
1
2L. (6)

This suggests that on small scales, u has the same regularity as if (1) were
replaced by its linear version (without massive term) ∂tu − a0∂

2
xu = ξ for

some constant a0 ∈ [λ, 1]. Hence we expect that on small scales, u is Hölder
continuous with exponents α (in the parabolic Carnot-Carathéodory geome-
try) for any α < 1

2
. This is exactly what we show, making crucial use of the

above scale invariance.

We note in passing that it is not helpful to write the elliptic operator in the
more symmetric form

T−1u+ ∂tu− ∂x(π
′(u)∂xu) = ξ, (7)

since even in case of the stochastic heat equation, u (and thus π′(u)) is
a function in the Hölder space with exponent 1

2
− so that ∂xu would be

a distribution in the (negative) Hölder space with exponent −1
2
−, so that

there is no standard distributional definition of the product π′(u)∂xu. In
fact, rather than appealing to regularity theory for linear but non-constant
coefficient equations of the form T−1u + ∂tu − ∂x(a∂xu) = ∂xg, we have to
appeal to the theory for T−1w + ∂tw − ∂2

x(aw) = ∂2
xg, cf. Proposition 3.
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Let us now briefly comment on existing regularity theory for non-linear
parabolic stochastic differential equation of the type of (1). There is a large
body of literature on stochastic equations of the type (1), but mostly with
a quite different focus: The focus there is to tackle on the one hand more
nonlinear situations, like the case of a degenerate ellipticity (i. e. λ = 0 in
(2)) or the case of multiplicative noise, but on the other hand to assume
“whatever it takes” on the spatial covariance structure of the noise. Some-
times, structural assumptions allow to mimic an approach that is obvious in
the semi-linear case, namely the approach of decomposing the solution into
a rough part w that solves a more explicitly treatable stochastic differential
equation and a more regular part v that solves a parabolic equation with
random coefficients and/or right-hand-side described through w, and then
allows for an application of deterministic regularity theory. We refer to [6]
for an example with a multiplicative decomposition of this type. The recent
work by Debussche et. al. on quasi-linear parabolic stochastic equations, i. e.
equations of the form (7) or more generally with an elliptic operator of the
form −∇ · a(u)∇u, refines this approach to a fixed point argument, and ap-
peals to Nash’s Hölder a priori bound on linear parabolic equations with just
uniformly elliptic coefficients as a starting point to bootstrap to the optimal
Hölder continuity via Schauder theory, see [3, Introduction]. However, cf.
the above discussion of (7), this treatment seems limited to situations where
the noise ξ is so regular that in the case of the linear equation, ∇u is at least
locally integrable in time-space (to be more quantitative:

∫

|∇u|pdxdt < ∞
for some p > 3 on the level of space-time isotropic Lp-norms).

By the equivalence of Campanato and Hölder spaces, see for instance [9,
Theorem 5.5], Hölder continuity can be expressed in terms of a localized L2-
modulus of continuity. Because of the eventual conditioning on the distant
noise, it is more convenient to replace a sharp spatial localization on parabolic
cylinders by a soft localization via an exponentially decaying function

η(x) =
1

2
exp(−|x|), ηr(x) :=

1

r
η(

x

r
), (8)

note that the normalization imply that
∫

ηr · dx corresponds to a spatial
average that is localized near the origin on scale r. We note that while the
exponential form of the cut-off is probably not essential (any thicker than
Gaussian tails should suffice), it is convenient at many places of the proof.
Abbreviating the L2-modulus of continuity at the origin and on parabolic
scale r by

D2(u, r) := −
∫ 0

−r2

∫

ηr(u−−
∫ 0

−r2

∫

ηru)
2dxdt,

our main result reads as follows:
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Theorem 1. Let u be the unique (in law) stationary solution to (1). W. l.
o. g. suppose that T = 1 in (1). For any Hölder exponent α ∈ (0, 1

2
) we have

almost a Gaussian bound for the α-Hölder L2-averaged modulus of continuity
at the origin in the sense that for any exponent ǫ > 0 we have

〈

exp
(

(

sup
r≤1

1

rα
D(u, r)

)2(1−ǫ)
)〉

≤ C, (9)

with a constant C < ∞ only depending on L < ∞, α < 1
2
and ǫ > 0.

Theorem 1 implies stretched exponential – in fact, almost Gaussian – bounds
for the more conventional local Hölder semi-norms of the random field u. For
any α ∈ (0, 1) we set

[u]α = sup
R∈(0,1)

1

Rα
sup

(t,x),(s,y)∈(−1,0)×(−1,1)√
|t−s|+|x−y|<R

|u(t, x)− u(s, y)| .

Theorem 1 implies the following:

Corollary 1. Under the assumptions of Theorem 1 we have
〈

exp
(

[u]2(1−ǫ)
α

)〉

≤ C

for a constant C < ∞ which only depends on L < ∞, α < 1
2
and ǫ > 0.

2 Strategy of proof and ingredients

Theorem 1, like Lemma 1 below, relies on a concentration of measure ar-
gument for Lipschitz random variables: For any a random variable F that
is 1-Lipschitz when considered as a path-wise functional of the white noise
ξ, one has 〈exp(λF )〉 ≤ exp(λ〈F 〉 + 1

2
λ2) for any number λ. In particu-

lar, if F ≥ 0 is 1-Lipschitz and satisfies 〈F 〉 ≤ 1, it has Gaussian moments
〈exp( 1

C
F 2)〉 ≤ 1, for some universal constant C < ∞. Here the norm un-

derlying the Lipschitz property is the norm of the Cameron-Martin space,
which simply means that infinitesimal variations δξ of the space-time white
noise are measured in the space-time L2-norm. To continue with the name-
dropping, this type of Lipschitz continuity means that the carré-du-champs
|∇F |2 of the Malliavin derivative is bounded independently of the given re-
alization of the noise, where for a given realization ξ of the noise, |∇F | is the
smallest constant Λ in

|δF | ≤ Λ
(

∫

(δξ)2dxdt
)

1
2
. (10)
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Here δF denotes the infinitesimal variation of F generated by the infinites-
imal variation δξ of the noise ξ, a linear relation captured by the Fréchet
derivative (a linear form) of F w. r. t. ξ. For those not confident in this
continuum version of concentration of measure we derive it from the discrete
case in the proof of Lemma 1, where also the type of martingale arguments
entering Proposition 1 via Lemma 2 (and Lemmas 3 and 4 again) is explained
for the non-expert.

Concentration of measure will be applied to the random variable F = D(u, r).
It is Proposition 2 which provides the bound on the Malliavin derivative
w. r. t. to the ensemble 〈·〉1 that describes the space time white noise ξ

restricted to the time slice (t, x) ∈ (−1, 0) × R. In particular, this means
that the admissible variations δξ in (10) are supported in (t, x) ∈ (−1, 0)×
R; we denote by |∇F |21 the corresponding carré-du-champs. Proposition 1
in turn provides the estimate of the (conditional) expectation, that is, the
expectation in 〈·〉1.
So the combination of Propositions 1 and 2 yield Gaussian moments for
1
rα
D(u, r), however only up to 1 + r

1
2D′(u, 1), which roughly behaves as 1 +

r
1
2D(u, 1), and modulo the multiplicative (and nonlinear) error of L

r
3
2
(1 +

D(u, 1)). Evoking the scale invariance (4) & (5), this estimate will be used
for small scales, where thanks to the behavior (6) of L, the multiplicative
error fades away. This amounts to a (stochastic) Campanato iteration which
ultimately yields Theorem 1. Since both propositions will be applied to small
scales, so that in view of (5) also the massive term fades away, we cannot
expect help from it; as a matter of fact, we will ignore the massive term in
the proof (besides in Lemma 1).

Proposition 1. Pick a Hölder exponent α ∈ (0, 1
2
). Then we have all r ≤ 1

〈D(u, r)〉1 . rα
(

1 +
L

r
3
2

(D′(u, 1) + 1)
)(

1 + r
1
2D′(u, 1)

)

,

where D′(u, 1) depends only on u(t = −1, ·):

D′2(u, 1) :=

∫

η(u−
∫

ηu)2dx|t=−1.

Here and in the proof, . means up to a constant only depending on λ > 0
and α < 1

2
.

Proposition 2. We have for the carré-du-champs of the Malliavin derivative

|∇D(u, r)|1 . r
1
2 +

L

r
3
2

D(u, 1),
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where here and in the proof, . means up to a constant only depending on
λ > 0.

The only purpose of the presence of the massive term is that in the original
scale, it provides control of the L2-averaged Hölder continuity on scales 1,
and thus the anchoring for the Campanato iteration:

Lemma 1. Suppose that T = 1 in (1). Then we have

〈

exp
( 1

C
D2(u, 1)

)〉

≤ C

for some constant C only depending on λ.

In order to derive Propositions 1 and 2, we will consider differences of so-
lutions to (1) for Proposition 1, or infinitesimal perturbations of solutions
for Proposition 2. Finite or infinitesimal differences of solutions satisfy a
formally linear parabolic equation with an inhomogeneous coefficient field a,
which in view of (2) is uniformly elliptic:

λ ≤ a(t, x) ≤ 1 for all (t, x) ∈ (−1, 0)× R. (11)

The linearized operator comes in the conservative form of ∂tu−∂2
x(au). For a

priori estimates of the corresponding initial value problem, it is most natural
to write the r. h. s. also in conservative form:

∂tw − ∂2
x(aw) = ∂th+ ∂2

xg. (12)

The L2-estimates on solutions of (12) from Proposition 3 might be seen as
an infinitesimal version of the Ḣ−1-contraction principle for the deterministic
counterpart of (1), which will be explicitly used in Lemma 2, see the proof
of Lemma 1, which is a good starting point for the PDE arguments, too.

Following a standard approach in Schauder theory for parabolic (and elliptic)
equations, we also consider (12) with constant coefficients a0 ∈ [λ, 1], which
will arise from locally “freezing” the variable coefficient field a:

∂tv − a0∂
2
xv = f. (13)

Proposition 4 states classical L∞ and Hölder-1
2
estimates for (13), the only

difficulty coming from the low regularity of the initial data v|t=−1 and the
moderate regularity of the r. h. s. f assumed in Proposition 4. We give a
self-contained proof.
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Proposition 3. Consider a solution w of (12) with r. h. s. described by (g, h)
and vanishing initial data:

w = h = 0 for t = −1.

Then we have both the local estimate
∫ 0

−1

∫

ηw2dxdt .

∫ 0

−1

∫

η(g2 + h2)dxdt (14)

and the global estimate

∫ 0

−1

∫

w2dxdt .

∫ 0

−1

∫

(g2 + h2)dxdt. (15)

Here and in the proof ≪ and . refer just to λ.

Proposition 4. Consider a solution v of (13) with r. h. s. f . Then we have
a localized L∞-estimate

sup
(t,x)∈(−1,0)×R

(t + 1)
1
2 ηv2 .

∫ 0

−1

∫

ηf 2dxdt+

∫

ηv2dx|t=−1. (16)

In case v has vanishing initial data in the sense of v(t = −1, ·) = 0, we also
claim the L2-averaged Hölder-1

2
estimate

sup
r≤1

1

r
D2(v, r) .

∫ 0

−1

∫

ηf 2dxdt. (17)

Here and in the proof ≪ and . refer just to λ.

We’d like to point out a synergy in terms of methods between this approach
to regularity for stochastic partial differential equations driven by stationary
noise, and an approach to regularity for elliptic partial differential equations
with stationary random coefficient field that is emerging over the past years
[10, 1, 7]. At first glance, the differences dominate: Here, we have a nonlinear
and parabolic partial differential equation driven by a random right-hand-side
ξ, and we hope for almost-sure small-scale regularity despite the short-range
decorrelation of ξ, which implies its roughness. There, the main features
already appear on the level of a linear and elliptic equation, for instance
on the level of the harmonic coordinates or the corrector φi given by −∇ ·
a(∇φi+ei) = 0 where ei is the i-th unit vector, and one hopes for almost-sure
large scale regularity thanks to the long-range decorrelation of the coefficient
field a. In the first case, randomness limits Hölder regularity, whereas in
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the second case, randomness improves Hölder regularity: In fact, for almost
every realization of a, a-harmonic functions u satisfy a first-order Liouville
principle [7], and even Liouville principles of any order [5], which is the
simplest way to encode large-scale Hölder regularity. Even the lowest-order
Liouville principle is known to fail for some uniformly elliptic and smooth
coefficient fields a, so that these results indeed show a regularizing effect of
randomness.

Despite these obvious differences, the approach is very similar: Both here and
there (in [10] and, more explicitly, in [7]) one is appealing to the combination
of sensitivity estimates (how do certain functionals of the solution depend
on the right hand side here, or on the coefficient field there?) measured in
terms of a carré du champs (of the Malliavin derivative here, or of a suitable
vertical derivative that is compatible with the correlation structure there),
and then appeals to concentration of measure (on the Gaussian level here,
or via the intermediate of a Logarithmic Sobolev Inequality there).

Such a synergy in methods that treat models with thermal noise like in high-
or infinite dimensional stochastic differential equations with reversible invari-
ant (Gibbs) measure and those that treat models with quenched noise like
in stochastic homogenization is not new: In their seminal work on Gradi-
ent Gibbs measures, a model in statistical mechanics that describes ther-
mally fluctuating surfaces, Naddaf and Spencer appeal to stochastic homog-
enization to characterize the large-scale correlation structure of the field [11].
Their analysis can also be interpreted as considering the infinite-dimensional
stochastic differential equation of which the measure is the reversible invari-
ant measure, an equation which can be seen as a spatial discretization of a
stochastic nonlinear parabolic partial differential equation, and to consider
the Malliavin derivative of its solution with respect to the (discrete) space-
time white noise [4]. Again, the nonlinearity is rather of the symmetric form
(7) and Naddaf and Spencer appeal to Nash’s heat kernel bounds.”

We close this parenthesis by noting that for stochastic partial differential
equations and stochastic homogenization, even the deterministic ingredients
are similar: In both cases, the sensitivity estimate leads to a linear partial
differential equation (parabolic here, elliptic there) with a priori only uni-
formly elliptic coefficient field (in space-time here, in space there), that is,
without any a priori modulus of continuity. In both cases, a buckling ar-
gument is needed to obtain bounds on Hölder norms with high stochastic
integrability. While here, the need of a buckling estimate is obvious since
the small-scale regularity of the coefficient field a = π′(u) in the sensitivity
equation is determined by the small-scale regularity of the solution u around
which one is linearizing, the buckling is less obvious there: It turns out that
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the large-scale regularity properties of the operator −∇ · a∇ are determined
by the large-scale properties of the harmonic coordinates xi + φi, the special
solution mentioned above. Here, buckling proceed by showing that the linear
operator ∂t−∂2

xa is close to a constant coefficient operator ∂t−a0∂
2
x on small

scales, there, it proceeds by showing that it is close to a constant coefficient
operator on large scales, namely the homogenized operator −∇ · ahom∇. In
both cases, a Campanato-type iteration is the appropriate deterministic tool
for the buckling. Here, this is not surprising since Campanato iteration is
a robust way of deriving Hölder estimates (see for instance [9, Chapter 5]);
there, the use of Campanato iteration to push the constant-coefficient regu-
larity theory from the infinite scale to large but finite scales was first intro-
duced in [2] in case of periodic homogenization, then transferred to stochastic
homogenization in [1], and refined in [7] in a way that brings it very close to
its small-scale application.

After this aside, we turn back to our proof. Next to these deterministic in-
gredients, Proposition 1 also requires a couple of classical, second moment
stochastic estimates. The first lemma provides such a low-stochastic mo-
ment estimate on the L2-Hölder-1

2
modulus of continuity, which however is

restricted to a spatial modulus and is only localized to scales 1. This spatial
L2-Hölder modulus of continuity is expressed in terms of the L2-difference
of spatial shifts (which are then exponentially averaged over the shifts); this
form arises naturally from a martingale version of the (deterministic) Ḣ−1-
contraction principle for equations of the form (1) with uniform ellipticity (2).
In fact, we use a spatially localized version of the Ḣ−1-contraction principle.

Lemma 2. Let u denote the stationary solution of (1) and denote by uh its
spatial translation by the shift h ∈ R. Then we have for r ≪ 1

〈

∫

ηr(h)

∫ 0

− 1
2

∫

η(uh − u)2dxdtdh
〉

1

. r + r2
〈

∫ 0

−1

∫

η(u−
∫ 0

−1

∫

ηu)2dxdt
〉

1
= r + r2〈D2(u, 1)〉1.

Here and in the proof . and ≪ just refer to λ.

The second (very similar) step is to estimate the “bulk” L2-norm on the r.
h. s. of Lemma 2 by the boundary L2-norm of the initial data u(t = −1, ·).
Lemma 3. The stationary solution u of (1) satisfies

〈D2(u, 1)〉1 =
〈

∫ 0

−1

∫

η(u−
∫ 0

−1

∫

ηu)2dxdt
〉

1

. 1 +

∫

η(u−
∫

ηu)2dx|t=−1 = 1 +D′2(u, 1). (18)
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Here and in the proof . and ≪ just refer to λ.

The third step is to upgrade the purely spatial L2-averaged Hölder-1
2
modulus

of continuity into a space-time modulus of continuity.

Lemma 4. The stationary solution u of (1) satisfies for r ≪ 1

〈(

−
∫ 0

−r2
(

∫

ηru−−
∫ 0

−r2

∫

ηru)
2dxdt

)
1
2
〉

1

. r
1
2 +

〈(

−
∫ 0

−r2

∫

ηr(u−
∫

ηru)
2udxdt

)
1
2
〉

1
.

Here and in the proof . and ≪ just refer to λ.

The crucial ingredient for Proposition 1 is the passage from measuring the
Hölder-α L2-modulus of continuity on scales 1 down to scales r. It is here
that we need the deterministic ingredients of Propositions 4 and 3. Not
surprisingly, we will need in this argument that solutions g to the stochastic
linear constant coefficient parabolic equation, around which we perturb, have
this localization property. This is provided by the following localized space-
time supremum estimate of the Hölder-α modulus of continuity of g.

Lemma 5. Let g be the solution of

∂tg − a0∂
2
xg = ξ for t > −1, g(t = −1, ·) = 0

for some constant coefficient a0 ∈ [λ, 1]. Then for any Hölder exponent α < 1
2

and all shifts h ∈ R

〈

sup
(−1,0)×R

η(gh − g)2
〉

1
. min{|h|2α, 1}.

Here and in the proof . and ≪ refer to λ and α.

3 Proofs

We start the string of proofs with Lemma 1, since it contains the other
arguments in nuce.
Proof of Lemma 1. We will establish the lemma in the stronger version
where instead of D2(u, 1), we control the Gaussian moments of E2(u, 1) :=
∫ 0

−1

∫

ηu2dxdt ≥ D2(u, 1):

〈

exp
( 1

C
E2(u)

)

〉

. 1.
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By concentration of measure, cf. beginning of Section 2, this is a consequence
of the bound on the expectation

〈E2(u, 1)〉 . 1 (19)

and the uniform bound on the carré-du-champs of the Malliavin derivative

|∇E(u, 1)|2 . 1. (20)

In order gain confidence in this principle of concentration of measure, let us
relate it to the discrete case, that is, the case of countably many independent
normal Gaussian random variables, see for instance [8, p.135] for a proof of
concentration of measure by an efficient and short semi-group argument. In
order to make the connection, let us divide space-time into squares Q of side-
length h (no parabolic scaling needed here), which we think of being small.
Assume that we are dealing with a function F of the space-time white noise
ξ that depends on ξ only through the average of ξ on the cubes Q; which
amounts to saying that F only depends on {ξQ}Q, where ξQ := 1

h

∫

ξdxdt (any
reasonable function F can be approximated by such functions Fh for h ↓ 0).
The reason for using this normalization by the square-root of the space-time
volume h2 is that the application ξ 7→ {ξQ}Q pushes the space-time white-
noise ensemble 〈·〉 into the normal Gaussian ensemble 〈·〉h. In particular
〈F 〉 = 〈F 〉h and 〈exp( 1

C
F 2)〉 = 〈exp( 1

C
F 2)〉h. Hence by the discrete the-

ory, we have concentration of measure provided we have a uniform bound
on the squared Euclidean (rather Hilbertian) norm |∇hF |2 :=

∑

Q(
∂F
∂ξQ

)2 of

the (infinite-dimensional) vector of partial derivatives. Therefore it remains
to argue that |∇hF |2 is dominated by the carré-du-champs |∇F |2 of the
continuum Malliavin derivative. By definition (10) of the latter we have

lim
ǫ↓0

1

ǫ
(F (ξ + ǫδξ)− F (ξ)) ≤ |∇F |

(

∫

(δξ)2dxdt
)

1
2

(21)

for any field δξ, hence in particular for a field δξ which is piecewise con-
stant on the cubes. More precisely, we may assume that δξ is of the form
δξ|Q = 1

h
δξQ for some {δξQ}Q so that 1

h

∫

Q
δξdxdt = δξQ. Because of this

normalization, the l. h. s. of (21) turns into
∑

Q
∂F
∂ξQ

δξQ by definition of the

partial derivatives, whereas the r. h. s. turns into (
∑

Q δξ2Q)
1
2 , so that by the

arbitrariness of {δξQ}Q, (21) indeed implies |∇hF | ≤ |∇F | (in fact, there is
equality).

We start with the first half of the proof, that is, the bound (19) on the
expectation. In fact, we shall establish that

〈E2(u,R)〉 . 1,
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provided the scale R ∼ 1 is sufficiently large (larger than a constant only
depending on λ). This indeed implies (19) since by definition of the average
∫ 0

−R2

∫

ηR · dxdt, E2(u, 1) ≤ R3E2(u,R), where the power three represents
the parabolic dimension. By the scale invariance (4) & (5), we might as well
show

〈E2(u, 1)〉 . 1, (22)

provided the massive term is sufficiently strong, that is, T ∼ 1 is sufficiently
small. In fact, it will be convenient for the upcoming calculation to replace
the exponential cut-off η by η̃2, where η̃ is a smoothened version of η2, to fix
ideas

η̃(x) := exp(−1

2

√
x2 + 1). (23)

In order to establish (22), we will use a martingale argument based on the
stochastic (partial) differential equation with (nonlinear) damping

∂tu = −(
1

T
u+ (−∂2

x)π(u)) + ξ. (24)

As is constitutive for a martingale argument, we shall monitor a symmet-
ric and semi-definite expression, in our case

∫

η̃u(1 − ∂2
x)

−1η̃udx, where we
use physicist’s notation in the sense that an operator, here (1 − ∂2

x)
−1, acts

on everything to its right, here the product η̃u. This quadratic expression,
which amounts to a version of the Ḣ−1-norm that is localized (thanks to
the inclusion of η̃) and endowed with an infra-red cut-off (the effect of the 1
in (1 − ∂2

x)
−1), is motivated by the Ḣ−1 contraction principle, a well-known

property of the deterministic versions of (1); in this language, we monitor
here the (modified) Ḣ−1 distance to the trivial solution u = 0. In general
terms, the time derivative of such quadratic expression under a stochastic
equation comes in three contributions: the contribution solely of the deter-
ministic r. h. s. of (24), the contribution solely from the stochastic r. h. s.
ξ, and a mixed contribution. In this set-up, the space-time white noise ξ is
viewed as a white noise in time with a spatial (and thus infinite-dimensional)
covariance structure expressing white noise in space. The mixed contribution
is a martingale, and thus vanishes when taking the expectation: This cancel-
lation can best be understood when considering a time discretization of (24)
that is explicit in the drift −( 1

T
u + (−∂2

x)π(u)) (of course, an explicit time
discretization is not well-posed for an infinite dimensional dynamical system
coming from a parabolic equation, so one better combines it in one’s mind
with a spatial discretization). The contribution which solely comes from ξ

is the so-called quadratic variation, and its expectation can be computed
based on the operator defining the quadratic expression, here η̃(1 − ∂2

x)
−1η̃,
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and the spatial covariance structure of the noise (provided it is white in
time). Since the spatial covariance structure is the one coming from (spa-
tial) white noise, it is given by the integral of the diagonal of the kernel (i. e.
the trace-norm of the operator). In case of η̃(1 − ∂2

x)
−1η̃, the kernel is given

by η̃(x)1
2
exp(−|x−y|)η̃(y). Hence the expectation of the quadratic variation

is given by
∫

1
2
η̃2dx. Altogether, the martingale argument thus yields

d

dt

1

2

〈

∫

η̃u(1− ∂2
x)

−1η̃udx
〉

= −
〈

∫

η̃u(1− ∂2
x)

−1
( 1

T
η̃u+ η̃(−∂2

x)π(u)
)

dx
〉

+
1

2

∫

1

2
η̃2dx. (25)

We rewrite this identity as

d

dt
exp(

t

T
)
〈

∫

η̃u(1− ∂2
x)

−1η̃udx
〉

= exp(
t

T
)
(

−
〈

∫

η̃u(1− ∂2
x)

−1
( 1

T
η̃u+ 2η̃(−∂2

x)π(u)
)

dx
〉

+

∫

1

2
η̃2dx

)

,

and integrate over t ∈ (−∞, 0):

〈

∫ 0

−∞
exp(

t

T
)

∫

η̃u(1− ∂2
x)

−1
( 1

T
η̃u+ 2η̃(−∂2

x)π(u)
)

dxdt
〉

≤ T

2

∫

η̃2dx.

Hence in order to arrive at (22), it is enough to show that for T ≪ 1, we
have the deterministic estimate

∫

η̃u(1− ∂2
x)

−1
( 1

T
η̃u+ 2η̃(−∂2

x)π(u)
)

dx &

∫

η̃2u2dx. (26)

We have a closer look at the elliptic term η̃(−∂2
x)π(u) in (26), whose contri-

bution would be positive by the monotonicity of π if it weren’t for the spatial
cut-off and the infra-red cut off. Using Leibniz’ rule, we rewrite it as (in our
physicist’s way of omitting parentheses)

η̃(−∂2
x)π(u) = (1− ∂2

x)π(u)η̃ + 2∂xπ(u)∂xη̃ − π(u)(η̃ − ∂2
xη̃), (27)

where we w. l. o. g. assume that π(0) = 0. Hence by the symmetry of
(1− ∂2

x)
−1 we obtain

∫

η̃u(1− ∂2
x)

−1η̃(−∂2
x)π(u)dx

=

∫

η̃2uπ(u)dx− 2

∫

(∂xη̃)π(u)∂x(1− ∂2
x)

−1η̃udx

−
∫

(η̃ − ∂2
xη̃)π(u)(1− ∂2

x)
−1η̃udx.
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Using that the operators ∂x(1− ∂2
x)

− 1
2 and (1− ∂2

x)
− 1

2 have operator norm 1
w. r. t. to L2, we deduce the inequality

∫

η̃u(1− ∂2
x)

−1η̃(−∂2
x)π(u)dx ≥

∫

η̃2uπ(u)dx

−
(

2
(

∫

(∂xη̃)
2π2(u)dx

)
1
2 +

(

∫

(η̃ − ∂2
xη̃)

2π2(u)dx
)

1
2

)

×
(
∫

η̃u(1− ∂2
x)

−1η̃udx

)
1
2

. (28)

By the monotonicity properties (2) of π and our gratuitous assumption
π(0) = 0, this yields

∫

η̃u(1− ∂2
x)

−1η̃(−∂2
x)π(u)dx

≥ λ

∫

η̃2u2dx−
(

2
(

∫

(∂xη̃)
2u2dx

)
1
2 +

(

∫

(η̃ − ∂2
xη̃)

2u2dx
)

1
2

)

×
(
∫

η̃u(1− ∂2
x)

−1η̃udx

)
1
2

.

Our smoothing out of the exponential cut-off function, cf. (23), has the sole
purpose of making sure that

|∂xη̃|+ |∂2
xη̃| . η̃, (29)

so that we obtain by Young’s inequality for the elliptic term,

∫

η̃u(1− ∂2
x)

−1η̃(−∂2
x)π(u)dx ≥ 1

C

∫

η̃2u2dx− C

∫

η̃u(1− ∂2
x)

−1η̃udx.

We thus see that thanks to the massive term, (26) holds for T ≪ 1.

We now turn to the second half of the proof, the estimate of the carré-du-
champs (20). We first argue that (20) follows from the deterministic estimate

E2(δu, 1) .

∫

(δξ)2dxdt, (30)

where δu and δξ are related via

δu+ ∂tδu− ∂2
x(aδu) = δξ (31)

14



with a = π′(u). Indeed, we note that by duality w. r. t. to the inner product

(g, f) 7→
∫ 0

−1

∫

ηgfdxdt,

E(u, 1) = sup
{

E(u, f) :=

∫ 0

−1

∫

ηufdxdt
∣

∣

∣

∫ 0

−1

∫

ηf 2dxdt = 1, suppf ⊂ (−1, 0)× R

}

. (32)

By the chain rule for the Malliavin derivative we thus obtain

|∇E(·, 1)| ≤ sup
f

|∇E(·, f)|,

where the supremum runs over the set implicitly defined in (32), so that it
is enough to show for a fixed f

|∇E(u, f)|2 . 1.

By definition of the carré-du-champs of the Malliavin derivative in case of
the linear functional u 7→ E(u, f), cf. (10), this amounts to showing

∫ 0

−1

∫

ηδufdxdt . 1,

where the infinitesimal perturbation δu of the solution is related to the in-
finitesimal perturbation δξ of the noise via (31). By the characterizing prop-
erties of the f ’s, cf. (32), this estimate in turn amounts to establishing (30).

We now turn to the proof of the deterministic estimate (30). To ease notation
and make the connection to Proposition 3, we rephrase (and strengthen) the
goal: For w and f related via

w + ∂tw − ∂2
x(aw) = f, (33)

with uniformly elliptic coefficient field a in the sense of (11), we seek the
estimate

∫ 0

−∞

∫

w2dxdt .

∫ 0

−∞

∫

f 2dxdt. (34)

Like for (22), our Ansatz for (34) is motivated by the Ḣ−1-contraction prin-
ciple. Again, we consider a version of Ḣ−1-norm with ultra-red cut-off, but
this time without cut-off function η, namely

∫

w(L−2− ∂2
x)

−1wdx, where the
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length scale L for the ultra-red cut-off will be chosen later. We obtain from
the equation (34)

d

dt

1

2

∫

w(L−2 − ∂2
x)

−1wdx

= −
∫

w(L−2 − ∂2
x)

−1(w − f + (−∂2
x)(aw))dx

= −
∫

w(L−2 − ∂2
x)

−1(w − f − L−2aw)dx−
∫

aw2dx.

We apply Cauchy-Schwarz’ inequality and use the uniform ellipticity of a, cf.
(11), to obtain the estimate

d

dt

1

2

∫

w(L−2 − ∂2
x)

−1wdx

≤ −
∫

w(L−2 − ∂2
x)

−1wdx− λ

∫

w2dx

+
(

∫

((L−2 − ∂2
x)

−1w)2dx
)

1
2
(

(

∫

f 2dx
)

1
2 + L−2

(

∫

w2dx
)

1
2

)

.

Thanks to the operator inequality (L−2 − ∂2
x)

−1 ≤ L(L−2 − ∂2
x)

− 1
2 we have

(

∫

((L−2 − ∂2
x)

−1w)2dx
)

1
2 ≤ L

(

∫

w(L−2 − ∂2
x)

−1wdx
)

1
2

,

so that we may absorb the term (
∫

((L−2 − ∂2
x)

−1w)2dx)
1
2L−2(

∫

w2dx)
1
2 by

Young’s inequality for L ≫ 1, obtaining

d

dt

∫

w(L−2 − ∂2
x)

−1wdx ≤ − 1

C

∫

w2dx+ CL2

∫

f 2dx.

Integration in time yields (34).

Proof of Proposition 3. We first note that (15) follow easily from (14):
Indeed, by translation invariance (14) also holds with η replaced by the shift
ηy, summation over y ∈ Z gives (15). We next note that w. l. o. g. we may
assume h = 0, since we may rewrite (12) as ∂t(w − h) − ∂2

x(a(w − h)) =
∂2
x(g + ah). The proof of this Proposition is very close to the deterministic

part of the proof of Lemma 1; in fact, it might be seen as an infinitesimal
version of it. Like there, we substitute η by η̃2, cf. (23), and start from
monitoring the localized H−1-norm of w with infra-red cut-off:

d

dt

1

2

∫

η̃w(1− ∂2
x)

−1η̃wdx = −
∫

η̃w(1− ∂2
x)

−1η̃(−∂x)
2(aw + g)dx.
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As in (27), we write

η̃(−∂2
x)(aw + g) = (1− ∂2

x)(aw + g)η̃ + 2∂x(aw + g)∂xη̃ − (aw + g)(η̃− ∂2
xη̃),

which yields

d

dt

1

2

∫

η̃w(1− ∂2
x)

−1η̃wdx = −
∫

η̃wη̃(aw + g)dx

+2

∫

η̃w(1− ∂2
x)

−1∂x(aw + g)∂xη̃dx

−
∫

η̃w(1− ∂2
x)

−1(aw + g)(η̃ − ∂2
xη̃)dx.

Using symmetry and boundedness properties of (1−∂2
x)

−1, and the estimates
(29) on our mollified exponential cut-off η̃, the two last terms are estimated
as

∫

η̃w(1− ∂2
x)

−1∂x(aw + g)∂xη̃dx

.
(

∫

η̃w(1− ∂2
x)

−1η̃wdx

∫

η̃2(aw + g)2dx
)

1
2

and

−
∫

η̃w(1− ∂2
x)

−1(aw + g)(η̃ − ∂2
xη̃)dx

.
(

∫

η̃w(1− ∂2
x)

−1η̃wdx

∫

η̃2(aw + g)2dx
)

1
2
.

Hence we obtain by the uniform ellipticity (11) of a together with the triangle
inequality to break up aw + g and Young’s inequality

d

dt

∫

η̃w(1− ∂2
x)

−1η̃wdx+
1

C

∫

η̃2w2dx

≤ C
(

∫

η̃w(1− ∂2
x)

−1η̃wdx+

∫

η̃2g2dx
)

,

which we rewrite as

d

dt
exp(−Ct)

∫

η̃w(1− ∂2
x)

−1η̃wdx

+
1

C
exp(−Ct)

∫

η̃2w2dx ≤ C exp(−Ct)

∫

η̃2g2dx.
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Appealing to the initial condition w(t = −1) = 0 yields the desired
∫ 0

−1

∫

η̃2w2dxdt .

∫ 0

−1

∫

η̃2g2dxdt.

Proof of Proposition 4. We start by observing

d

dt

1

2

∫

η(∂xv)
2dx = −

∫

∂x(η∂xv)(a0∂
2
xv + f)dx

= −
∫

η(a0(∂
2
xv)

2 + f∂2
xv)dx−

∫

∂xη∂xv(a0∂
2
xv + f)dx,

so that because of a0 ∈ [λ, 1] and |∂xη| ≤ η we obtain by Young’s inequality

d

dt

1

2

∫

η(∂xv)
2dx ≤ −

∫

η(λ(∂2
xv)

2 + f∂2
xv)dx+

∫

η|∂xv|(|∂2
xv|+ |f |)dx

≤ − 1

C

∫

η(∂2
xv)

2dx+ C

∫

η((∂xv)
2 + f 2)dx. (35)

Dropping the good r. h. s. term, we rewrite this as

d

dt
(t+ 1)

∫

η(∂xv)
2dx .

∫

η((∂xv)
2 + f 2)dx,

so that we obtain from integration in t ∈ (−1, 0)

sup
t∈(−1,0)

(t+ 1)

∫

η(∂xv)
2dx .

∫ 0

−1

∫

η((∂xv)
2 + f 2)dxdt. (36)

Thanks to the constant coefficients, also the (localized) L2-norm is well-
behaved. Indeed, from (13) we obtain

d

dt

1

2

∫

ηv2dx =

∫

ηv(a0∂
2
xv + f)dx

=

∫

η(−a0(∂xv)
2 + vf)dx− a0

∫

∂xηv∂xvdx,

so that because of a0 ∈ [λ, 1] and |∂xη| ≤ η, we obtain by Young’s inequality

d

dt

∫

ηv2dx ≤ − 1

C

∫

η(∂xv)
2dx+

∫

η(v2 + f 2)dx.

From the integration in t of this differential inequality for
∫

ηv2dx we learn

sup
t∈(−1,0)

∫

ηv2dx+

∫ 0

−1

∫

η(∂xv)
2dxdt .

∫ 0

−1

∫

ηf 2dxdt+

∫

ηv2dx|t=−1. (37)
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The combination of this with (36) yields

sup
t∈(−1,0)

(

(1+t)

∫

η(∂xv)
2+

∫

ηv2dx
)

.

∫ 0

−1

∫

ηf 2dxdt+

∫

ηv2dx|t=−1. (38)

In view of this a priori estimate (38), the first part (16) of this proposition
follows from the embedding

sup
(t,x)∈(−1,0)×R

(1 + t)
1
2 ηv2 . sup

t∈(−1,0)

(

(1 + t)

∫

η(∂xv)
2dx+

∫

ηv2dx
)

,

which easily is is seen to hold: Because of

sup
x

ηv2 .

∫

|∂x(ηv2)|dx .

∫

(η|v∂xv|+ |∂xη|v2)dx .

∫

η(|∂xv|+ |v|)|v|dx,

we obtain by Young’s inequality for t ∈ (−1, 0)

(t+ 1)
1
2 sup

x

ηv2 . (1 + t)

∫

η((∂xv)
2 + v2)dx+

∫

ηv2dx

. (1 + t)

∫

η(∂xv)
2dx+

∫

ηv2dx.

We now turn to to the second part (17) of the proposition. As for the first
part, it is the consequence of an a priori estimate and an embedding. For
the a priori estimate, we rewrite (35) as

d

dt
exp(−Ct)

∫

η(∂xv)
2dx

≤ − 1

C
exp(−Ct)

∫

η(∂2
xv)

2dx+ C exp(−Ct)

∫

ηf 2dx,

which in view of the vanishing initial data yields

∫ 0

−1

∫

η((∂2
xv)

2 + (∂xv)
2)dxdt .

∫ 0

−1

∫

ηf 2dxdt.

Thanks to the equation (13) and to (37), this can be upgraded to contain
the time-derivative term and the zero-order term

∫ 0

−1

∫

η((∂tv)
2 + (∂2

xv)
2 + (∂xv)

2 + v2)dxdt .

∫ 0

−1

∫

ηf 2dxdt. (39)
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In view of this a priori estimate (39), in order to establish (17), it remains
to show the embedding

−
∫ 0

−r2

∫

ηr(v −−
∫ 0

−r2

∫

ηrv)
2dxdt

. r

∫ 0

−1

∫

η((∂tv)
2 + (∂2

xv)
2 + (∂xv)

2 + v2)dxdt, (40)

where thanks to the term ηv2-term included in the r. h. s., this inequality is
only non-trivial for r ≪ 1. We split this estimate into the spatial modulus
of continuity and the temporal modulus of continuity:

−
∫ 0

−r2

∫

ηr(v −−
∫ 0

−r2

∫

ηrv)
2dxdt

≤ sup
t∈(−r2,0)

∫

ηr(v −
∫

ηrv)
2dx+−

∫ 0

−r2
(

∫

ηrv −−
∫ 0

−r2

∫

ηrv)
2dt.

The estimate on the spatial modulus of continuity follows from the combi-
nation of the estimate

∫

ηr(v −
∫

ηrv)
2dx . r2

∫

η2r(∂xv)
2dx . r

∫

η(∂xv)
2dx, (41)

where time is just a parameter, with

sup
t∈(−1,0)

∫

η(∂xv)
2dx .

∫ 0

−1

∫

η((∂tv)
2 + (∂2

xv)
2 + (∂xv)

2)dxdt. (42)

For temporal continuity, we need

−
∫ 0

−r2
(

∫

ηrv −−
∫ 0

−r2

∫

ηrv)
2dt . r4 −

∫ 0

−r2

∫

ηr(∂tv)
2dxdt

. r

∫ 0

1

∫

η(∂tv)
2dxdt. (43)

Here comes the argument for the first inequality in (41) (the second one
follows from the pointwise estimate on the weights ηR ≤ 1

R
η for R ≤ 1): By

scaling, we may assume w. l. o. g. that r = 1, so that the we need to show

∫

η(v −
∫

ηv)2dx .

∫

η2(∂xv)
2dx,
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which can be seen by rewriting the l. h. s. with help of Jensen’s inequality
∫

η(x)
(

v(x)−
∫

η(y)v(y)dy
)2
dx

≤
∫ ∫

η(x)η(y)(v(x)− v(y))2dydx

≤
∫ ∫ ∫ 1

0

η(x)η(y)(∂xv)
2(σx+ (1− σ)y)dσdydx

= 2

∫ 1
2

0

∫ ∫

η(x)η(y)(∂xv)
2(σx+ (1− σ)y)dydxdσ

= 2

∫ 1
2

0

1

1− σ

∫ ∫

η(x)η( z−σx
1−σ

)(∂xv)
2(z)dzdxdσ

≤ 2 sup
σ∈(0, 1

2
)

∫ ∫

η(x)η( z−σx
1−σ

)(∂xv)
2(z)dzdx,

and then using the special properties of our averaging function in form of
η(x)η( z−σx

1−σ
) = 1

4
exp(−(|x|+ |z−σx|

1−σ
)) ≤ 1

4
exp(−1

2
(|x|+|z|)) = exp(−1

2
|x|)η2(z).

Now for the argument for (42): We start with the elementary inequality

sup
t∈(−1,0)

∫

η(∂xv)
2dx ≤

∫ 0

−1

∣

∣

d

dt

∫

η(∂xv)
2dx

∣

∣dt+

∫ 0

−1

∫

η(∂xv)
2dxdt

and then note that by integration by parts, |∂xη| ≤ η, and Young’s inequality
∫ 0

−1

∣

∣

d

dt

∫

η(∂xv)
2dx

∣

∣dt = 2

∫ 0

−1

∣

∣

∫

η∂xv∂t∂xvdx
∣

∣dt

.

∫ 0

−1

∫

(η|∂2
xv|+ |∂xη||∂xv|)|∂tv|dxdt

.

∫ 0

−1

∫

η((∂2
xv)

2 + (∂xv)
2 + (∂tv)

2)dxdt.

We finally turn to (43). The second estimate follows from −
∫

−r2

∫

ηr · dxdt ≤
1
r3
−
∫ 0

−1

∫

η · dxdt. By parabolic scaling, we may restrict ourselves to r = 1 for
the first estimate, which then takes the form

∫ 0

−1

(

∫

ηv −−
∫ 0

−1

∫

ηv)2dt .

∫ 0

−1

∫

η(∂tv)
2dxdt,

and immediately follows from combining the Poincaré inequality with mean
value zero

∫ 0

−1

(

∫

ηv −−
∫ 0

−1

∫

ηv)2dt .

∫ 0

−1

(

∂t

∫

ηvdx
)2
dt
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with Jensen’s inequality
(

∂t
∫

ηvdx
)2 ≤

∫

η(∂tv)
2dx.

Proof of Proposition 1. For conciseness, we ignore the massive term in
(1). The main object of this proposition is δu := uh − u, where uh(t, x) =
u(t, x+ h) denotes a spatial shift of the stationary solution of (1). We note
that δu satisfies the formally linear equation

∂tδu− ∂2
x(ahδu) = (∂t − a0∂

2
x)δg, (44)

where we introduced the coefficient field

ah =

∫ 1

0

π′(σuh + (1− σ)u)dσ, (45)

which by (2) is uniformly elliptic in the sense of (11), and the set δg := gh−g,
where g is defined via the linear version of (1)

∂tg − a0∂
2
xg = ξ for t ∈ (−1, 0), g = 0 for t = −1,

cf. Lemma 5, with a constant coefficient a0 ∈ [λ, 1] to be chosen below.

We start with the main deterministic ingredient for Proposition 1, which we
need to go from scales of order one to scales of order r ≪ 1 in the L2-averaged
Hölder-1

2
modulus of continuity. It is given by the estimate

−
∫ 0

−r2

∫

ηr(δu)
2dxdt .

(

1 +
1

r3

∫ 0

−1

∫

η(ah − a0)
2dxdt

)

×
(

∫ 0

−1

∫

η(δu)2dxdt+ sup
(t,x)∈(−1,0)×R

η(δg)2
)

, (46)

which we shall establish for all r ≪ 1. We observe that it is enough to
establish for any R ∈ [1

2
, 1] the estimate

−
∫ 0

−r2

∫

ηr(δu)
2dxdt .

(

1 +
1

r3

∫ 0

−R2

∫

(t +R2)−
1
2η(ah − a0)

2dxdt
)

×
(

∫

η(δu)2dx|t=−R2 + sup
(t,x)∈(−R2,0)×R

(δg)2
)

,

since the the integral of this estimate over R ∈ [1
2
, 1] yields (46), using the

integrability of (t+R2)−
1
2 thanks to 1

2
< 1. To simplify notation, we replace

R ∼ 1 by unity, so that it remains to show

−
∫ 0

−r2

∫

ηr(δu)
2dxdt .

(

1 +
1

r3

∫ 0

−1

∫

(t+ 1)−
1
2η(ah − a0)

2dxdt
)

×
(

∫

η(δu)2dx|t=−1 + sup
(t,x)∈(−1,0)×R

η(δg)2
)

. (47)
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To this purpose, we split the solution δu = δg + v + w, where v is defined
through the constant-coefficient initial value problem

∂tv − a0∂
2
xv = 0 for t ∈ (−1, 0), v = δu for t = −1,

which is made such that δg + v agrees with δu for t = −1 and satisfies for
t ∈ (−1, 0) the following equation

∂t(δg + v)− a0∂
2
x(δg + v) = (∂t − a0∂

2
x)δg = ξ, (48)

and where w is defined through the initial value problem

∂tw − ∂2
x(ahw) = ∂2

x((ah − a0)(δg + v)) for t ∈ (−1, 0), w = 0 for t = −1.
(49)

Taking the sum of (48) and (49), and comparing with (44), we see that this
indeed gives δu = δg + v + w.

From the first part (16) of Proposition 4, we learn

sup
(t,x)∈(−1,0)×R

(1 + t)
1
2ηv2 .

∫

η(δu)2dx|t=−1, (50)

which implies in particular for r ≤ 1
2
(which amounts to r ≤ 1

4
before setting

setting R = 1 above)

−
∫ 0

−r2

∫

ηrv
2 .

∫

η(δu)2dx|t=−1. (51)

From the first part (14) of Proposition 3 (with η replaced by η 1
2
), we gather

that
∫ 0

−1

∫

η 1
2
w2dxdt .

∫ 0

−1

∫

η 1
2
(ah − a0)

2((δg)2 + v2)dxdt,

which implies for r ≤ 1
2
(by the obvious inequality −

∫ 0

−r2

∫

ηr · dxdt ≤ (R
r
)3 −

∫ 0

−R2

∫

ηR · dxdt for r ≤ R and since η 1
2
. η2)

r3 −
∫ 0

−r2

∫

ηrw
2dxdt (52)

.

∫ 0

−1

(1 + t)−
1
2

∫

η(ah − a0)
2dxdt sup

(t,x)∈(−1,0)×R

(1 + t)
1
2η((δg)2 + v2).

Inserting (50) into (52) yields

−
∫ 0

−r2

∫

ηrw
2dxdt .

1

r3

∫ 0

−1

(1 + t)−
1
2

∫

η(ah − a0)
2dxdt

×
(

∫

η(δu)2dx|t=−1 + sup
(t,x)∈(−1,0)×R

η(δg)2
)

.
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Finally, because of −
∫ 0

−r2

∫

ηr
η
dxdt . 1 for r ≪ 1, we have

−
∫ 0

−r2

∫

ηr(δg)
2dxdt . sup

(t,x)∈(−1,0)×R

η(δg)2.

Combining the two last estimates with (51) yields (47) for δu = δg + v + w.

We now post-process (47) and to that purpose make the choice of a0 = π′(c)

with c :=
∫ 0

−1

∫

ηudxdt, so that in view of the definition (45) of ah and the
Lipschitz continuity (3) of π′

|ah − a0| ≤ |ah − π′(u)|+ |π′(u)− π′(c)| ≤ L(|δu|+ |u− c|).

Therefore, (after replacing r by 2r in order to make η2r appear, which is no
problem thanks to r ≪ 1) (46) turns into

−
∫ 0

−r2

∫

η2r(u
h − u)2dxdt

.
(

1 +
L2

r3

∫ 0

−1

∫

η(uh − u)2dxdt+
L2

r3
D2(u, 1)

)

×
(

∫ 0

− 1
2

∫

η(uh − u)2dxdt+ sup
(t,x)∈(−1,0)×R

η(gh − g)2
)

. (53)

We now will integrate in h according to
∫

η2r(h)·dh. As we shall argue below,
we have for the l. h. s. of (53)

∫

η2r(h)−
∫ 0

−r2

∫

η2r(u
h − u)2dxdtdh & −

∫ 0

−r2

∫

ηr(u−
∫

ηru)
2dxdt. (54)

The r. h. s. of (53) comes in form of a product of two h-dependent functions
we momentarily call f1(h) and f2(h). To this purpose we use that thanks to
4r ≤ 1 we have η2r . ηη4r for our exponential cut-off so that

∫

η2rf1f2dh .

suph(ηf1)
∫

η4rf2dh. We claim that for the first factor on the r. h. s. of (53)
we have

sup
h

η(h)

∫ 0

−1

∫

η(uh − u)2dxdt .

∫ 0

−1

∫

η(u−
∫ 0

−1

∫

ηu)2dxdt = D(u, 1).

(55)
Before inserting them, we give the easy arguments for (54) and (55): By
scaling we may assume r = 1 so that (54) follows from Jensen’s inequality in
form of

∫

η(u−
∫

ηu)2dx ≤
∫ ∫

η(x)η(x+ h)(uh(x)− u(x))2dxdh
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and the fact that for our exponential cut-off η(x)η(x + h) = 1
2
exp(−(|x| +

|x + h|)) ≤ 1
2
exp(−1

2
(|h| + |x|)) = 4η2(h)η2(x). For (55), by the triangle

inequality in L2, it is enough to show for a constant c (
∫ 0

−1

∫

ηudxdt in our
case)

sup
h

η(h)

∫

η(uh − c)2dx ≤
∫

η(u− c)2dx. (56)

This inequality follows from writing

sup
h

η(h)

∫

η(uh − c)2dx = sup
h

∫

η(h)η(x− h)(u(x)− c)2dx

and the fact that for our exponential cut-off η(h)η(x− h) ≤ η(x). Inserting
(54) and (55) into (53) we obtain

−
∫ 0

−r2

∫

ηr(u−
∫

ηru)
2dxdt .

(

1 +
L2

r3
D2(u, 1)

)

×
∫

η4r(h)
(

∫ 0

− 1
2

∫

η(uh − u)2dxdt+ sup
(t,x)∈(−1,0)×R

η(gh − g)2
)

dh. (57)

Finally, we come to the probabilistic part of the proof: We take the (re-
stricted) expectation of (the square root of) (57) and use Lemmas 2 and 5
on the two terms of the last factor

〈(

−
∫ 0

−r2

∫

ηr(u−
∫

ηru)
2dxdt

)
1
2
〉

1

.
(

1 +
L

r
3
2

〈D2(u, 1)〉
1
2
1

)(

r
1
2 + r〈D2(u, 1)〉

1
2
1 + rα

)

.

We now appeal to the triangle inequality in form of

D(u, r) ≤
(

−
∫ 0

−r2
(

∫

ηru−−
∫ 0

−r2

∫

ηru)
2dt

)
1
2

+
(

−
∫ 0

−r2

∫

ηr(u−
∫

ηru)
2dxdt

)
1
2

and Lemma 4 for the upgrade to

〈D(u, r)〉1 . r
1
2 +

(

1 +
L

r
3
2

〈D2(u, 1)〉
1
2
1

)(

r
1
2 + r〈D2(u, 1)〉

1
2
1 + rα

)

,

which we rewrite as

〈D(u, r)〉1 . rα
(

1 +
L

r
3
2

〈D2(u, 1)〉
1
2
1

)(

1 + r
1
2 〈D2(u, 1)〉

1
2
1

)

. (58)
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In this form, we see that (58) does not just hold for r ≪ 1 but trivially for
r ≤ 1 with r ∼ 1, since D(u, r) ≤ 1

r3
D(u, 1). It remains to appeal to Lemma

3.

Proof of Proposition 2. For conciseness, we ignore the massive term in
(1) and fix r ≤ 1. Following the argument in the proof of Lemma 1, we first
claim that the proposition reduces to the following deterministic estimate

D2(δu, r) .
(

r +
L2

r3
D2(u, 1)

)

∫

(δξ)2dxdt (59)

for any decaying δu and δξ supported for t ∈ (−1, 0) related via

∂tδu− ∂2
x(aδu) = δξ, (60)

where a := π′(u) satisfies (11). Indeed, we note that by duality w. r. t. to

the inner product (g, f) 7→ −
∫ 0

−r2

∫

ηrgfdxdt,

D(u, r) = sup
{

D(u, f) := −
∫ 0

−r2

∫

ηrufdxdt
∣

∣

∣
(61)

−
∫ 0

−r2

∫

ηrf
2dxdt = 1, suppf ⊂ (−r2, 0)× R, −

∫ 0

−r2

∫

ηrfdxdt = 0
}

.

By the chain rule for the Malliavin derivative we thus obtain

|∇D(u, r)|1 ≤ sup
f

|∇D(u, f)|1,

where the supremum runs over the set implicitly defined in (61), so that it
is enough to show for a fixed f

|∇D(u, f)|21 ≤ r +
L2

r3
D2(u, 1).

By definition (10) of the carré-du-champs of the Malliavin derivative applied
to the linear functional u 7→ D(u, f), this amounts to show

−
∫ 0

−r2

∫

ηrδufdxdt .
(

(

r +
L2

r3
D2(u, 1)

)

∫

(δξ)2dxdt
)

1
2
,

where the infinitesimal perturbation δu of the solution is related to the in-
finitesimal perturbation δξ of the noise supported on (−1, 0) × R via (60).
By the characterizing properties of the f ’s, cf. (61), this estimate in turn
amounts to (59).
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We now turn to the proof of (59) and to this purpose split δu = v+w, where
both functions have, like δξ and δu, vanishing initial data, that is v = w ≡ 0
for t ≤ −1, and are characterized by

∂tv − a0∂
2
xv = δξ

and
∂tw − ∂2

x(aw) = ∂x((a− a0)v),

where we will choose the constant coefficient a0 ∈ [λ, 1] below. Hence we see
that by the first part (16) of Proposition 4, which we apply to all translations
in space and backwards in time (we are allowed to do the latter because of
the vanishing initial data), we have

sup
(t,x)∈(−∞,0)×R

v2 .

∫ 0

−1

∫

(δξ)2dxdt. (62)

By the second part (17) of Proposition 4, we have

D2(v, r) . r

∫ 0

−1

∫

(δξ)2dxdt. (63)

Likewise, the first part (14) of Proposition 3 turns into

∫ 0

−1

∫

ηw2dxdt .

∫ 0

−1

∫

η(a− a0)
2v2dxdt,

which trivially implies for r ≤ 1 (the power three coming from the parabolic
dimension):

r3 −
∫ 0

−r2

∫

ηrw
2dxdt .

∫ 0

−1

∫

η(a− a0)
2dxdt sup

(t,x)∈(−1,0)×R

v2,

into which we insert (62) and where we now choose a0 = π′(
∫ 0

−1

∫

ηu) so that
by the Lipschitz continuity (3) of π′

r3 −
∫ 0

−r2

∫

ηrw
2dxdt . L2D2(u, 1)

∫ 0

−1

∫

(δξ)2dxdt. (64)

By the triangle inequality, (59) follows from (63) and (64).

Proof of Theorem 1. In this proof . and ≪ refer to constants only
depending on λ, α, and eventually ǫ. We consider the random variable

D̄(u) := min{ max
ρ∈[r,1]dyadic

1

ρα
D(u, ρ),

r2

L
}.
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Because of D̄ ≤
∑

ρ∈[r,1]dyadic
1
ρα
D(u, ρ) and since α < 1

2
, we learn from

Proposition 1 that

〈D̄(u)〉1 .
(

1 +
L

r
3
2

(1 +D′(u, 1))
)(

1 + r
1
2D′(u, 1)

)

.

By the chain rule for the Malliavin derivative we have

|∇D̄(u)|1 ≤ max
ρ∈[r,1]dyadic

1

ρα
|∇D(u, ρ)|1

and |∇D̄(u)|1 = 0 unless D(u, 1) ≤ r2

L
. Hence we learn from Proposition 2

|∇D̄(u)|1 . 1.

By concentration of measure, cf. the beginning of Section 2, applied to the
restricted ensemble 〈·〉1 this implies the existence of a random variable χ with
Gaussian bounds, that is, 〈exp( 1

C
χ2)〉1 ≤ 2, and thus a fortiori 〈exp( 1

C
χ2)〉 ≤

2 with respect to the full ensemble 〈·〉, such that

min{max
ρ∈[θ,1]

1

ρα
D(u, ρ),

θ2

L
} . χ+

(

1 +
L

θ
3
2

(1 +D′(u, 1))
)(

1 + θ
1
2D′(u, 1)

)

,

where we relabelled r by θ, which we suppose to be small θ ≪ 1. By the
invariance in law under the scaling (4) & (5) & (6), this yields for any length
scale R

min{max
ρ∈[θ,1]

1

ρα
1

R
1
2

D(u, ρR),
θ2

R
1
2

}

. χR +
(

1 +
1

θ
3
2

(R
1
2 +D(u,R))

)(

1 +
θ

1
2

R
1
2

D′(u,R)
)

, (65)

with anR-dependent random variable χR of Gaussian moments 〈exp( 1
C
χ2
R)〉 .

1. Using the fact thatD′(u,R) =
∫

ηR(u−
∫

ηRu)
2dx|t=−R2 satisfies −

∫ R
R
2
D′(u,R′)dR′ .

D(u,R), we see that by replacing R by R′ in (65) and by averaging over
R′ ∈ (R

2
, R) we obtain

min{ max
ρ∈[2θ,1]

1

ρα
1

R
1
2

D(u, ρR),
θ2

R
1
2

}

. χ′
R +

(

1 +
1

θ
3
2

(R
1
2 +D(u,R))

)(

1 +
θ

1
2

R
1
2

D(u,R)
)

,

28



where χ′
R := −

∫ R
R
2
χR′dR still has Gaussian moments 〈exp( 1

C
χ′
R
2)〉 ≤ 2, since

the latter property is preserved by convex combination. Changing the value
of θ by a factor of two, the above implies

min{ 1

θα
1

R
1
2

D(u, θR),
θ2

R
1
2

}

. χ′
R +

(

1 +
1

θ
3
2

(R
1
2 +D(u,R))

)(

1 +
θ

1
2

R
1
2

D(u,R)
)

.

Because of the trivial estimate D(u, θR) ≤ 1

θ
3
2
D(u,R) we see that D(u,R) ≤

θ4 ≤ θ
7
2
+α implies D(u, θR) ≤ θ2+α and trivially D(u,R) ≤ θ

3
2 so that the

above yields

D(u,R) ≤ θ4

R ≤ θ3

}

=⇒ 1

θα
1

R
1
2

D(u, θR) ≤ χ′′
R + C

θ
1
2

R
1
2

D(u,R),

where χ′′
R ∼ χ′

R + 1 still has Gaussian moments 〈exp( 1
C
χ′′
R
2)〉 . 1. Hence

selecting θ ∼ 1 sufficiently small, we obtain

D(u,R) ≤ θ4

R ≤ θ3

}

=⇒ 1

(θR)α
D(u, θR) ≤ R

1
2
−αχ′′

R +
1

2

1

Rα
D(u,R). (66)

Since (66) implies in particular D(u, θR) ≤ R
1
2χ′′

R+ 1
2
D(u,R), we see that in

order to convert (66) into a self-propelling iteration, we need R
1
2χ′′

R ≤ 1
2
θ4,

(θR)
1
2χ′′

θR ≤ 1
2
θ4 and so on. This prompts to consider the random variable

χ̄R := max
n=0,1,···

(θn)
1
2
−αχ′′

θnR ≥ max
n=0,1,···

(θn)
1
2χ′′

θnR,

which in view of (recall α < 1
2
)

χ̄R ≤
∞
∑

n=0

(θn)
1
2
−αχ′′

θnR

=
1

1− θ
1
2
−α

× convex combination of {χ′′
θnR}n=0,1,···

has Gaussian moments
〈

exp
(

1
C
χ̄2
R

)〉

. 1 since by construction, the random
variables {χ′′

R}R have a uniform Gaussian moment bounds. From (66) we
learn

D(u,R) ≤ θ4 and R
1
2 χ̄R ≤ 1

2
θ4

=⇒ ∀ n ∈ N
1

(θnR)α
D(u, θnR) ≤ R

1
2
−αχ̄R +

1

2

1

(θn−1R)α
D(u, θn−1R),
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where we assumed w. l. o. g. that χ̄R ≥ 1
2θ2

so that R
1
2 χ̄R ≤ 1

2
θ4 implies

en passant R ≤ θ3. Thanks to the factor 1
2
< 1 the last statement can be

iterated to yield

D(u,R) ≤ θ4 and R
1
2 χ̄R ≤ 1

2
θ4

=⇒ sup
n=0,1,···

1

(θnR)α
D(u, θnR) ≤ 2

(

R
1
2
−αχ̄R +

1

Rα
D(u,R)

)

,

which implies (using once more D(u, r) ≤ (R
r
)
3
2D(u,R) for any scales r ≤ R

to bridge the dyadic gaps)

D(u,R) ≤ θ4 and R
1
2 χ̄R ≤ 1

2
θ4 =⇒ sup

r≤R

1

rα
D(u, r) ≤ 2θ4−

3
2

Rα
.

Summing up, we learned that for any length scale R, which we relabel by ρ,
we have

D(u, ρ) ≪ 1 and ρ
1
2 χ̄ρ ≪ 1 =⇒ sup

r≤ρ

(
ρ

r
)αD(u, r) . 1.

Once more by our scaling invariance (4) & (5), this can be rephrased as

1

R
1
2

D(u, ρR) ≪ 1 and ρ
1
2 χ̄ρ,ρR ≪ 1 =⇒ sup

r≤ρ

(
ρ

r
)α

1

R
1
2

D(u, rR) . 1

for a family {χ̄ρ,R′}ρ,R′ of random variables with uniformly bounded Gaussian
moments, which we use for R = 1

ρ
so that (with r′ = r

ρ
)

ρ
1
2D(u, 1) ≪ 1 and ρ

1
2 χ̄ρ,1 ≪ 1 =⇒ ρ

1
2 sup
r′≤1

1

r′α
D(u, r′) . 1.

We rewrite this in terms of M = ρ−
1
2 , which we think of being large (and

relabel r′ with r):

D(u, 1) ≪ M and χ̄ 1
M2 ,1

≪ M =⇒ sup
r≤1

1

rα
D(u, r) . M. (67)

We now assume that M ≥ 1 is of dyadic form. For any exponent ǫ > 0,
which we think of being small, we introduce the random variable

χ̄ := max
M≥1dyadic

M−ǫχ̄ 1
M2 ,1
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and note that with the same reasoning as above, χ̄ has Gaussian moments.
With help of χ̄, (67) may be rephrased as

D(u, 1) ≪ M and χ̄ ≪ M1−ǫ =⇒ sup
r≤1

1

rα
D(u, r) . M,

which by the arbitrariness of the dyadic M ≥ 1 implies

(

sup
r≤1

1

rα
D(u, r)

)1−ǫ
. D(u, 1) + χ̄+ 1.

From this we learn that the Gaussian moment for (supr≤1
1
rα
D(u, r))1−ǫ, cf.

(9), follow from the Gaussian moments for χ̄ and for D(u, 1), cf. Lemma 1.
The constant in the exponential can be absorbed into the loss ǫ w. r. t. to
the Gaussian moments.

Proof of Lemma 2. Since thanks to r ≪ 1 we have
∫

ηr(h)(e
|h|− 1)2dh .

r2, it is enough to show for any shift h

〈

∫ 0

− 1
2

∫

η̃2(uh − u)2dxdt
〉

1

. |h|+ (e|h| − 1)2
〈

∫ 0

−1

∫

η̃2(u− c)2dxdt
〉

1
, (68)

where, as in Lemma 1, for the upcoming calculations we have replaced the
exponential cut-off η = η22 by its smooth version η̃2 where

η̃(x) := exp(−1

2

√
x2 + 1) ∼ η2(x) (69)

and we have set for abbreviation c :=
∫ 0

−1

∫

η̃2udxdt. By the martingale
argument based on the stochastic differential equation

∂t(u
h − u) = −(−∂2

x)(π(u
h)− π(u)) + (ξh − ξ)

we have

d

dt

1

2

〈

∫

η̃(uh − u)(1− ∂2
x)

−1η(uh − u)dx
〉

1

= −
〈

∫

η̃(uh − u)(1− ∂2
x)

−1η̃(−∂2
x)(π(u

h)− π(u))dx
〉

1

+
1

2

∫

η̃(η̃ − 1

2
η̃he−|h| − 1

2
η̃−he−|h|)dx. (70)
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Let us make two comments on (70): Like in Lemma 1 we use physics notation
in the sense that an operator acts on all the terms to its right, e. g. in the
above expression (1−∂2

x)
−1η̃(−∂2

x)(π(u
h)−π(u)) = (1−∂2

x)
−1[η̃(−∂2

x)(π(u
h)−

π(u))]. The last term in (70), which comes from the quadratic variation of the
white noise in time, cf. Lemma 1 for a heuristic discussion, assumes this form
because 1

2
exp(−|x − y|) is the (translation-invariant) kernel of the operator

(1 − ∂2
x)

−1, so that η̃(x)1
2
exp(−|x − y|)η̃(y) is the kernel of the operator

η̃(1− ∂2
x)

−1η̃, so that the quadratic variation is indeed given by

1

2

∫ ∫

η̃(x)
1

2
exp(−|x− y|)η̃(y)

×
(

δ((x+h)− (y+h))− δ((x+h)− y)− δ(x− (y+h)) + δ(x− y)
)

dxdy,

where the spatial Dirac distributions come from the spatial white noise
ξspat, more precisely, they represent the covariance 〈(ξhspat − ξspat)(x)(ξ

h
spat −

ξspat)(y)〉1 of the increment ξhspat − ξspat.

We integrate (70) against the weight t + 1 in time over t ∈ (−1, 0). This
yields (68) once we establish the following three estimates: The following
estimate on the quadratic variation

∫

η̃(η̃ − 1

2
η̃he−|h| − 1

2
η̃−he−|h|)dx . |h|, (71)

the following bound on the term under the time derivative
∫

η̃(uh − u)(1− ∂2
x)

−1η̃(uh − u)dx . (e|h| − 1)2
∫

η̃2(u− c)2dx, (72)

and the fact that “elliptic term” controls the desired term up to the term in
(72)
∫

η̃2(uh − u)2dx ≤ 1

C

∫

η̃(uh − u)(1− ∂2
x)

−1η̃(−∂2
x)(π(u

h)− π(u))dx

+ C

∫

η̃(uh − u)(1− ∂2
x)

−1η̃(uh − u)dx. (73)

We first address the quadratic variation term (71). Writing

η̃ − 1

2
η̃he−|h| − 1

2
η̃−he−|h| = η̃(1− e−|h|) + e−|h|(η̃ − 1

2
η̃h − 1

2
η̃−h)

and performing a discrete integration by parts, we see that this term takes
the form of

(1− e−|h|)

∫

η̃2dx+ e−|h|
∫

(η̃h − η̃)2dx,
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so that the estimate follows from the elementary estimate
∫

(η̃h − η̃)2dx ≤
h2

∫

(∂xη̃)
2dx.

We note that by duality, the estimate of the time-derivative term (72) is
equivalent to

∫

ζη̃(uh − u)dx . (e|h| − 1)

(
∫

(ζ2 + (∂xζ)
2dx

∫

η̃2(u− c)2dx

)
1
2

,

which follows by discrete versions of integration by parts and Leibniz’ rule
∫

ζη̃(uh − u)dx =

∫

(

(ζ−h − ζ)η̃ + ζ−h(η̃−h − η̃)
)

(u− c)dx,

Cauchy-Schwarz’ inequality, the standard estimate
∫

(ζ−h − ζ)2dx ≤ h2

∫

(∂xζ)
2dx, (74)

and the following property of our cut-off function with exponential tails

|η̃−h(x)− η̃(x)|

= exp(−1

2

√
x2 + 1)| exp(1

2

√
x2 + 1− 1

2

√

(x− h)2 + 1)− 1|

≤ η̃(x)| exp( |h|
2
)− 1|.

Let us finally address the elliptic term (73). To this purpose we write (in our
physicist’s way of omitting parentheses)

η̃(−∂2
x)(π(u

h)− π(u))

= (1− ∂2
x)(π(u

h)− π(u))η̃ + 2∂x(π(u
h)− π(u))∂xη̃

−(π(uh)− π(u))(1− ∂2
x)η̃,

so that by the symmetry of (1− ∂2
x)

−1 (already used for (70))

∫

η̃(uh − u)(1− ∂2
x)

−1η̃(−∂2
x)(π(u

h)− π(u))dx

=

∫

η̃2(uh − u)(π(uh)− π(u))dx

−2

∫

(∂xη̃)(π(u
h)− π(u))∂x(1− ∂x)

−1η̃(uh − u)dx

−
∫

((1− ∂2
x)η̃)(π(u

h))− π(u))(1− ∂2
x)

−1η̃(uh − u)dx.
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Using that the operators ∂x(1 − ∂2
x)

− 1
2 and (1 − ∂2

x)
− 1

2 have operator norm
1 w. r. t. to L2, we deduce the inequality (where we use the abbreviation
πh − π := π(uh)− π(u))

∫

η̃(uh − u)(1− ∂2
x)

−1η̃(−∂2
x)(π

h − π)dx

≥
∫

η̃2(uh − u)(πh − π)dx

−
(

2
(

∫

(∂xη̃)
2(πh − π)2dx

)
1
2 +

(

∫

((1− ∂2
x)η̃)

2(πh − π)2dx
)

1
2

)

×
(
∫

η̃(uh − u)(1− ∂2
x)

−1η̃(uh − u)dx

)
1
2

. (75)

By the monotonicity properties (2) of π, this yields
∫

η̃(uh − u)(1− ∂2
x)

−1η̃(−∂2
x)(π(u

h)− π(u))dx

≥ λ

∫

η̃2(uh − u)2dx

−
(

2
(

∫

(∂xη̃)
2(uh − u)2dx

)
1
2 +

(

∫

((1− ∂2
x)η̃)

2(uh − u)2dx
)

1
2

)

×
(
∫

η̃(uh − u)(1− ∂2
x)

−1η̃(uh − u)dx

)
1
2

. (76)

Our smoothing out of the exponential cut-off function ensures

|∂xη̃|+ |∂2
xη̃| . η̃, (77)

which allows us to use Young’s inequality in order to arrive at (73).

Proof of Lemma 3. We will establish this lemma in the strengthened
version with the bulk average

∫ 0

−1

∫

ηudxdt replaced by the surface average

c :=
∫

ηudx|t=−1. To this purpose we rewrite (1) in form of

∂t(u− c) = −(−∂2
x)(π(u)− π(c)) + ξ.

As in Lemma 2, we replace η by η̃2 ∼ η in the statement of this lemma, with
η̃ being the mollified version of η2, cf. (69). By the martingale argument we
have like in Lemma 1, cf. (25),

d

dt

1

2

〈

∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx
〉

1

= −
〈

∫

η̃(u− c)(1− ∂2
x)

−1η̃(−∂2
x)(π(u)− π(c))dx

〉

1
+

1

2

∫

1

2
η̃2dx.
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We smuggle in an exponential term in the time variable with a rate T ≪ 1
to be adjusted later:

d

dt
exp(− t

T
)
1

2

〈

∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx
〉

1

= − exp(− t

T
)
(〈 1

2T

∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx

+

∫

η̃(u− c)(1− ∂2
x)

−1η̃(−∂2
x)(π(u)− π(c))dx

〉

1
+

1

4

∫

η̃2dx
)

.

Lemma 3 will follow from integration over t ∈ (0, 1) of this identity, using
the obvious estimates on the quadratic variation term

∫

η̃2dx . 1,

and on the term under the time derivative
∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx ≤
∫

η̃2(u− c)2,

once we show that the elliptic term controls the desired term for T sufficiently
small:

1

C

∫

η̃2(u− c)2dx ≤
∫

η̃(u− c)(1− ∂2
x)

−1η̃(−∂2
x)(π(u)− π(c))dx

+
1

2T

∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx. (78)

The argument for this estimate (78) on the elliptic term follows the lines of
the one in Lemma 2: Replacing the couple (uh, u) from there by (u, c), we
arrive at

∫

η̃(u− c)(1− ∂2
x)

−1η̃(−∂2
x)(π(u)− π(c))dx

≥ λ

∫

η̃2(u− c)2dx

−
(

2
(

∫

(∂xη̃)
2(u− c)2dx

)
1
2 +

(

∫

((1− ∂2
x)η̃)

2(u− c)2dx
)

1
2

)

×
(
∫

η̃(u− c)(1− ∂2
x)

−1η̃(u− c)dx

)
1
2

. (79)

Appealing to the estimates (77) of the smoothened exponential cut-off η̃ and
Young’s inequality, we obtain (78) for a sufficiently large 1

T
.
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Proof of Lemma 4. We fix an r ≤ 1 and note that the statement of this
lemma follows from

〈(

−
∫ 0

−r2
(

∫

ηru−−
∫ 0

−r2

∫

ηru)
2dxdt

)
1
2
〉

r

. r
1
2 +

〈(

−
∫ 0

−r2

∫

ηr(u−
∫

ηru)
2dxdt

)
1
2
〉

r
, (80)

where 〈·〉r denotes the expectation w. r. t. to the white noise restricted to
(t, x) ∈ (−r2, 0)× R, just by taking the expectation w. r. t. to 〈·〉1. By the
scale invariance (4) & (5), it is thus sufficient to establish the above for r = 1.
We shall replace the exponential averaging function η by its mollified version

η̃(x) =
1

c0
exp(−

√
x2 + 1) with c0 :=

∫

exp(−
√
x2 + 1)dx,

noting that η̃ ∼ η and pointing out the slight difference to Lemmas 2 and 3,
cf. (69). Indeed, η̃ ∼ η is enough to replace η by η̃ on the r. h. s. of (80); for
the l. h. s. this follows the L2-average in time of the estimate

∣

∣

∣

∫

ηudx−
∫

η̃udx
∣

∣

∣

=
∣

∣

∣

∫

(η − η̃)(u−
∫

ηu)dx
∣

∣

∣
.

(

∫

η(u−
∫

ηu)2dx
)

1
2
.

Hence with the abbreviation U(t) :=
∫

η̃udx we need to show that

〈(

∫ 0

−1

(U −−
∫ 0

−1

U)2dxdt
)

1
2
〉

1
. 1 +

〈(

∫ 0

−1

∫

η̃(u− U)2dxdt
)

1
2
〉

1
.(81)

After these preparations, we note that we may rewrite equation (1) in form
of

∂tu = ∂2
x

(

π(u)− π(U)
)

+ ξ,

From this we deduce the stochastic ordinary differential equation

∂t

∫

η̃udx =

∫

(

π(u)− π(U)
)

∂2
xη̃dx+ σ∂tW,

where W is a standard temporal Wiener process and the variance is given by

σ2 :=

∫

η̃dx ∼ 1. (82)
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We use the differential equation in its time-integrated version

∫ 0

−1

(∂t(U − σW ))2dt =

∫ 0

−1

(

∫

(π(u)− π(U))∂2
xη̃dx

)2

dt.

Thanks to the Lipschitz continuity of π, (2), and the fact that due to our
mollification η̃ of the exponential averaging function, we have |∂2

xη̃| . η̃, this
turns into the estimate

∫ 0

−1

(∂t(U − σW ))2dt .

∫ 0

−1

∫

η̃(u− U)2dxdt.

By Poincaré’s inequality (with vanishing mean value) and the triangle in-
equality, and appealing to (82), this turns into

∫ 0

−1

(U −
∫ 0

−1

U)2dt .

∫ 0

−1

(W −
∫ 0

−1

W )2dt+

∫ 0

−1

∫

η̃(u− U)2dxdt.

By Jensen’s inequality and the defining properties on the quadratic moments
of the Brownian motion, this implies

〈

(

∫ 0

−1

(U −
∫ 0

−1

U)2dt
)

1
2

〉

1

.
〈

∫ 0

−1

(W −
∫ 0

−1

W )2dt
〉

1
2
+
〈

(

∫ 0

−1

∫

η̃(u− U)2dxdt
)

1
2

〉

1

. 1 +
〈

(

∫ 0

−1

∫

η̃(u− U)2dxdt
)

1
2

〉

1
,

which is (81).

Proof of Lemma 5. First of all, the observable sup(−1,0)×R
η(gh − g)2 is

independent from the noise ξ outside of (−1, 0)× R, so that we can replace
the average 〈·〉1 by 〈·〉. We start by arguing that

〈(g(t, x)− g(s, y))2〉 .
√
t− s+ |x− y| for all (t, x), (s, y) ∈ R× R. (83)

Because of the initial conditions and symmetry, we may w. l. o. g. assume
that −1 ≤ s ≤ t. The heat kernel K(t, x) := 1√

4πa0t
exp(− |x|

4a0t
) provides us

with the representation

g(t, x) =

∫ t

−1

∫

K(t− t′, x− x′)ξ(t′, x′)dx′dt′. (84)
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Because of the defining property 〈(
∫

ζξdxdt)2〉 =
∫

ζ2dxdt for a test function
ζ of white noise (that is, 〈ζ(t′, x′)ξ(s′, y′)〉 = δ(t′ − s′)δ(x′ − y′) in the rough
but efficient physics language) this yields the identity

〈g(t, x)g(s, y)〉 =

∫ s

−1

∫

K(t− τ, x− z)K(s− τ, y − z)dzdτ

=

∫ s

−1

K(t + s− 2τ, x− y)dτ

=
1

2

∫ t+s+2

t−s

K(σ, x− y)dσ,

where we used the semi-group property of t 7→ K(t, ·) in the middle identity.
We now pass from covariance to increment:

〈(g(t, x)− g(s, y))2〉
= 〈g2(t, x)〉 + 〈g2(s, y)〉 − 2〈g(t, x)g(s, y)〉

=
(1

2

∫ 2(t+1)

0

+
1

2

∫ 2(s+1)

0

−
∫ (t+1)+(s+1)

t−s

)

K(σ, 0)dσ

+

∫ t+s+2

t−s

(K(σ, 0)−K(σ, x− y))dσ.

By positivity and monotonicity of K(σ, 0) in σ and K(σ, 0) ≥ K(σ, z), this
yields the inequality

〈(g(t, x)− g(s, y))2〉

≤
∫ t−s

0

K(σ, 0)dσ +

∫ ∞

0

(K(σ, 0)−K(σ, x− y))dσ

≤
∫ t−s

0

K(σ, 0)dσ + |x− y|
∫ ∞

0

(K(σ, 0)−K(σ, 1))dσ,

where we used the scale invariance of K(σ, z) in the second step. This in-

equality implies (83) because of K(σ, 0) . σ− 1
2 and K(σ, 0) − K(σ, 1) .

min{σ− 1
2 , σ− 3

2}.
We now apply Kolmogorov’s continuity theorem; for the convenience of the
reader and because of its similarity to the proof of the main result of the
paper, we give a self-contained argument. We first appeal to Gaussianity to
post-process (83), which we rewrite as

〈 1
R
(g(t, x)− g(s, y))2〉 . 1 provided |t− s| ≤ 3R2, |x− y| ≤ R
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for a given scale R. We note that from (84) we see that the properties of
being Gaussian and centered transmits from ξ to 1√

R
(g(t, x) − g(s, y)), so

that by the above normalization we have

〈

exp
( 1

CR
(g(t, x)− g(s, y))2

)

〉

. 1 for |t− s| ≤ 3R2, |x− y| ≤ R. (85)

Our goal is to estimate exponential moments of the local Hölder-norm

[g]α,(−1,0)×(−1,1) := sup
R∈(0,1)

1

Rα
sup

(t,x),(s,y)∈(−1,0)×(−1,1)√
|t−s|+|x−y|<R

|g(t, x)− g(s, y)|,

which amounts to exchange the expectation and the supremum over (t, x),
(s, y) in (85) at the prize of a decreased Hölder exponent α < 1

2
To this

purpose, we now argue that for α > 0, the supremum over a continuum can
be replaced by the supremum over a discrete set: For R < 1 we define the
grid

ΓR = [−1, 0]× [−1, 1] ∩ (R2
Z× RZ)

and claim that

[g]α,(−1,0)×(−1,1) (86)

. sup
R

1

Rα
sup

(t,x),(s,y)∈ΓR

|t−s|≤3R2,|x−y|≤R

|g(t, x)− g(s, y)| =: Λ ,

where the first sup runs over all R of the form 2−N for an integer N ≥ 1.
Hence we have to show for arbitrary (t, x), (s, y) ∈ (−1, 0)× (−1, 1) that

|g(t, x)− g(s, y)| . Λ
(
√

|t− s|+ |x− y|
)α
. (87)

By density, we may assume that (t, x), (s, y) ∈ r2Z× rZ for some dyadic r =
2−N < 1 (this density argument requires the qualitative a priori information
of the continuity of g, which can be circumvented by approximating ξ). By
symmetry and the triangle inequality, we may assume s ≤ t and x ≤ y.
For every dyadic level n = N,N − 1, · · · we now recursively construct two
sequences (tn, xn) (sn, yn) of space-time points (in fact, the space and time
points can be constructed separately), starting from (tN , xN) = (t, x) and
(sN , yN) = (s, y), with the following properties

a) they are in the corresponding lattice of scale 2−n, i. e. (tn, xn), (sn, xn) ∈
(2−n)2Z× 2−n

Z,
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b) they are close to their predecessors in the sense of |tn − tn+1|, |sn −
sn+1| ≤ 3(2−(n+1))2 and |xn − xn+1|, |yn − yn+1| ≤ 2−(n+1), so that by
definition of Λ we have

|g(tn, xn)− g(tn+1, xn+1)|,|g(sn, yn)− g(sn+1, yn+1)| ≤ Λ(2−(n+1))α,
(88)

and

c) such that |tn − sn| and |xn − yn| are minimized among these points.

Because of the latter, we have

(tM , xM) = (sM , yM) for some M with 2−M ≤ max{
√

|t− s|, |x− y|},
so that by the triangle inequality we gather from (88)

|g(t, x)− g(s, y)| ≤
M
∑

n=N−1

Λ(2−(n+1))α ≤ Λ
(2−M)α

2α − 1
,

which yields (87).

Equipped with (86), we now may upgrade (85) to

〈

exp
( 1

C
[g]2α,(−1,0)×(−1,1)

)〉

. 1 (89)

for α < 1
2
. Indeed, (86) can be reformulated on the level of characteristic

functions as

I
(

[g]2α,(−1,0)×(−1,1) ≥ M) ≤ sup
R

max
(t,x),(s,y)∈ΓR

I
( 1

R
(g(t, x)−g(s, y))2 ≥ M

CR1−2α

)

,

where as in (86) R runs over all 2−N for integers N ≥ 1. Replacing the
suprema by sums in order to take the expectation, we obtain

〈

I
(

[g]2α,(−1,0)×(−1,1) ≥ M)
〉

≤
∑

R

∑

(t,x),(s,y)

〈

I
( 1

R
(g(t, x)−g(s, y))2 ≥ M

CR1−2α

)〉

.

We now appeal to Chebyshev’s inequality in order to make use of (85):
〈

I
(

[g]2α,(−1,0)×(−1,1) ≥ M)
〉

.
∑

R

∑

(t,x),(s,y)

exp(− M

CR1−2α
)

.
∑

R

1

R3
exp(− M

CR1−2α
)

R≤1,M≥1

≤ exp(−M

C
)
∑

R

1

R3
exp(− 1

C
(

1

R1−2α
− 1)) . exp(−M

C
),
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where in the second step we have used that the number of pairs (t, x), (s, y)
of neighboring lattice points is bounded by C 1

R3 and in the last step we have
used that stretched exponential decay (recall 1 − 2α > 0) beats polynomial
growth. The last estimate immediately yields (89).

It remains to post-process (89), which we only need for second moments but
with the spatial origin replaced by any point x:

〈

[g]2α,(−1,0)×(x−1,x+1)

〉

. 1 for all x ∈ R, (90)

to obtain the statement of the lemma in form of

〈 sup
(−1,0)×R

η(gh − g)2〉 . min{|h|2α, 1}. (91)

To this purpose, we distinguish the cases |h| ≤ 1
2
and |h| ≥ 1

2
. In the first

case we have

sup
(−1,0)×R

η(gh − g)2 .
∑

x∈Z
exp(−|x|) sup

(−1,0)×(x− 1
2
,x+ 1

2
)

(gh − g)2

|h|≤ 1
2

. |h|2α
∑

x∈Z
exp(−|x|)[g]2α,(−1,0)×(x−1,x+1),

from which (91) follows by taking the expectation and inserting (90). In case
of |h| ≥ 1

2
, we proceed via

sup
(−1,0)×R

η(gh − g)2

. sup
(−1,0)×R

ηg2 + sup
(−1,0)×R

η−hg2

.
∑

x∈2Z
(exp(−|x|) + exp(−|x− h|)) sup

(−1,0)×(x−1,x+1)

g2

g(t=−1)=0

.
∑

x∈2Z
(exp(−|x|) + exp(−|x− h|)) sup

(−1,0)×(x−1,x+1)

[g]2α,(−1,0)×(x−1,x+1).

Proof of Corollary 1. We start by defining a modified local Hölder
norm, based on the D(u, r). For R > 0 set

ΓR = ∩[−1, 1]× [−1, 1] ∩
(

R2
Z×RZ

)

. (92)

Then we define the modified Hölder semi-norm

JuKα = sup
R

sup
(t̄,x̄)∈ΓR

1

Rα
D(u(t̄,x̄), R) ,
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where for a space-time point (t̄, x̄) we write u(t̄,x̄)(t, x) = u(t + t̄, x+ x̄) and
the first supremum is taken over all R = 2−N for integer N ≥ 1. We claim
that

[u]α . JuKα . (93)

This claim is established below, but first we proceed to prove Corollary 1
assuming that (93) holds.

To this end, fix α < α′ < 1
2
. From (9) we get for any R ∈ (0, 1) and

1 ≤ σ < ∞
〈

I
( 1

Rα
D(u,R) ≥ σ

)〉

=
〈

I
(

exp
(

( 1

Rα′
D(u,R)

)2(1−ǫ)
)

≥ exp
(

(

σRα−α′)2(1−ǫ)
))〉

≤ exp
(

−
(

σRα−α′)2(1−ǫ)
)〈

exp
(

( 1

Rα′
D(u,R)

)2(1−ǫ)
)〉

(9)

. exp
(

−
(

σRα−α′)2(1−ǫ)
)

. exp
(

− σ2(1−ǫ)

C
− 1

C
R2(1−ǫ)(α−α′)

)

, (94)

for a suitable constant C depending only on ǫ. In the third line we have used
Chebyshev’s inequality. By translation invariance the same bounds holds if
u is replaced by u(t̄,x̄) for any space-time point (t̄, x̄). Therefore, we get

〈

I
(

JuKα ≥ σ
)

〉

≤
∑

R

∑

(t̄,x̄)∈ΛR

〈

I
( 1

Rα
D(u(t̄,x̄), R) ≥ σ

)〉

(94),(92)

. exp
(

− σ2(1−ǫ)

C

)

∑

R

R−3 exp
(

− 1

C
R2(1−ǫ)(α−α′)

)

. exp
(

− σ2(1−ǫ)

C

)

.

This fast decay of the tails of the distribution of the JuKα implies the desired
integrability property.

It remains to establish the bound (93). We rely on Campanato’s characteri-
zation of Hölder spaces [9, Theorem 5.5] which in our current context states
that [u]α is controlled by

sup
r< 1

2

sup
(t0,x0)∈[−1,1]×[−1,1]

1

rα

(

−
∫ 0

−r2
−
∫ r

−r

(

u(t0,x0) −−
∫ 0

−r2
−
∫ r

−r

u(t0,x0)
)2) 1

2

. (95)
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To see that JuKα controls this norm, we observe that for r > 0 satisfying
2−N−2 < r ≤ 2−N−1 any arbitrary (t0, x0) ∈ [−1, 1] × [−1, 1] can be well
approximated in Λ2−N , in the sense that there exists (t̄, x̄) ∈ Λ2−N satisfying
|x0 − x̄| ≤ 2−(N+1) and |t0 − t̄| ≤ 2−2(N+1). Then we get, for R = 2−N using
the definition of ηR

1

r2α
−
∫ 0

−r2
−
∫ r

−r

(

u(t0,x0) −−
∫ 0

−r2
−
∫ r

−r

u(t0,x0)dxdt
)2

dxdt

.
1

R2α
−
∫ 0

−R2

∫

(

ηRu
(t̄,x̄) −−

∫ 0

−r2
−
∫ r

−r

u(t0,x0)dxdt
)2

dxdt

.
1

R2α
D(u(t̄,x̄), R)2

+
1

R2α

(

−
∫ 0

−r2
−
∫ r

−r

(

u(t0,x0) −−
∫ 0

−R2

∫

ηRu
(t̄,x̄)dxdt

)

dxdt
)2

.
1

R2α
D(u(t̄,x̄), R)2 .

Therefore, we can conclude that JuKα controls the Campanato norm defined
in (95) and the proof of (93) (and therefore the proof of Corollary 1) is
complete.
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