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Abstract

We consider the thresholding scheme, a time discretization for mean curvature flow in-

troduced by Merriman, Bence and Osher. We prove a convergence result in the multi-phase

case. The result establishes convergence towards a weak formulation of mean curvature flow

in the BV-framework of sets of finite perimeter. The proof is based on the interpretation

of the thresholding scheme as a minimizing movement scheme by Esedoglu et. al.. This

interpretation means that the thresholding scheme preserves the structure of (multi-phase)

mean curvature flow as a gradient flow w. r. t. the total interfacial energy. More precisely,

the thresholding scheme is a minimizing movement scheme for an energy functional that Γ-

converges to the total interfacial energy. In this sense, our proof is similar to the convergence

results of Almgren, Taylor and Wang and Luckhaus and Sturzenhecker, which establish con-

vergence of a more academic minimizing movement scheme. Like the one of Luckhaus and

Sturzenhecker, ours is a conditional convergence result, which means that we have to assume

that the time-integrated energy of the approximation converges to the time-integrated energy

of the limit. This is a natural assumption, which however is not ensured by the compactness

coming from the basic estimates.
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1 Introduction

1.1 Context

The thresholding scheme, a time discretization for mean curvature flow introduced by Merri-

man, Bence and Osher [24], has because of its conceptual and practical simplicity become a

very popular scheme, see Algorithm 1 for its definition in a more general context. It has a

natural extension from the two-phase case to the multi-phase case with triple junctions in lo-

cal equilibrium, well-known in case for equal surface tensions since some time [25]. Multi-phase

mean-curvature flow models the slow relaxation of grain boundaries in poly-crystals (called grain

growth), where each grain corresponds to a phase. Elsey, Esedoglu and Smereka have shown

that (a modification of) the thresholding scheme is practical in handling a numbers of grains

over time intervals sufficiently large to extract significant statistics of the coarsening (also called

aging) of the grain configuration [10, 11, 12]. In grain growth, the surface tension (and the mo-

bility) of a grain boundary is both dependent on the misorientation between the crystal lattice

of the two adjacent grains and on the orientation of its normal. In other words, the surface

tension σij of an interface is indexed by the pair (i, j) of phases it separates, and is anisotropic.

Esedoglu and the second author have shown in [13] the thresholding scheme can be extended to

handle the first extension in a very general way, including in particular the most popular Ansatz

for a misorientation-dependent grain boundary energy [31]. How to handle general anisotropies

in the framework of the thresholding scheme, even in case of two phases, seems not yet to be

completely settled, see however [5] and [18]. — Hence in this work, we will focus on the isotropic

case, ignore mobilities, but make the attempt to be as general as [13] when it comes to the de-

pendence of σij on the pair (i, j). However, in this first version of the paper, the main result,

Theorem 1.3, will be limited by the result in Section 4, where we restrict ourselves to just three

phases, and thus three types of interfaces, of equal interfacial energy.

In the two-phase case, the convergence of the thresholding scheme is well-understood: Two-

phase mean curvature flow satisfies a geometric comparison principle, and it is easy to see that

the thresholding scheme preserves this structure. Partial differential equations and geometric

motions that allow for a comparison principle can typically be even characterized by comparison

with very simple solutions, which opens the way for a definition of a very robust notion of

weak solutions, namely what bears the somewhat misleading name of viscosity solutions. If

one allows for what the experts know as fattening, two-phase mean-curvature flow is well-posed

in this framework [15]. Barles and Georgelin [4] and Evans [14] proved independently that the

thresholding scheme converges to mean-curvature flow in this sense. — Hence the main novelty of

this work is a (conditional) convergence result in the multi-phase case; where clearly a geometric

comparison principle is absent. However, the result has also some interest in the two-phase

case, since it establishes convergence even in situations where the viscosity solution features
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fattening. Together with Drew Swartz [20], the first author uses similar arguments to treat

another version of mean curvature flow that does not allow for a comparison principle, namely

volume-preserving (two-phase) mean curvature flow. They prove (conditioned) convergence of

a scheme introduced by Ruuth and Wetton in [33]. We also draw the reader’s attention to the

recent work of Mugnai, Seis and Spadaro [30], where they prove a (conditional) convergence

result as in [22] of a modification of the scheme in [2, 22] to volume-preserving mean curvature

flow. Note that due to the only conditional convergence, our result does not provide a long-time

existence result for (weak solutions of) multi-phase mean curvature flow. Short-time existence

results of smooth solutions go back to the work of Bronsard and Reitich [7]. Mantegazza et.

al. [23] and Schnürer et. al.[36] were able to construct long-time solutions close to a self-similar

singularity.

For the present work, the structural substitute for the comparison principle is the gradient

flow structure. Folklore says that mean curvature flow, also in its multi-phase version, is the

gradient flow of the total interfacial energy. It is by now well-appreciated that the gradient

flow structure also requires fixing a Riemannian structure, that is, an inner product on the

tangent space, which here is given by the space of normal velocities. Mean curvature flow is

then the gradient flow with respect to the L2-inner product, in case of grain growth weighted

by grain-boundary-dependent and anisotropic mobilities. Loosely speaking, Brakke’s existence

proof in the framework of varifolds [6] is based on this structure in the sense that the solution

monitors weighted versions of the interfacial energy. And so does Ilmanen’s convergence proof

of the Allen-Cahn equation, a diffuse interface approximation of computational relevance in the

world of phase-field models, to mean curvature flow [17]. It was only discovered recently that

the thresholding algorithm preserves also this gradient flow structure [13], which in that paper

was taken as a guiding principle to extend the scheme to surface tensions σij and mobilities that

depend on the phase pair (i, j). — In this paper, we take the gradient flow structure, which we

make more precise in the following paragraphs, as a guiding principle for the convergence proof.

On the abstract level, every gradient flow has a natural discretization in time, which comes

in form of a sequence of variational problems: The configuration Σk at time step k is obtained

by minimizing 1
2dist2(Σ,Σk−1) + hE(Σ), where Σk−1 is the configuration at the preceding time

step, h is the time-step size and dist denotes the induced distance on the configuration space

endowed with the Riemannian structure. In the Euclidean case, the Euler-Lagrange equation (i.

e. the first variation) of this variational problem yields the implicit (or backwards) Euler scheme.

This variational scheme has been named “minimizing movement scheme” by De Giorgi [9], and

has recently gained popularity because it allows to interpret diffusion equations as gradient flows

of an entropy functional w. r. t. the Wasserstein metric ([19], see [3] for the abstract framework)

– an otherwise unrelated problem. However, the formal Riemannian structure in case of mean

curvature flow is completely degenerate: dist2(Σ, Σ̃) as defined as the infimal energy of curves

in configuration space that connect Σ to Σ̃ vanishes identically, cf. [26].

Hence when formulating a minimizing movement scheme in case of mean curvature flow, one

has to come up with a proxy for dist2(Σ, Σ̃). This has been independently achieved by Almgren,

Taylor and Wang [2] on the one side and Luckhaus and Sturzenhecker [22] on the other side of
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the Atlantic. Σ = ∂Ω and Σ̃ = ∂Ω̃, 2
∫

Ω4Ω̃ d(x,Σ)dx is one possible substitute for dist2(Σ, Σ̃) in

the minimizing movement scheme, where d(x,Σ) denotes the unsigned distance of the point x to

the surface Σ — it is easy to see that to leading order in the proximity of Ω̃ to Ω, this expression

behaves as the metric tensor
∫

Σ V
2dx, where V is the normal velocity leading from Ω to Ω̃ in

one unit time. Their work makes this point by proving that this minimizing movement scheme

(which is completely academic from a computational point of view) converges to mean curvature

flow. To be more precise, they consider a time-discrete solution {Ωk}k of the minimizing move-

ment scheme, interpolated as a piecewise constant function Ωh in time and assume that for a

subsequence h ↓ 0, the time-dependent sets Ωh converge to Ω in a stronger sense than the given

compactness provides. Almgren, Taylor and Wang assume that Σh(t) converges to Σ(t) in the

Hausdorff distance and show that Σ solves the mean curvature flow equation in the above men-

tioned viscosity sense. The argument was later substantially simplified by Chambolle and Novaga

in [8]. Luckhaus and Sturzenhecker start from a weaker convergence assumption than the one in

[2]: They assume that for the finite time horizon T under consideration,
∫ T

0 |Σ
h(t)|dt converges

to
∫ T

0 |Σ(t)|dt. Then they show that Ω evolves according to a weak formulation of mean curva-

ture flow, using a distributional formulation of mean curvature that is available for sets of finite

perimeter, see Definition 1.1 for the case multi-phase case of this formulation. Those are both

only conditional convergence results: While the natural estimates coming from the minimizing

movement scheme, namely the uniform boundedness of supk |Σk| and
∑

k 2
∫

Ωk4Ωk+1 d(x,Σk)dx,

are enough to ensure
∫ T

0 |Ω
h(t)4Ω(t)|dt and

∫ T
0 |Σ(t)|dt ≤ lim inf

∫ T
0 |Σ

h(t)|dt, they are not suf-

ficient to yield lim sup
∫ T

0 |Σ
h(t)|dt ≤

∫ T
0 |Σ(t)|dt or even the convergence of Σh(t) to Σ(t) in the

Hausdorff distance. — Our result will be a conditional convergence result very much in the same

sense as the one in [22] but it turns out that our convergence result for the thresholding scheme

requires no regularity theory for (almost) minimal surfaces, in contrast to the one of [22].

Following [13], we now explain in which sense the thresholding scheme may be considered as

a minimizing movement scheme for mean curvature flow. Each step in Algorithm 1 is equivalent

to minimizing a functional of the form Eh(χ)−Eh(χ− χn−1), where the functional Eh, defined

below in (3) is an approximation to the total interfacial energy. It is a little more subtle to

see that the second term, −Eh(χn − χn−1), is comparable to the metric tensor
∫

Σ V
2dx. The

Γ-convergence of functionals of the type (3) to the area functional has a long history: For the

two-phase case, cf. Alberti and Bellettini [1] and Miranda et. al. [27]. The multi-phase case,

also for arbitrary surface tensions was investigated by Esedoglu and the second author in [13].

Incidentally, it is easy to see that Γ-convergence of the energy functionals is not sufficient for

the convergence of the corresponding gradient flows; Sandier and Serfaty [34] have identified

sufficient conditions on both the functional and the metric tensor for this to be true.

Identically, the approach of Saye and Sethian [35] for multi-phase evolutions can also be seen

as coming from the gradient flow structure when applied to N -phase mean curvature flow. More

precisely, it can be understood as a time splitting of an L2-gradient flow with an additional

phase whose volume is strongly penalized: The first step is (N + 1)-phase gradient flow w. r.

t. the total interfacial energy and the second step is (N + 1)-gradient flow w. r. t. the volume

penalization (so geometrical optics leading to the Voronoi construction.
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1.2 Informal summary of the proof

We now give a summary of the main steps and ideas of the convergence proof. In Section

2, we draw consequences from the basic estimate (9) in a minimizing movement scheme, like

compactness, Proposition 2.4, coming from a uniform (integrated) modulus of continuity in

space, Lemma 2.5, and in time, Lemma 2.6, which we prove for arbitrary surface tensions and

any number of phases. We also draw the first consequence from the strengthened convergence (8)

in the case of equal surface tensions in Lemma 2.10. We strongly advise the reader to familiarize

him- or herself with the argument for the modulus of continuity in time, Lemma 2.6, since it is

there that the mesoscopic time scale
√
h appears for the first time in a simple context before

being used in Section 4 in a more complex context. In the same vein, the fudge factor α in the

mesoscopic time scale α
√
h, which will be crucial in Section 4, will first be introduced and used

in the simple context when estimating the normal velocity V of the limit in Lemma 2.10.

Starting from Section 3, we also use the Euler-Lagrange equation (31) of the minimizing

movement scheme. By Euler-Lagrange equation we understand the first variation w. r. t. the

independent variables, as generated by a test vector field ξ. In Section 3, we pass to the limit in

the energetic part of the first variation, recovering the mean curvature H via the term
∫

ΣH ξ ·ν =∫
Σ∇·ξ−ν ·∇ξ ν. This amounts to show that under our assumption of strengthened convergence

(8), the Γ-convergence of the functionals can be upgraded to a distributional convergence of

their first variations, cf. Proposition 3.1. Although Proposition 3.1 is formulated for equal

surface tensions, the arguments in this section are given for arbitrary surface tensions. It is a

classical result credited to Reshetnyak [32] that under the strengthened convergence of sets of

finite perimeter, the measure-theoretic normals and thus the distributional expression for mean

curvature also converge. The fact that this convergence of the first variation may also hold when

combined with a diffuse interface approximation is known for instance in case of the Ginzburg-

Landau approximation of the area functional (also known by the names of Modica and Mortola,

who established this Γ-convergence [28, 29]), see [21]. In our case the convergence of the first

variations relies on a localization of the ingredients for the Γ-convergence worked out in [13],

like monotonicity of the functional in h.

Section 4 constitutes the central and, as we believe, most innovative piece of the paper;

we pass to the limit in the dissipation/metric part of the first variation, recovering the normal

velocity V via the term
∫

Σ V ξ · ν. Here, we restrict ourselves to the case of three phases and

equal surface tensions. In fact, we think of the test-field ξ as localizing this expression in time

and space, and recover the desired limiting expression only up to an error that measures how well

the limiting configuration can be approximated by a configuration with only two phases and a

flat interface in the space-time patch under consideration; this is measured both in terms of area

(leading to a multi-phase excess in the language of the regularity theory of minimal surfaces)

and volume, see Proposition 4.1. The main difficulty of recovering the metric term
∫

Σ V ξ · ν
in comparison to recovering the distributional form

∫
Σ∇ · ξ − ν · ∇ξ ν of the energetic term is

that one has to recover both the normal velocity V , which is distributionally characterized by

∂tχ − V |∇χ| = 0 on the level of the characteristic function χ, and the (spatial) normal ν. In

short: one has to pass to the limit in a product. More precisely, the main difficulty is that there
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is no good bound on the discrete normal velocity V at hand on the level of the microscopic time

scale h; only on the level of the above-mentioned mesoscopic time scale
√
h, such an estimate is

available. This comes from the fact that the basic estimate yields control of the time derivative

of the characteristic function χ only when mollified on the spatial scale
√
h in u = Gh ∗ χ.

The main technical ingredient to overcome this lack of control in Proposition 4.1: If one of the

two (spatial) functions u, ũ is not too far from being strictly monotone in a given direction (a

consequence of the control of the tilt excess, see Lemma 4.4), then the spatial L1-difference

between the level sets χ = {u > 1
2} and χ̃ = {ũ > 1

2} is controlled by the squared L2-difference

between u and ũ.

In Section 5, we combine the results of the previous two sections yielding the weak formulation

of V = H on some space-time patch up to an error expressed in terms of the above mention

(multi-phase) tilt excess of the limit on that patch. Complete localization in time and partition

of unity in space allows us to assemble this to obtain V = H globally, up to an error expressed

by the time integral of the sum of the tilt excess over the spatial patches of finite overlap. De

Giorgi’s structure theorem for sets of finite perimeter (cf. Theorem 4.4 in [16]), adapted to a

multi-phase situation but just used for a fixed time slice, implies that the error expression can

be made arbitrarily small by sending the length scale of the spatial patches to zero.

1.3 Notation

We denote by

Gh(z) :=
1

(2πh)d/2
exp

(
−|z|

2

2h

)
the Gaussian kernel of variance h. Note that G2t(z) is the fundamental solution to the heat

equation and thus

∂hG−
1

2
∆G = 0 in (0,∞)× Rd,

G = δ0 for h = 0.

We recall some basic properties, such as the normalization, non-negativity and boundedness and

the factorization property:∫
Rd

Gh dz = 1, 0 ≤ Gh ≤ Ch−d/2, ∇Gh(z) = − z
h
Gh(z), G(z) = G1(z1)Gd−1(z′),

where G1 denotes the 1-dimensional and Gd−1 the (d − 1)-dimensional Gaussian kernel; let us

also mention the semi-group property

Gs+t = Gt ∗Gt.

Throughout the paper, we will work on the flat torus [0,Λ)d. The thresholding scheme for

multiple phases, introduced in [13], for arbitrary surface tensions σij and mobilities µij = 1/σij
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is the following.

Algorithm 1. Given the partition Ωn−1
1 , . . . ,Ωn−1

P of [0,Λ)d at time t = (n − 1)h, obtain the

new partition Ωn
1 , . . . ,Ω

n
P at time t = nh by:

1. Convolution step:

φi := Gh ∗

 P∑
j=1

σij1Ωn−1
j

 . (1)

2. Thresholding step:

Ωn
i :=

{
x ∈ [0,Λ)d : φi(x) < φj(x) for all j 6= i

}
. (2)

We will denote the characteristic functions of the phases Ωn
i at the nth time step by χni and

interpolate these functions piecewise constantly in time, i.e.

χhi (t) := χni = 1Ωni
for t ∈ [nh, (n+ 1)h).

As in [13], we define the approximate energies

Eh(χ) :=
1√
h

∑
i,j

σij

∫
χiGh ∗ χj dx (3)

for admissible measurable functions:

χ = (χ1, . . . , χP ) : [0,Λ)d → {0, 1}P s.t.
P∑
i=1

χi = 1 a.e.. (4)

Here and in the sequel
∫
dx stands short for

∫
[0,Λ)d dx, whereas

∫
dz stands short for

∫
Rd dz. The

minimal assumption on the matrix of surface tensions {σij}, next to the obvious

σij = σji ≥ σmin > 0 if i 6= j, σii = 0

is the following triangle inequality

σij ≤ σik + σkj .

It is known that (e.g. [13]), under the conditions above, these energies Γ-converge w.r.t. the

L1-topology to the optimal partition energy given by

E(χ) := c0

∑
i,j

σij
1

2

(∫
|∇χi|+

∫
|∇χj | −

∫
|∇(χi + χj)|

)
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for admissible χ:

χ = (χ1, . . . , χP ) : [0,Λ)d → {0, 1}P ∈ BV s.t.
P∑
i=1

χi = 1 a.e.

The constant c0 is given by

c0 := ωd−1

∞∫
0

G(r)rddr =
1√
2π
.

We recall the minimizing movement interpretation from [13] which is easy to check. The combi-

nation of convolution and thesholding step in Algorithm 1 is equivalent to solving the following

minimization problem

χn = arg min
χ

{
Eh(χ)− Eh(χ− χn−1)

}
, (5)

where χ runs over (4). The proof will mostly be based on the interpretation (5) and only once

uses the original form (1) and (2) in Lemma 4.2. Following [13], we will additionally assume

that σ is conditionally negative-definite, i.e.

σ ≤ −σ on (1, . . . , 1)⊥,

where σ > 0 is a constant. That means, that σ is negative as a bilinear form on (1, . . . , 1)⊥. This

ensures that −Eh(χ − χn−1) in (5) is non-negative and penalizes the distance to the previous

step.

In the following we write A . B to express that A ≤ CB for some generic constant C <∞ that

only depends on the dimension d and later on also on the total number of phases P and on the

constants σmin and σ.

1.4 Main result

For the definition of our weak notion of mean curvature flow, we assume that all surface tensions

are equal since our main result is also stated in this context.

Definition 1.1 (Motion by mean curvature). Fix some finite time horizon T < ∞ and initial

data χ0 : [0,Λ)d → {0, 1}P with E0 := E(χ0) <∞. We say that the network

χ = (χ1, · · · , χP ) : (0, T )× [0,Λ)d → {0, 1}P

with
∑

i χi = 1 a.e. and χ(t) ∈ BV ([0,Λ)d, {0, 1}P ) for a.e. t moves by mean curvature if there

exist functions Vi : (0, T )× [0,Λ)d → R which satisfy

P∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi + 2 ξ · νi Vi) |∇χi| dt = 0 (6)
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for all ξ ∈ C∞0 ((0, T ) × [0,Λ)d,Rd) and which are normal velocities in the sense that for all

ζ ∈ C∞([0, T ]× [0,Λ)d) with ζ(T ) = 0 and all i ∈ {1, . . . , P}

T∫
0

∫
∂tζ χi dx dt+

∫
ζ(0)χ0

i dx = −
T∫

0

∫
ζVi |∇χi| dt. (7)

Note that (7) also encodes the inital condition.

Remark 1.2. To prove the convergence of the scheme, we will need the following convergence

assumption:

T∫
0

Eh(χh) dt→
T∫

0

E(χ) dt. (8)

This assumption makes sure that there is no loss of area in the limit h→ 0.

Theorem 1.3. Let P = 3 and σij = 1− δij, T <∞ and χ0 be given with E(χ0) <∞. Then the

approximate solutions χh obtained by Algorithm 1 converge to some χ : (0, T )×[0,Λ)d → {0, 1}P .

Given (8), χ moves by mean curvature in the sense of Definition 1.1 with inital data χ0.

Remark 1.4. Our proof uses the following three different time scales:

1. The macroscopic time scale, T <∞, given by the finite time horizon,

2. the mesoscopic time scale, τ = α
√
h ∼
√
h > 0 and

3. the microscopic time scale, h > 0, coming from the time discretization.

The mesoscopic time scale arises naturally from the scheme: Due to the parabolic scaling, the

microscopic time scale h corresponds to the length scale
√
h as can be seen from the kernel Gh.

Since for a smooth evolution, the normal velocity V is of order 1, this prompts the mesoscopic

time scale
√
h.

The parameter α will be kept fixed most of the time until the very end, where we send α→ 0.

Therefore, it is natural to think of α ∼ 1, but small.

These three time scales go hand in hand with the following numbers, which we will for simplicity

assume to be natural numbers throughout the proof:

1. N - the total number of microscopic time steps in a macroscopic time interval (0, T ),

2. K - the number of microscopic time steps in a mesoscopic time interval (0, τ) and

3. L - the number of mesoscopic time intervals in a macroscopic time interval.

The following simple identities linking these different parameters will be used frequently:

T = Nh = Lτ, τ = Kh, L =
N

K
=
T

τ
.
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2 Compactness

Lemma 2.1 (Energy-dissipation estimate). The approximate solutions satisfy

Eh(χN )−
N∑
n=1

Eh(χn − χn−1) ≤ E0. (9)

√
−Eh defines a norm on the process space {ω : [0,Λ)d → RP |

∑
i ωi = 0}. In particular, the

algorithm dissipates energy.

Proof. By the minimality condition (5), we have in particular

Eh(χn)− Eh(χn − χn−1) ≤ Eh(χn−1)

for each n = 1, . . . , N . Iterating this estimate yields (9) with Eh(χ0) instead of E0 = E(χ0). (9)

follows from the short argument after this proof.

We claim that the pairing − 1√
h

∫
ω ·σ (Gh ∗ ω̃) dx defines a scalar product on the process space.

It is bilinear and symmetric thanks to the symmetry of σ and Gh. Since σ is conditionally

negative-definite,

− 1√
h

∫
ω · σ (Gh ∗ ω) dx = − 1√

h

∫ (
Gh/2 ∗ ω

)
· σ
(
Gh/2 ∗ ω

)
dx ≥ σ√

h
‖Gh/2 ∗ ω‖2L2 ≥ 0.

Furthermore, we have equality only if ω ≡ 0. Thus,
√
−Eh is the induced norm on the process

space.

Let us mention two results The following monotonicity statement is a key tool for the Γ-

convergence in [13] and will be used frequently in our proof. We will also refine this statement

in Section 3.

Lemma 2.2 (Approximate monotonicity). For all 0 < h ≤ h0 and any admissible χ, we have

Eh(χ) ≥
( √

h0√
h0 +

√
h

)d+1

Eh0(χ). (10)

Another important tool for the Γ-convergence in [13] is the following consistency, or pointwise

convergence of the functionals Eh to E, which we will also refine in Section 3.

Lemma 2.3 (Consistency). For any admissible χ ∈ BV , we have

lim
h→0

Eh(χ) = E(χ). (11)

Taking the limit h→ 0 in (10) with χ = χ0 and using (11), we see that that the interfacial

energy E0 of the initial data χ(0) ≡ χ0 bounds the approximate energy of the initial data:

E0 := E(χ(0)) ≥ Eh(χ0).
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Proposition 2.4 (Compactness). There exists a sequence h ↘ 0 and an admissible χ ∈
L1((0, T )× [0,Λ)d,RP ) such that

χh −→ χ in L1((0, T )× [0,Λ)d). (12)

Moreover,

χh −→ χ a.e. in (0, T )× [0,Λ)d (13)

and χ(t) ∈ BV ([0,Λ)d, {0, 1}P ) for a.e. t ∈ (0, T ).

Lemma 2.5 (Almost BV in space). The approximate solutions satisfy

T∫
0

∫ ∣∣∣χh(x+ δe, t)− χh(x, t)
∣∣∣ dx dt . (1 + T )E0

(
δ +
√
h
)

(14)

for each δ > 0 and e ∈ Sd−1.

Proof of Lemma 2.5. Step 1: We have

T∫
0

∫ ∣∣∣∇Gh ∗ χh∣∣∣ dx dt . (1 + T )E0. (15)

Indeed, for any characteristic function χ : [0,Λ)d → {0, 1} we have

∇(Gh ∗ χ)(x) = −
∫
∇Gh(z) (χ(x+ z)− χ(x)) dz.

Therefore, since |∇Gh(z)| . 1√
h
|G2h(z)|,

∫
|∇(Gh ∗ χ)| dx .

1√
h

∫
G2h(z)

∫
|χ(x+ z)− χ(x)| dx dz.

By χ ∈ {0, 1}, we have |χ(x+ z)− χ(x)| = χ(x) (1− χ) (x + z) + (1− χ) (x)χ(x + z) and thus

by translation invariance:∫
|∇Gh ∗ χ| dx .

1√
h

∫
(1− χ) G2h ∗ χdx.

Applying this on χhi , summing over i = 1, . . . , P , using χhi = 1 −
∑

j 6=i χ
h
j and σij ≥ σmin > 0

for i 6= j we obtain ∫ ∣∣∣∇Gh ∗ χh(t)
∣∣∣ dx . E2h(χh) . Eh(χh),

where we used the approximate monotonicity of Eh, cf. (10) in Lemma 2.2. Using the energy-

11



dissipation estimate (9), we have ∫ ∣∣∣∇Gh ∗ χh(t)
∣∣∣ dx . E0.

Integrating in time yields (15).

Step 2: By (15) and Hadamard’s trick, we have on the one hand

T∫
0

∫ ∣∣∣Gh ∗ χh(x+ δe, t)−Gh ∗ χh(x, t)
∣∣∣ dx dt . (1 + T )E0δ.

Since χ ∈ {0, 1}, we have on the other hand

(χ−Gh ∗ χ)+ = χGh ∗ (1− χ) and (χ−Gh ∗ χ)− = (1− χ)Gh ∗ χ,

which yields ∫
|χ−Gh ∗ χ| dx = 2

∫
(1− χ)Gh ∗ χ. (16)

Using the translation invariance and (16) for the components of χh(x+ δ, t), we have

T∫
0

∫ ∣∣∣χh(x+ δe, t)− χh(x, t)
∣∣∣ dx dt ≤2

T∫
0

∫ ∣∣∣Gh ∗ χh(t)− χh(t)
∣∣∣ dx dt

+

T∫
0

∫ ∣∣∣Gh ∗ χh(x+ δe, t)−Gh ∗ χh(x, t)
∣∣∣ dx dt

. (1 + T )E0

(√
h+ δ

)
.

Lemma 2.6 (Almost BV in time). The approximate solutions satisfy

T∫
τ

∫ ∣∣∣χh(t)− χh(t− τ)
∣∣∣ dx dt . (1 + T )E0

(
τ +
√
h
)

(17)

for every τ > 0.

Proof. In this proof, we make use of the mesoscopic time scale τ , see Remark 1.4 for the notation.

First, we argue that it is enough to prove

T∫
τ

∫ ∣∣∣χh(t)− χh(t− τ)
∣∣∣ dx dt . (1 + T )E0τ (18)

for α ∈ [1, 2]. If α ∈ (0, 1), we can apply (18) twice, once for τ =
√
h and once for τ = (1+α)

√
h

12



and obtain (17). If α > 2, we can iterate (18). Thus, we may assume that α ∈ [1, 2]. We have

T∫
τ

∫ ∣∣∣χh(t)− χh(t− τ)
∣∣∣ dx dt =h

K−1∑
k=0

L∑
l=1

∫ ∣∣∣χKl+k − χK(l−1)+k
∣∣∣ dx

=
1

K

K−1∑
k=0

τ

L∑
l=1

∫ ∣∣∣χKl+k − χK(l−1)+k
∣∣∣ dx.

Thus, it is enough to prove

τ

L∑
l=1

∫ ∣∣∣χKl+k − χK(l−1)+k
∣∣∣ dx . (1 + T )E0

for any k = 0, . . . ,K − 1. By the energy-dissipation estimate (9), we have Eh(χk) ≤ E0 for all

these k’s. Hence we may assume w.l.o.g. that k = 0 and prove only

L∑
l=1

∫ ∣∣∣χKl − χK(l−1)
∣∣∣ dx . (1 + T )E0. (19)

Note that for any two characteristic functions χ, χ̃ we have

|χ− χ̃| =(χ− χ̃)Gh ∗ (χ− χ̃) + (χ− χ̃)(χ− χ̃−Gh ∗ (χ− χ̃))

≤(χ− χ̃)Gh ∗ (χ− χ̃) + |χ−Gh ∗ χ|+ |χ̃−Gh ∗ χ̃| . (20)

Now, we post-process the energy-dissipation estimate (9). Using the triangle inequality for the

norm
√
−Eh on the process space and Jensen’s inequality, we have

−Eh
(
χKl − χK(l−1)

)
≤

 Kl∑
n=K(l−1)+1

(
− Eh

(
χn − χn−1

) ) 1
2

2

≤ K
Kl∑

n=K(l−1)+1

−Eh
(
χn − χn−1

)
.

Using (20) for χKli and χ
K(l−1)
i , and (16) for the second term on the right-hand side, we obtain

L∑
l=1

∫ ∣∣∣χKli − χK(l−1)
i

∣∣∣ dx .
√
hK

N∑
n=1

−Eh
(
χn − χn−1

)
+ Lmax

n

∫
(1− χni ) Gh ∗ χni dx.

Since (1− χni ) =
∑

j 6=i χ
n
j a.e. and σij ≥ σmin > 0 for all i 6= j, the energy-dissipation estimate

(9) yields

L∑
l=1

∫ ∣∣∣χKl − χK(l−1)
∣∣∣ dx . αE0 +

1

α
TE0 . (1 + T )E0,

which establishes (19) ant thus concludes the proof.

Proof of Proposition (2.4). The proof is an adaptation of the proof of the Riesz-Kolmogorov

13



Lp-compactness theorem. By Lemma 2.5 and Lemma 2.6, we have

T∫
0

∫ ∣∣∣χh(x+ δe, t+ τ)− χh(t)
∣∣∣ dx dt . (1 + T )E0

(
δ + τ +

√
h
)

(21)

for any δ, τ > 0 and e ∈ Sd−1. For δ > 0 consider the mollifier ϕδ given by the scaling

ϕδ(x) := 1
δd+1ϕ(xδ ,

t
δ ) and ϕ ∈ C∞0 ((−1, 0) × B1) such that 0 ≤ ϕ ≤ 1 and

∫ 0
−1

∫
B1
ϕ = 1. We

have the estimates ∣∣∣ϕδ ∗ χh∣∣∣ ≤ 1 and
∣∣∣∇(ϕδ ∗ χh)

∣∣∣ . 1

δ
.

Hence, on the one hand, the mollified functions are equicontinuous and by Arzelà-Ascoli pre-

compact in C0([0, T ]× [0,Λ)d): For given ε, δ > 0 there exist functions ui ∈ C0([0, T ]× [0,Λ)d),

i = 1, . . . , n(ε, δ) such that

{
ϕδ ∗ χh : h > 0

}
⊂

n(ε,δ)⋃
i=1

Bε(ui),

where the balls Bε(ui) are given w.r.t. the C0-norm. On the other hand, for any function χ we

have

T∫
0

∫
|ϕδ ∗ χ− χ| dx dt ≤

∫
ϕδ(z, s)

∫
|χ(x− z, t− s)− χ(x, t)| d(x, t) d(z, s)

≤ sup
(z,s)∈suppϕδ

T∫
0

∫
|χ(x− z, t− s)− χ(x, t)| dx dt.

Using this for χh and plugging in (21) yields

T∫
0

∫ ∣∣∣ϕδ ∗ χh − χh∣∣∣ dx dt . (1 + T )E0

(
δ +
√
h
)
.

Given ρ > 0, fix δ, h0 > 0 such that

T∫
0

∫ ∣∣∣ϕδ ∗ χh − χh∣∣∣ dx dt ≤ ρ

2
for all h ∈ (0, h0).

Then set ε := ρ
TLd

and find u1, . . . , un from above. Note that only finitely many of the elements

in the sequence {h} are greater than h0. Therefore,

{χh}h ⊂
n⋃
i=1

Bρ(ui) ∪ {χh}h>h0 ⊂
n⋃
i=1

Bρ(ui) ∪
⋃
h>h0

Bρ(χ
h)

is a finite covering of balls (w.r.t. L1-norm) of given radius ρ > 0. Therefore, {χh}h is precompact
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and hence relatively compact in L1. Hence we can extract a converging subsequence. After

passing to another subsequence, we can w.l.o.g. assume that we also have pointwise convergence

almost everywhere in (0, T )× [0,Λ)d.

Lemma 2.7 (C1/2-Bounds). We have uniform Hölder-type bounds for the approximate solutions.

I.e. for each pair s, t ∈ [0, T ] with |s− t| ≥ h we have∫ ∣∣∣χh(s)− χh(t)
∣∣∣ dx . E0|s− t|1/2. (22)

In particular, χ ∈ C1/2([0, T ], L1([0,Λ)d)): For almost every s, t ∈ (0, T ), we have∫
|χ(s)− χ(t)| dx . E0|s− t|1/2. (23)

Proof. First note that (23) follows directly from (22) since we also have χh(t) → χ(t) in L1

for almost every t. The argument for (22) comes in two steps. Let s > t, τ := s − t and

t ∈ [nh, (n+ 1)h).

Step 1: Let τ be a multiple of h. We may assume w.l.o.g. that τ = m2h for some m ∈ N. As in

the proof of Lemma 2.6, we derive∫ ∣∣χn+m − χn
∣∣ dx . m

√
h

m∑
k=1

−Eh(χn+k − χn+k−1) +
√
hmax

t
Eh(χh(t)).

As before, we sum these estimates:

∫ ∣∣∣χn+m2 − χn
∣∣∣ dx ≤m−1∑

l=0

∫ ∣∣∣χn+m(l+1) − χn+ml
∣∣∣ dx

.m
√
h

n+m2∑
n′=n

−Eh(χn
′ − χn′−1) +m

√
hmax

t
Eh(χh(t))

.m
√
hE0 = E0

√
τ .

Step 2: Let τ ≥ h be arbitrary. Take m ∈ N such that s ∈ [(m+ n)h, (m+ n+ 1)h). From Step

2 we obtain the bound in terms of mh instead of τ . If τ ≥ mh, we are done. If h ≤ τ < mh,

then m ≥ 2 and thus mh ≤ m
m−1τ . τ .

For the following estimates, it is useful to define certain measures which are induced by the

metric term.

Definition 2.8 (Dissipation measure). For h > 0, we define the approximate dissipation mea-

sures (associated to the approximate solution χh) µh on [0, T ]× [0,Λ)d by

∫∫
ζ dµh :=

N∑
n=1

1√
h

∫
ζn

(∣∣Gh/2 ∗ (χn − χn−1
)∣∣2 +

∣∣Gh ∗ (χn − χn−1
)∣∣2) dx,

15



where ζ ∈ C∞0 ((0, T )× [0,Λ)d) and ζn is the time average of ζ on the interval [nh, (n+ 1)h). By

the monotonicity of h 7→ ‖Gh ∗ u‖L2 and the energy-dissipation estimate (9), we have

µh([0, T ]× [0,Λ)d) . E0

and µh ⇀ µ after passage to a further subsequence for some finite, non-negative measure µ on

[0, T ]× [0,Λ)d with µ([0, T ]× [0,Λ)d) . E0. We call µ the dissipation measure.

Remark 2.9 (Implications of convergence assumption). The convergence assumption (8) en-

sures that for any i ∈ {1, . . . , P} and ζ ∈ C∞([0, T ]× [0,Λ)d),

T∫
0

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx dt→ 2c0

T∫
0

∫
ζ |∇χi| dt, (24)

as h→ 0.

Proof. Step 1: It is enough to prove that χh → χ in L1([0,Λ)d,RP ) and Eh(χh)→ E(χ) imply

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx→ 2c0

∫
ζ |∇χi| , as h→ 0. (25)

for any i ∈ {1, . . . , P} and ζ ∈ C∞([0,Λ)d). Indeed, this already implies the integrated version

(24). For the argument, we first prove that indeed

Eh(χh)→ E(χ) for a.e. t. (26)

Writing
∣∣Eh(χh)−E(χ)

∣∣ = 2
(
E(χ)−Eh(χh)

)
+

+Eh(χh)−E(χ), and using the lim inf-inequality

of the Γ-convergence of Eh to E, we have

lim
h→0

(
E(χ)− Eh(χh)

)
+

= 0 for a.e. t.

By Lebesgue’s dominated convergence and the convergence assumption (8), we have

lim
h→0

T∫
0

∣∣∣Eh(χh)− E(χ)
∣∣∣ dt = 0

and thus (26) after passage to a subsequence. Therefore, we can apply (25) for a.e. t and the

claim follows by Lebesgue’s dominated convergence theorem.

Step 2: Given χh → χ in L1([0,Λ)d,RP ) and Eh(χh)→ E(χ), for any i ∈ {1, . . . , P}, we have

1√
h

∫ (
1− χhi

)
Gh ∗ χhi dx→ c0

∫
|∇χi| , as h→ 0. (27)

Argument: We define the two-phase analogon of the approximate energies

Ẽh(χ̃) :=
1√
h

∫
(1− χ̃)Gh ∗ χ̃ dx,
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for measurable functions χ̃ : [0,Λ)d → {0, 1}. These functionals Γ-converge to

c0

∫
|∇χ̃| .

Thus, using the convergence Eh(χh)→ E(χ) and the lim inf-inequality of the Γ-convergence of

the functionals Ẽh, we obtain a lim sup-inequality:

c0

∫
|∇χi| = E(χ)− c0

∑
j 6=i

∫
|∇χj | ≥ lim

h→0
Eh(χh)−

∑
j 6=i

lim inf
h→0

Ẽh(χhj ) = lim sup
h→0

Ẽh(χhi ).

Step 3: Given χh → χ in L1([0,Λ)d,RP ) and Eh(χh) → E(χ), for any i ∈ {1, . . . , P} and any

ζ ∈ C∞([0,Λ)d), we have (25).

Argument: W.l.o.g. we may assume that 0 ≤ ζ ≤ 1 for this argument. Indeed, by linearity this

is sufficient since every function ζ ∈ C∞([0,Λ)d) can be written as

ζ = αζ̃ + β, α, β ∈ R, ζ̃ ∈ C∞([0,Λ)d), 0 ≤ ζ̃ ≤ 1.

The approximate monotonicity (Lemma 3.4) yields

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx

≥
( √

h0√
h+
√
h0

)d+1
1√
h0

∫
ζ
[(

1− χhi
)
Gh0 ∗ χhi + χhi Gh0 ∗

(
1− χhi

)]
dx

− C‖∇ζ‖∞
√
h0√
h

∫ (
1− χhi

)
Gh ∗ χhi dx

for any 0 < h ≤ h0. Since χh → χ in L2 and by Step 2, we can pass to the limit h → 0 on the

right-hand side:

lim inf
h→0

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx

≥ 1√
h0

∫
ζ [(1− χi)Gh0 ∗ χi + χiGh0 ∗ (1− χi)] dx

− C‖∇ζ‖∞
√
h0

∫
|∇χi|

for all h0 > 0. By Lemma 3.5, we can pass to the limit h0 → 0 and obtain

lim inf
h→0

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx ≥ 2c0

∫
ζ |∇χi| .

Using the same argument for 1 − ζ instead of ζ, linearity of both sides and the convergence in

Step 2, we obtain the inverse bound:

lim sup
h→0

1√
h

∫
ζ
[(

1− χhi
)
Gh ∗ χhi + χhi Gh ∗

(
1− χhi

)]
dx ≤ 2c0

∫
ζ |∇χi| .
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This concludes the proof.

Lemma 2.10. If the convergence assumption (8) holds, the limit χ = limh→0 χ
h has the follow-

ing properties.

(i) ∂tχ is a Radon measure with ∫∫
|∂tχi| . (1 + T )E0

for each i ∈ {1, · · · , P}.

(ii) For each i ∈ {1, · · · , P}, ∂tχi is absolutely continuous w.r.t. |∇χi| dt. In particular, there

exists a density Vi ∈ L1(|∇χi| dt), such that

−
T∫

0

∫
∂tζ χi dx dt =

T∫
0

∫
ζ Vi |∇χi| dt

for all ζ ∈ C∞0 ((0, T )× [0,Λ)d).

(iii) We have a strong L2-bound:

T∫
0

∫
V 2
i |∇χi| dt . E0.

Proof. We make use of the mesoscopic time scale τ , see Remark 1.4 for the notation.

Argument for (i): Let ζ ∈ C∞0 ((0, T )× [0,Λ)d). We have to show that

−
T∫

0

∫
∂tζ χi dx dt . (1 + T )E0 ‖ζ‖∞ .

In this part, we will choose α = 1. Using the notation ∂τζ for the discrete time derivative
1
τ (ζ(t+ τ)− ζ(t)), by the smoothness of ζ,

∂τζ → ∂tζ in L∞((0, T )× [0,Λ)d) as h→ 0.

Since χh → χ in L1((0, T )× [0,Λ)d), the product converges:

T∫
0

∫
∂tζ χi dx dt = lim

h→0

T∫
0

∫
∂τζ χhi dx dt.

Since supp ζ is compact, we have for sufficiently small h

−
T∫

0

∫
∂τζ χhi dx dt =

T∫
0

∫
ζ ∂−τχhi dx dt ≤ ‖ζ‖L∞

T∫
τ

∫ ∣∣∣∂−τχhi ∣∣∣ dx dt . (1 + T )E0 ‖ζ‖L∞
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by Lemma 2.6.

Argument for (ii): First, we prove

−
T∫

0

∫
∂tζ χi dx dt .

1

α

T∫
0

∫
|ζ| |∇χi| dt+ α

∫∫
|ζ| dµ (28)

for any α > 0 and any ζ ∈ C∞0 ((0, T )× [0,Λ)d). Let ζ ∈ C∞0 ((0, T )× [0,Λ)d). By linearity, we

may assume that ζ ≥ 0 if we prove the inequality with absolute values on the left-hand side.

We use the identity from above

−
T∫

0

∫
∂tζ χi dx dt = lim

h→0

T∫
0

∫
ζ ∂−τχhi dx dt.

Setting

ζn :=
1

h

(n+1)h∫
nh

ζ(t) dt,

we have ∣∣∣∣∣∣
T∫

0

∫
ζ ∂−τχhi dx dt

∣∣∣∣∣∣ ≤ 1

K

K∑
k=1

L∑
l=1

∫
ζKl+k

∣∣∣χKl+ki − χK(l−1)+k
i

∣∣∣ dx.
Now fix k ∈ {1, . . . ,K}. For simplicity, we will ignore k at first. Since for any χ ∈ {0, 1},

1√
h

∫
ζ |Gh ∗ χ− χ| dx =

1√
h

∫
ζ [(1− χ)Gh ∗ χ+ χGh ∗ (1− χ)] dx =: Ẽh(χ, ζ)

and as in the proof of Lemma 2.6,∣∣∣∣∫ (ζK(l+1) − ζKl
)

(1− χ)Gh ∗ χdx
∣∣∣∣ ≤ ‖∂tζ‖∞α√h∫ (1− χ)Gh ∗ χdx,

we obtain

L∑
l=1

∫
ζKl

∣∣∣χKli − χK(l−1)
i

∣∣∣ dx .
τ

α

L∑
l=1

Ẽh(χKli , ζKl) +
√
h ‖∂tζ‖∞ τ

L∑
l=1

Eh(χKl)

+α

∫∫
ζ dµh + ‖∇ζ‖∞

√
h

L∑
l=1

∫ ∣∣∣χKl − χK(l−1)
∣∣∣ dx,

where µh denote the approximate dissipation measures in Definition 2.8. The last term comes

from a manipulation of the metric term to obtain the dissipation measures: For any ζ ∈
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C∞([0,Λ)d) and any χ, χ̃ ∈ {0, 1} we have∣∣∣∣∫ ζ
[
Gh/2 ∗ (χ− χ̃)

]2
dx−

∫
ζ (χ− χ̃)Gh ∗ (χ− χ̃) dx

∣∣∣∣
=

∣∣∣∣∫ (ζ [Gh/2 ∗ (χ− χ̃)
]
−Gh/2 ∗ [ζ (χ− χ̃)]

)
Gh/2 ∗ (χ− χ̃) dx

∣∣∣∣
≤
∫
Gh/2(z)

∫
|ζ(x+ z)− ζ(x)| |χ− χ̃| (x+ z)

∣∣Gh/2 ∗ (χ− χ̃)
∣∣ (x) dx dz

. ‖∇ζ‖∞
√
h

∫
|z|√
h
Gh/2(z) dz

∫
|χ− χ̃| dx

. ‖∇ζ‖∞
√
h

∫
|χ− χ̃| dx.

Taking the mean over the k’s and using the energy-dissipation estimate (9) and Lemma 2.6, we

obtain∣∣∣∣∣∣
T∫

0

∫
ζ ∂−τχhi dx dt

∣∣∣∣∣∣ . 1

α

T∫
0

Ẽh(χhi , ζ) dt+ α

∫∫
ζ dµh +

√
h ‖∂tζ‖∞ TE0 +

√
h ‖∇ζ‖∞

1

α
(1 + T )E0.

Passing to the limit h→ 0, (24), which is guaranteed by the convergence assumption (8), implies

(28).

Now let U ⊂ (0, T )× [0,Λ)d be open such that∫∫
U

|∇χi| dt = 0.

If we take ζ ∈ C∞0 (U), the first term on the right-hand side of (28) vanishes. Thus, we have

−
T∫

0

∫
∂tζ χi dx dt . α

∫∫
|ζ| dµ.

Since the left-hand side does not depend on α, we have

−
T∫

0

∫
∂tζ χi dx dt ≤ 0.

Taking the supremum over all ζ ∈ C∞0 (U), we have∫∫
U

|∂tχi| = 0.

Thus, ∂tχi is absolutely continuous w.r.t. |∇χi| dt and the Radon-Nikodym theorem completes

the proof.

Argument for (iii): We refine the estimate in the argument for (ii). Instead of estimating the

right-hand side of (28) and optimizing afterwards, we localize. Starting from (28), we notice
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that we can localize with the test function ζ. Thus, we can post-process the estimate and obtain∣∣∣∣∣∣
T∫

0

∫
Vi ζ |∇χi| dt

∣∣∣∣∣∣ ≤ C
T∫

0

∫
1

|α|
|ζ| |∇χi| dt+ C

∫∫
|α| |ζ| dµ

for any integrable ζ : (0, T )× [0,Λ)d → R, any measurable α : (0, T )× [0,Λ)d → R\{0} and some

constant C which depends only on the dimension. Now choose

ζ = Vi and α =
2C

Vi
,

where we set α := 1 if Vi = 0, in which case all other integrands vanish. Then, the first term on

the right-hand side can be absorbed in the left-hand side and we obtain

T∫
0

∫
V 2
i |∇χi| dt . µ([0, T ]× [0,Λ)d) . E0.

3 Energy Functional and Curvature

It is a classical result by Reshetnyak [32] that the convergence χh → χ in L1 and∫
|∇χh| →

∫
|∇χ| =: E(χ)

imply convergence of the first variation

δE(χ, ξ) =

∫
(∇ · ξ − ν · ∇ξ ν) |∇χ| .

A result by Luckhaus and Modica [21] shows that this may extend to a Γ-convergence situation,

namely in case of the Ginzburg-Landau functional

Eh(u) :=

∫
h |∇u|2 +

1

h

(
1− u2

)2
dx.

We show that this also extends to our Γ-converging functionals Eh. All proofs in this section

are adaptations of the Γ-convergence proof in [13] with some generalizations and minor changes.

Let us first address why the first variation of the approximate energies is of interest in view

of our minimizing movement scheme. We recall (5): the approximate solution χn at time nh

minimizes Eh(χ) − Eh(χ − χn−1) among all χ. The natural variations of such a minimization

problem are inner variations, i.e. variations of the independent variable. Given a vector field

ξ ∈ C∞([0,Λ)d,Rd) and an admissible χ, we define the deformation χs of χ along ξ by the
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distributional equation

∂

∂s
χi,s +∇χi,s · ξ = 0, χi,s

∣∣
s=0

= χi,

which means that the phases are deformed by the flow generated through ξ. The inner variation

δEh of the energy Eh at χ along the vector field ξ is then given by

δEh(χ, ξ) :=
d

ds
Eh(χs)

∣∣
s=0

=
1√
h

∑
i,j

σij

∫
(−∇χi · ξ) Gh ∗ χj + χiGh ∗ (−∇χj · ξ) dx. (29)

For a given admissible χ we define the inner variation of the metric term −Eh(χ− χ) as

−δEh( · − χ)(χ, ξ) :=
d

ds
− Eh(χs − χ)

∣∣
s=0

. (30)

The (chosen and not necessarily unique) minimizer χn in Algorithm 1 therefore satisfies the

Euler-Lagrange equation

δEh(χn, ξ)− δEh( · − χn−1)(χn, ξ) = 0 (31)

for any vector field ξ ∈ C∞([0,Λ)d,Rd).
The goal of this section is to prove the following statement about the convergence of the first

term in the Euler-Lagrange equation. Although the arguments in this section are given for

general surface tensions σ, we state the main result in the easier case of equal surface tensions.

Proposition 3.1. Let {χh}h be a sequence of admissible functions such that

χh −→ χ a.e. in , (32)

χh −→ χ in L1, (33)

T∫
0

Eh(χh) dt −→
T∫

0

E(χ) dt.. (34)

Then, for any ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd), we have

lim
h→0

T∫
0

δEh(χh, ξ) dt = c0

P∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi) |∇χi| dt.

Proof of Proposition 3.1. The proposition is an immediate consequence of Proposition 3.2. In-

deed, according to Step 1 in the proof of Remark 2.9 we have Eh(χh) → E(χ) for a.e. t.

Thus all conditions of Proposition 3.2 are fulfilled. Proposition 3.1 follows then from Lebesgue’s

dominated convergence theorem.

Proposition 3.2. Let {χh}h be a sequence of admissible functions and let χ ∈ BV be admissible
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such that

χh −→ χ a.e., (35)

χh −→ χ in L1, (36)

Eh(χh) −→ E(χ). (37)

Then, for any ξ ∈ C∞0 ([0,Λ)d,Rd), we have

lim
h→0

δEh(χh, ξ) = c0

∑
i,j

σij
1

2

∫
(∇ · ξ − νi · ∇ξ νi) (|∇χi|+ |∇χj | − |∇(χi + χj)|) .

The following first lemma brings the first variation δEh of Eh into a more convenient form,

up to an error vanishing as h→ 0 because of the smoothness of ξ.

Lemma 3.3. Let χ be admissible and ξ ∈ C∞([0,Λ)d,Rd). Setting K(z) := z⊗ z G(z), we have

δEh(χ, ξ) =− 1√
h

∑
i,j

σij

∫
χi∇ξ : Kh ∗ χj dx

+
2√
h

∑
i,j

σij

∫
χi (∇ · ξ)Gh ∗ χj dx+O

(
‖∇2ξ‖∞Eh(χ)

√
h
)
. (38)

Proof. Recall the definition of δEh in (29). Since −∇χ · ξ = −∇ · (χξ) + χ∇ · ξ for functions

χ : [0,Λ)d → R, we can rewrite the integrals:∫
−∇χi · ξ Gh ∗ χj + χiGh ∗ (−∇χj · ξ) dx

=

∫
−∇ · (χiξ)Gh ∗ χj + χi∇ · ξ Gh ∗ χj − χiGh ∗ (∇ · (χjξ)) + χiGh ∗ (χj ∇ · ξ) dx

=

∫
χiξ · ∇Gh ∗ χj − χi∇Gh ∗ (χjξ) + χi∇ · ξ Gh ∗ χj + χiGh ∗ (χj ∇ · ξ) dx.

Hence, using ∇Gh(z) = 1√
h

(∇G)h(z/
√
h), we find

δEh(χ, ξ) =
1√
h

∑
i,j

σij

∫ ∫
χi(x)

(
ξ(x+

√
hz)− ξ(x)

)
· ∇G(z)

1√
h
χj(x+

√
hz)

+ χi(x)
(

(∇ · ξ)(x) + (∇ · ξ)(x+
√
hz)
)
G(z)χj(x+

√
hz)dx dz.

A Taylor expansion of ξ around x yields

δEh(χ, ξ) =
1√
h

∑
i,j

σij

∫ ∫
χi(x)∇G(z) · ∇ξ(x)z χj(x+

√
hz)dx dz

+
2√
h

∑
i,j

σij

∫ ∫
χi(x)(∇ · ξ)(x)G(z)χj(x+

√
hz)dx dz +O

(
‖∇2ξ‖∞Eh(χ)

√
h
)
.
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Indeed, the error term is estimated by ‖∇2ξ‖∞ times

1√
h

∑
i,j

σij

∫ ∫
χi(x)

(
|
√
hz|2 1√

h
|∇G(z)|+ |

√
hz|G(z)

)
χj(x+

√
hz)dx dz

=
∑
i,j

σij

∫ ∫
χi(x)

(
|z|3 + |z|

)
G(z)χj(x+

√
hz)dx dz.

Since
(
|z|3 + |z|

)
G(z) . G(z/2), this can be estimated by

∑
i,j

σij

∫ ∫
χi(x)G(z/2)χj(x+

√
hz)dx dz ∼

∑
i,j

σij

∫ ∫
χi(x)G(z)χj(x+ 2

√
hz)dx dz

=2
√
hE4h(χ) .

√
hEh(χ),

by using the approximate monotonicity (10) of Eh.

The next lemma shows that the monotonicity (10) of Eh(χ) in h, which is crucial for the

lower semi-continuity part of the Γ-convergence of Eh to E in [13], approximately survives if the

energy functional is localized by a smooth ζ ≥ 0.

Lemma 3.4 (Perturbed approximate monotonicity). Let k be a non-negative, radially non-

increasing kernel, i.e.

∇k(z) · z ≤ 0. (39)

Let ζ ∈ C∞([0,Λ)d), ζ ≥ 0 and let χ be admissible. Set

fh(χ, ζ) :=
1√
h

∑
i,j

σij

∫
ζχi kh ∗ χj dx, gh(χ) :=

1√
h

∑
i,j

σij

∫
χi k̃h ∗ χj dx,

where k̃(z) := |z|k(z). Then we have

fh(χ, ζ) ≥
( √

h0√
h+
√
h0

)d+1

fh0(χ, ζ)− ‖∇ζ‖∞gh(χ)
√
h0 (40)

for all 0 < h ≤ h0.

The proof follows the idea of the proof of Lemma 3 in Section 7.1 of [13].

Proof. Step 1: Reduction of the statement. Write fh instead of fh(χ, ζ) and gh instead of gh(χ).

The statement can be reduced to the following two statements. On a discrete level, the real

function fh is approximately decreasing in h:

fN2h ≤ fh + ‖∇ζ‖∞gh(N − 1)
√
h for all N ∈ N, (41)

and it is logarithmic increasing:√
h1
d+1

fh1 ≤
√
h2
d+1

fh2 for all 0 < h1 ≤ h2. (42)

24



Indeed: Fix 0 < h < h0 and let N ∈ N be such that

(N − 1)
√
h <

√
h0 ≤ N

√
h.

In particular, we have
√
h+
√
h0 ≥ N

√
h, thus

√
h0

N
√
h
≥

√
h0√

h+
√
h0

. (43)

Then,

fh
(41)

≥ fN2h − ‖∇ζ‖∞gh(χ)(N − 1)
√
h

(42)

≥ (N2h)−
d+1
2 h

d+1
2

0 fh0 − ‖∇ζ‖∞gh(χ)
√
h0

(43)

≥
( √

h0√
h+
√
h0

)d+1

fh0 − ‖∇ζ‖∞gh(χ)
√
h0.

Step 2: Proof of (42). The logarithmic monotonicity, the infinitesimal version of which is

d

d
√
h

(√
h
d+1

fh

)
≥ 0,

can be reformulated as

d

d
√
h
fh ≥ −

d+ 1√
h
fh. (44)

In order to see (44), we write

fh =
1√
h

∫
kh(z)Fζ(z) dz =

∫
1

√
h
d+1

k(
z√
h

)Fζ(z) dz,

where

Fζ(z) :=
∑
i,j

σij

∫
ζ(x)χi(x)χj(x+ z) dx. (45)

Straightforward differentiation now yields (44):

d

d
√
h
fh =− 1

√
h
d+2

∫ (
(d+ 1)k(

z√
h

) + (∇k)(
z√
h

) · z√
h

)
Fζ(z) dz

(39)

≥ − 1
√
h
d+2

∫
(d+ 1)k(

z√
h

)Fζ(z) dz

=− d+ 1√
h
fh.

Step 3: Proof of (41). We start by claiming the following perturbed triangle inequality for Fζ
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introduced in (45):

Fζ(z + w) ≤ Fζ(z) + Fζ(w) + ‖∇ζ‖∞|z|F1(w) for all z, w ∈ Rd. (46)

Argument for (46): Using the admissibility of χ in the form of
∑

k χk = 1, we obtain the

following identity for any pair 1 ≤ i, j ≤ P of phases and any points x, x′, x′′ ∈ [0,Λ)d:

χi(x)χj(x
′′)− χi(x)χj(x

′)− χi(x′)χj(x′′)

=χi(x)
∑
k

χk(x
′)χj(x

′′)− χi(x)χj(x
′)
∑
k

χk(x
′′)−

∑
k

χk(x)χi(x
′)χj(x

′′)

=
∑
k

[
χi(x)χk(x

′)χj(x
′′)− χi(x)χj(x

′)χk(x
′′)− χk(x)χi(x

′)χj(x
′′)
]
.

Note that the contribution of k ∈ {i, j} to the sum has a sign:∑
k∈{i,j}

[
χi(x)χk(x

′)χj(x
′′)− χi(x)χj(x

′)χk(x
′′)− χk(x)χi(x

′)χj(x
′′)
]

=χi(x)χi(x
′)χj(x

′′)− χi(x)χj(x
′)χi(x

′′)− χi(x)χi(x
′)χj(x

′′)

+ χi(x)χj(x
′)χj(x

′′)− χi(x)χj(x
′)χj(x

′′)− χj(x)χi(x
′)χj(x

′′)

=−
[
χi(x)χj(x

′)χi(x
′′) + χj(x)χi(x

′)χj(x
′′)
]
≤ 0.

We now multiply with ζ ≥ 0 and obtain

ζ(x)χi(x)χj(x
′′)− ζ(x)χi(x)χj(x

′)− ζ(x′)χi(x
′)χj(x

′′)

≤ζ(x)
∑

k/∈{i,j}

{
χi(x)χk(x

′)χj(x
′′)− χi(x)χj(x

′)χk(x
′′)− χk(x)χi(x

′)χj(x
′′)
}

+
(
ζ(x)− ζ(x′)

)
χi(x

′)χj(x
′′).

Since ζ is smooth, we have

(
ζ(x)− ζ(x′)

)
χi(x

′)χj(x
′′) ≤ ‖∇ζ‖∞|x− x′|χi(x′)χj(x′′).

We now fix z, w ∈ Rd and use the above inequality for x′ = x + z, x′′ = x + z + w so that

after multiplication with σij , summation over 1 ≤ i, j ≤ P and integration over x, we obtain

Fζ(z + w) − Fζ(z) − Fζ(w) on the left-hand side. Indeed, using the translation invariance for
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the term appearing in Fζ(w), we have

Fζ(z + w)− Fζ(z)− Fζ(w)

=

∫
ζ(x)

∑
i 6=j

σij [χi(x)χj(x+ z + w)− χi(x)χj(x+ z)− χi(x+ z)χj(x+ z + w)] dx

≤
∫
ζ(x)

∑
i 6=j,k 6=i,j

σij
[
χi(x)χk(x+ z)χj(x+ z + w)− χi(x)χj(x+ z)χk(x+ z + w)

− χk(x)χi(x+ z)χj(x+ z + w)
]
dx

+ ‖∇ζ‖∞|z|
∑
i,j

σij

∫
χi(x)χj(x+ w) dx.

Using the triangle inequality for the surface tensions, we see that the first right-hand side integral

is non-positive:∑
i 6=j,k 6=i,j

σij
(
χi(x)χk(x

′)χj(x
′′)− χi(x)χj(x

′)χk(x
′′)− χk(x)χi(x

′)χj(x
′′)
)

≤
∑

i 6=j,k 6=i,j
σikχi(x)χk(x

′)χj(x
′′) +

∑
i 6=j,k 6=i,j

σkjχi(x)χk(x
′)χj(x

′′)

−
∑

i 6=j,k 6=i,j
σijχi(x)χj(x

′)χk(x
′′)−

∑
i 6=j,k 6=i,j

σijχk(x)χi(x
′)χj(x

′′) = 0.

Indeed, the first and the third term, and the second and the last term cancel since the domain

of indices in the sums is symmetric.

Applying (46) iteratively on z and w = (N − 1)z, (N − 2)z, . . . , z, one obtains

Fζ(Nz) ≤ N Fζ(z) + ‖∇ζ‖∞|z|
N−1∑
n=1

F1(nz) for all z ∈ Rd. (47)

Now let h > 0 and h0 := N2h. Then

√
h0fh0 =

∫
kh0(ẑ)Fζ(ẑ) dẑ =

∫
kh(z)Fζ(Nz) dz

≤N
∫
kh(z)Fζ(z) dz + ‖∇ζ‖∞

N−1∑
n=1

∫
|z|kh(z)F1(nz) dz.

To handle the last term, use (47) for n instead of N and ζ ≡ 1. Then the correction term

vanishes since ‖∇ζ‖∞ = 0 and

N−1∑
n=1

∫
|z|kh(z)F1(nz) dz ≤

(
N−1∑
n=1

n

)∫
|z|kh(z)F1(z) dz

=h
1

2
(N − 1)(N − 2)

1√
h

∫
|z|√
h
kh(z)F1(z) dz

≤hN(N − 1)gh.
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Substituting this in the first estimate and dividing by
√
h0 = N

√
h, one obtains

fN2h ≤fh + ‖∇ζ‖∞(N − 1)
√
hgh,

i.e. (41), which concludes the proof.

The following lemma yields in particular the construction part in the Γ-convergence result

of Eh to E. Again, we need it in a localized form; the proof closely follows the proof of Lemma

4 in Section 7.2 of [13].

Lemma 3.5 (Consistency). Let χ ∈ BV ([0,Λ)d, {0, 1}P ) be admissible and ζ ∈ C∞([0,Λ)d).

Then

lim
h→0

1√
h

∑
i,j

σij

∫
ζ χiGh ∗ χj dx = c0

∑
i,j

σij
1

2

∫
ζ (|∇χi|+ |∇χj | − |∇(χi + χj)|)

and for k(z) := z2
1G(z) we have

lim
h→0

1√
h

∑
i,j

σij

∫
ζ χi kh ∗ χj dx =c0

∑
i,j

σij
1

2

∫
ζ
(
1 + ν2

1

)
(|∇χi|+ |∇χj | − |∇(χi + χj)|) .

Proof. We will only give the argument for k since argument for G is easier.

Note that it is enough to show that for ζ ∈ C∞([0,Λ)d) and χ, χ̃ ∈ BV ([0,Λ)d, {0, 1}) such that

χ χ̃ = 0 a.e. (48)

we have

lim
h→0

1√
h

∫
ζχ̃ kh ∗ χdx =c0

1

2

∫
ζ
(
1 + ν2

1

)
(|∇χ|+ |∇χ̃| − |∇(χ+ χ̃)|) . (49)

We will prove this in five steps. Before starting, we introduce polar coordinates z = rξ on the

left-hand side:

1√
h

∫
ζχ̃ kh ∗ χdx =

1√
h

∫
k(z)

∫
ζ(x)χ̃(x)χ(x+

√
hz) dx dz

=

∞∫
0

G(r)rd+2 1√
hr

∫
Sd−1

ξ2
1

∫
ζ(x)χ̃(x)χ(x+

√
hrξ) dx dξ dr. (50)

In the first two steps of the proof, we simplify the problem by disintegrating in r (Step 1) and ξ

(Step 2). Then we explicitly calculate an integral that arises in the second reduction and which

translates the anisotropy of the kernel k into a geometric information about the normal (Step

3). We simplify further by disintegration in the vertical component (Step 4) and conclude by

solving the one-dimensional problem (Step 5).
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Step 1: Disintegration in r. We claim that it is sufficient to show that

lim
h→0

1√
h

∫
Sd−1

ξ2
1

∫
ζ(x)χ̃(x)χ(x+

√
hξ) dx dξ

=
|Bd−1|
d+ 1

1

2

∫
ζ
(
1 + ν2

1

)
(|∇χ|+ |∇χ̃| − |∇(χ+ χ̃)|) . (51)

Argument: Note that since G(z) = G(|z|) and d
drG(r) = −rG(r) we have, using integration by

parts,

∞∫
0

G(r)rd+2 dr = −
∞∫

0

d

dr
(G(r))rd+1 dr = (d+ 1)

∞∫
0

G(r)rd dr.

Replacing
√
h by

√
hr on the left-hand side of (51), integrating w.r.t. the non-negative measure

G(r)rd+2dr and using the equality from above shows that (51), in view of (50), formally implies

(49). To make this step rigorous, we use Lebesgue’s theorem. A dominating function can be

obtained as follows:∣∣∣∣∣∣ 1√
hr

∫
Sd−1

ξ2
1

∫
ζ(x)χ̃(x)χ(x+

√
hrξ) dx dξ

∣∣∣∣∣∣
(48)
=

∣∣∣∣∣∣ 1√
hr

∫
Sd−1

ξ2
1

∫
ζ(x)χ̃(x)

(
χ(x+

√
hrξ)− χ(x)

)
dx dξ

∣∣∣∣∣∣
≤ ‖ζ‖∞

1√
hr

∫
Sd−1

∫ ∣∣∣χ(x+
√
hrξ)− χ(x)

∣∣∣ dx dξ
≤ ‖ζ‖∞ |Sd−1|

∫
|∇χ|,

which is finite and independent of r. Hence, it is integrable w.r.t. the finite measure G(r)rd+2dr.

Step 2: Disintegration in ξ. We claim that it is sufficient to show that for each ξ ∈ Sd−1,

lim
h→0

1√
h

∫
ζ(x)χ̃(x)

(
χ(x+

√
hξ) + χ(x−

√
hξ)
)
dx

=
1

2

∫
ζ |ξ · ν| (|∇χ|+ |∇χ̃| − |∇(χ+ χ̃)|) . (52)

Indeed, if we integrate w.r.t. 1
2ξ

2
1dξ we obtain the left-hand side of (51) from the left-hand side of

(52). At least formally, this is obvious because of the symmetry under ξ 7→ −ξ. The dominating

function to interchange limit and integration is obtained as in Step 1:∣∣∣∣ 1√
h

∫
ζ(x)χ̃(x)

(
χ(x+

√
hξ) + χ(x−

√
hξ)
)
dx

∣∣∣∣
(48)

≤ 1√
h

sup |ζ|
∫ ∣∣∣χ(x+

√
hξ)− χ(x)

∣∣∣+
∣∣∣χ(x−

√
hξ)− χ(x)

∣∣∣ dx ≤ 2 sup |ζ|
∫
|∇χ|.
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For the passage from the right-hand side of (52) to the right-hand side of (51) we not that since∫
Sd−1

ξ2
1

∫
ζ |ξ · ν| |∇χ|1

2
dξ =

1

2

∫ ∫
Sd−1

ξ2
1 |ξ · ν| dξ ζ |∇χ|

and |ν| = 1 |∇χ|- a.e. it is enough to prove

1

2

∫
Sd−1

ξ2
1 |ξ · ν| dξ =

|Bd−1|
d+ 1

(
1 + ν2

1

)
for all ν ∈ Sd−1 (53)

to obtain the equality for the right-hand side.

Step 3: Argument for (53): By symmetry of
∫
Sd−1 dξ under the reflection that maps e1 into ν,

we have ∫
Sd−1

ξ2
1 |ξ · ν| dξ =

∫
Sd−1

(ξ · ν)2|ξ1| dξ.

Applying the divergence theorem to the vector field |ξ1| (ξ · ν) ν, we have∫
Sd−1

(ξ · ν)2|ξ1| dξ =

∫
B

∇ · (|ξ1| (ξ · ν) ν) dξ.

Since ∇ · (|ξ1| (ξ · ν) ν) = sign ξ1 (ξ · ν) ν1 + |ξ1|, the right-hand side is equal to∫
B

sign ξ1 ξ dξ

 · ν ν1 +

∫
B

|ξ1| dξ.

By symmetry of dξ under rotations that leave e1 invariant, we see that
∫
B sign ξ1 ξ dξ points in

direction e1, so that the above reduces to

(
ν2

1 + 1
) ∫
B

|ξ1| dξ.

We conclude by observing

∫
B

|ξ1| dξ =

1∫
−1

|ξ1| |Bd−1|
(
1− ξ2

1

) d−1
2 dξ1 = 2|Bd−1|

1∫
0

d

dξ1

[
− 1

d+ 1

(
1− ξ2

1

) d−1
2

]
dξ1 = 2

|Bd−1|
d+ 1

.

Step 4: One-dimensional reduction. The problem reduces to the one-dimensional analogue,

namely: For all χ, χ̃ ∈ BV ([0,Λ), {0, 1}) such that

χ χ̃ = 0 a.e. (54)
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and every ζ ∈ C∞([0,Λ)) we have

lim
h→0

1√
h

L∫
0

ζ(s)χ̃(s)
(
χ(s+

√
h) + χ(s−

√
h)
)
ds =

1

2

L∫
0

ζ

(
|dχ
ds
|+ |dχ̃

ds
| − |d(χ+ χ̃)

ds
|
)
. (55)

Indeed, by symmetry, it suffices to prove (52) for ξ = ed. Using the decomposition x = x′ + sed

we see that (52) follows from (55) using the functions χx′(s) := χ(x′ + sed), χ̃x′ , ζx′ in (55) and

integrating w.r.t. dx′. For the left-hand side, this is formally clear. For the right-hand side, one

uses BV -theory: If χ ∈ BV ([0,Λ)d), we have χx′ ∈ BV ([0,Λ)) for a.e. x′ ∈ [0,Λ)d−1 and

∫
[0,Λ)d−1

L∫
0

ζx′(s) |
dχx′

ds
| dx′ =

∫
[0,Λ)d

ζ |ed · ν| |∇χ|

for any ζ ∈ C∞([0,Λ)d). To make the argument rigorous, we use again Lebesgue’s dominated

convergence. As before, using (54), we obtain∣∣∣∣∣∣ 1√
h

L∫
0

ζx′(s)χ̃x′(s)
(
χx′(s+

√
h) + χx′(s−

√
h)
)
ds

∣∣∣∣∣∣
≤ sup |ζ| 1√

h

L∫
0

∣∣∣χx′(s+
√
h)− χx′(s)

∣∣∣+
∣∣∣χx′(s−√h)− χx′(s)

∣∣∣ ds
≤2‖ζ‖∞

L∫
0

|dχx
′

ds
|.

Since

∫
[0,Λ)d−1

L∫
0

|dχx
′

ds
|dx′ =

∫
[0,Λ)d

|ed · ν| |∇χ| ≤
∫

[0,Λ)d

|∇χ|,

this is indeed an integrable dominating function.

Step 5: Argument for (55). Since χ, χ̃ are {0, 1}-valued, every jump has height 1 and since

χ, χ̃ ∈ BV ([0,Λ)), the total number of jumps is finite. Let J, J̃ ⊂ [0,Λ) denote the jump sets

of χ and χ̃, respectively. Now, if
√
h is smaller than the minimal distance between two different

points in J ∪ J̃ , then in view of (54), the only contribution to the left-hand side of (55) comes
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from neighborhoods of points where both, χ and χ̃, jump:

1√
h

L∫
0

ζ(s)χ̃(s)
(
χ(s+

√
h) + χ(s−

√
h)
)
ds

=
∑
s∈J∩J̃

1√
h

s+
√
h∫

s−
√
h

ζ(σ)χ̃(σ)
(
χ(σ +

√
h) + χ(σ −

√
h)
)
dσ.

Note that χ(σ +
√
h) + χ(σ −

√
h) ≡ 1 on each of these intervals and that

χ̃ = 1Ihs on (s−
√
h, s+

√
h)

for intervals of the form

Ihs = (s−
√
h, s) or Ihs = (s, s+

√
h).

Since |Ihs | =
√
h, we have

1√
h

L∫
0

ζ(s)χ̃(s)
(
χ(s+

√
h) + χ(s−

√
h)
)
ds =

∑
s∈J∩J̃

1√
h

∫
Ihs

ζ(σ) dσ −→
∑
s∈J∩J̃

ζ(s).

Note that by (54), χ+ χ̃ jumps precisely where either χ or χ̃ jumps. Thus

1

2

L∫
0

ζ

(
|dχ
ds
|+ |dχ̃

ds
| − |d(χ+ χ̃)

ds
|
)

=
1

2

(∑
s∈J

ζ(s) +
∑
s∈J̃

ζ(s)−
∑

s∈J∆J̃

ζ(s)

)
=
∑
s∈J∩J̃

ζ(s).

Therefore, (55) holds, which concludes the proof.

The next lemma shows that under our convergence assumption of χh to χ, the corresponding

spatial covariance functions Fh and F are very close.

Lemma 3.6 (Error estimate). Let χh, χ satisfy the convergence assumptions (35)-(37) and let

k be a non-negative kernel such that

k(z) ≤ p(|z|)G(z)

for some polynomial p. Then

lim
h→0

1√
h

∫
kh(z)|Fh(z)− F (z)| dz = 0, (56)
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where

Fh(z) :=
∑
i,j

σij

∫
χhi (x)χhj (x+ z) dx, and

F (z) :=
∑
i,j

σij

∫
χi(x)χj(x+ z) dx

Proof. The proof is divided into two steps. First, we prove the claim for k = G, to generalize

this result for arbitrary kernels k in the second step.

Step 1: k = G. By Lemma 3.5 and the convergence assumption (37), we already know

lim
h→0

1√
h

∫
Gh(z) (Fh(z)− F (z)) dz = 0.

Hence, it is sufficient to show that

lim
h→0

1√
h

∫
Gh(z) (F (z)− Fh(z))+ dz = 0.

Fix h0 > 0 and N ∈ N and set h := 1
N2h0. Recall that by iterating the exact triangle inequality

for F(h) = F, Fh we have

F(h)(Nz) ≤ NF(h)(z) for all z ∈ Rd.

Hence, by the definition of h,

1√
h0
F(h)(

√
h0z) ≤

1√
h
F(h)(

√
hz) for all z ∈ Rd. (57)

Therefore, using (57) for Fh, the triangle inequality and finally (57) for F , we obtain(
1√
h
F (
√
hz)− 1√

h
Fh(
√
hz)

)
+

≤
(

1√
h
F (
√
hz)− 1√

h0
Fh(
√
h0z)

)
+

≤
(

1√
h
F (
√
hz)− 1√

h0
F (
√
h0z)

)
+

+

(
1√
h0
F (
√
h0z)−

1√
h0
Fh(
√
h0z)

)
+

≤ 1√
h
F (
√
hz)− 1√

h0
F (
√
h0z) +

1√
h0

∣∣∣F (
√
h0z)− Fh(

√
h0z)

∣∣∣ .
Integrating w.r.t. G yields

1√
h

∫
Gh(z) (F (z)− Fh(z))+ dz ≤ 1√

h

∫
G(z)F (

√
hz) dz − 1√

h0

∫
G(z)F (

√
h0z) dz

+
1√
h0

∫
G(z)

∣∣∣F (
√
h0z)− Fh(

√
h0z)

∣∣∣ dz
=Eh(χ)− Eh0(χ) +

1√
h0

∫
Gh0(z) |F (z)− Fh(z)| dz. (58)
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Given δ > 0, by Lemma 3.5 we may first choose h0 > 0 such that for all 0 < h < h0:

|Eh(χ)− Eh0(χ)| < δ

2
.

We note that we may now choose N ∈ N so large that for all 0 < h < 1
N2h0:

∣∣∣F (
√
h0z)− Fh(

√
h0z)

∣∣∣ ≤ δ

2

√
h0 for all z ∈ Rd.

Indeed, using the triangle inequality and translation invariance we have∣∣∣F (
√
h0z)− Fh(

√
h0z)

∣∣∣
≤
∑
i,j

σij

∫ ∣∣∣χi(x)χj(x+ z)− χi(x)χhj (x+ z)
∣∣∣+
∣∣∣χi(x)χhj (x+ z)− χhi (x)χhj (x+ z)

∣∣∣ dx
≤2

(
max

1≤i,j≤N
σij

) N∑
i=1

∫ ∣∣∣χi(x)− χhi (x)
∣∣∣ dx,

which tends to zero as h→ 0 because of the convergence assumption (35). Hence also the second

term on the right-hand side of (58) is small:

1√
h0

∫
Gh0(z) (F (z)− Fh(z))+ dz ≤ δ

2
.

Step 2: k = pG. Fix ε > 0. Since G is exponentially decaying, we can find a number M =

M(ε) <∞ such that

k(z) ≤ εG(
z

2
) for all |z| > M.

Hence we can split the integral into two parts. On the one hand,

1√
h

∫
{|z|≤M}

k(z) |Fh(
√
hz)− F (

√
hz)| dz ≤

(
sup
[0,M ]

p

)
1√
h

∫
G(z)|Fh(

√
hz)− F (

√
hz)| dz

and on the other hand

1√
h

∫
{|z|>M}

k(z) |Fh(
√
hz)− F (

√
hz)| dz ≤ε 1√

h

∫
G(z)

(
Fh(
√
hz) + F (

√
hz)
)
dz

≤ε
(
Eh(χh) + Eh(χ)

)
.

Take the limit h→ 0 and use (56) for k = G to obtain

lim sup
h→0

1√
h

∫
kh(z)|Fh(z)− F (z)| dz ≤ 2εc0

∑
i,j

σij
1

2

(∫
|∇χi|+

∫
|∇χj | −

∫
|∇(χi + χj)|

)
.

Here, we used the consistency, cf. Lemma 3.5, and the convergence assumption (37). Since the
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left-hand side does not depend on ε > 0, this implies (56).

The following proposition is the main ingredient for Proposition 3.2. It establishes convergence

of a functional that is an anisotropic version of the energy, localized by a tensor field A.

Proposition 3.7. Let χh, χ satisfy the convergence assumptions (35)-(37), K(z) := z⊗ z G(z)

and let A ∈ C∞([0,Λ)d,Rd×d). Then,

lim
h→0

1√
h

∑
i,j

σij

∫
χhi A : Kh ∗ χhj dx = c0

∑
i,j

σij
1

2

∫
(ν ·Aν + trA) (|∇χi|+ |∇χj | − |∇(χi + χj)|) .

Proof. Step 1: Reduction of the statement. Since K(z) is a symmetric matrix,

A : K(z) = Asym : K(z).

depends only the symmetric part Asym of A; hence w.l.o.g. let A be a symmetric matrix field.

But then there exist functions ζij ∈ C∞([0,Λ)d), such that

A(x) =
∑
i,j

1

2
ζij(x) (ei ⊗ ej + ej ⊗ ei) .

We also note

ei ⊗ ej + ej ⊗ ei = (ei + ej)⊗ (ei + ej)− (ei ⊗ ei + ej ⊗ ej) .

Hence by linearity, it is enough to prove the statement for A of the form

A(x) = ζ(x) ξ ⊗ ξ

for some ξ ∈ Sd−1. By rotational invariance, we may assume

A(x) = ζ(x) e1 ⊗ e1.

Hence, with k(z) := z2
1G(z), the statement can be reduced to

lim
h→0

1√
h

∑
i,j

σij

∫
ζ χhi kh ∗ χhj dx

= c0

∑
i,j

σij
1

2

∫
ζ
(
1 + ν2

1

)
ζ (|∇χi|+ |∇χj | − |∇(χi + χj)|) (59)

for any ζ ∈ C∞([0,Λ)d).

As in the proof of (24), it is enough to show the convergence under the additional assumption

0 ≤ ζ ≤ 1. The proof of (59) will be given in the following way:

• modify k to obtain a radially non-increasing kernel k̃ and prove a lim inf-inequality for k̃

and arbitrary 0 ≤ ζ ≤ 1 using the monotonicity,

35



• show convergence for k̃ and ζ ≡ 1 using consistency and estimating the error,

• deduce the convergence for k̃ and therefore for k.

Step 2: A lim inf-inequality. We first note that the kernel k̃(z) := (z2
1 + 2)G(z) = k(z) + 2G(z)

is radially non-increasing, i.e.

∇k̃(z) · z ≤ 0.

Indeed,

∇k̃(z) · z =
[
2z1e1 − z(z2

1 + 2)
]
· z G(z)

=
[
2z2

1 − |z|2(z2
1 + 2)

]
G(z)

≤
[
2|z|2 − |z|2(z2

1 + 2)
]
G(z) ≤ 0.

Hence, we may apply Lemma 3.4 to k̃. Furthermore, since |z|k̃(z) . G(z/2), the error functional

gh in Lemma 3.4 can be easily estimated as the error term in the proof of Lemma 3.3:

gh(χ) . Eh(χ).

Let 0 < h < h0. By Lemma 3.4, we have

1√
h

∑
i,j

σij

∫
ζχhi k̃h ∗ χhj dx

≥
( √

h0√
h+
√
h0

)d+1
1√
h0

∑
i,j

σij

∫
ζχhi k̃h0 ∗ χhj dx− C

√
h0Eh(χh).

On the right-hand side, we can pass to the limit since on the one hand χhi → χi in L2([0,Λ)d)

by (36) and |χi| ≤ 1 and on the other hand we can use (37) for the last term. Hence

lim inf
h→0

1√
h

∑
i,j

σij

∫
ζχhi k̃h ∗ χhj dx

≥ 1√
h0

∑
i,j

σij

∫
ζχi k̃h0 ∗ χj dx− C

√
h0 c0

∑
i,j

σij
1

2

∫
(|∇χi|+ |∇χj | − |∇(χi + χj)|) .

By Lemma 3.5, as h0 → 0, the right-hand side converges to

c0

∑
i,j

σij
1

2

∫
ζ
(
3 + ν2

1

)
(|∇χi|+ |∇χj | − |∇(χi + χj)|)
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so that we obtain

lim inf
h→0

1√
h

∑
i,j

σij

∫
ζ χhi k̃h ∗ χhj dx

≥ c0

∑
i,j

σij
1

2

∫
ζ
(
3 + ν2

1

)
(|∇χi|+ |∇χj | − |∇(χi + χj)|) . (60)

Step 3: Convergence for ζ ≡ 1. By Lemma 3.5, we have

lim
h→0

1√
h

∑
i,j

σij

∫
ζ χi k̃h ∗ χj dx

= c0

∑
i,j

σij
1

2

∫
ζ
(
3 + ν2

1

)
(|∇χi|+ |∇χj | − |∇(χi + χj)|) . (61)

By Lemma 3.6, we can control the difference between the left-hand side of (60) and the left-hand

side of (61) with ζ ≡ 1:

lim
h→0

1√
h

∫
k̃h(z)|Fh(

√
hz)− F (

√
hz)| dz = 0.

Hence we have proven (59) for ζ ≡ 1.

Step 4: Conclusion of the proof. For this argument use the abbreviations

fh(χ, ζ) :=
1√
h

∑
i,j

σij

∫
ζχhi k̃h ∗ χhj dx,

f(χ, ζ) := c0

∑
i,j

σij
1

2

∫
ζ
(
3 + ν2

1

)
(|∇χi|+ |∇χj | − |∇(χi + χj)|) .

In these terms, (59) reads

lim
h→0

fh(χh, ζ) = f(χ, ζ) for all ζ ∈ C∞([0,Λ)d), 0 ≤ ζ ≤ 1. (62)

Fix the test function 0 ≤ ζ ≤ 1. Then we can apply Step 1 on both, ζ and (1− ζ): On the one

hand we have

lim inf
h→0

fh(χh, ζ) ≥ f(χ, ζ).

On the other hand, by linearity we have

lim inf
h→0

{
fh(χh, 1)− fh(χh, ζ)

}
≥ f(χ, 1)− f0(χ, ζ).

By Step 2 we have

lim
h→0

fh(χh, 1) = f(χ, 1)
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and hence

lim sup
h→0

fh(χh, ζ) ≤ f(χ, ζ),

which together with (60) implies (62). As in the proof of Remark 2.9, the respective terms for

G converge due to the convergence assumption (37). Therefore, by linearity we also have the

convergence for k = k̃ − 2G. This concludes the proof.

Proof of Proposition 3.2. We may apply Lemma 3.3 for χh and obtain by the energy-dissipation

estimate (9) that

δEh(χh, ξ) =− 1√
h

∑
i,j

σij

∫
χhi ∇ξ : Kh ∗ χhj dx

+
2√
h

∑
i,j

σij

∫
χhi (∇ · ξ)Gh ∗ χhj dx+O

(
‖∇2ξ‖∞E0

√
h
)
.

Applying Proposition 3.7 on the first summand with A = ∇ξ and Lemma 3.5 on the second

summand with ζ = ∇ · ξ, we obtain in the limit h→ 0:

δEh(χh, ξ)→ c0

∑
i,j

σij
1

2

∫
[−(ν · ∇ξ ν + tr∇ξ) + 2∇ · ξ] (|∇χi|+ |∇χj | − |∇(χi + χj)|) ,

which concludes the proof.

4 Dissipation Functional and Velocity

As for any minimizing movement scheme, the time derivative of the solution should arise from

the metric term in the minimization scheme. For the minimizing movement scheme of our

interfacial motion, the time derivative is the normal velocity. The goal of this section, which

is the core of the paper, is to compare the first variation of the dissipation functional to the

normal velocity. The main result of this section is the following proposition which will be used

for small time intervals in Section 5 where we will control the limiting error terms which appear

here with soft arguments from Geometric Measure Theory. In view of the definition of E 2
1 below,

the proposition assumes that χ1 is the minority phase in the space-time cylinder (0, T ) × Br;
likewise it assumes that the normal between χ2 and χ3 is close to the first unit vector e1. This

can be assumed since we can relabel the phases in case we want to treat another phase as the

minority phase. Furthermore, due to the rotational invariance, it is no restriction to assume

that e1 is the approximate normal.

Proposition 4.1. For any α ∈ (0, 1), T > 0, ξ ∈ C∞0 ((0, T ) × Br,Rd) and any η ∈ C∞0 (B2r)

radially symmetric and radially non-increasing cut-off of Br in B2r with |∇η| . 1
r and

∣∣∇2η
∣∣ .

38



1
r2

, we have

lim sup
h→0

∣∣∣∣∣∣
T∫

0

−δEh( · − χh(t− h))(χh(t), ξ(t)) dt− 2c0

T∫
0

(∫
ξ1 V2 |∇χ2| −

∫
ξ1 V3 |∇χ3|

)
dt

∣∣∣∣∣∣
. ‖ξ‖∞

 T∫
0

1

α
E 2

1 (t) + α1/3rd−1dt+ α1/3

∫∫
η dµ

 . (63)

Here we use the notation

E 2
1 (t) :=

∫
η |∇χ1(t)|+ inf

χ∗

{∣∣∣∣∫ η (|∇χ2(t)| − |∇χ∗|)
∣∣∣∣+

∣∣∣∣∫ η (|∇χ3(t)| − |∇χ∗|)
∣∣∣∣

+
1

r

∫
B2r

|χ2(t)− χ∗| dx+
1

r

∫
B2r

|χ3(t)− (1− χ∗)| dx

}
,

where the infimum is taken over all half spaces χ∗ = 1{x1>λ} in direction e1.

Let us comment on the structure of E 2
1 . The first term, describing the surface area of Phase

1 inside the ball B2r, will be small in the application when χ1 is indeed the minority phase.

The second term, sometimes called the excess energy describes how far χ2 and χ3 are away

from being half spaces in direction e1 or −e1, respectively. The terms comparing the surface

energy inside B2r do not see the orientation of the normal, whereas the bulk terms measuring

the L1-distance inside the ball B2r see the orientation of the normal.

Proof. Step 1: The discrete analogue of (63). The statement follows easily from∣∣∣∣∣∣
T∫

0

−δEh( · − χh(t− h))(χh(t), ξ(t)) dt− 2c0

T∫
0

(∫
ξ1 V2 |∇χ2| −

∫
ξ1 V3 |∇χ3|

)
dt

∣∣∣∣∣∣
. ‖ξ‖∞

[
1

α
h

N∑
n=1

ε2
1(n) + α1/3rd−1T + α1/3

∫∫
η dµh

]
+ o(1), as h→ 0. (64)

Here we use the notation ε2
1(n) := ε2

1(χn), where the functional ε2
1 is defined via

ε2
1(χ) :=

1√
h

∫
η [(1− χ1)Gh ∗ χ1 + χ1Gh ∗ (1− χ1)] dx

+ inf
χ∗

{
1√
h

∫
η [(1− χ2)Gh ∗ χ2 + χ2Gh ∗ (1− χ2)] dx

+
1√
h

∫
η [(1− χ3)Gh ∗ χ3 + χ3Gh ∗ (1− χ3)] dx

−2
1√
h

∫
η [(1− χ∗)Gh ∗ χ∗ + χ∗Gh ∗ (1− χ∗)] dx

+
1

r

∫
B2r

|χ2 − χ∗| dx+
1

r

∫
B2r

|χ3 − (1− χ∗)| dx

}
.
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The infimum is taken over all half spaces χ∗ = 1x1>λ in direction e1. All terms appearing in ε2
1

correspond to terms in E 2
1 . The first term is the localized approximate energy of χ1, the second

term describes the approximate excess energy of Phase 2 and 3. The convergence of these terms

as h → 0 for a fixed half space χ∗ follows as in the proof of Remark 2.9. Taking the infimum

over the half spaces yields (63).

Step 2: Choice of appropriately shifted mesoscopic time slices. In order to prove (64), we use the

machinery that we develop later on in this section. There we work on the mesoscopic time scale

τ = α
√
h instead of the microscopic time scale h. To apply these results, we have to adjust the

time shift of time slices of mesoscopic distance. At the end, we will choose a microscopic time

shift k0 ∈ {1, . . . ,K} such that the average over time slices of mesoscopic distance is controlled

by the average over all time slices:

τ
L∑
l=1

[
ε2

1(Kl + k0) + ε2
1(Kl + k0 − 1)

]
. h

N∑
n=1

ε2
1(n). (65)

This follows from the simple fact that ε2
1(k0) ≤ 1

K

∑K
k=1 ε

2
1(k) for some k0. For notational

simplicity, we shall assume that k0 = 0 in (65).

Step 3: Argument for (64). Using Lemmas 4.6, 4.7 and 4.8 below, we obtain

T∫
0

−δEh( · , χh(t− h))(χh(t), ξ(t)) dt

≈ 2c0τ
L∑
l=1

(∫
ξ1(lτ)

χKl2 − χ
K(l−1)
2

τ
dx−

∫
ξ1(lτ)

χKl3 − χ
K(l−1)
3

τ
dx

)
(66)

up to an error

‖ξ‖∞

(
1

α
h

N∑
n=1

ε2
1(n) + α1/3rd−1T + α1/3

∫∫
η dµh

)
+ o(1), as h→ 0,

where we used the choice of time slices (65). Since ξ has compact support in (0, T ), a discrete

integration by parts yields

τ
L∑
l=1

∫
ξ1(lτ)

1

τ

(
χKli − χ

K(l−1)
i

)
dx = −τ

L−1∑
l=0

∫
1

τ
(ξ1((l + 1)τ)− ξ1(lτ))χKli dx.

By the Hölder-type bounds in Lemma 2.7 we can replace the mesoscopic scale on the right-hand

side by the microscopic scale for χ:∣∣∣∣∣τ
L−1∑
l=0

∫
1

τ
(ξ1((l + 1)τ)− ξ1(lτ))χKli dx− τ

L−1∑
l=0

1

K

K∑
k=1

∫
1

τ
(ξ1((l + 1)τ)− ξ1(lτ))χKl+ki dx

∣∣∣∣∣
≤ ‖∂tξ‖∞h

L−1∑
l=0

K∑
k=1

∫ ∣∣∣χKl − χKl+k∣∣∣ dx . ‖∂tξ‖∞E0T
√
τ .
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By the smoothness of ξ, we can easily do the same for ξ to obtain by (iii) in Lemma 2.10 that

for h→ 0

τ
L−1∑
l=0

∫
1

τ
(ξ1((l + 1)τ)− ξ1(lτ))χKli dx→

T∫
0

∫
∂tξ1 χi dx dt = −

T∫
0

∫
ξ1Vi |∇χi| dt.

Using this for the right-hand side of (66) establishes (64) and thus concludes the proof.

4.1 A digression to the two-phase case

The estimates in Chapter 2 are not sufficient to understand the link between the first variation

of the metric term and the normal velocities. For this, we need refined estimates which we will

first present for the two-phase case, where only one interface evolves. The main tool of the proof

is the following one-dimensional lemma. For two functions u0, u1, it estimates the L1-distance

between the characteristic functions χi = 1{ui≥1/2} in terms of the L2-distance between the ui’s

- at the expense of a term that measures the strict monotonicity of one of the functions ui. We

will apply it in a rescaled version for x1 being the normal direction.

Lemma 4.2. Let I ⊂ R be an interval, u0, u1 ∈ C0,1(I) and χi := 1{ui≥1/2}. Then∫
I

|χ1 − χ0| dx1 .
∫

|u0−1/2|<s

(∂1u0 − 1)2
− dx1 + s+

1

s2

∫
I

(u1 − u0)2 dx1 (67)

for every s > 0.

Proof. Step 1: An easier inequality. For any function u ∈ C0,1(I), we have

|{|u| ≤ 1}| .
∫

{|u|≤1}

(∂1u− 1)2
− + 1. (68)

Argument: We decompose the set that we want to measure on the left-hand side

{|u| ≤ 1} =
⋃
J∈J

J

into countably many pairwise disjoint intervals. We distinguish the following four different cases

for an interval J = [a, b] ∈J :

(i) J ∈J↗: u(a) = −1 and u(b) = 1

(ii) J ∈J↘: u(a) = 1 and u(b) = −1

(iii) J ∈J→: u(a) = u(b),

(iv) J ∈J∂ : J contains a boundary point of I.
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By Jensen’s inequality for the convex function z 7→ z2
−, we have

1

|J |

∫
J

(∂1u− 1)2
− dx1 ≥

 1

|J |

∫
J

(∂1u− 1) dx1

2

−

=

(
1

|J |
(u(b)− u(a)− |J |)

)2

−

=



(
1− 2

|J |

)2

+
, if J ∈J↗,(

1 + 2
|J |

)2
, if J ∈J↘,

1, if J ∈J→.

In case (iv), if |J | ≥ 4, then −1 ≤ 2(u(b)− u(a))/|J | ≤ 1 and so

1

|J |

∫
J

(∂1u− 1)2
− dx1 ≥

1

4
.

Thus,

|J | . 1 ∨
∫
J

(∂1u− 1)2
− dx1.

Since #J∂ ≤ 2, this is enough for our purpose.

In case (iii), we have immediately

|J | .
∫
J

(∂1u− 1)2
− dx1,

while in case (ii) we even have∫
J

(∂1u− 1)2
− dx1 & |J |

(
1 +

2

|J |

)2

& 1 ∨ |J |

since 1 + z2 ≥ 1 and 1 + z2 ≥ 2z for all z ∈ R. Thus on the one hand we can estimate the

measure of such an interval J ∈J↘:

|J | .
∫
J

(∂1u− 1)2
− dx1.

On the other hand, we can bound the total number of these intervals:

#J↘ .
∑

J∈J↘

∫
J

(∂1u− 1)2
− dx1, (69)

which we will use for case (i).
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If in case (i) additionally |J | ≥ 4,

|J | .
∫
J

(∂1u− 1)2
− dx1.

Using the estimate (69), can also bound the total number of these intervals:

#J↗ ≤ #J↘ + 1 .
∑

J∈J↘

∫
J

(∂1u− 1)2
− dx1 + 1 ≤

∫
{|u|≤1}

(∂1u− 1)2
− dx1 + 1.

Hence, ∑
J∈J↗

|J | =
∑

J∈J↗
|J |≥4

|J |+
∑

J∈J↗
|J |<4

|J |

.
∫

{|u|≤1}

(∂1u− 1)2
− dx1 + #J↗

.
∫

{|u|≤1}

(∂1u− 1)2
− dx1 + 1.

Using these estimates, we derive

|{|u| ≤ 1}| =
∑
J∈J

|J | .
∫

{|u|≤1}

(∂1u− 1)2
− dx1 + 1.

Step 2: Rescaling (68). Let s > 0. We use Step 1 for û and set u := sû, x1 = sx̂1. Then

∂1u = ∂̂1û and

|{|u| ≤ s}| = s |{û ≤ 1}|
(68)

. s

∫
{|û|≤1}

(
∂̂1û− 1

)2

−
dx̂1 + s =

∫
{|u|≤s}

(∂1u− 1)2
− dx1 + s.

Therefore, for u0 = u+ 1/2, we have

|{|u0 − 1/2| ≤ s}| .
∫

{|u0−1/2|≤s}

(∂1u0 − 1)2
− dx1 + s.

Step 3: Introducing u1. By Chebyshev’s inequality, we have

|{|u1 − u0| ≥ s}| ≤
1

s2

∫
I

(u1 − u0)2dx1

for all s > 0. Set

E := {|u0 − 1/2| ≤ s} ∪ {|u1 − u0| ≥ s} ⊂ I.
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Then, since e.g. u0 ≥ 1/2 > u1 and |u0 − 1/2| > s imply |u1 − u0| > s,

{χ0 6= χ1} = {u0 ≥ 1/2}∆{u1 ≥ 1/2} ⊂ E.

Hence, ∫
I

|χ1 − χ0| dx1 ≤ |E| .
∫

|u0−1/2|<s

(∂1u0 − 1)2
− dx1 + s+

1

s2

∫
I

(u1 − u0)2 dx1,

which concludes the proof.

In the proof we will apply the following rescaled and modified version of Lemma 4.2.

Corollary 4.3. Let u0, u1 ∈ C0,1(I), χi := 1{ui≥1/2} and η ∈ C∞0 (R), 0 ≤ η ≤ 1 radially

non-increasing. Then

1√
h

∫
η |χ1 − χ0| dx1 .

1√
h

∫
|u0−1/2|<s

η
(√

h ∂1u0 − 1
)2

−
dx1 + s+

1

s2

1√
h

∫
η (u1 − u0)2 dx1

for any s > 0.

Proof. By rescaling x1 =
√
hx̂1 and ûi(x̂1) = ui(

√
hx̂1) and using Lemma 4.2 for the ûi’s we

obtain:

1√
h

∫
I

|χ1 − χ0| dx1 .
1√
h

∫
|u0−1/2|<s

(√
h ∂1u0 − 1

)2

−
dx1 + s+

1

s2

1√
h

∫
I

(u1 − u0)2 dx1. (70)

Approximate η by simple functions: Let

η̃ :=
[Nη]

N
=

1

N

N∑
n=1

1Jn , where Jn :=
{
x ∈ I : η(x) >

n

N

}
.

Then 0 ≤ η̃ ≤ η, |η − η̃| ≤ 1
N and since η is radially non-increasing, each Jn is an open interval.

We can apply (70) with Jn playing the role of I. By linearity we have

1√
h

∫
η̃ |χ1 − χ0| dx1 .

1√
h

∫
|u0−1/2|<s

η̃
(√

h ∂1u0 − 1
)2

−
dx1 + s+

1

s2

1√
h

∫
η̃ (u1 − u0)2 dx1

≤ 1√
h

∫
|u0−1/2|<s

η
(√

h ∂1u0 − 1
)2

−
dx1 + s+

1

s2

1√
h

∫
η (u1 − u0)2 dx1.

Passing to the limit N →∞, the left-hand side converges to 1√
h

∫
η |χ1 − χ0| dx1 and we obtain

the claim.

In the previous corollary, it was crucial to control strict monotonicity of one of the two
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functions via the term

1√
h

∫
|u−1/2|<s

η
(√

h ∂1u− 1
)2

−
dx1.

In the following lemma, we consider the d-dimensional version

1√
h

∫
|u−1/2|<s

η
(√

h ∂1u− 1
)2

−
dx

of this term in case of u = Gh ∗ χ. We show that this term can be controlled in terms of the

local energy gap, measuring the energy difference to a half space χ∗ in direction e1.

Lemma 4.4. Let χ : [0,Λ)d → {0, 1}, χ∗ = 1{x1>λ} a half space in direction e1 and η ∈ C∞0 (B2r)

be a cut-off of Br in B2r with |∇η| . 1
r and

∣∣∇2η
∣∣ . 1

r2
. Then there exists a universal constant

c > 0 such that

1√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz .ε

2 +
√
h

1

r2
, (71)

1√
h

∫
{ 1

3
≤Gh∗χ≤ 2

3}

η
(√

h ∂1(Gh ∗ χ)− c
)2

−
dx .ε2 +

√
h

1

r2
+
√
h

1

r
Eh(χ), (72)

where ε2 is defined via

ε2 :=
1√
h

∫
η [χGh ∗ (1− χ) + (1− χ)Gh ∗ χ] dx

− 1√
h

∫
η [χ∗Gh ∗ (1− χ∗) + (1− χ∗)Gh ∗ χ∗] dx+

1

r

∫
B2r

|χ− χ∗| dx.

Proof. Argument for (71): Note that for any χ̃ ∈ {0, 1} we have∫
η [(1− χ̃)Gh ∗ χ̃+ χ̃ Gh ∗ (1− χ̃)] dx

=

∫
Gh(z)

(∫
η(x) (1− χ̃) (x)χ̃(x+ z) dx+

∫
η(x) (1− χ̃) (x)χ̃(x− z) dx

)
dz

=

∫
Gh(z)

∫
η(x) |χ̃(x+ z)− χ̃(x)| dx dz. (73)

Using |χ∗(x+ z)− χ∗(x)| = sign(z1) (χ∗(x+ z)− χ∗(x)), and 2u+ = |u|+u on the set {z1 > 0}
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and 2u− = |u| − u on {z1 < 0}, we thus obtain

2√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz

=
1√
h

∫
Gh(z)

∫
η(x) (|χ(x+ z)− χ(x)| − |χ∗(x+ z)− χ∗(x)|) dx dz

− 1√
h

∫
sign(z1)Gh(z)

∫
η(x) ((χ∗ − χ)(x+ z)− (χ∗ − χ)(x)) dx dz

≤ε2 − 1√
h

∫
sign(z1)Gh(z)

∫
(η(x)− η(x− z)) (χ∗ − χ)(x) dx dz.

Here, the integral on the left-hand side with the two cases is a short notation for the sum of the

two integrals. We now can apply a Taylor expansion for η around x, i.e. write η(x)− η(x− z) =

∇η(x) · z + O(|z|2), where the constant in the O(|z|2)-term depends linearly on
∥∥∇2η

∥∥
∞. By

symmetry, the first-order term is

1√
h

∫
sign(z1) z Gh(z) dz ·

∫
∇η(x)(χ∗ − χ)(x) dx =

∫
|z1|√
h
Gh(z) dz

∫
∂1η(x)(χ∗ − χ)(x) dx.

Note that the right-hand side can be controlled by

‖∂1η‖∞
∫
B2r

|χ− χ∗| dx .
1

r

∫
B2r

|χ− χ∗| dx ≤ ε2.

The second-order term is controlled by

∥∥∇2η
∥∥
∞

1√
h

∫
|z|2Gh(z) dz =

∥∥∇2η
∥∥
∞

√
h

∫
|z|2G(z) dz .

√
h

1

r2
.

This completes the proof of (71).

Argument for (72): For the first arguments let w.l.o.g h = 1. The first ingredient is the identity

∂1(G ∗ χ)(x) =

∫
|z1|G(z) |χ(x+ z)− χ(x)| dz − 2

∫
{z1≶0}

|z1|G(z) (χ(x+ z)− χ(x))± dz, (74)

where the last term is the sum of the two integrals. Indeed, since ∂1G(z) = −z1G(z) is odd in

z1,

∂1(G ∗ χ)(x) =

∫
∂1G(z)χ(x− z) dz =

∫
z1G(z) (χ(x+ z)− χ(x)) dz

and splitting the integrand in the form u = |u| − 2u− on the set {z1 > 0} and −u = |u| − 2u+
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on {z1 < 0}, respectively, we derive

∂1(G ∗ χ)(x) =

∫
{z1>0}

|z1|G(z) |χ(x+ z)− χ(x)| dz +

∫
{z1<0}

|z1|G(z) |χ(x+ z)− χ(x)| dz

−2

∫
{z1>0}

|z1|G(z) (χ(x+ z)− χ(x))− dz − 2

∫
{z1<0}

|z1|G(z) (χ(x+ z)− χ(x))+ dz,

which is (74).

The second ingredient for (72) is∫
|z1|G(z)|χ(x+ z)− χ(x)|dz &

(∫
G(z)|χ(x+ z)− χ(x)|dz

)2

. (75)

To obtain (75), we estimate∫
|z1|G(z)|χ(x+ z)− χ(x)|dz ≥

∫
{|z1|≥ε}

|z1|G(z)|χ(x+ z)− χ(x)|dz

≥ε
∫

{|z1|≥ε}

G(z)|χ(x+ z)− χ(x)|dz

=ε

∫
G(z)|χ(x+ z)− χ(x)|dz

− ε
∫

{|z1|<ε}

G(z)|χ(x+ z)− χ(x)|dz.

The second integral can be estimated from above by 2G1(0)ε so that∫
|z1|G(z)|χ(x+ z)− χ(x)|dz ≥ ε

∫
G(z)|χ(x+ z)− χ(x)|dz − 2G1(0)ε2.

Optimizing in ε yields (75).

Using the fact that χ ∈ {0, 1},∫
G(z)|χ(x+ z)− χ(x)|dz = (1− χ)(x)(G ∗ χ)(x) + χ(x)(G ∗ (1− χ))(x)

implies the third ingredient:∫
G(z) |χ(x+ z)− χ(x)| dz ≥ min {(G ∗ χ)(x), (1−G ∗ χ)(x)} . (76)

Combining (74), (75) and (76), one finds a positive constant c such that

∂1(G ∗ χ)(x) ≥ 18 c [(G ∗ χ)(x) ∧ (1−G ∗ χ)(x)]2 − 2

∫
{z1≶0}

|z1|G(z) (χ(x+ z)− χ(x))± dz,
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where we recall that the last term is the sum of the two integrals. We consider the “bad” set

E :=

x :

∫
{z1≶0}

|z1|G(z) (χ(x+ z)− χ(x))± dz ≥
c

2

 .

By construction of E we have a good estimate on Ec:

∂1(G ∗ χ)(x) ≥ 18 c [min {(G ∗ χ)(x), (1−G ∗ χ)(x)}]2 − c on Ec,

and thus we obtain strict monotonicity of G ∗ χ in e1-direction outside E as long as the first

term on the left-hand side dominates the second term:

∂1(G ∗ χ) ≥ c on Ec ∩
{

1

3
≤ G ∗ χ ≤ 2

3

}
.

Therefore ∫
{ 1

3
≤G∗χ≤ 2

3}

η (∂1(G ∗ χ)− c)2
− dx =

∫
E∩{ 1

3
≤G∗χ≤ 2

3}

η (∂1(G ∗ χ)− c)2
− dx .

∫
E

η dx.

We introduce the parameter h again. By construction of E and since |z|Gh(z) .
√
hGh(z/2),

we have

1√
h

∫
E

η dx .
1

h

∫
{z1≶0}

|z1|Gh(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz (77)

.
1√
h

∫
{z1≶0}

Gh(z/2)

∫
η(x) (χ(x+ z)− χ(x))± dx dz

.
1√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz

+
1√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ 2z)− χ(x+ z))± dx dz

by a change of coordinates z 7→ 2z and the subadditivity of the functions u 7→ u±. The last

term can be handled using a Taylor expansion of η around x:

1√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ 2z)− χ(x+ z))± dx dz

=
1√
h

∫
{z1≶0}

Gh(z)

∫
η(x− z) (χ(x+ z)− χ(x))± dx dz

=
1√
h

∫
{z1≶0}

Gh(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz +O

(√
h
)
,
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where the constant in the O(
√
h)-term depends linearly on Eh(χ) and ‖∇η‖∞. Indeed, the error

in the equation above is - up to a constant times ‖∇η‖∞ - estimated by∫
|z|√
h
Gh(z)

∫
|χ(x+ z)− χ(x)| dx dz .

∫
Gh(

z

2
)

∫
|χ(x+ z)− χ(x)| dx dz .

√
hEh(χ).

Using (71), we obtain

1√
h

∫
E

η dx . ε2 + δ +
√
h

1

r2
+
√
h

1

r
Eh(χ)

and thus (72) holds.

4.2 Tools for the multi-phase case

4.2.1 1d Lemma

In our application, we use the following corollary for three phases instead of Lemma 4.2 or

Corollary 4.3. Nevertheless, we will make use of the estimates in Section 4.1 for the proof of

this corollary. As in Proposition 4.1, we assume that χ1 is the minority phase.

Corollary 4.5. Let {χn}n be obtained by Algorithm 1 and η ∈ C∞0 (B2r) radially non-increasing

cut-off of Br in B2r with |∇η| . 1
r and

∣∣∇2η
∣∣ . 1

r2
. Then, for any m, n and for s� 1, we have

for the majority phases χ2 and χ3,

1√
h

∫
η |χm2 − χn2 | dx1 +

1√
h

∫
η |χm3 − χn3 | dx1

. ε2(x′) + s+
1

s2

1√
h

∫
η
∣∣Gh ∗ (χm−1 − χn−1

)∣∣2 dx1.

Here s � 1 means that there exists a universal constant s0 > 0, such that the statement holds

for all 0 < s ≤ s0. The function ε2 : B′2r ⊂ Rd−1 → [0,∞) satisfies∫
ε2(x′) dx′ . ε2

1 + (1 + E0)
1

r2

√
h,

where the number ε2
1 is defined below. Furthermore, after integration in x′, we have for the

majority phases χ2 and χ3 and any 0 < s ≤ s0

1√
h

∫
η |χm2 − χn2 | dx+

1√
h

∫
η |χm3 − χn3 | dx

. ε2
1 + srd−1 +

1

s2

1√
h

∫
η
∣∣Gh ∗ (χm−1 − χn−1

)∣∣2 dx
+

1√
h

∫
η
∣∣Gh/2 ∗ (χm − χn)

∣∣2 dx+ (1 + E0)
1

r2

√
h.

For the minority phase χ1, we have

1√
h

∫
η |χm1 − χn1 | dx .ε2

1 +
1√
h

∫
η
∣∣Gh/2 ∗ (χm − χn)

∣∣2 dx+
1

r

∫
|χm − χn| dx.
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Here, ε2
1 := ε2

1(χm) + ε2
1(χn) + ε2

1(χn−1) and

ε2
1(χ) :=

1√
h

∫
η [(1− χ1)Gh ∗ χ1 + χ1Gh ∗ (1− χ1)] dx

+ inf
χ∗

{
1√
h

∫
η [(1− χ2)Gh ∗ χ2 + χ2Gh ∗ (1− χ2)] dx

− 1√
h

∫
η [(1− χ∗)Gh ∗ χ∗ + χ∗Gh ∗ (1− χ∗)] dx+

1

r

∫
B2r

|χ2 − χ∗| dx

+
1√
h

∫
η [(1− χ3)Gh ∗ χ3 + χ3Gh ∗ (1− χ3)] dx

− 1√
h

∫
η [(1− χ∗)Gh ∗ χ∗ + χ∗Gh ∗ (1− χ∗)] dx+

1

r

∫
B2r

|χ3 − (1− χ∗)| dx

}
,

where the infimum is taken over all half spaces χ∗ = 1x1>λ in direction e1.

Proof. Step 1: Minority phase i=1. By (20) and (16), we have

1√
h

∫
η |χm1 − χn1 | dx .

1√
h

∫
η [(1− χm1 )Gh ∗ χm1 + χm1 Gh ∗ (1− χm1 )] dx

+
1√
h

∫
η [(1− χn1 )Gh ∗ χn1 + χn1 Gh ∗ (1− χn1 )] dx

+
1√
h

∫
η (χm1 − χn1 )Gh ∗ (χm1 − χn1 ) dx.

As in the proof of Lemma 2.10 for ζ, we can deal with η to obtain∣∣∣∣ 1√
h

∫
η (χm1 − χn1 )Gh ∗ (χm1 − χn1 ) dx1

∣∣∣∣ . 1√
h

∫
η
∣∣Gh/2 ∗ (χm − χn)

∣∣2 dx+
1

r

∫
|χm − χn| dx.

Step 2: Minority phases i = 2, 3. Because of symmetry, we may restrict to i = 2. For the ease

of notation, we define φ := Gh ∗ χn−1, φ̃ := Gh ∗ χm−1 χ := χn, χ̃ := χm. Setting (compare to

Algorithm 1)

u :=
1

2
(φ2 − φ1 ∨ φ3 + 1) ∈ C0,1(R), (78)

and ũ in the same way, we have χ2 = 1u>1/2, which allows us to apply Corollary 4.3 for u, χ2

and ũ, χ̃2:

1√
h

∫
η |χ2 − χ̃2| dx1 .

1√
h

∫
|u−1/2|<s

η
(√

h ∂1u− 2c
)2

−
dx1 + s+

1

s2

1√
h

∫
η (u− ũ)2 dx1 (79)

for any s > 0. Since x 7→ x+ is 1-Lipschitz, we have

|u− ũ| ≤ 1

2

∣∣∣φ2 − φ̃2

∣∣∣+
1

2

∣∣∣φ1 ∨ φ3 − φ̃1 ∨ φ̃3

∣∣∣ ≤ 3∑
i=1

∣∣∣φi − φ̃i∣∣∣ .
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Therefore, the last term is estimated as desired. Now we turn to the first right-hand side term

of (79). Now, we can estimate the first right-hand side term of (79). By

{|u− 1/2| < s} = {|φ1 − φ2| < 2s, φ1 ≥ φ3} ∪ {|φ2 − φ3| < 2s, φ3 ≥ φ1}

and since by the chain rule ∂1 (φ1 ∨ φ3) = ∂1φ1 if φ1 ≥ φ3 and vice versa, we have

1√
h

∫
|u−1/2|<s

η
(√

h ∂1u− 2c
)2

−
dx1 ≤

1√
h

∫
|φ1−φ2|<2s, φ1≥φ3

η
(√

h ∂1 (φ2 − φ1)− 2c
)2

−
dx1

+
1√
h

∫
|φ2−φ3|<2s, φ3≥φ1

η
(√

h ∂1 (φ2 − φ3)− 2c
)2

−
dx1.

By the continuity of the map (φ1, φ2, φ3) 7→ u and φ1 + φ2 + φ3 = 1, we have for s� 1

{|φ1 − φ2| < 2s, φ1 ≥ φ3} ⊂ {1/4 < φ1 < 3/4} ∪ {1/4 < φ2 < 3/4}.

Thus, by the subadditivity of x 7→ x−, we have for s� 1

1√
h

∫
|φ1−φ2|<2s, φ1≥φ3

η
(√

h ∂1 (φ2 − φ1)− 2c
)2

−
dx1 .

1√
h

∫
1
4
<φ2<

3
4

η
(√

h ∂1φ2 − c
)2

−
dx1

+
1√
h

∫
1
4
<φ1<

3
4

η
(√

h ∂1φ1 + c
)2

+
dx1,

and the same if we exchange the roles of φ1 and φ3. By Lemma 4.4, we can estimate the terms

with φ2 and φ3. For the term with φ1 - the minority phase - we note that since |
√
h∂1φ1| . 1,

we can estimate

1√
h

∫
1
4
<φ1<

3
4

η
(√

h ∂1φ1 + c
)2

+
dx1 .

1√
h

∫
Gh∗(1−χn−1

1 ), Gh∗χn−1
1 > 1

4

η
[(

1− χn−1
1

)
+ χn−1

1

]
dx1

.
1√
h

∫
η
[(

1− χn−1
1

)
Gh ∗ χn−1

1 + χn−1
1 Gh ∗

(
1− χn−1

1

)]
dx1.

4.2.2 Steps for Proposition 4.1

In the next two lemmas, we approximate the first variation of the metric term by an expression

that makes the normal velocity appear. The main idea is to work, as for Lemma 2.6, on a

mesoscopic time scale τ ∼
√
h, introducing a fudge factor α, cf. Remark 1.4. The first lemma

shows that we may coarsen the first variation from the microscopic time scale h to the mesoscopic

time scale α
√
h. It also shows that we may isolate the test vector field ξ.
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Lemma 4.6 (First variation of the dissipation). Let ξ ∈ C∞0 ((0, T )×Br,Rd). Then

T∫
0

−δEh( · − χh(t− h))(χh(t), ξ(t)) dt

≈
3∑
i=1

τ
L∑
l=1

∫
χKli − χ

K(l−1)
i

τ
ξ(lτ) ·

(
−
√
h∇Gh

)
∗
(
χ
K(l−1)
i + χKli

)
dx

in the sense that the error is controlled by

‖ξ‖∞
(

1

α
ε2

1 + α1/3

∫∫
η dµh + α1/3rd−1T

)
+ o(1), as h→ 0,

where η ∈ C∞0 (B2r) is a radially symmetric, radially non-increasing cut-off for Br in B2r with

|∇η| . 1
r ,

ε2
1 := h

N∑
n=1

ε2
1(χn) + τ

L∑
l=1

ε2
1(χKl),

and the functional ε2
1(χ) is defined in Corollary 4.5.

Proof. We recall the definition of the inner variation of −Eh(χ− χ̃) in (30) and have for any pair

of admissible functions χ, χ̃ and any test function ξ ∈ C∞([0,Λ)d,Rd) for equal surface tensions:

−δEh( · − χ̃)(χ, ξ) =
d

ds

∣∣∣
s=0
− 1√

h

∑
i,j

σij

∫
(χi,s − χ̃i)Gh ∗ (χj,s − χ̃j) dx

=
2√
h

∑
i,j

σij

∫
(χi − χ̃i)Gh ∗ (ξ · ∇χj) dx

=
2√
h

∑
i

∫
(χi − χ̃i) [∇Gh ∗ (ξχi)−Gh ∗ ((∇ · ξ)χi)] dx.

In our case, after integration in time, this yields

T∫
0

−δEh( · − χh(t− h))(χh(t), ξ(t)) dt

=
3∑
i=1

h
N∑
n=1

2√
h

∫ [
−∇Gh ∗

(
ξ
n
χni

)
+Gh ∗

((
∇ · ξn

)
χni

)] (
χni − χn−1

i

)
dx,

where

ξ
n

:=
1

h

(n+1)h∫
nh

ξ(t) dt

denotes the time average of ξ over a microscopic time interval [nh, (n+ 1)h).

Now we prove step by step that
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1. the (∇ · ξ)-term is negligible as h→ 0;

2. we can freeze mesoscopic time for ξ, that is, substitute ξ
n

by some nearby value ξ(lnτ) at

the expense of an o(1)-term;

3. we can smuggle in η at the expense of an o(1)-term;

4. we can freeze mesoscopic time for χh and substitute χn in the second factor by the mean
1
2

(
χh((ln − 1)τ) + χh(lnτ)

)
, which is the main step;

5. we can get rid of η again at the expense of an o(1)-term; and finally

6. we can pull ξ out of the convolution at the expense of an o(1)-term.

Note that Step 3 and Step 5 are just auxiliary steps for Step 4.

Step 1: The (∇ · ξ)-term vanishes as h→ 0. Using Jensen’s inequality, we obtain∣∣∣∣∣h
N∑
n=1

1√
h

∫ (
χni − χn−1

i

)
Gh ∗

((
∇ · ξn

)
χni

)
dx

∣∣∣∣∣
≤‖∇ξ‖∞T

1√
h

1

N

N∑
n=1

∫ ∣∣Gh ∗ (χni − χn−1
i

)∣∣ dx
.‖∇ξ‖∞T

1√
h

(
1

N

N∑
n=1

∫ ∣∣Gh ∗ (χn − χn−1
)∣∣2 dx)1/2

.

Since the L2-norm of Gh ∗ u is decreasing in h and by the energy-dissipation estimate (9), the

error is controlled by

‖∇ξ‖∞T
1√
h

(
1

N

√
hE0

)1/2

≤ ‖∇ξ‖∞E1/2
0 T 1/2h1/4 = o(1).

Step 2: Time freezing for ξ. We can approximate ξ
n

by a nearby value ξ(lnτ), where ln ∈
{1, . . . L} is chosen such that K(ln − 1) < n ≤ Kln. Note that |ξn − ξln | ≤ τ‖∂tξ‖∞. Therefore,

by Jensen’s inequality, we have∣∣∣∣∣h
N∑
n=1

1√
h

∫ (
χni − χn−1

i

)
∇Gh ∗

((
ξln − ξn

)
χni

)
dx

∣∣∣∣∣
≤α‖∂tξ‖∞T

1

N

N∑
n=1

∫ ∣∣∇Gh ∗ (χni − χn−1
i

)∣∣ dx
.α‖∂tξ‖∞T

(
1

N

N∑
n=1

∫ ∣∣∇Gh ∗ (χn − χn−1
)∣∣2 dx)1/2

.

But
√
h‖∇Gh ∗ u‖L2 . ‖Gh/2 ∗ u‖L2 yields∫ ∣∣∇Gh ∗ (χn − χn−1

)∣∣2 dx .
1

h

∫ [
Gh/2 ∗

(
χn − χn−1

)]2
dx.
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Using the energy-dissipation estimate (9), the error is controlled by

α‖∂tξ‖∞T
(

1

N

1√
h
E0

)1/2

= α‖∂tξ‖∞E1/2
0 T 1/2h1/4 = o(1).

Step 3: Smuggling in η. We claim that

h

N∑
n=1

1√
h

∫
∇Gh ∗ (ξ(lnτ)χni )

(
χni − χn−1

i

)
dx

= h

N∑
n=1

1√
h

∫
η∇Gh/2 ∗ (ξ(lnτ)χni )Gh/2 ∗

(
χni − χn−1

i

)
dx+ o(1) as h→ 0.

Using ∇Gh = Gh/2 ∗ ∇Gh/2, the left-hand side is equal to

h

N∑
n=1

1√
h

∫
∇Gh/2 ∗ (ξ(lnτ)χni )Gh/2 ∗

(
χni − χn−1

i

)
dx.

Note that since η ≡ 1 on the support of ξ and |z|
∣∣∇G1/2(z)

∣∣ . |z|2G(z) has finite integral, we

have for any χ ∈ {0, 1},

∣∣(1− η)∇Gh/2 ∗ (ξχ)
∣∣ =

∣∣∣∣∫ ∇Gh/2(z)(η(x+ z)− η(x))ξ(x+ z)χ(x+ z) dz

∣∣∣∣
.‖∇η‖∞‖ξ‖∞

∫
|z|
∣∣∇Gh/2(z)

∣∣ dz . ‖∇η‖∞‖ξ‖∞.
Thus, using the Cauchy-Schwarz inequality and the energy-dissipation estimate (9), the error is

controlled by

h1/4

(
N∑
n=1

1√
h

∫ ∣∣Gh/2 ∗ (χn − χn−1
)∣∣2 dx)1/2(

h

N∑
n=1

(‖∇η‖∞‖ξ‖∞)2

)1/2

. E
1/2
0 T 1/2‖∇η‖∞‖ξ‖∞h1/4 = o(1).

Step 4: Time freezing for χh. We claim that

h
N∑
n=1

2√
h

∫
η∇Gh/2 ∗ (ξ(lnτ)χni )Gh/2 ∗

(
χni − χn−1

i

)
dx

≈ h
N∑
n=1

1√
h

∫
η∇Gh/2 ∗

(
ξ(lnτ)

(
χhi ((ln − 1)τ) + χhi (lnτ)

))
Gh/2 ∗

(
χni − χn−1

i

)
dx,

in the sense that the error is controlled by

‖ξ‖∞
(

1

α
ε2

1 + α1/3

∫∫
η dµh + α1/3rd−1T

)
+ o(1), as h→ 0.

Here, we assumed that Phase 1 is the minority phase in the support of η. Indeed, we can control
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the error using the Cauchy-Schwarz inequality by

(
N∑
n=1

1√
h

∫
η2
∣∣Gh/2 ∗ (χn − χn−1

)∣∣2 dx)1/2

×

(
τ

L∑
l=1

1

K

K∑
k=1

1√
h

∫ ∣∣∣∣√h∇Gh/2 ∗ [ξ(lτ)

(
χ
K(l−1)+k
i − 1

2

(
χ
K(l−1)
i + χKli

))]∣∣∣∣2 dx
)1/2

.

Since 0 ≤ η ≤ 1, the term in the first parenthesis is bounded by
∫∫

η dµh. For the term in the

second parenthesis, we fix the mesoscopic block index l and the microscopic time step index k

and sum at the end. Let l = 1 and write ξ instead of ξ(lτ) for notational simplicity. We use

the L2-convolution estimate and introduce η in the second integral, which is equal to 1 on the

support of ξ:

1√
h

∫ (√
h∇Gh/2 ∗

[
ξ

(
χki −

1

2

(
χ0
i + χKi

))])2

dx

≤ 1√
h

(∫ ∣∣∣√h∇Gh/2∣∣∣ dz)2 ∫
|ξ|2

[
χki −

1

2

(
χ0
i + χKi

)]2

dx

. ‖ξ‖2∞
(

1√
h

∫
η
∣∣∣χk − χ0

∣∣∣ dx+
1√
h

∫
η
∣∣∣χK − χk∣∣∣ dx) .

With Corollary 4.5, we can estimate these terms and set for abbreviation

α2(k, k′) :=
1√
h

∫
η
[
Gh ∗

(
χk − χk′

)]2
dx+

1√
h

∫
η
[
Gh/2 ∗

(
χk − χk′

)]2
dx.

By Minkowski’s triangle inequality w.r.t. the measure η dx, we see that α also satisfies a triangle

inequality. Thus, thanks to Jensen’s inequality,

α2(k − 1,−1) ≤

(
k−1∑
n=0

α(n, n− 1)

)2

≤ k
k−1∑
n=0

α2(n, n− 1) ≤ K
K−1∑
n=0

α2(n, n− 1).

Therefore, using Corollary 4.5 and Lemma 2.7, we have

1√
h

∫
η
∣∣∣χk − χ0

∣∣∣ dx .ε2
1(χk) + ε2

1(χk−1) + ε2
1(χ0) + srd−1 +

1

s2
K

K∑
n=0

α2(n, n− 1)

+ E0

√
τ +K

K∑
n=1

α2(n, n− 1) + (1 + E0)
1

r2

√
h.

Note that since s ≤ s0 . 1, we can combine the two α2-terms so that by
∑

n α
2(n, n − 1) =∫∫

η dµh, after summation, we have

τ
L∑
l=1

1

K

K∑
k=1

1√
h

∫
η
∣∣∣χKl+k − χKl∣∣∣ dx . ε2

1 + srd−1T +
1

s2
α2

∫∫
η dµh + o(1),

as h → 0. Now we choose the parameter s. If (rd−1T )−1
∫∫

η dµh ≤ s3
0, we optimize in s.
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Otherwise, we choose s := s0. In the first case, we have

min
s≤s0

{
srd−1T + +

1

s2
α2

∫∫
η dµh

}
=
(
rd−1T

)2/3
(
α2

∫∫
η dµh

)1/3

.

Whereas in the second case, since s0 > 0 is a universal constant and thus bounded away from

0, we obtain

s0r
d−1T + +

1

s2
0

α2

∫∫
η dµh .

(
rd−1T

)2/3
(
α2

∫∫
η dµh

)1/3

+ α2

∫∫
η dµh.

By Young’s inequality, since α ≤ 1, we can thus estimate in both cases

min
s≤s0

{
srd−1T + +

1

s2
α2

∫∫
η dµh

}
. α2/3rd−1T + α2/3

∫∫
η dµh.

Using Young’s inequality once more, the total error in this step is controlled by

‖ξ‖∞
(∫∫

η dµh

)1/2(
ε2

1 + α2/3rd−1T + α2/3

∫∫
η dµh

)1/2

+ o(1)

. ‖ξ‖∞
(

1

α1/3
ε2 + α1/3rd−1T + α1/3

∫∫
η dµh

)
+ o(1).

Step 5: Getting rid of η again. As in Step 3, we can estimate

h
N∑
n=1

1√
h

∫
η Gh/2 ∗

(
χni − χn−1

i

)
∇Gh/2 ∗

(
ξ(lnτ)

(
χhi ((ln − 1)τ) + χhi (lnτ)

))
dx

= h
N∑
n=1

1√
h

∫ (
χni − χn−1

i

)
∇Gh ∗

(
ξ(lnτ)

(
χhi ((ln − 1)τ) + χhi (lnτ)

))
dx+ o(1),

as h→ 0.

Step 6: Pulling out ξ. First, fix l and write ξ = ξ(lτ). For simplicity of the formula, we

will ignore l and formally set l = 1. Note that since ∇G is antisymmetric, we have for any

χ, χ̃ ∈ {0, 1},∫
(χ− χ̃) [ξ · ∇Gh ∗ χ−∇Gh ∗ (ξχ)] dx

= −
∫
∇Gh(z)

∫
(χ− χ̃) (x+ z)χ(x) (ξ(x+ z)− ξ(x)) dx dz.

Set K(z) := z⊗z G(z), take a Taylor-expansion of ξ around x: ξ(x+z)−ξ(x) = ∇ξ(x)z+O(|z|2),

where the constant in the O(|z|2)-term is depending linearly on ‖∇2ξ‖∞. Then the error on this

single time interval splits into two terms.
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The one coming from the first-order term in the expansion of ξ is∣∣∣∣∣ 1

K

K∑
k=1

1√
h

∫ (
χ0
i + χKi

)
∇ξ :

[
Kh ∗

(
χki − χk−1

i

)]
dx

∣∣∣∣∣
. ‖∇ξ‖∞

1√
h

(
1

K

K∑
k=1

∫ ∣∣∣Kh ∗
(
χk − χk−1

)∣∣∣2 dx)1/2

,

where we used Jensen’s inequality. Since Kh = h∇2Gh +Gh Id, h‖∇2Gh ∗ u‖L2 . ‖Gh/2 ∗ u‖L2

for any u and since the L2-norm of Gh ∗ u is non-increasing in h, we have for any characteristic

functions χ, χ̃∫
|Kh ∗ (χ− χ̃)|2 dx ≤h2

∫ ∣∣∇2Gh ∗ (χ− χ̃)
∣∣2 dx+

∫
[Gh ∗ (χ− χ̃)]2 dx

.
∫ [

Gh/2 ∗ (χ− χ̃)
]2
dx.

Plugging this into the inequality above, multiplying by τ , summing over the block index l and

using Jensen’s inequality, we can control the contribution to the error coming from the first-order

term by

T‖∇ξ‖∞
1√
h

(
1

N

N∑
n=1

∫ ∣∣Gh/2 ∗ (χn − χn−1
)∣∣2 dx)1/2

≤ ‖∇ξ‖∞E1/2
0 T 1/2h1/4 = o(1),

where we used the energy-dissipation estimate at the end.

By Lemma 2.6, the contribution coming from the second-order term in the expansion of ξ is

controlled by

‖∇2ξ‖∞h
N∑
n=1

∫ (
|z|√
h

)3

Gh(z)

∫ ∣∣χn − χn−1
∣∣ dx dz

. ‖∇2ξ‖∞

T∫
0

∫ ∣∣∣χh(t)− χh(t− h)
∣∣∣ dx dt . ‖∇2ξ‖∞E0(1 + T )

√
h = o(1).

Finally, we note that by the time freezing in Step 4, we constructed a telescope sum: Rewriting

the summation over the microscopic time step index n = 1, . . . , N as the double sum over the

microscopic time step index k = 1, . . . ,K in the respective mesoscopic time intervals and the

mesoscopic block index l = 1, . . . , L, we have for each l,

K∑
k=1

(
χ
K(l−1)+k
i − χK(l−1)+k−1

i

)
ξ(lτ) · ∇Gh ∗

(
χ
K(l−1)
i + χKli

)
=
(
χKli − χ

K(l−1)
i

)
ξ(lτ) · ∇Gh ∗

(
χ
K(l−1)
i + χKli

)
.
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Thus, we obtain

h
N∑
n=1

1√
h

∫ (
χni − χn−1

i

)
∇Gh ∗

(
ξ(lnτ)

(
χhi ((ln − 1)τ) + χhi (lnτ)

))
dx

=
1

α
τ

L∑
l=1

∫ (
χKli − χ

K(l−1)
i

)
ξ(lτ) · ∇Gh ∗

(
χ
K(l−1)
i + χKli

)
dx+ o(1),

which concludes the proof.

While the first lemma made the mesoscopic time derivative 1
τ

(
χKli − χ

K(l−1)
i

)
appear, the

upcoming second lemma makes the approximate normal, here e1, appear.

Lemma 4.7. Under the hypotheses of Lemma 4.6, we have

3∑
i=1

τ

L∑
l=1

∫
ξ(lτ) ·

(
−
√
h∇Gh

)
∗
(
χ
K(l−1)
i + χKli

) χKli − χK(l−1)
i

τ
dx

≈ 2c0τ
L∑
l=1

(∫
ξ1(lτ)

χKl2 − χ
K(l−1)
2

τ
dx−

∫
ξ1(lτ)

χKl3 − χ
K(l−1)
3

τ
dx

)
,

in the sense that the error is controlled by

‖ξ‖∞

[
1

α
τ

L∑
l=1

ε2
1(χKl) +

1

α
τ

L∑
l=1

1√
h

∫
η
∣∣χKl − χK(l−1)

∣∣ kh ∗ (η ∣∣χKl − χK(l−1)
∣∣) dx]+ o(1),

as h → 0, where 0 ≤ k(z) ≤ |z|G(z). Let us comment on the error term: The first part of

the error term arises because e1 is only the approximate normal. The second part arises in the

passage from a diffuse to a sharp interface and formally is of quadratic nature.

Proof. Step 1: Substitution of ∇G for majority phases i = 2, 3. We want to replace the con-

volution with −∇G on the left-hand side of the claim by a convolution with the anisotropic

kernel

K(z) := sign(z1) z G(z).

To that purpose, we claim that for any characteristic function χ ∈ {0, 1},

1√
h

∫
η
∣∣∣√h ∇Gh ∗ χ− (χKh ∗ (1− χ) + (1− χ)Kh ∗ χ)

∣∣∣dx . ε2 +

√
h

r2
+

√
h

r
Eh(χ). (80)

Here,

ε2 := inf
χ∗

{
1√
h

∫
η [χGh ∗ (1− χ) + (1− χ)Gh ∗ χ] dx

− 1√
h

∫
η [χ∗Gh ∗ (1− χ∗) + (1− χ∗)Gh ∗ χ∗] dx+

1

r

∫
B2r

|χ− χ∗| dx

}
,
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where the infimum is taken over all half spaces χ∗ = 1x1>λ in direction e1. Using this inequality

for χ
K(l−1)
i and χKli , i = 3 and with −K instead of K for i = 2, we can substitute those two

summands and the error is estimated as desired; for instance the error for χ2 is controlled by

1

α
‖ξ‖∞τ

L∑
l=0

1√
h

∫
η
∣∣∣√h∇Gh ∗ χKl2 −

[
χKl2 Kh ∗

(
1− χKl2

)
+
(

1− χKl2

)
Kh ∗ χKl2

]∣∣∣ dx
.

1

α
‖ξ‖∞τ

L∑
l=0

ε2
1(χKl) + o(1), as h→ 0.

Argument for (80): By measuring length in terms of
√
h, we may assume that h = 1. Since∫

∇Gdz = 0 and ∇G(z) = −zG(z), using the identities u = |u| − 2u− and u = −|u|+ 2u+,

∇G ∗ χ =

∫
z G(z) (χ(x+ z)− χ(x)) dz

=

∫
{z1>0}

K(z) |χ(x+ z)− χ(x)| dz − 2

∫
{z1>0}

z G(z) (χ(x+ z)− χ(x))− dz

+

∫
{z1<0}

K(z) |χ(x+ z)− χ(x)| dz − 2

∫
{z1<0}

z G(z) (χ(x+ z)− χ(x))+ dz.

Using |χ1−χ2| = (1−χ1)χ2 +χ1(1−χ2) for χ1, χ2 ∈ {0, 1}, this implies the pointwise identity

∇G ∗ χ = χK ∗ (1− χ) + (1− χ)K ∗ χ− 2

∫
{z1≶0}

sign(z1) z G(z) (χ(x+ z)− χ(x))± dz,

where the last term stands for the sum of the two integrals. Integration w.r.t. η dx now yields:∫
η
∣∣∣∇G ∗ χ− (χK ∗ (1− χ) + (1− χ)K ∗ χ)

∣∣∣dx
.

∫
{z1≶0}

|z|G(z)

∫
η(x) (χ(x+ z)− χ(x))± dx dz.

As in the argument for (72), we can follow the lines from (77) on so that (71) yields (80).

Step 2: Rough estimate for minority phase i = 1. By a manipulation as in the proof of Lemma

4.6 and the Cauchy-Schwarz inequality, we have∣∣∣∣∣τ
L∑
l=1

∫
χKl1 − χ

K(l−1)
1

τ
ξ(lτ) ·

(
−
√
h∇Gh

)
∗
(
χ
K(l−1)
1 + χKl1

)
dx

∣∣∣∣∣
≤ ‖ξ‖∞

(
L∑
l=1

∫
η
∣∣∣Gh/2 ∗ (χKl1 − χ

K(l−1)
1

)∣∣∣2 dx)1/2( L∑
l=0

∫
η
∣∣∣√h∇Gh/2 ∗ χKl1

∣∣∣2 dx)1/2

+ o(1),
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as h→ 0. Note that for any characteristic function χ ∈ {0, 1}, since
∫
∇G(z) dz = 0,

1√
h

∫
η
∣∣∣√h∇Gh/2 ∗ χ∣∣∣2 dx .

1√
h

∫
η
∣∣∣√h∇Gh/2 ∗ χ∣∣∣ dx

.
1√
h

∫ ∣∣∣√h∇Gh/2(z)
∣∣∣ ∫ η(x) |χ(x+ z)− χ(x)| dx dz

.
1√
h

∫
Gh(z)

∫
η(x) |χ(x+ z)− χ(x)| dx dz

=
1√
h

∫
η [(1− χ)Gh ∗ χ+ χGh ∗ (1− χ)] dx.

Treating the metric term as in the proof of Lemma 4.6 with the triangle inequality and Jensen’s

inequality afterwards, we obtain the bound

‖ξ‖∞
(∫∫

η dµh

)1/2(
τ

L∑
l=1

ε2
1(χKl)

)1/2

+ o(1) ≤ ‖ξ‖∞

(
τ

α

L∑
l=1

ε2
1(χKl) + α

∫∫
η dµh

)
+ o(1).

Step 3: An identity for K. We claim that for any two characteristic functions χ, χ̃ ∈ {0, 1}, we

have the pointwise identity

(χ− χ̃)
(
χKh ∗ (1− χ) + (1− χ)Kh ∗ χ+ χ̃Kh ∗ (1− χ̃) + (1− χ̃)Kh ∗ χ̃

)
= 2c0 e1 (χ− χ̃)− |χ− χ̃|Kh ∗ (χ− χ̃) .

Indeed, by scaling, we may w.l.o.g. assume h = 1 and start with

(χ− χ̃) χ̃K ∗ (1− χ̃) + (χ− χ̃) (1− χ̃)K ∗ χ̃

= (χ− 1) χ̃

(∫
K −K ∗ χ̃

)
+ χ (1− χ̃)K ∗ χ̃

= (χ− 1) χ̃

(∫
K

)
+
(

(1− χ) χ̃+ χ (1− χ̃)
)
K ∗ χ̃

= (χ− 1) χ̃

(∫
K

)
+ |χ− χ̃|K ∗ χ̃.

Exchanging the roles of χ and χ̃, one obtains for the second part

(χ− χ̃)χK ∗ (1− χ) + (χ− χ̃) (1− χ)K ∗ χ

= − (χ̃− 1) χ

(∫
K

)
− |χ− χ̃|K ∗ χ.

Using the factorization property of G and the symmetry
∫
z′Gd−1(z′)dz′ = 0, one computes that
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for any vector ξ ∈ Rd

ξ ·
∫
K =

∫
sign(z1)

∫ (
ξ1 z1 + ξ′ · z′

)
Gd−1(z′) dz′G1(z1) dz1

=ξ1

∫
|z1|G1(z1) dz1 = 2 ξ1

∞∫
0

z1G
1(z1) dz1

=2 ξ1

∞∫
0

− d

dz1
G1(z1) dz1 = 2 ξ1G

1(0) = 2 ξ1
1√
2π

= 2c0ξ1.

Hence, the identity follows from (χ− 1)χ̃− (χ̃− 1)χ = χ− χ̃.

Step 4: Conclusion. Applying Steps 1 and 2, using the identity in Step 3 for the remaining

two terms involving Phases 2, 3, we end up with the right-hand side of the claim. The error is

controlled by

‖ξ‖∞

[
1

α
τ

L∑
l=1

ε2
1(χKl) +

1

α
τ

L∑
l=1

1√
h

∫
η2
∣∣∣χKl + χK(l−1)

∣∣∣ |Kh| ∗
∣∣∣χKl − χK(l−1)

∣∣∣ dx]+ o(1),

as h → 0. Note that |K| = k, where k is the kernel defined in the statement of the lemma. It

remains to argue that η can be equally distributed on both copies of
∣∣χKl − χK(l−1)

∣∣. For this,

note that for u =
∣∣χKl − χK(l−1)

∣∣ ∈ [0, 1],

1√
h

∣∣∣∣∫ η2u kh ∗ u dx−
∫
ηu kh ∗ (ηu) dx

∣∣∣∣
≤ 1√

h

∫
kh(z)

∫
η(x)u(x)u(x+ z) |η(x+ z)− η(x)| dx dz

≤ ‖∇η‖∞
∫
|z|√
h
kh(z) dz

∫
ηu dx

.
1

r

∫
u dx.

Thus, in our case, we can use Lemma 2.7 and bound the error by

1

α
‖ξ‖∞

1

r
τ

L∑
l=1

∫ ∣∣∣χKl − χK(l−1)
∣∣∣ dx .

1

α1/2
‖ξ‖∞

1

r
E0Th

1/4 = o(1).

The following lemma deals with the error term in the foregoing lemma and brings it into the

standard form.
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Lemma 4.8. Under the hypotheses of Lemma 4.6, we have

1

α
τ

L∑
l=1

1√
h

∫
η
∣∣χKl − χK(l−1)

∣∣kh ∗ (η ∣∣χKl − χK(l−1)
∣∣) dx

.
1

α
τ

L∑
l=1

[
ε2

1(χKl−1) + ε2
1(χKl)

]
+ α1/3

∫∫
η dµh + α1/3rd−1T + o(1),

as h→ 0.

Proof. First, we note that it is enough to prove the following similar statement for fixed time:

1√
h

∫
η
∣∣χK − χ0

∣∣ kh ∗ (η ∣∣χK − χ0
∣∣) dx . ε2

1 +
α1/3

√
h

τ∫
0

∫
η dµh + α4/3rd−1 + o(1), (81)

where similar to the notation in Corollary 4.5, we write ε2
1 := ε2

1(χK) + ε2
1(χK−1) + ε2

1(χ0).

Indeed, dividing by α and summing this estimate over mesoscopic time blocks yields the desired

bound. In the proof of (81), we will exploit the convolution in the normal direction e1 in Step

1, which will allow us in Step 2 to make use of the quadratic structure of this term.

Step 1: We can estimate the kernel k by a kernel that factorizes in two kernels k1, k′ in normal-

and tangential direction, respectively, which are of the form

k1(z1) :=(1 + z2
1)1/2G1(z1),

k′(z′) :=(1 + |z′|2)1/2Gd−1(z′).

Let us still denote the kernel by k. We have

kh ∗
(
η|χK − χ0|

)
≤ sup

x1

{
k′h ∗′ k1

h ∗1
(
η|χK − χ0|

)}
≤ k′h ∗′ sup

x1

{
k1
h ∗1

(
η|χK − χ0|

)}
.

The second factor in the right-hand side convolution can be estimated in two ways:

sup
x1

{
k1
h ∗1

(
η|χK − χ0|

)}
≤min

{∫
k1
h dz1 sup

x1

(
η|χK − χ0|

)
,

(
sup
x1

k1
h

)∫
η
∣∣χK − χ0

∣∣ dx1

}
.min

{
1,

1√
h

∫
η
∣∣χK − χ0

∣∣ dx1

}
.

Therefore, we obtain a quadratic term with two copies of 1√
h

∫
η
∣∣χK − χ0

∣∣ dx1:

1√
h

∫
η
∣∣χK − χ0

∣∣ kh ∗ (η ∣∣χK − χ0
∣∣) dx

.
∫ (

1√
h

∫
η
∣∣χK − χ0

∣∣ dx1

)
k′h ∗′

(
1 ∧ 1√

h

∫ ∣∣χK − χ0
∣∣ dx1

)
dx′.

Step 2: Now we use Corollary 4.5 before integration in x′ for the majority phases. We adopt
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the notation ε2(x′) from there (with K playing the role of n) and set

α2(x′) :=
1√
h

∫
η
∣∣Gh ∗ (χK−1 − χ−1

)∣∣2 dx1 +
1√
h

∫
η
∣∣Gh ∗ (χK − χ0

)∣∣2 dx1.

As in Step 4 of the proof of Lemma 4.6, we optimize the right-hand side (this time before

integration in x′) w.r.t. s. Then we have for i = 2, 3,∫ (
1√
h

∫
η
∣∣χKi − χ0

i

∣∣ dx1

)
k′h ∗′

(
1 ∧ 1√

h

∫ ∣∣χK − χ0
∣∣ dx1

)
dx′

.
∫ (

ε2(x′) + α2(x′) + α2/3(x′)
)

k′h ∗′
(

1 ∧
(
ε2(x′) + α2(x′) + α2/3(x′) +

1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx1

))
dx′

.
∫ (

ε2(x′) + α2(x′) + α2/3(x′)
)

k′h ∗′
(

1 ∧

(
ε4/3(x′) + α2/3(x′) +

(
1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx1

)2/3
))

dx′.

For the first two summands in the first factor, ε2(x′) + α2(x′), we use the 1 in the minimum on

the right and obtain∫ (
ε2(x′) + α2(x′)

)
k′h ∗′ 1 dx′ .

∫ (
ε2(x′) + α2(x′)

)
dx′.

For the last summand on the left, α2/3(x′), we use the second term in the minimum for the

pairing. Then by Hölder’s inequality and the Lp-convolution, we have

∫
α2/3(x′) k′h ∗′

(
ε4/3(x′) + α2/3(x′) +

(
1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx1

)2/3
)
dx′

.

(∫
α2(x′) dx′

)1/3
[(∫

ε2(x′) dx′
)2/3

+

(
1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx)2/3
]

+

∫
α4/3(x′) dx′.

Using Hölder’s inequality against 1B for the last term and Young’s inequality, this is controlled

by ∫
ε2(x′) dx′ +

∫
α2(x′) dx′ +

1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx+ α4/3rd−1 +
1

α2/3

∫
α2(x′) dx′.

Note that for the minority phase χ1 we clearly have∫ (
1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx1

)
k′h ∗′

(
1 ∧ 1√

h

∫ ∣∣χK − χ0
∣∣ dx1

)
dx′ .

1√
h

∫
η
∣∣χK1 − χ0

1

∣∣ dx
by using the 1 in the minimum on the right. Therefore, using Corollary 4.5 for the minority
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phase χ1, we obtain

1√
h

∫
η
∣∣χK − χ0

∣∣ kh ∗ (η ∣∣χK − χ0
∣∣) dx

. ε2
1 + α4/3rd−1 +

1

α2/3

∫
α2(x′) dx′ +

1

r

∫
η
∣∣χK − χ0

∣∣ dx+ (1 + E0)

√
h

r2
.

Iterating the triangle inequality for the metric term as in Step 4 of the proof of Lemma 4.6, we

have

∫
α2(x′) dx′ ≤ α√

h

τ∫
0

∫
η dµh.

Using Lemma 2.7 for the term measuring the L1-distance of χ0 and χK , we obtain (81).

If there is just a small amount of the boundaries inside a ball B, we can estimate roughly.

Lemma 4.9. In the situation as in Proposition 4.1, we have∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi) |∇χi| dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
ξ · νiVi |∇χi| dt

∣∣∣∣∣∣
. ‖ξ‖∞

 3∑
i=1

T∫
0

∫
η

(
1

α
+ αV 2

i

)
|∇χi| dt+ α

∫∫
η dµ

 .
Proof. Thanks to the convergence assumption (8), we can apply Proposition 3.1. Using the

Euler-Lagrange equation for χn, we can identify the first term on the left-hand side as the limit

of the first variation of the dissipation functional as h → 0. Following Step 1 of the proof of

Lemma 4.6 and then estimating directly as in Step 3, but for ξ instead of η, we obtain

3∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi) |∇χi| dt

= 2 lim
h→0

3∑
i=1

N∑
n=1

∫
ξ
n ·
[(√

h∇Gh/2
)
∗ χni

] [
Gh/2 ∗ (χni − χn−1

i )
]
dx.

Using the Cauchy-Schwarz inequality, we have∣∣∣∣∣
3∑
i=1

N∑
n=1

∫
ξ
n ·
[(√

h∇Gh/2
)
∗ χni

] [
Gh/2 ∗ (χni − χn−1

i )
]
dx

∣∣∣∣∣
. ‖ξ‖∞

(
N∑
n=1

1√
h

∫
η
∣∣Gh/2 ∗ (χn − χn−1)

∣∣2 dx)1/2(
h

N∑
n=1

1√
h

∫
η
∣∣∣√h∇Gh/2 ∗ χn∣∣∣2 dx

)1/2

.

The first right-hand side factor is bounded by
∫∫

η dµh. For the second right-hand side factor,
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note that since
∫
∇G(z) dz = 0, we have for any χ ∈ {0, 1},∫
η |∇G ∗ χ|2 dx .

∫
η |∇G ∗ χ| dx

≤
∫
|∇G(z)|

∫
η(x) |χ(x+ z)− χ(x)| dx dz

.
∫
G2(z)

∫
η(x) |χ(x+ z)− χ(x)| dx dz

=

∫
η [(1− χ)G2 ∗ χ+ χG2 ∗ (1− χ)] dx

Using this for χni and introducing the parameter h again, we can bound the second term by

3∑
i=1

h
N∑
n=1

1√
h

∫
η [(1− χ)G2 ∗ χ+ χG2 ∗ (1− χ)] dx→ 2c0

3∑
i=1

T∫
0

∫
η |∇χi| dt,

as h→ 0, where we used Remark 2.9. Thus, using Young’s inequality, we have∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi) |∇χi| dt

∣∣∣∣∣∣ . ‖ξ‖∞
 1

α

3∑
i=1

T∫
0

∫
η |∇χi| dt+ α

∫∫
η dµh

 .

To estimate the second term in the lemma, note that by Young’s inequality we have

|ξ · νi Vi| ≤ ‖ξ‖∞η
(

1

α
V 2
i + α

)
.

Integrating w.r.t. |∇χi| dt yields∣∣∣∣∣∣
T∫

0

∫
ξ · νi Vi |∇χi| dt

∣∣∣∣∣∣ ≤ ‖ξ‖∞
 T∫

0

∫
η V 2

i |∇χi| dt+

T∫
0

∫
η |∇χi| dt

 ,

which concludes the proof.

5 Convergence

In Section 3, we identified the limit of the first variation of the energy; in Section 4, we identified

the limit of first variation of the metric term up to an error that measures the local approximabil-

ity by a half space. In this section, we show by soft arguments from Geometric Measure Theory

that this error can be made arbitrarily small. Before that, we will state the main ingredients of

the proof here.

Definition 5.1. Given r > 0, we define the covering

Br := {Br(i) : i ∈ Lr}

of [0,Λ)d, where Lr = [0,Λ)d ∩ r√
d
Zd is a regular grid of midpoints on [0,Λ)d. By construction,
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for each n ≥ 1 and each r > 0, the covering

{Bnr(i) : i ∈ Lr} is locally finite, (82)

in the sense that for each point in [0,Λ)d, the number of balls containing this point is bounded by

a constant c(d, n) which is independent of r. For given δ > 0 and χ : [0,Λ)d → {0, 1} ∈ BV , we

define Br,δ to be the subset of Br consisting of all balls B such that the following two conditions

hold:

inf
ν∗

∫
η2B |ν − ν∗|2 |∇χ| ≤ δrd−1 and (83)∫

2B

|∇χ| ≥ 1

2
ωd−1(2r)d−1, (84)

where η2B is a cut-off for 2B.

Lemma 5.2 (Approximation of the normal). For every ε > 0 and χ : [0,Λ)d → {0, 1}, there

exists an r0 > 0 such that for all r ≤ r0 there exist unit vectors νB ∈ Sd−1 such that

∑
B∈Br

1

2

∫
η2B |ν − νB|2 |∇χ| . ε2

∫
|∇χ| .

The following lemma will be used to control the error terms obtained in Section 4 on the

“bad” balls B ∈ Br −Br,δ.

Lemma 5.3. For any δ > 0 and any χ : [0,Λ)d → {0, 1} ∈ BV , we have

lim
r→0

∑
B∈Br−Br,δ

∫
2B

|∇χ| = 0.

In a rescaled version, the following lemma can be used to control the error terms on the

“good“ balls B ∈ Br,δ.

Lemma 5.4. Let η be a radially symmetric cut-off for the unit ball B. Then for any ε > 0 there

exists δ = δ(d, ε) > 0 such that for any χ : [0,Λ)d → {0, 1} with∫
η |ν − e1|2 |∇χ| ≤ δ2 (85)

there exists a half space χ∗ in direction e1 such that∣∣∣∣∣∣
∫
B

(|∇χ| − |∇χ∗|)

∣∣∣∣∣∣ ≤ ε2,

∫
B

|χ− χ∗| dx ≤ ε2. (86)

Lemma 5.5. Let η be a cut-off for the unit ball B. Then for any ε > 0 there exists δ = δ(d, ε) > 0

such that for any χ : [0,Λ)d → {0, 1}3 with χ1 + χ2 + χ3 = 1, the following statement holds:
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Whenever we can approximate each normal separately, i.e.

3∑
i=1

inf
ν∗i

1

2

∫
η |νi − ν∗i |

2 |∇χi| ≤ δ2,

then we can do so with one normal ν∗ ∈ Sd−1 and its inverse −ν∗:

min
1≤i≤3

inf
ν∗

{∫
B

|∇χi|+
1

2

∫
B

|νi+1 − ν∗|2 |∇χi+1|+
1

2

∫
B

|νi+2 + ν∗|2 |∇χi+2|

}
≤ ε2,

where i+ 1, i+ 2 are to be understood mod 3.

5.1 Proof of Theorem 1.3

Using Proposition 4.1 and the lemmas from above, we can give the proof of the main result.

The proof consists of three steps:

1. Post-processing Propositions 3.1 and 4.1, using the Euler-Lagrange equation (31) and by

making the half space time-dependent,

2. Estimates for fixed time and

3. Integration in time.

Proof of Theorem 1.3. Step 1: Post-processing Propositions 3.1 and 4.1.

Let us first link the results we obtained in Sections 3 and 4. For any fixed vector ν∗ ∈ Sd−1

and any test function ξ ∈ C∞0 ((0, T )×B,Rd) we claim∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξB − νi · ∇ξB νi + 2 ξB · νi Vi) |∇χi| dt

∣∣∣∣∣∣ (87)

. ‖ξ‖∞

 min
1≤i≤3

T∫
0

(
1

α
E 2
i (ν∗, t) + α1/3rd−1

)
dt

 ∧
 1

α

3∑
i=1

T∫
0

∫
B

|∇χi| dt


+ α1/3

∫∫
ηB dµ+ α

3∑
i=1

T∫
0

∫
ηB V

2
i |∇χi| dt

 ,
where E 2

1 is defined via

E 2
1 (ν∗, t) :=

∫
η2B |∇χ1(t)|+

∫
η2B |ν2(t)− ν∗|2 |∇χ2(t)|+

∫
η2B |ν3(t) + ν∗|2 |∇χ3(t)|

+ inf
χ∗

{∣∣∣∣∫ ηB (|∇χ2(t)| − |∇χ∗|)
∣∣∣∣+

∣∣∣∣∫ ηB (|∇χ3(t)| − |∇χ∗|)
∣∣∣∣

+
1

r

∫
2B

|χ2(t)− χ∗| dx+
1

r

∫
2B

|χ3(t)− (1− χ∗)| dx

}
.
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The infimum is taken over all half spaces χ∗ = 1{x·ν∗>λ} in direction ν∗. For i = 2, 3, E 2
i is a

similar expression with cyclically exchanged roles of the phases.

Indeed, by symmetry, may assume w.l.o.g. that the minimum over i on the right-hand side

of (87) is realized for i = 1. The Euler-Lagrange equation (31) of the minimizing movement

interpretation (5) links Proposition 3.1 with the metric term:

lim
h→0

T∫
0

−δEh( · − χh(t− h))(χh(t), ξB(t)) dt = −c0

3∑
i=1

T∫
0

∫
(∇ · ξB − νi · ∇ξB νi) |∇χi| dt.

Using Proposition 4.1 yields (87).

Now let ξ ∈ C∞0 ((0, T )× [0,Λ)d,Rd) be given. First, we localize ξ in space according to the cov-

ering Br from Definition 5.1. To do so, we introduce a subordinate partition of unity {ϕB}B∈Br

and set ξB := ϕBξ. Then ξ =
∑

B∈Br
ξB, ξB ∈ C∞0 (B) and ‖ξB‖∞ ≤ ‖ξ‖∞. Given a radially

symmetric and radially non-increasing cut-off η of B1(0) in B2(0), for each ball B in the cover-

ing, we can construct a cut-off ηB of B in 2B by shifting and rescaling. Given any measurable

function ν∗ : (0, T )→ Sd−1 and any α ∈ (0, 1) we claim∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξB − νi · ∇ξB νi + 2 ξB · νi Vi) |∇χi| dt

∣∣∣∣∣∣ (88)

. ‖ξ‖∞

 T∫
0

(
1

α
E 2
B(ν∗(t), t) + α1/3rd−1

)
∧

 1

α

3∑
i=1

∫
B

|∇χi|

 dt+ α1/3

∫∫
η dµ

+α

3∑
i=1

T∫
0

∫
η V 2

i |∇χi| dt

 ,
where E 2

B(ν∗, t) := min1≤i≤3 E 2
i (ν∗, t) for ν∗ ∈ Sd−1.

We give the argument for (88) in two steps. In the first step, starting from (87) for ξB playing

the role of ξ, we symmetrize the second left-hand side term. In the second step, we approximate

the measurable function ν∗ : (0, T ) → Sd−1 by piecewise constant functions to show that (87)

together with the symmetrization implies (88).

We start with the first step. To symmetrize the second term on the left-hand side of (63), we

note ∣∣∣∣∣
3∑
i=1

∫
ξB · νi Vi |∇χi| −

(∫
ξB · ν∗ V2 |∇χ2| −

∫
ξB · ν∗ V3 |∇χ3|

)∣∣∣∣∣
≤ ‖ξ‖∞

∫
B

|V1| |∇χ1|+
∫
B

|ν2 − ν∗| |V2| |∇χ2|+
∫
B

|ν3 + ν∗| |V3| |∇χ3|

 .

After integration in time, we can estimate the terms on the right-hand side with the Cauchy-

Schwarz inequality and Young’s inequality. We have on the one hand for the majority phases,
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e.g. for i = 2:

T∫
0

∫
B

|ν2 − ν∗| |V2| |∇χ2| dt ≤

 T∫
0

∫
B

|ν2 − ν∗|2 |∇χ2| dt

1/2 T∫
0

∫
B

V 2
2 |∇χ2| dt

1/2

.
1

α

T∫
0

∫
B

|ν2 − ν∗|2 |∇χ2| dt+ α

T∫
0

∫
B

V 2
2 |∇χ2| dt.

and on the other hand for the minority phase i = 1:

T∫
0

∫
B

|V1| |∇χ1| dt .
1

α

T∫
0

∫
B

|∇χ1| dt+ α

T∫
0

∫
B

V 2
1 |∇χ1| dt.

Here, we see, why we needed to introduce extra terms in E1 compared to the terms that were

already present in the definition of E1 in Section 4. These different terms are sometimes called

tilt-excess and excess energy, respectively. Therefore, Proposition 4.1 applied on ξB implies (87).

Now we give the argument that (87) implies (88). We approximate the measurable function

ν∗ in time by a piecewise constant function. Let 0 = T0 < · · · < TM = T denote the partition

of (0, T ) such that the approximation ν∗M of ν∗ is constant on each interval [Tm−1, Tm) Since

the measures on the left-hand side are absolutely continuous in time, we can approximate ξB

by vector fields which vanish at the points Tm and both, the curvature and the velocity term

converge. Therefore, we can apply (87) on each time interval (Tm−1, Tm). Lebesgue’s dominated

convergence gives us the convergence of the integral on the right-hand side and thus (88) holds.

Step 2: Estimates for fixed time. Let t ∈ (0, T ) be fixed. We will omit the argument t in the

following. Let ε > 0 and let δ = δ(ε) (to be determined later). Let Br,δ be defined as the set of

good balls in the lattice:

Br,δ :=

B ∈ Br :
3∑
i=1

inf
ν∗

∫
η2B |νi − ν∗|2 |∇χi| ≤ δrd−1 and

3∑
i=1

∫
2B

|∇χi| ≥
1

2
ωd−1(2r)d−1

 .

For B ∈ Br,δ, and i = 1, 2, 3, we denote by νBi the vector ν∗ for which the infimum is attained,

so that

3∑
i=1

1

2

∫
η2B |νi − νB,i|2 |∇χi| ≤ δrd−1.

By a rescaling and since η is radially symmetric, we can upgrade Lemma 5.5, so that for given

γ > 0, we can find δ = δ(d, γ) > 0 (independent of χ) and νB ∈ Sd−1, such that

min
1≤i≤3

{∫
ηB |∇χi|+

1

2

∫
ηB |νi+1 − νB|2 |∇χi+1|+

1

2

∫
ηB |νi+2 + νB|2 |∇χi+2|

}
≤ γrd−1.
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Rescaling Lemma 5.4, we can define γ = γ(ε) > 0 and a half space χ∗ in direction νB, such that

E 2
B(νB, t) ≤ ε2rd−1.

These two steps give us the dependence of δ on ε. Using the lower bound on the perimeters on

B ∈ Br,δ(t), we obtain

∑
B∈Br,δ

(
1

α
E 2
B(νB, t) + α1/3rd−1

)
.

∑
B∈Br,δ

(
1

α
ε2 + α1/3

)
rd−1 .

(
1

α
ε2 + α1/3

) 3∑
i=1

∫
|∇χi| .

Note that for the balls B ∈ Br −Br,δ, we have by Lemma 5.3:

∑
B∈Br−Br,δ

3∑
i=1

∫
B

|∇χi| → 0, as r → 0. (89)

The speed of convergence depends on χ and ε (through δ).

Step 3: Integration in time. Using Lebesgue’s dominated convergence theorem, we can integrate

the pointwise-in-time estimates of Step 2. Recalling the decomposition ξ =
∑

B ξB and using

the finite overlap (82), we have∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi + 2 ξ · νi Vi) |∇χi| dt

∣∣∣∣∣∣
.
∑
B∈Br

∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξB − νi · ∇ξB νi + 2 ξB · νi Vi) |∇χi| dt

∣∣∣∣∣∣
. ‖ξ‖∞

( 1

α
ε2 + α1/3

) T∫
0

3∑
i=1

∫
|∇χi| dt+

T∫
0

∑
B∈Br−Br,δ(t)

1

α

3∑
i=1

∫
B

|∇χi| dt

+ α1/3

∫∫
dµ+ α

T∫
0

∫
V 2
i |∇χi| dt

 .
We use the energy-dissipation estimate (9) for the first term. By Lebesgue’s dominated conver-

gence and (89), the second term vanishes as r → 0. Since the measure µ is finite and by Lemma

2.10, we can handle the last two terms. Thus we obtain∣∣∣∣∣∣
3∑
i=1

T∫
0

∫
(∇ · ξ − νi · ∇ξ νi + 2 ξ · νi Vi) |∇χi| dt

∣∣∣∣∣∣ .‖ξ‖∞
(

1

α
ε2E0T + α1/3(1 + T )E0

)
.

Taking first the limit ε to zero and then α to zerp yields (6), which concludes the proof of

Theorem 1.3.
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5.2 Proofs of the lemmas

Proof of Lemma 5.2. Let ε > 0 be given and w.l.o.g.
∫
|∇χ| > 0. Since the normal ν is

measurable, we can approximate it by a continuous vector field ν̃ : [0,Λ)d → B in the sense that

∑
B∈Br

1

2

∫
B

|ν − ν̃|2 |∇χ| .
∫
|ν − ν̃| |∇χ| ≤ ε2

∫
|∇χ| ,

where we have used the finite overlap property (82). Since ν̃ is continuous, we can find r0 > 0

and for any r ≤ r0, vectors ν̃B with |ν̃B| ≤ 1 such that

∑
B∈Br

1

2

∫
B

|ν̃ − ν̃B|2 |∇χ| ≤ ε2

∫
|∇χ| .

The only missing step is to argue that we can also choose νB ∈ Sd−1. If |ν̃B| ≥ 1/2, this is clear

because then |ν − ν̃B/|ν̃B|| ≤ 2 |ν − ν̃B|. If |ν̃B| ≤ 1/2, we have the easy estimate

|ν − ν̃B| ≥
1

2
≥ 1

4
(|ν|+ |νB|) ≥

1

4
|ν − νB|

for any νB ∈ Sd−1.

Proof of Lemma 5.3. Let ε, δ > 0 be arbitrary. Note that a ball in Br −Br,δ satisfies

inf
ν∗

∫
2B

|ν − ν∗|2 |∇χ| ≥ δrd−1 or (90)

∫
2B

|∇χ| ≤ 1

2
ωd−1r

d−1. (91)

Step 1: Balls satisfying (90). By Lemma 5.2, for any γ > 0, to be chosen later, there exists

r0 = r0(γ, δ, χ) > 0, such that for every r ≤ r0 we can find vectors νB ∈ Sd−1 such that

∑
B∈Br

∫
2B

|ν − νB|2 |∇χ| . γδ

∫
|∇χ| . (92)

Thus we have

#

B :

∫
2B

|ν − νB|2 |∇χ| ≥ δrd−1

 ≤∑
B

1

δrd−1

∫
2B

|ν − νB|2 |∇χ|
(92)

.
γ

rd−1

∫
|∇χ| . (93)

Using that the covering is locally finite and De Giorgi’s structure result, we have

∑
B:(90)

∫
2B

|∇χ| .
∫

⋃
(90) 2B

|∇χ| = H d−1

∂∗Ω ∩ ⋃
(90)

2B

 .
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Since ∂∗Ω is rectifiable, we can find Lipschitz graphs Γn such that ∂∗Ω ⊂
⋃∞
n=1 Γn. Therefore,

H d−1

∂∗Ω ∩ ⋃
(90)

2B

 ≤ N∑
n=1

H d−1

Γn ∩
⋃
(90)

2B

+ H d−1

∂∗Ω− ⋃
n≤N

Γn

 .

Note that for any ball B

H d−1 (Γn ∩ 2B) . (1 + Lip Γn) rd−1

and thus

H d−1

Γn ∩
⋃
(90)

2B

 ≤ ∑
B:(90)

H d−1 (Γn ∩ 2B) .

(
1 + max

n≤N
Lip Γn

)
rd−1# {B : (90)} .

Using (93), we have

∑
B:(90)

∫
2B

|∇χ| .
(

1 + max
n≤N

Lip Γn

)
γ

∫
|∇χ|+ H d−1

∂∗Ω− ⋃
n≤N

Γn

 .

Now, choose N large enough such that

H d−1

∂∗Ω− ⋃
n≤N

Γn

 ≤ ε2.

Then, choose γ > 0 small enough, such that(
1 + max

n≤N
Lip Γn

)
γ

∫
|∇χ| ≤ ε2.

Step 2: Balls satisfying (91). By De Giorgi’s structure theorem (Theorem 4.4 in [16]), we may

restrict to balls B which in addition satisfy ∂∗Ω ∩ 2B 6= ∅ and pick x ∈ ∂∗Ω ∩ 2B. Note that

since B has radius r we have

B2r(x) ⊂ 4B ⊂ B6r(x).

Therefore, if (91) holds, ∫
B2r(x)

|∇χ| ≤
∫

4B

|∇χ| ≤ 1

2
ωd−1(2r)d−1.

For x ∈ ∂∗Ω we have

lim inf
r→0

1

rd−1

∫
Br(x)

|∇χ| ≥ ωd−1

72



and thus in particular

1


x ∈ ∂∗Ω:

∫
Br(x)

|∇χ| ≤ 1

2
ωd−1r

d−1


→ 0

pointwise as r → 0. By De Giorgi’s structure theorem (Theorem 4.4 in [16]), the finite overlap

and Lebesgue’s dominated convergence theorem, we thus have

∑
B:(91)

∫
2B

|∇χ| . H d−1

∂∗Ω ∩ ⋃
B:(91)

2B

→ 0

as r → 0.

Proof of Lemma 5.4. Let us first prove that for any χ satisfying (85), we have

(1− δ)
∫
η |∇χ| ≤

∣∣∣∣∫ χ∇η dx
∣∣∣∣+ δ. (94)

Indeed, we have∣∣∣∣∫ η ν |∇χ|
∣∣∣∣ ≥ ∣∣∣∣∫ η e1 |∇χ|

∣∣∣∣− ∣∣∣∣∫ η (ν − e1) |∇χ|
∣∣∣∣ =

∫
η |∇χ| −

∣∣∣∣∫ η (ν − e1) |∇χ|
∣∣∣∣

and using the Cauchy-Schwarz inequality, (85) and Young’s inequality∣∣∣∣∫ η (ν − e1) |∇χ|
∣∣∣∣ ≤∫ η |ν − e1| |∇χ|

≤
(∫

η |∇χ|
)1/2(∫

η |ν − e1|2 |∇χ|2
)1/2

≤δ
(∫

η |∇χ|
)1/2

≤ δ + δ

∫
η |∇χ| .

Thus, ∣∣∣∣∫ η ν |∇χ|
∣∣∣∣ ≥ (1− δ)

∫
η |∇χ| − δ,

which is (94).

Now we give an indirect argument. Suppose there exists an ε > 0 and a sequence {χn}n such

that ∫
η |νn − e1|2 |∇χn| ≤

1

n2
(95)

while for all half spaces χ∗ in direction e1,∫
B

|∇χn| ≥ ε2 +

∫
B

|∇χ∗| ,
∫
B

|∇χ∗| ≥ ε2 +

∫
B

|∇χn| , or

∫
B

|χn − χ∗| dx ≥ ε2. (96)
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By (95), we can use (94) for χn and obtain:∫
η |∇χn| ≤

1

1− 1/n

(∫
|∇η| dx+

1

n

)
stays bounded as n→∞.

Therefore, after passage to a subsequence and a diagonal argument to exhaust the open ball

{η > 0}, we find χ such that

χn → χ pointwise a.e. on {η > 0}. (97)

By (95) we have

2

∫
η |∇χn| − 2

∫
∇η · e1 χn dx =

∫
η |νn − e1|2 |∇χn| ≤

1

n2
→ 0.

Since the first term on the left-hand side is lower semi-continuous and the second one is contin-

uous, we can pass to the limit and obtain∫
η |ν − e1|2 |∇χ| = 2

∫
η |∇χ| − 2

∫
∇η · e1 χdx ≤ 0.

Hence

ν = e1 |∇χ| -a.e. in {η > 0}.

A mollification argument shows that there exists a half space χ∗ in direction e1 such that

χ = χ∗ a.e. in {η > 0}.

Because of (97), this rules out ∫
B

|χn − χ∗| ≥ ε2

on the one hand. On the other hand, by lower semi-continuity of the perimeter, also∫
B

|∇χ∗| ≥ ε2 +

∫
B

|∇χn|

is ruled out. To obtain a contradiction also w.r.t. the first statement in (96), let η̃ ≤ η be a

cut-off for B in (1 + δ)B. Since (94) holds also for η̃ instead of η, we have

ε2 +

∫
B

|∇χ∗|
(96)

≤
∫
B

|∇χn| ≤
∫
η̃ |∇χn|

(94)

≤ 1

1− 1/n

(∣∣∣∣∫ χn∇η̃ dx
∣∣∣∣+

1

n

)
(97)→
∣∣∣∣∫ χ∗∇η̃ dx

∣∣∣∣ =

∣∣∣∣∫ η̃∇χ∗
∣∣∣∣ ≤ ∫

(1+δ)B

|∇χ∗| .
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Since χ∗ is a half space and therefore has no mass on ∂B, we have∫
(1+δ)B

|∇χ∗| →
∫
B

|∇χ∗| , as δ → 0,

which is a contradiction.

Proof of Lemma 5.5. We give an indirect argument. Assume there exists a sequence of char-

acteristic functions {χn}n with χn1 + χn2 + χn3 = 1 a.e., a number ε > 0 such that we can find

approximate normals ν∗ni ∈ Sd−1 with

3∑
i=1

1

2

∫
η |νni − ν∗ni |

2 |∇χni | ≤
1

n2

while for all ν∗ ∈ Sd−1, n ∈ N and i = 1, 2, 3, we have∫
B

|∇χni |+
1

2

∫
B

∣∣νni+1 − ν∗
∣∣2 ∣∣∇χni+1

∣∣+
1

2

∫
B

∣∣νni+2 + ν∗
∣∣2 ∣∣∇χni+2

∣∣ ≥ ε2. (98)

Since Sd−1 is compact, we can find vectors ν∗ ∈ Sd−1, such that, after passing to a subsequence

if necessary, ν∗ni → ν∗i as n→∞. Following the lines of the proof of Lemma 5.4, we find∫
η |∇χni | ≤

1

1− 1/n

(∫
|∇η| dx+

1

n

)
stays bounded as n→∞

so that there exist χi ∈ {0, 1} with

χni → χi pointwise a.e. on {η > 0} (99)

and

1

2

∫
η |νi − ν∗i |

2 |∇χi| ≤ lim inf
n→∞

1

2

∫
η |νni − ν∗ni |

2 |∇χni | = 0.

Therefore, νi = ν∗i |∇χi|- a.e. and each χi = χ∗i is a half space in direction ν∗i . Continuing

in our setting now, we note that the condition χn1 + χn2 + χn3 = 1 carries over to the limit:

χ∗1 + χ∗2 + χ∗3 = 1. Therefore there exists an i ∈ {1, 2, 3} (w.l.o.g. i = 1) such that χ∗1 = 0

in B. Then the other two half spaces are complementary, χ∗2 = (1− χ∗3) and in particular

ν∗2 = −ν∗3 =: ν∗. As in the proof of Lemma 5.4, we have∫
B

|∇χni | →
∫
B

|∇χ∗i | .

Together with (99), we can take the limit n→∞ in (98) and obtain∫
B

|∇χ∗1|+
1

2

∫
B

|ν∗2 − ν∗|
2 |∇χ∗2|+

1

2

∫
B

|ν∗3 + ν∗|2 |∇χ∗3| ≥ ε2,
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which is a contradiction since the left-hand side vanishes by construction.
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