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The objectivity of quantum measurement is treated as an emergent phenomenon with N observers
who can agree to the same result of measurement, and meanwhile, they can identify their records
with each other. In this many-observer world (MOW), an objective quantum measurement is dealt
with as a multipartite [(N + 1)-body] quantum correlation among the measured system and N
observers when its bipartite reductions are the same classical correlations. With this conceptual
clarification, we find that, an objective quantum measurement is implemented if and only if the
MOW is initially factorized in a pure state and then the total system can evolve into a generalized
GHZ state with respect to the orthogonal basis preferred by each observer. Especially, such objective
quantum measurement is recast in ideal classical correlation when the observer world is macroscopic
for N ! 1.

PACS numbers: 03.65.Ta, 03.67.-a

I. INTRODUCTION

In physics, the objectivity is used to describe the obser-
vation (or measurement) without personal bias; in prin-
ciple all observers should agree to the same observation
about the output from an experiment or a theoretical
model. In the Copenhagen version of quantum mechanics
interpretation (QMI), however, the objectivity of mea-
surement seems not to be guaranteed since a measure-
ment by an observer could causes an dramatical change
of quantum state [1]. This is because Copenhagen inter-
pretation treats the measuring apparatus (or observer)
as a purely classical term, and thus leads to the wave-
function collapse (WFC).

Many physicists [2–5], however, felt weird that the ap-
paratus (or observer) is composed of indispensable ingre-
dients in quantum prescription, but it does not abide by
quantum mechanics. Therefore, the “built-in” interpre-
tations are proposed without postulating the pure classi-
cality of measuring apparatus joyed by the WFC, e.g., de-
coherence approaches [1, 6–9], consistent history [10, 11],
and the many worlds interpretations (MWI) [12, 13].
To go much beyond these approach, quantum mechanics
even was interpreted as an e↵ective theory coming from
some underlaying theory, e.g., Bohm’s hidden variable
approach [14, 15], ’t Hooft’s deterministic and dissipa-
tive theory [16–19], and Adler’s trace dynamics theory
[20, 21].

In this paper, we develop a “built-in” approach for
quantum measurements with many (N) observers that
only obeys the Schödinger equation without entailing
any postulation like WFC. In the many-observer world
(MOW), the measurement in quantum mechanics is

⇤
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treated as a dynamic process to generate the same bi-
partite classical correlations, which can be reduced form
the (N + 1)-body correlation of the entirety formed by
the measured system plus MOW. In this sense our ap-
proach does not seems much di↵erent from the quantum
Darwinism approach based on the decoherence theory, in
which the each independent fractions of environment can
behave as an observer [1, 6–9], but in our approach, the
objectivity of quantum measurement is rigorously clar-
ified when we further require that the consequences of
measurement by an observer can be witnessed by the
others, and then di↵erent observers measuring the same
object can agree to the same result.

With this rigorous clarification in basic concept, we
find that if and only if the initial state of the MOW is
pure state and the coupling between the system and the
MOW is of non-demolition, an unitary evolution of the
entirety (formed by the system plus N observers) can
reach a generalized GHZ state. Then, in the macroscopic
limit with N ! 1, its bipartite reductions become the
same classical correlation with respect to the preferred
basis so that an objective quantum measurement results
from a dynamic process without referring the postulate
of wave function collapse (WFC). This finding uncovers
two facts: 1. Our approach mathematically describes
the simultaneous emergence of objectivity and classical-
ity, which is robust for the sequential measurements by
di↵erent observers; it is the macroscopic characters of
observers as well as the MOW that guarantee the two
basis vectors of MOW correlated to di↵erent states of
the system are orthogonal with each other; only when
N ! 1, an ideal measurement can be accomplished in-
stantaneously; 2. Our approach are essentially “built-
in” since it can not refer anything out of our quantum
entirety. Here, the classical-quantum boundary distin-
guishing system and observers rests with the macroscop-
icality of MOW if it is regarded as coarse-graining of the
infinitely many observers.
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II. QUANTUM MEASUREMENTS WITH TWO
OR MORE OBSERVERS

In order to present our objective approach to measure-
ment in quantum mechanics we revisit the QMI based on
decoherence. Here, an quantum measurement or observa-
tion is completed by two steps: (S1) The non-demolition
coupling of the system S to the apparatus (observer) D
unitarily leads to a pre-measurement, a quantum entan-
glement between S and D with respect to a given basis
{|si|s = 1, 2, . . . , l} for the Hilbert space of S, and the
coupling prefers the specific observable Â of S to be mea-
sured, where Â|si = a

s

|si; (S2) The environment E sur-
rounding S selects the preferred basis |si so that the pre-
measurement becomes a quantum measurement, which is
precisely defined as a classical correlation emerging from
the quantum entanglement for pre-measurement.

Let |di and |ei be the initial states of D and E re-
spectively. In measuring the system S initially prepared
in a superposition, the state of total system (universe )
S + D + E will evolves into a partially entangled state

| i = (
X

c
s

|si ⌦ |d
s

i) ⌦ |ei, (1)

from the initial product state | (0) = | 
S

(0)i⌦ |di⌦ |Ei.
Here, |d

s

i = U
s

(D)|di is a states of D correlated to each
system state |si and U

s

(D) is the S-state dependent evo-
lution matrix. In S2, the environment will become en-
tangled with the system so that the total system reaches
a GHZ type state

| i =
X

c
s

|si ⌦ |d
s

i ⌦ |e
s

i, (2)

where the environment |e
s

i = U
S

(E)|ei are orthogonal
with each other, i.e., he

s

|e
s

0i = �
s,s

0 . By tracing over the
variable of E, the correlation between S and D occurs
with the representation of the reduced density matrix
⇢

SD

= Tr
E

| ih |, that is,

⇢
SD

=
X

|c
s

|2|s, d
s

ihs, d
s

|, (3)

where |s, d
s

i = |si ⌦ |d
s

i. The above separable state
implements a quantum measurement with the help of
environment E. Usually, we do not need to require
the states {|d

s

i|s = 1, 2, . . . } being orthogonal with
each other. One could distinguish the systems states
{|si|s = 1, 2, . . . , l} so long as hd

s

0 |d
s

i 6= 1, i.e, the ob-
server’s corresponding states are not identical. Of course,
an ideal quantum measurement requires the observer’s fi-
nal states to be orthogonal, guaranteeing the objectivity
of obtained results (we will prove this point in the fol-
lowing).

It is noticed from Eq. (2) that when {|d
s

i|s = 1, 2, . . . }
as {|e

s

i|s = 1, 2, . . . } well as are orthogonal with each
other, we can not mathematically distinguishes between
the observers and environment since it displays a per-
mutation symmetry for |d

s

i and |e
s

i exchange with each
other. Thus the current decoherence approach does not

clearly claim what is the boundaries among observer and
the environment. With this consideration, we can replace
the environment with an extra observer D0. Actually,
Zurek has stressed many times that the environment in
the decoherence approach has been recognized as a wit-
ness of the measurement, which essentially plays the role
of another measuring device or observer; an large envi-
ronment with redundancy of degrees of freedom can be
divided into several portions, which could be regarded as
observers.

With the above considerations we can define the quan-
tum measurement with two or more observers where the
total system is made up of a system S and two observers
D and D0. Let |d

s

i (|d0
s

i) for s = 1, 2, ..., l(l0) forms a
basis of D (D0) space of the observer 1(2). Then a two
observer-quantum measurement is implement by a tri-
partite decomposition

| i =
X

c
s

|si ⌦ |d
s

i ⌦ |d0
s

i, (4)

Due to the observer-1 measuring the system, there also
exists a correlation between S and D0 described with the
reduced density matrix ⇢

SD

0 = Tr
D

| ih |, or

⇢
SD

0 =
X

|c
s

|2|s, d0
s

ihs, d0
s

|. (5)

if D0s states {|d
s

i|s = 1, 2, . . . } are orthogonal with each
other. If the basis vectors |si of S are orthogonal with
each other, the two observers can compare their obtained
results through a classical communication defined by the
reduced density matrix

⇢
DD

0 = Tr
S

| ih | =
X

|c
s

|2|d
s

, d0
s

ihd
s

, d0
s

|. (6)

We remark that: (1) in the above operation, taking
trace implies that the Born rule has been used to do some
average or coarse-graining; (2) the above arguments and
the the following discussions can be extended to the situ-
ations with more than two observers, and the N -observer
approach for quantum measurement will reveals the es-
sential relations of the objectivity to the emergence of the
classicality within the quantum world in the macroscopic
limit [22]; (3) We can use the tripartite correlations (3),
(5) and (6) to define an objective quantum measurement,
and thus the non-orthogonal vectors can not be distin-
guished objectively. In fact, if {|si|s = 1, 2, ..l} were not
orthogonal with each other, then there would not be per-
fect classical correlation like Eq. (6), namely, the reduced
density matrix

⇢̃
DD

0 = ⇢
DD

0 +
X
s 6=s

0

c
s

c⇤
s

0 |d
s

, d0
s

0ihd
s

, d0
s

0 |hs|s0i

contains a coherent term ⇢̃
DD

0 �⇢
DD

0 , which will blur the
perfect correlation of two observers to do the mutual con-
sulting about their observations. Thereafter we schemat-
ically illustrate a quantum entanglement (or a imperfect
classical correlation) in Fig. 1(a) where the correspon-
dence of the states |d

s

i to |si with a circle of blurred
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Figure 1: (a)Premeasurement of a high spin like in the Stern-
Gerlach experiment represented by an quantum entanglement
between the splitting spatial wave packet states |dsi and the
spin states |si (denoted by the blurred circle). (b) The quan-
tum measurement after decoherence. The states |si and |dsi
are not entangled but become classically correlated, as clearly
depicted by the solid line circle.

lines. After the decoherence induced by environment or
another observer, the emergent classical correlation is de-
noted by a circle of solid line in Fig. 1(b).

III. OBJECTIVITY OF QUANTUM
MEASUREMENT

Without loss of generality, we consider the objec-
tivity in a “two-observer” measurement and the initial
state is represented by a density matrices ⇢ (⇢ may be
mixed). We first define what is an objective quantum
measurement for the case with two observers; the “many-
observer” generalization is straightforward.

Let H
S

, H
D

and H
D

0 be the Hilbert space of the sys-
tem S and two observers D and D0 respectively. For a
given basis vectors {|si|s = 1, 2, . . . , l} of H

S

to be mea-
sured, if the state ⇢ of the three body entirety satisfies

Tr
D

0⇢ =
lX

s=1

|c
s

|2|s, d
s

ihs, d
s

|, (7a)

Tr
D

⇢ =
lX

s=1

|c
s

|2|s, d0
s

ihs, d0
s

|, (7b)

Tr
S

⇢ =
lX

s=1

|c
s

|2|d
s

, d0
s

ihd
s

, d0
s

|, (7c)

namely, the classical correlation of S � D, S � D’ and
D�D0 given by the bipartite reductions of ⇢ are the same
with respect to the preferred basis {|si|s = 1, 2, . . . , l},
then we say the two observers can together accomplish an
objective measurement or the measurement by di↵erent
observers possesses an objectivity.

Intuitively, the first two lines of the above three equa-
tions show that two observers can see the same results
of observation, while the correlation between D and D0

D D0

S

SD SD0

DD0

Figure 2: Correlation of three body S, D, D0. The overlapped
areas represents their correlation.

in the third line acquires a mutual consultation for their
observations. Schematically, we illustrate the quantum
objectivity in the Fig. 2: the overlapped areas represent
the quantum entanglements pair by pair among S, D
and D0. In areas of S \ D, S \ D0 and D \ D0, there ex-
ist three bipartite correlations. These diagrammatically
shown results mean that in the areas S \ D \ D0, where
these correlations can become perfectly classical (we will
prove as follows), the two observers can see the same re-
sults and also able to compare them with each other.

In the above definition of quantum objectivity, we
do not priori request that states {|d

s

i|s = 1, 2, . . . },
{|d0

s

i|s = 1, 2, . . . } as well as {|si|s = 1, 2, . . . } are or-
thogonal with each other. We will prove that their or-
thogonality can be implied by an additional requirement:
by preparing the observers initially in proper states, the
state of the total system will evolve into a pure state
in the form of tripartite Schmidt decomposition with
respect to the orthogonal states |d

s

i, |d0
s

i and |si for
s = 1, 2, . . . , which gives perfect classical correlation
of two parties among s, D and D0 formally defined by
Eqs. (7a-7c). In this situations, the objective quantum
measurement is so ideal that the maximum information
can be extracted.

To make the form of ⇢ concrete as well as the inter-
action of S with D and D’, we will prove the following
propositions.

Proposition 1 : Satisfying Eqs. (7a-7c), the density op-
erator ⇢ generally reads

⇢ =
X
sr

p
sr

|s, d
s

, d0
s

ihr, d
r

, d0
r

|, (8)

where p
ss

= |c
s

|2, i.e.,

⇢ =
X

|c
s

|2|s, d
s

, d0
s

ihs, d
s

, d0
s

|

+
X
s 6=r

p
sr

|s, d
s

, d0
s

ihr, d
r

, d0
r

|,

For s 6= r, there is no any special constraints on p
sr

, and
they can take arbitrary complex numbers, as long as ⇢ is
positive semi-definite.
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The proof of Proposition 1 is given in the appendix A,
and now we only demonstrate its implications with an
example :

⇢ = |↵|2|0, 0, 0ih0, 0, 0| + |�|2|1, 1, 1ih1, 1, 1|
+ ⇠|0, 0, 0ih1, 1, 1| + ⇠⇤|1, 1, 1ih0, 0, 0| (9)

Obviously, it satisfies Eqs. (7a-7c). When ⇠ = ↵�⇤,
⇢ = | i h | is just the GHZ state with | i = ↵|0, 0, 0i +
�|1, 1, 1i and it thus implement an objective quan-
tum measurement satisfying Tr

x

⇢ = |↵|2|0, 0ih0, 0| +
|�|2|1, 1ih1, 1| for x = S, D, D0. We notice that, in this
example, because |1i and |0i are orthogonal with each
other, the measurement is so ideal that the pointer states
can be well distinguished. However, Proposition 1 is not
specific for orthogonal states of D and D0, but the or-
thogonal basis of |d

s

i and |d
s

0i can guarantee the perfect
objectivity of the measurement as we will show as follows.

Proposition 2 : We assume that the tripartite state
Eq. (8) comes from the following unitary evolution

⇢ = U⇢(0)U † ⌘ U [⇢
S

(0) ⌦ ⇢
DD

0(0)]U †, (10)

namely, the final state ⇢ is the result of the dynamic
evolution driven by the interaction of S to D and D0,
then the objectivity of quantum measurement implies:

1) The initial state of observer ⇢
DD

0(0) := ⇢
D

(0) ⌦
⇢

D

0(0) is a pure state,
2) {|si}, {|d

s

i} and {|d0
s

i} are respectively orthogonal
basis sets.

Proof : Since Eq.(8) should apply for any initial state,
we choose ⇢

s

(0) = |s0ihs0|. In this case, we have l = 1
and ⇢ in Eq.(8) should only contain one term, i.e.,

⇢ = |s0, d
s0 , d0

s0
ihs0, d

s0 , d0
s0

|. (11)

Thus, ⇢ is a pure state and so is ⇢(0) = U†⇢U . Since
⇢(0) = ⇢

s

(0) ⌦ ⇢
D

(0) ⌦ ⇢
D

0(0), its purity also implies
that ⇢

D

(0) and ⇢
D

0(0) must be pure states.
Next we choose a pure state ⇢

s

(0) = |�ih�| as the ini-
tial state of S. The state of the total system ⇢ after
premeasurement,

⇢ = U |�ih�| ⌦ ⇢
DD

0(0)U †,

is also pure since we have proved that ⇢
DD

0(0) is a pure
state. Thus ⇢ can be rewritten as ⇢ = | ih |. For a gen-
eral pure state | i =

P
s1,s2,s3

↵
s1s2s3 |s1, ds2,

d0
s3

i (here
{|s1i}, {|d

s2i}, {|d0
s3

i} do not have to be orthogonal sets),
we have

⇢ =
X

C
s1s2s3,r1r2r3 |s1, ds2 , ds3ihr1, dr2 , dr3 |,

where C
s1s2s3,r1r2r3 = ↵

s1s2s3↵
⇤
r1r2r3

. Comparing with
the form of Eq. (8), we have C

s1s2s3,r1r2r3 6= 0 only when
s1 = s2 = s3 and r1 = r2 = r3. To satisfy this condition,
the pure state | i must have the form of

| i =
X

s

c
s

|s, d
s

, d0
s

i. (12)

Tracing over the degree of freedom of the first observer,
we have

Tr
D

| ih | =
X
sr

c
s

c⇤
r

hd
r

|d
s

i|s, d0
s

ihr, d0
r

|. (13)

Comparing it with Eq.(7b), we obtain

hd
r

|d
s

i = �
sr

, (14)

namely, the basis {|d
s

i} is orthogonal. With the same
reason, {|d0

s

i} is also orthogonal. The above argument
can also be used to proved that {|si} is orthogonal. ⌅

According to Proposition 2 proved above, to realize an
objective quantum measurement we can prior request the
total system is initially prepared in a pure state. Then
we can explicitly determine the form of this pure state
and its corresponding coupling to carry out the dynamics
of the objective quantum measurement. The result can
be claimed as follows.
Proposition 3: If and only if the pure state of the to-

tal system after a measurement is an tripartite Schmidt
decomposition

| i =
X

c
s

|si ⌦ |d
s

i ⌦ |d0
s

i, (15)

with respect to the given preferred basis {|si|s =
1, 2, . . . , l} of H

S

, then it can implement an objec-
tive quantum measurement satisfying Eqs. (7a-7c) with
{|d

s

i|s = 1, 2, . . . } and {|d0
s

i|s = 1, 2, . . . } orthogonal
with each other.

The su�ciency of the above proposition is obvious.
We calculate the reduced density matrices of Eq. (15) di-
rectly, and they do have the form of Eqs. (7a-7c). The
proof of the necessity is given in the appendix B . We
remark that the above proposition 1 can be regarded as
the generalization of Proposition 3 into the case with the
initial state being mixed where the tripartite Schmidt
decomposition is replaced by the density matrix.

It follows from the above proposition 3 that the tri-
partite Schmidt decomposition of the final state is nec-
essary and su�cient to realize an objective quantum
measurement. To generate such GHZ type state from
a product state with respect to the preferred basis
{|si|s = 1, 2, . . . , l}, defined by the system Hamilto-
nian Ĥ

S

: Ĥ
S

|si = E
s

|si, the coupling Hamiltonian
Ĥ = Ĥ

S

+ Ĥ
SD

+ Ĥ
SD

0 should be of the non-demolition
type. Here, the coupling parts Ĥ

SD

and Ĥ
SD

0 commute
with each other, and [Ĥ

S

, Ĥ
SD

] = 0, [Ĥ
S

, Ĥ
SD

0 ] = 0,.
Thus Ĥ

SD

, Ĥ
SD

0and Ĥ
S

have the common eigen-vectors
{|si|s = 1, 2, . . . , l}, i.e.,

Ĥ
SD

|si = h
s

(D)|si, Ĥ
SD

0 |si = h
s

(D0)|si
which defined the basis vectors of D and D’

|d
s

i = exp[�ih
s

(D) t]|di,
|d0

s

i = exp[�ih
s

(D0) t]|d0i,
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Actually, it is shown from the above proposition and
its deduction that Eqs. (7a-7c) define a quantum non-
demolition (QND) measurement, that preserve the phys-
ical integrity as well as the objectivity: If one measures
the system with respect to the very preferred basis |si,
the measurement does not change the probabilities of the
system in |si, while only changes the o↵-diagonal terms of
the reduced density matrix; the subsequent measurement
will acquire the same probability distribution. Further-
more, to stress how the Eqs. (7a-7c) explicitly reveals the
objectivity of the quantum measurement, we consider a
special case that the observer D0 cannot distinguish two
system states |s = 1i and |s = 2i. That means the ob-
server has the same response for measuring the di↵erent
states. Namely, the unitary transformation U(D0) for
measuring cannot split the observer’s state according to
the superpositions of |s0 = 1i and |s0 = 2i, i.e.,

U(D)|s0 = 1i⌦|d0i = |1, d0
1i

U(D)|s0 = 2i⌦|d0i = |2, d0
1i

It leads to the tripartite Schmidt decomposition

| i = (c1|1, d1i + c2|2, d2i) ⌦ |d0
1i +

lX
s=3

c
s

|s, d
s

, d0
s

i.

which gives the reduced density matrix of S with D as

⇢
SD

= |c1|2|1, d1ih1, d1| + |c2|2|2, d2ih2, d2|

+ c1c
⇤
2|1, d1ih2, d2| +

lX
s=3

|c
s

|2|s, d
s

ihs, d
s

|

This implies that without the witness ( distinguishing
states 1 and 2 ) of D0, it is impossible to realize a perfect
classical correlation between S and D.

Our proposed objectivity of quantum measurement is
actually equivalent to the unobservability of the world
splitting in MWI. In DeWitt’s model [13] of MWI , the
measurement with two observers can be described by a
final state

| i =
X

s

c
s

|si|A1 � si ⌦ |A2 � s, B � gA1i

where |si can refer to a high spin state in the general-
ized Stern-Gerlach experiment, which moves the pointer
state of the observer-1 from |A1i to |A1 � si. The sec-
ond observer has two parts of memory, and first part A2

records the high spin by moving from |A2i to |A2 � si
while the second part B measures the first observer by
moving from |Bi to |B �gA1i. We can imagine |A1i and
|Bi are the spatial wave packets center in A and B respec-
tively (see Fig. 3). According to DeWitt , who used the
“many-worlds” to vividly rename Hugh Everett’s “rela-
tive state formulation”, when wave packets |A1 � si (
|A2 � si ) are so narrow that hA

j

� s0|A
j

� si ⇡ �
ss

0

for j = 1, 2 , the pointer state |A
j

� si can distinguish
di↵erent spins so that the observer (j = D, D0) in the

|d1i

|d2i

|d
l

i

...

Figure 3: The measurement of the particle spin. The spatial
wave packet is utilized as the apparatus. The spin degree of
freedom is entangled with the spatial wave packet, and the
“world” is splitted into many branches.

s-branch |si|A1 � si ⌦ |A2 � s, B � gAi can not see
|s0i|A1 � s0i ⌦ |A2 � s0, B � gA1i for s 6= s0.

In our approach of objective quantum measurement,
when the width of the wave packets is very small, the
vectors represented by narrow wave packets will be or-
thogonal with each other. In this sense, we can obtain
the classical correlations, such as

⇢(s, A1, A2) =
X

s

|c
s

|2|s, A1 � s, A2 � sihs, A1 � s, A2 � s|

⇢(s, A
i

) =
X

s

|c
s

|2|s, A
i

� sihs, A
i

� s|, (i = 1, 2)

These classical correlation clearly defines an objective
quantum measurement of high spin. It is worthy to point
out that the above arguments of objective measurement
could not refer to the MWI, but we can gain the same
conclusion as that in MWI.

IV. INFORMATION TRANSFER, LOCALITY
RECOVERY AND ORTHOGONALITY

We can examine the significance of the above proposi-
tions from the point of view from information theory.

We first notice that Proposition 1 is not specific for
orthogonal states, and the non-orthogonal |d

s

i and |d
s

0i
can not perfectly guarantee the objectivity of the mea-
surement. Actually, the quantum measurement can be
understood as a procedure to extract information from
the measured system by observer, and an ideal measure-
ment can maximize the the extracted information. Here,
for a reduced state

⇢
s

= Tr
DD

0(⇢) =
lX

s=1

|c
s

|2|sihs|

of system, the information entropy of the measurement

H(⇢
s

|S) = �
X

hs|⇢
s

|si lnhs|⇢
s

|si = �
X

|c
s

|2 ln |c
s

|2



6

is defined [12, 13] with respect to a given orthogonal basis
S = {|si|s = 1, 2, . . . N}. When we treat the measure-
ment as a special unitary evolution ⇢(t) = U(t)⇢(0)U†(t).
Then, the measurement must decrease information en-
tropy, i.e., H(⇢

s

(t)|S)  H(⇢
s

(0)|S). The information
transferred can be qualified by the mutual information,
e.g.,

I
S:D = H(⇢

s

) + H(⇢
d

) � H(⇢
sd

)

where H(⇢) = �Tr(⇢ ln ⇢). For the density matrix to
guarantee the quantum objectivity we have

I(SD; t) = H(⇢
d

)

for ⇢
d

=
P |c

s

|2|d
s

ihd
s

| . According to Hugh Everett and
others, the maximum quantum information can transfer
from the system to the observers when

I(SD; t) = H(⇢
s

(0)|S)

Now we show that the quantum information trans-
ferred from the system to the observers is maximized only
when |d

s

i(|d
s

0i) are orthogonal; Furthermore, only when
the initial state of the total system is a factorization

⇢(0) =
X
s,r

c
s

c⇤
r

|sihr| ⌦ ⇢
D

⌦ ⇢
D

0

then p
sr

= c
s

c⇤
r

, i.e., the final state of the total system is
a pure state – a tripartite Schmidt decomposition

| i =
X

c
s

|si ⌦ |d
s

i ⌦ |d0
s

i, (16)

Actually, for information transferring, we first calculate

I(SD; t) = �Tr
D

⇢
d

ln ⇢
d

=
X

d

hd|⇢
d

ln ⇢
d

|di

=
X

s

|c
s

|2
X

d

hd|d
s

ihd
s

| ln ⇢
d

|di =
X

s

|c
s

|2hd
s

| ln ⇢
d

|d
s

i

that is hd
s

| ln ⇢
d

|d
s

i = |c
s

|2.
This point can be proved with the help of the following

theorem [? ]: for any density matrix ⇢ =
P

p
i

⇢
i

, we have

H(⇢) 
X

i

p
i

ln p
i

+
X

i

p
i

H(⇢
i

),

where the equality holds if and only if the support of
⇢

i

are orthogonal to each other.
Since {|si} is an orthogonal basis, we have H(⇢

s

) =
H(⇢

sd

) =
P |c

s

|2 ln |c
s

|2, and thus the mutual informa-
tion is I

S:D = H(⇢
s

) + H(⇢
d

) � H(⇢
sd

) = H(⇢
d

). For
⇢

d

=
P |c

s

|2|d
s

ihd
s

|, it follows from the above theorem
that

H(⇢
d

) 
X

s

|c
s

|2 ln |c
s

|2 +
X

s

|c
s

|2H(|d
s

ihd
s

|)

=
X

s

|c
s

|2 ln |c
s

|2,

where the equality holds if and only if |d
s

i are orthogonal
to each other. Therefore, the mutual information I

S:D

achieves its maximum only when {|d
s

i} is an orthogonal
set.

Next we needs to re-examine whether or not there still
exist some curious quantum properties predicted accord-
ing to wave function collapse or its based protocols in
quantum information. The new starting point is our ob-
jective definition of quantum measurement. For example,
can an objective quantum measurement lead to the indis-
tinguishability of the non-orthogonal states? If we want
to “distinguish” two non-orthogonal states |s1i and |s2i.
Now we refine the performance to “distinguish” |s1i and
|s2i as an objective quantum measurement to determine
c1 and c2. Generally, suppose that the state we need to
“distinguish” is |'i =

P
c
s

|si, where {|si} forms a basis
(need not be orthogonal) of S, and the initial state of the
two observers together is |T i =|d, d0i. Thus, the initial
state of the total system reads

| (0)i =
X

s

c
s

|si ⌦ |T i.

The total system is isolated, and its time evolution obeys
quantum mechanics, thus the measurement process can
be described by an unitary evolution:

| i = U | (0)i =
X

s

c
s

|�
s

i, (17)

where |�
s

i = U |si ⌦ |T i. We hope | i can satisfy the
three requirements of objectivity by Eqs.(7a-7c). It fol-

lows from Tr
D

0 | ih | =
P

l

s=1 |c
s

|2|s, d
s

ihs, d
s

|, that

⇢
s

= Tr
DD

0 | ih | =
lX

s=1

|c
s

|2|sihs| (18)

According to the Born rule, the reduced state of S after
the measurement reads as ⇢

s

= tr
D

| 0ih 0|, i.e.,

⇢
s

=
X
ss

0

c
s

c⇤
s

0Tr
D

|�
s

ih�
s

0 |. (19)

If only the coe�cients of c
s

c⇤
s

0 with s 6= s0 in Eq.(19)
vanish, that is,

Tr
DD

0 |�
s

ih�
s

0 | = �
ss

0A
s

. (20)

we can reach the form

⇢
s

=
X
ss

0

|c
s

|2Tr
DD

0 |�
s

ih�
s

|. (21)

However, we will point out that if |si and |s0i are non-
orthogonal to each other, the above requirement Eq.(20)
could not be satisfied. In fact, if we suppose Eq.(20)
holds, we have

h�
s

0 |�
s

i = Tr
S

Tr
DD

0 |�
s

ih�
s

0 | = Tr
S

(�
ss

0A
s

) = 0, (22)
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since �
ss

0 = 0 for s 6= s0. On the other hand, as a unitary
evolution conserves the inner product, we have

h�
s

0 |�
s

i = hs0| ⌦ hD| · |si ⌦ |Di = hs0|si 6= 0, (23)

which leads to a conflict and thus proves our claim.
Furthermore, Eq.(23) tells us that the inner product,
h�

s

0 |�
s

i, does not depend on the measuring apparatus,
or observers, or environments. Thus, we also exclude
the possibility that h�

s

0 |�
s

i may tend to zero under the
thermodynamic limit.

Finally,we point out that the above definition of quan-
tum measurement refined with objectivity is actually
the celebration of the significance implied by DeWitt’s
model as well as the argument about quantum non-
locality given in Ref. [23]. In Ref. [23], Frank Tipler as-
sociated measurement of two local spins in a Bell state
|Bi = (| "#i � | #"i)/p

2 with two remote local unitary
transformations U

x

and U
y

at two positions x and y that
are space-like separated, so that [U

x

, U
y

] = 0. Let |D(x)i
and |D(y)i be the local state of the observers at x and
y. Then we first perform the local measurement U

x

and
then carry out U

y

. This performance gives

U
x

U
y

|Bi ⌦ |D(x), D(y)i =
1p
2

�| "#i ⌦ |D"(x), D#(y)i

� | "#i ⌦ |D"(x), D#(y)i�
The performance of measurement about spins in re-
versed order can also result the same result, that is,
U

x

U
y

|B, D(x), D(y)i = U
y

U
x

|B, D(x), D(y)i. This
means that the e↵ects of two measurements are not cor-
related causally and there does not exist causality of
two measurements. According to Tipler, there needs the
third observer who can carry out the third measurement
U(x, y) to compare the two local observations, and tell
them whether or not they measured the spin in the same
direction. Here, as we stressed, it is just this measure-
ment that induces the classical correlations of the local
spin states and local observers without any long range
correlation-quantum non-locality. Let

U(x, y)|D"/#(x)i ⌦ |Di = |D"/#(x)i ⌦ |D(" / #)i
U(x, y)|D"/#(y)i ⌦ |Di = |D"/#(y)i ⌦ |D(" / #)i

where |Di is the initial state of the third observer and
|D"/#i are its state correlated to |D"/#(↵)i (↵ = x, y).
Then it follows from | i = U(x, y) U(x) U(y)|Bi ⌦
|D(x), D(y)i ⌦ |D(x, y)i that

⇢ = Tr3[| ih |] =
1

2

⇥| " D"(x); # D#(y)ih" D"(x); # D#(y)|
+ | # D#(x); " D"(y)ih# D#(x); " D"(y)|⇤

where we have defined | " D"; # D#i = | "#i ⌦
|D"(x), D#(y)i et al, and Tr3[. . . ] means taking trace
over the third observer. Obviously, due to the third ob-
server witnessing the two local measurements at x and
y and then results in a classical correlation, where the
occurrence of the local classical correlation |D"(x)i and
| "

x

i is obviously independent of the measurement made
by the observer at y, and vice versa.

V. CLASSICALITY FROM MACROSCOPICITY:
CENTRAL SPIN MODEL

In the above arguments we use the two observer mea-
surement as an illustration. We have shown that only
if |d

s

i and |d0
s

i for di↵erent s are orthogonal with each
other, the quantum measurement is objective. Now we
will prove that if they are not orthogonal with each other,
we can still implements the objective quantum measure-
ment by using N non-ideal observers in the macroscopic
limit that N ! 1. This means that the classicality
of quantum measurement emerges from the macroscop-
icity of the observer if we coarse-grain the collection of
these N observers as two macroscopic observers. We have
perceived that Copenhagen QMI was challenged by ask-
ing where is the classical-quantum boundary, e.g., the
Schrödinger’s cat paradox. The following argument will
answer this question in a natural way and explain what is
the substantial di↵erence between a quantum system to
be measured and its observer, both of which still abode
to the basic of quantum mechanics.

We need not to require a strict objectivity that N ob-
servers D(1), D(2), . . . , D(N) obtain the same result when
they simultaneously measure the system to form entan-
glement

| i =
X

s

c
s

|si ⌦
NY

j=1

|d(j)
s

i, (24)

where the single particle states |d(j)
s

i (s = 1, 2, . . . , l
j

)
are orthogonal with each other. Now we only consider

the generic case that |hd(j)
s

|d(j)
s

0 i| < 1. For very large
N , we can make a coarse-graining for the set of ob-
servers D = {D(1), D(2), . . . , D(N)} into two macro-
scopic sets, D = {D(1), D(2), . . . , D(n)} and D0 =
{D(n+1), D(2), . . . , D(N)}. If n is also macroscopically
large, the N + 1-particle state (24) can resort to the
Schmidt decomposition (15) by writing down

|d
s

i =
nY

j=1

⌦|d(j)
s

i, |d
s

i =
NY

j=n+1

⌦|d0(j)
s

i (25)

Then it is easy to show that, in most cases

hd
s

|d
k

i =
nY

j=1

hd(j)
s

|d(j)
k

i ! 0

hd0
s

|d0
k

i =
NY

j=n+1

hd(j)
s

|d(j)
k

i ! 0 (26)

in the macroscopic limit both n ! 1 and N ! 1.
Therefore, with coarse-graining, we reduce the quantum
measurement with N observers, into the two-observer
measurement. It is worthy to emphasize the objectivity
of N -observer measurement is guaranteed by the macro-
scopicity of the two “e↵ective” observers D and D0 from
coarse-graining, which results in Eq. (26), and in turn
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D1 D2

D1 D2

D1 D2

Figure 4: Central spin model. The spin environment is di-
vided into two parts as two macroscopic devices D1 and D2.
In the splitted two worlds after measurement, even if the
states of each single spin are not orthogonal h" |[R(g)

i (t)]† ·
R(e)

i (t)| "i 6= 0, the two states of D1(2) are still nearly orthogo-

nal, i.e., hD(g)(t)|D(e)(t)i ' 0 [see Eq. (32)], which guarantees
the objectivity of the macroscopic measurements by D1 and
D2.

gives a perfect tripartite classical correlation. In this
sense, we can safely say the objectivity emerges in a quan-
tum word because its observers possess the macroscop-
icity in large N limit, namely, the observers consists of
macroscopically many blocks, each of which behaves as
an observer, and need not to entangle with the system
perfectly. In short, the di↵erence between the system and
observer lies on the macroscopicity of the observers.

In the following, we use a central spin model to
demonstrate the objectivity in quantum measurement
[7, 22, 24]. We show that the condition of objectivity
is more feasible to be satisfied when the measuring de-
vices consist macroscopically many degrees of freedom.

The quantum system to be measured is a central spin
which has two states |ei and |gi. The central spin is sur-
rounded by another N spin- 1

2 particles, and the Hamil-
tonian of the total system reads

Ĥ = E|eihe| +
NX

i=1

(!
i

�̂z

i

+ g
i

�̂x

i

) + |eihe|
NX

i=1

⌘
i

�̂z

i

, (27)

where �̂z

i

= | "i
i

h" |� | #i
i

h# | and �̂z

i

= | "i
i

h# |+ | #i
i

h" |
are the Pauli matrices for the i-th spin.

The N spins in the “environment” are separated into
two groups denoted as D1 and D2 (see Fig. 4), which con-
tains N1 and N2 spins respectively (In the above discus-
sions, we haveN1+N2 = N). We have their Hamiltonians
as,

Ĥ
D1 =

N1X
i=1

(!1,i

�̂z

1,i

+ g1,i

�̂x

1,i

),

Ĥ
D2 =

N2X
j=1

(!2,j

�̂z

2,j

+ g2,j

�̂x

2,j

).

We regard D1 and D2 as two macroscopic apparatus,
each of which contains many even infinite degrees of free-
dom. An objective measurement requires that each two
parts of S, D1 and D2 must be classically correlated, as
we have discussed above. We will see that this is easily
guaranteed by the macroscopicity of the two apparatus
D1 and D2.

We assume that the initial state of the total system is

| (0)i =
�
cg|gi + ce|ei

� ⌦ |D1i ⌦ |D2i, (28)

where |D1,2i are the initial state of the apparatus, and

|D1i =
N1O
i=1

| "i, |D2i =
N2O
j=1

| "i.

The total system evolves according to U(t) = exp[�iĤt],
and reaches

| (t)i =cg|gi ⌦ |D(g)
1 (t)i ⌦ |D(g)

2 (t)i
+ cee

�iEt|ei ⌦ |D(e)
1 (t)i ⌦ |D(e)

2 (t)i, (29)

where |D(e,g)
1,2 (t)i are the corresponding states of the two

macroscopic apparatus, namely,

|D(↵)
1 (t)i =

N1O
i=1

R
(↵)
1,i

(t)| "i,

|D(↵)
2 (t)i =

N2O
j=1

R
(↵)
2,j

(t)| "i, (30)

for ↵ = g, e, and R
(↵)
n,i

(t) = exp[�iH
(↵)
n,i

t] is a rotating
operator for the i-th spin of D

n

generated from the single
e↵ective Hamiltonians

H
(g)
d,i

= !
n,i

�̂z

n,i

+ g
n,i

�̂x

n,i

,

H
(e)
n,i

= (!
n,i

+ ⌘
n,i

)�̂z

n,i

+ g
n,i

�̂x

n,i

. (31)

By the requirement for the objectivity of measure-
ment, the tripartite state Eq. (29) must have a GHZ
form Eq. (15) to guarantee that each pair of S, D1 and
D2 are classically correlated [see Eqs. (7a-7c)]. This re-
quirement is satisfied if and only if the Loschmidt echo

E
(n)
L

:=
���hD(g)

n

(t)|D(e)
n

(t)i
��� = 0 for n = 1, 2 [24]. In the

above example, it has a factorized form,

E
(n)
L

:=
���hD(g)

n

(t)|D(e)
n

(t)i
��� =

NnY
i=1

���h" |[R(g)
n,i

(t)]† · R
(e)
n,i

(t)| "i
���

=
NnY
i=1

(1 � sin2 µ
(e)
n,i

t · sin2 �
(e)
n,i

)(1 � sin2 µ
(g)
n,i

t · sin2 �
(g)
n,i

),

(32)

where we denote

µ
(e)
n,i

= [(!
n,i

+ ⌘
n,i

)2 + g2
n,i

]
1
2 , sin�(e)

n,i

=
g

n,i

µ
(e)
n,i

,

µ
(g)
n,i

= [!2
n,i

+ g2
n,i

]
1
2 , sin�(g)

n,i

=
g

n,i

µ
(g)
n,i

. (33)
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Figure 5: The decay of the Loschmidt echo EL with time t
[see Eq. (32)]. We set µ(g)

n,i = 1 as the energy unit. Other pa-

rameters are µ(e)
n,i = 1.2, gn,i = 0.2. When the particle number

N becomes large, The Loschmidt echo EL quickly decays to
zero, and only revivals at certain time, which becomes negli-
gible when N ! 1.

In the above product Eq. (32), each term is no greater
that 1. Therefore, in the thermodynamic limit N1,2 !
1, i.e., both D1 and D2 consist infinite spins the
Loschmidt echo automatically decrease to zero within a
quite short time (see Fig. 5). When F ' 0, each two of
the tripartite system S, D1 and D2, become classically
correlated as we mentioned before [see Eqs. (7a-7c)]. At
this moment, we can say that the measurement results
obtained by D1 and D2 are objective, because they can
check their results with each other and reach an agree-
ment.

It should be noticed that in the above example, even
if the states of each single spin are not orthogonal h"
|[R(g)

i

(t)]† · R
(e)
i

(t)| "i 6= 0, the two states of D1(2) are

still nearly orthogonal, i.e., hD(g)
n

(t)|D(e)
n

(t)i ' 0 [see
Eq. (32)], and this orthogonality naturally becomes ex-
act in the thermodynamic limit N1,2 ! 1. That means,
the objectivity of the measurement is guaranteed by the
macroscopicity of the measuring devices D1 and D2.

VI. CONCLUSION AND REMARKS

In this paper, we shows that, when two (or more) ob-
servers classically correlated to the same preferred ba-
sis of the system, the quantum measurement is thought
to be objective. For a two(or many)-observer quantum
measurement, two observers are also required to com-
pare their observations with each other. This compar-
ison is implemented by some communication, which is
also exactly described as the inter-observer classical cor-
relations. By refining quantum measurement by stressing
objectivity, the quantum puzzles, such as the EPR para-
dox, et al, no longer emerge as the very nature of quan-
tum mechanics. We have presented three mathematical

propositions to support our conclusion. Here, the quan-
tum locality is restored by modeling two/many observers
according to quantum mechanics without any classical
ingredient needed.

The emergence of classicality in quantum measurement
is closely related to the defined objectivity we require for
refining quantum measurement. The classical reality also
is clearly described by the triple correlation in avoiding
the abstract concepts of information theory. It is selected
by the environment from the quantum world to survive
as an objective existence. In our approach we only sin-
gle out the measured system from the quantum world,
and all others including observers and environments are
placed coequally. Undoubtably, these findings shows that
some of quantum puzzles only due to the vague defini-
tion of measurement in quantum mechanics, which was
obviously blurred by some purely imaginary issues, such
as the wave function collapse. In this sense our approach
is just accommodated by MWI where each world branch
exists democratically, and thus each object in this branch
also exists equally.

These arguments in favor of the hypothesis that the ob-
servers and environments are macroscopic. We have illus-
trated this observation with the central spin model. Here,
we can also envision the N -observer world is grouped as
one (or several) macroscopic observer(s), each of which
also contains macroscopically many individuals and pos-
sess e↵ectively orthogonal basis. This idea well accommo-
dates to the quantum Darwinism interpretation (QDI) of
quantum mechanics by Zurek et al [9, 25]. Here, the envi-
ronment with redundant memory can behaves an witness
to acquire the pointer states without disturbing the clas-
sical reality of these states. One can regard our macro-
scopic observer as the redundant environment in QDI,
and only certain stable states can be measured repeat-
edly. Those states with more quantum coherence are
obviously unstable in this environment. In this means,
the QDI actually gives a preliminary supporting evidence
for our approach.
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Appendix A: Requirement of objectivity

Proposition: If the two-body reduced density operators
of the universe (composed by S, D and D0) satisfies
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Tr
D

0⇢ =
lX

s=1

|c
s

|2|s, d
s

ihs, d
s

|, (A1)

Tr
D

⇢ =
lX

s=1

|c
s

|2|s, d0
s

ihs, d0
s

|, (A2)

Tr
S

⇢ =
lX

s=1

|c
s

|2|d
s

, d0
s

ihd
s

, d0
s

|, (A3)

where {|si}, {|d
s

i} and {|d0
s

i} are linearly independent
vector sets (not necessarily orthogonal) for H

S

, H
D

and
H

D

0 respectively. Then the density operator of the uni-
verse ⇢ must have the from of

⇢ =
X
s,r

p
sr

|s, d
s

, d0
s

ihr, d
r

, d0
r

|. (A4)

To prove this proposition, we first introduce the fol-
lowing lemma:

Lemma: If A is a positive n ⇥ n matrix and B is a
nonnegative n ⇥ n matrix, and TrAB = 0, then B = 0.

Proof : For B > 0, we choose B diagnosable in a given
orthogonal base {|ni}, i.e.,

B|ni = �
n

|ni. (A5)

Then,

0 = TrAB =
X

n

hn|AB|ni

=
X

n

�
n

hn|A|ni. (A6)

Since B > 0 implies �
n

> 0 and A > 0 implies hn|A|ni >
0, we only have �

n

= 0 so that B = 0. ⌅
Now we come back to prove the proposition. Let vector

sets {|si}, {|d
s

i} and {|d0
s

i} be the basis for H
S

, H
D

and
H

D

0 respectively. Then⇢ can be generally written as

⇢ =
X

C
s1s2s3,r1r2r3 |s1, d

s2 , d0
s3

ihr1, d
r2 , d0

r3
|, (A7)

and the reduced state of the SD subsystem is

Tr
D

0⇢ =
X

C
s1s2s3,r1r2r3hd0

r3
|d0

s3
i|s1, d

s2ihr1, d
r2 |.
(A8)

Compare this equation with Eq.(A1), we haveX
s3r3

C
s1s2s3,r1r2r3hd0

r3
|d0

s3
i = �

s1r1�s2r2�s1s2↵s1 (A9)

and ↵
j

= |c
j

|2 for l > j; and ↵
j

= 0 when j > l. Thus,
hereafter we can restrict our analysis to the generic case
1  s1, s2, s3  l.

We define the l ⇥ l square matrices C(s1s2; r1r2) by

[C(s1s2; r1r2)]s3,r3 = C
s1s2s3,r1r2r3 ,

and another l⇥l matrix A is defined by A
s3r3 = hd0

r3
|d0

s3
i.

Notice that A is positive. For 8 | i =
P
�

s

|d0
s

i, we have
0  h | i =

P
s,r

�⇤
r

·A
rs

· �
s

, and thus the above equa-
tions gives

Tr[C(s1s2; r1r2)A] = �
s1r1�s2r2�s1s2↵s11. (A10)

For s1 = r1 and s2 = r2, the matrix C(s1s2; s1s2)
is non-negative since it is a principal sub-matrix of
the non-negative matrix C

s1s2s3,r1r2r3 . Thus, when
s1 6= s2, we have Tr[C(s1s2; s1s2)A] = 0, which im-
plies C(s1s2; s1s2) = 0 according to the lemma. There-
fore, the diagonal elements C

s1s2s3,s1s2s3 6= 0 only when
s1 = s2. With the same reason, by considering Eqs. (A2,
A3) we can prove that C

s1s2s3,s1s2s3 6= 0 only when
s1 = s2 = s3.

For non-diagonal elements C
s1s2s3,r1r2r3 , the necessary

condition for non-vanishing C
s1s2s3,r1r2r3 is s1 = s2 = s3

and r1 = r2 = r3. Otherwise, for example, if s1 = s2 = s3

is not satisfied, since it follows from the above discussion
that C

s1s2s3,s1s2s3 = 0, the determinant of the following
sub-matrix would be non-positive✓

C
s1s2s3,s1s2s3 C

s1s2s3,r1r2r3

C
r1r2r3,s1s2s3 C

r1r2r3,r1r2r3

◆
, (A11)

but it should be non-negative because it is a princi-
pal sub-matrix of [C

s1s2s3,r1r2r3 ]. Therefore, if we de-
note C

sss,rrr

as p
sr

, we will get the required form as in
Eq.(A4). ⌅

We notice that, for a mixed state ⇢, the orthogonality
of {|si}, {|d

s

i}, {|d0
s

i} are not guaranteed automatically.
For example, for a tripartite state

⇢ =
X

s

p
s

|s, d
s

, d0
s

ihs, d
s

, d0
s

|, (A12)

we can verify

Tr
D

0⇢ =
X

s

p
s

|s, d
s

ihs, d
s

| ·
X

n

hd0
n

|d0
s

ihd0
s

|d0
n

i

=
X

s

p
s

|s, d
s

ihs, d
s

| ·
X

n

hd0
s

|d0
n

ihd0
n

|d0
s

i

=
X

s

p
s

|s, d
s

ihs, d
s

|,

Tr
D

⇢ =
X

s

p
s

|s, d0
s

ihs, d0
s

|,

Tr
S

⇢ =
X

s

p
s

|d
s

, d0
s

ihd
s

, d0
s

|.

Here, we do not require that {|si}, {|d
s

i}, {|d0
s

i} must
be orthogonal.

Appendix B: Tripartite Schmidt decomposition

In this appendix we give the proof of Proposition 3
in details. We consider its necessity: only if the total
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system in measurement evolves into a special pure state
that is the tripartite Schmidt decomposition with respect
to the given preferred basis {|si|s = 1, 2, . . . , l} of H

S

,
then an quantum measurement is objective defined by
Eqs. (7a-7c) . To this end we consider a bipartite pure
state | 

AB

i. If we have known ⇢
A

= Tr
B

(| 
AB

i h 
AB

|) =P
i

|c
i

|2|A
i

ihA
i

| (here {|A
i

i} does not have to be or-
thonormal), then | 

AB

i must have the form

| 
AB

i =
X

i

c
i

ei✓i |A
i

i ⌦ |B
i

i (B1)

where {|B
i

i} is an orthonormal set, and ✓
i

can be cho-
sen arbitrarily. This is because the bipartite state | 

AB

i
always can be written as

| 
AB

i =
X
ij

↵̃
ij

|A
i

i ⌦ |B̃
j

i =
X

i

↵
i

|A
i

i ⌦ |B
i

i (B2)

where {|B̃
i

i} is an orthonormal basis, and

|B
i

i =

P
j

↵̃
ij

|B̃
j

iP
j

|↵̃
ij

|2 , |↵
i

|2 =
X

j

|↵̃
ij

|2. (B3)

Thus the reduced density matrix of system A is

⇢̃
A

=
X

i

|↵
i

|2|A
i

ihA
i

|

+
X
i 6=j

↵
i

↵⇤
j

hB
j

|B
i

i |A
i

ihA
j

| + h.c. (B4)

Since we have known ⇢
A

=
P

i

|c
i

|2|A
i

ihA
i

|, we must
have ↵

i

= c
i

ei✓i and hB
j

|B
i

i = 0 . Therefore | 
AB

i has
the form of Eq. (B1). Notice that here {|A

i

i} does not
have to be orthonormal, while {|B

i

i} is orthogonal.
Now we prove the necessity of the above proposi-

tion, namely, if the bipartite correlations in | 
SDD

0i

satisfy the classical correspondence Eqs. (7a-7c), then
| 

SDD

0i must be a tripartite Schmidt form, and
{|si}, {|d

s

i}, {|d0
s

i} must be orthogonal basis.
Proof : We first treat S and D as a whole, thus | 

SDD

0i
can be regarded as a bipartite state S + D + D0. From
the above discussion and Eq. (7a), | 

SDD

0i must have
the following tripartite Schmidt form

| 
SDD

0i =
X

s

c
s

|s, d
s

i ⌦ |d̃0
s

i, (B5)

where {|d̃0
s

i} is an orthogonal basis, and we have ab-
sorbed the arbitrary phase in |d̃0

s

i.
Now we will prove {|si}, {|d

s

i}, {|d0
s

i} must be orthog-
onal sets. With the same reason, Eq. (7b) guarantees that
| 

SDD

0i also has the form

| 
SDD

0i =
X

s

c
s

|si ⌦ |d̃
s

i ⌦ |d0
s

i, (B6)

where {|d̃0
s

i} is an orthogonal basis.
The above Eqs. (B5, B6) should be equal, thus we must

have X
s

c
s

|s, d
s

, d̃0
s

i =
X

s

c
s

|s, d̃
s

, d0
s

i

=
X
s,r,t

c
s

hd
r

|d̃
s

ihd̃0
t

|d0
s

i · |s, d
r

, d̃0
t

i,

which requires hd
r

|d̃
s

ihd̃0
t

|d0
s

i = �
rs

�
ts

. Since
���hd

r

|d̃
s

i
��� 

1,
���hd̃0

t

|d0
s

i
���  1, we must have hd

r

|d̃
s

i = hd̃0
t

|d0
s

i = 1 when

we set r = s = t, that is, |d
s

i = |d̃
s

i, |d0
s

i = |d̃0
s

i. There-
fore, {|d

s

i}, {|d0
s

i} must be orthogonal sets. With the
same reason, combining Eqs. (7a, 7c) we can also prove
that {|si} must be an orthogonal set. ⌅

[1] E. Joos et al., Decoherence and the Appearance of a Clas-
sical World in Quantum Theory (Springer, 2003).

[2] M. Gell-Mann and J. Hartle, in Complexity, Entropy,
and the Physics of Information, edited by W. Zurek
(Addison-Wesley, 1990).

[3] M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345
(1993).

[4] S. Weinberg, Lectures on quantum mechanics (Cam-
bridge University Press, 2012).

[5] S. Weinberg, Phys. Rev. A 90, 042102 (2014).
[6] H. D. Zeh, Found. Phys. 1, 69 (1970).
[7] W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
[8] E. Joos and H. D. Zeh, Zeit. Phys. B 59, 223 (1985).
[9] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).

[10] R. B. Gri�ths, J. Stat. Phys. 36, 219 (1984).
[11] R. B. Gri�ths, Consistent quantum theory (Cambridge

University Press, 2003).
[12] H. Everett, Rev. Mod. Phys. 29, 454 (1957).

[13] B. DeWitt and N. Graham, The Many-Worlds Inter-
pretation of Quantum Mechanics (Princeton University
Press, 1973).

[14] D. Bohm, Phys. Rev. 85, 166 (1952).
[15] D. Bohm, Phys. Rev. 85, 180 (1952).
[16] G. ’t Hooft, arXiv:quant-ph/9612018 (1996).
[17] G. ’t Hooft, Class. Quant. Grav. 16, 3263 (1999).
[18] C. Sun, X. Liu, and S. Yu, Mod. Phys. Lett. A 16, 75

(2001).
[19] X. F. Liu and C. P. Sun, J. Math. Phys. 42, 3665 (2001).
[20] S. L. Adler, Quantum theory as an emergent phenomenon

(Cambridge University Press, 2004).
[21] S. L. Adler, Nucl. Phys. B 415, 195 (1994).
[22] C.-P. Sun, Phys. Rev. A 48, 898 (1993).
[23] F. J. Tipler, Proc. Nat. Acad. Sci. 111, 11281 (2014).
[24] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P.

Sun, Phys. Rev. Lett. 96, 140604 (2006).
[25] H. Ollivier, D. Poulin, and W. H. Zurek, Phys. Rev.



12

Lett. 93, 220401 (2004).


