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Abstract

Strong subadditivity inequality of quantum entropy, proved by Lieb and Ruskai,

is a powerful tool in quantum information theory. The fact that the strong subaddi-

tivity inequality saturated only by so-called Markov states is obtained in the recent

literature [P. Hayden et al., Commun. Math. Phys. 246, 359 (2004).].

In this paper, we give a characterization of another equivalent version for strong

subadditivity inequality. We discuss the coherent information saturating its upper

bound as well. A necessary and sufficient condition for this saturation is derived.

The possible applications are discussed.

1 Introduction and preliminaries

Let H be a finite dimensional complex Hilbert space. A quantum state ρ on H is a

positive semi-definite operator of trace one, in particular, for each unit vector |ψ⟩ ∈ H,
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the operator ρ = |ψ⟩⟨ψ| is said to be a pure state. The set of all quantum states on H
is denoted by D (H). For each quantum state ρ ∈ D (H), its von Neumann entropy is

defined by S(ρ) = −Tr (ρ log2 ρ).

The celebrated strong subadditivity (SSA) inequality of quantum entropy, proved by

Lie and Ruskai in [1],

S(ρABC) + S(ρB) 6 S(ρAB) + S(ρBC), (1.1)

is a very powerful tool in quantum information theory. Let a reference system D be

introduced to purify the tripartite state ρABC such that ρABCD be a pure state with ρABC =

TrD(ρABCD). An equivalent version of SSA can be described as follows [9]:

S(ρD) + S(ρB) 6 S(ρAB) + S(ρAD). (1.2)

In fact, SSA plays an essential role in almost every nontrivial insight in quantum

information theory, for instance, as some direct consequences of SSA, the data processing

inequality, the well-known Holevo bound [2], etc. Moreover, SSA connects with the

monotonicity of relative entropy under quantum channels [3].

The condition for the equality to be hold is an interesting and important subject. An

important result about the structure of states which satisfy Eq. (1.1) with equality was

obtained in [4]:

Proposition 1.1 ([4]). A state ρABC ∈ D (HA ⊗HB ⊗HC) saturating the strong subadditivity

inequality, i.e.,

S(ρAB) + S(ρBC) = S(ρABC) + S(ρB) (1.3)

if and only if there is a decomposition of system B as

HB =
⊕

j

HbL
j
⊗HbR

j
(1.4)

into a direct (orthogonal) sum of tensor products, such that

ρABC =
⊕

j

λjρAbL
j
⊗ ρbR

j C, (1.5)

where ρAbL
j
∈ D

(
HA ⊗HbL

j

)
and ρbR

j C ∈ D
(
HbR

j
⊗HC

)
, and {λj} is a probability distri-

bution.
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An analogous characterization of the structures of states which satisfy Eq. (1.2) with

equality is highly desirable. We investigate the sufficient and necessary conditions for

saturating the inequality (1.2) in the following.

2 Main result and applications

A quantum operation Φ on H is a trace-preserving completely positive linear mapping

defined on the set D (H). It follows from ([5, Prop. 5.2 and Cor. 5.5]) that there exists

linear operators {Kµ}µ on H such that ∑µ K†
µKµ = 1 and Φ = ∑µ AdKµ , namely, for each

quantum state ρ, we have the Kraus representation

Φ(ρ) = ∑
µ

KµρK†
µ.

The corresponding complementary channel Φ̂ for Φ is defined as

Φ̂(ρ) = ∑
µ,ν

Tr
(

KµρK†
ν

)
|µ⟩⟨ν|.

Let E = {(pµ, ρµ)} be a quantum ensemble on H, that is, each ρµ ∈ D (H), pµ > 0, and

∑µ pµ = 1. The Holevo quantity of the quantum ensemble
{(

pµ, ρµ

)}
is defined by:

χ
{(

pµ, ρµ

)}
= S(∑

µ

pµρµ)− ∑
µ

pµS
(
ρµ

)
. (2.1)

2.1 The saturation of an equivalent version of SSA

Theorem 2.1. Let σABC ∈ D (HA ⊗HB ⊗HC). Then

S(σA) + S(σC) = S(σAB) + S(σCB) (2.2)

if and only if there are two decompositions of system A and C, respectively, as

HA =
KA⊕
i=1

HaL
i
⊗HaR

i
and HC =

KC⊕
j=1

HcL
j
⊗HcR

j
(2.3)

such that

σABC =
⊕
i,j

µijσaL
i BcL

j
⊗ σaR

i cR
j
, (2.4)
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where σaL
i BcL

j
≡ |ψ⟩⟨ψ|aL

i BcL
j
∈ D

(
HaL

i
⊗HB ⊗HcL

j

)
, σaR

i cR
j
∈ D

(
HaR

i
⊗HcR

j

)
and {µij} is

a joint probability distribution.

Proof. We introduce a reference system D such that σABCD is a purification of σABC. Thus

Eq. (2.2) can be rewritten as

S(σA) + S(σC) = S(σCD) + S(σAD). (2.5)

It can be seen that, when the systems A and C are fixed, the set of equations (2.2) and

(2.5) keeps invariant under the exchange of the systems B and D. Analogously, we have

S(σA) + S(σABD) = S(σAB) + S(σAD), (2.6)

S(σCBD) + S(σC) = S(σCD) + S(σCB). (2.7)

Again, when the systems B and D are fixed, Eq. (2.6) and Eq. (2.7) are transformed

mutually under the exchange of the systems A and C.

From Proposition 1.1 there are two decompositions of A and C, respectively,

HA =
KA⊕
i=1

HaL
i
⊗HaR

i
and HC =

KC⊕
j=1

HcL
j
⊗HcR

j
(2.8)

such that

σABD =
⊕

i

piσaL
i B ⊗ σaR

i D and σBCD =
⊕

j

qjσBcL
j
⊗ σcR

j D. (2.9)

Thus σABC must be of the form:

σABC =
⊕
i,j

µijσ
(ij)
aL

i BcL
j
⊗ σ

(ij)
aR

i cR
j
,

where

S
(

σ
(ij)
aL

i B

)
+ S

(
σ
(ij)
BcL

j

)
= S

(
σ
(ij)
aL

i

)
+ S

(
σ
(ij)
cL

j

)
, ∀ i, j.

Without loss of generality, we assume that the systems aL
i and cL

j can not be decomposed

like the HA and HC, respectively. Therefore σaL
i BcL

j
must be a pure state, which implies

that

σaL
i BcL

j
≡ |ψ⟩⟨ψ|aL

i BcL
j
.

If the state σABC is of the form Eq. (2.4), then it is easy to check that Eq. (2.2) holds.

Remark 2.2. A simple example for Eq. (2.2) is a pure tripartite states σABC. In the above

proof, based on this point, by employing Proposition 1.1, we obtain that there must exist

a decomposition of σABC such that its substates are locally pure states.
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2.2 The saturation of Araki-Lieb inequality

The following proposition can be seen as a characterization of the saturation of Araki-

Lieb inequality:

|S(ωB)− S(ωC)| 6 S(ωBC). (2.10)

Proposition 2.3 ([6]). Let ωBC ∈ D (HB ⊗HC). The reduced states are ωB = TrC(ωBC), ωC =

TrB(ωBC), respectively. Then S(ωBC) = S(ωB)− S(ωC) if and only if

(i) HB can be factorized into the form HB = HL ⊗HR,

(ii) ωBC = ωL ⊗ |ψ⟩⟨ψ|RC for |ψ⟩RC ∈ HR ⊗HC.

Remark 2.4. The result in Proposition 2.3 is employed to study the saturation of the

upper bound of quantum discord in [7]. Later on, Carlen gives an elementary proof

about this result in [8].

The Coherent information defined by

Ic(ρ, Φ)
def
= S(Φ(ρ))− S(Φ̂(ρ)) (2.11)

is a useful concept in quantum information theory. It connects with other notions in

data processing. For instance, the fundamental problem in quantum error correction is

to determine when the effect of a quantum channel Φ defined on H acting on half of a

pure entangled state can be perfectly reversed.

In general, we see from SSA that

Ic(ρ, Φ) 6 S(ρ). (2.12)

In what follows, we use Proposition 2.3 to study the coherent information saturating

its upper bound. A necessary and sufficient condition for this saturation can be easily

derived.

Proposition 2.5. Let ρ ∈ D (H) and Φ be a quantum channel defined over H. The coherent

information, defined by Ic(ρ, Φ) achieves its maximum, that is, Ic(ρ, Φ) = S(ρ) if and only if

the following statements holds:

(i) the underlying Hilbert space can be decomposed as: H = HL ⊗HR;
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(ii) the output state of the quantum channel Φ is a product state: Φ(ρ) = ρL ⊗ ρR, where

ρL ∈ D (HL) , ρR ∈ D (HR).

Proof. Note that

S(Φ̂(ρ)) = S((1A ⊗ Φ)(|uρ⟩⟨uρ|)), (2.13)

where |uρ⟩ is a purification of ρ in a larger Hilbert space HA ⊗HB, where HB ≡ H. It

was shown that there exists a quantum channel Ψ (see [4]) such that

Ic(ρ, Φ) = S(ρ) ⇐⇒ (1A ⊗ Ψ ◦ Φ)(|uρ⟩⟨uρ|) = |uρ⟩⟨uρ|. (2.14)

From the Stinespring dilation theorem (see [5]), we may assume that

Φ(ρ) = TrC

(
U(ρ ⊗ |0⟩⟨0|)U†

)
, U ∈ U (HB ⊗HC) , |0⟩ ∈ HC,

which indicates that

1A ⊗ Φ(|uρ⟩⟨uρ|) = TrC((1A ⊗ U)(|uρ⟩⟨uρ| ⊗ |0⟩⟨0|)(1A ⊗ U)†)

= TrC (|Ω⟩⟨Ω|) , (2.15)

where |Ω⟩ def
= (1A ⊗ U)(|uρ⟩ ⊗ |0⟩). Now

|Ω⟩⟨Ω| = (1A ⊗ U)(|uρ⟩⟨uρ| ⊗ |0⟩⟨0|)(1A ⊗ U)†

is a tripartite state onc HA ⊗HB ⊗HC, it follows that

TrC(|Ω⟩⟨Ω|) = 1A ⊗ Φ(|uρ⟩⟨uρ|) ≡ ΩAB,

TrA(|Ω⟩⟨Ω|) = U(ρ ⊗ |0⟩⟨0|)U† ≡ ΩBC,

TrAC(|Ω⟩⟨Ω|) = Φ(ρ) ≡ ΩB,

where ΩABC ≡ |Ω⟩⟨Ω|. From the above expressions, we have

S(ΩABC) = 0,

S(ΩB) = S(Φ(ρ))

S(ΩBC) = S(ρ),

S(ΩAB) = S((1A ⊗ Φ)(|uρ⟩⟨uρ|)).

Apparently, Ic(ρ, Φ) = S(ρ) ⇐⇒ S(Φ(ρ)) = S((1A ⊗ Φ)(|uρ⟩⟨uρ|)) + S(ρ), that is,

Ic(ρ, Φ) = S(ρ) ⇐⇒ S(ΩB) = S(ΩAB) + S(ΩBC)

⇐⇒ S(ΩB)− S(ΩC) = S(ΩBC).

It follows from Proposition 2.3 that this equation holds if and only if
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(i) HB can be factorized into the form HB = HL ⊗HR,

(ii) ΩBC = ρL ⊗ |ψ⟩⟨ψ|RC for |ψ⟩RC ∈ HR ⊗HC.

That is,

Φ(ρ) = TrC (ρL ⊗ |ψ⟩⟨ψ|RC) = ρL ⊗ ρR.

This indicates that the coherent information arrives at its maximal value if and only if

the output state of the quantum channel Φ is a product state.

2.3 Applications

In the following, we make a theoretical analysis of Roga’s result concerning universal

bound for Holevo information [2].

Consider a state ρ, a quantum channel Φ, and the image of ρ under Φ:

ρ′ = Φ(ρ) = ∑
µ

KµρK†
µ. (2.16)

The complementary channel produces a correlation matrix

Φ̂(ρ) = ∑
µ,ν

Tr
(

KµρK†
ν

)
|µ⟩⟨ν|. (2.17)

Denote

qµ = Tr
(

KµρK†
µ

)
and ρ′µ = q−1

µ KµρK†
µ

so that

ρ′ = ∑
µ

qµρ′µ.

Then the Holevo information is bounded by the exchange entropy:

χ({qµ, ρ′µ}) 6 S
(

Φ̂(ρ)
)

. (2.18)

Moreover, the average entropy is bounded by the entropy of the initial state:

∑
µ

qµS(ρ′µ) 6 S(ρ). (2.19)
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In order to make an analysis of the saturations in Eq. (2.18) and Eq. (2.19), let us

revisit the original proof of these inequalities. The authors in [2] introduced a tripartite

state,

ωABC
def
= ∑

µ,ν

(
KµρK†

ν

)
A
⊗ |µ⟩⟨ν|B ⊗ |µ⟩⟨ν|C. (2.20)

From the above expression, we see that ωABC is symmetric with respect to BC and

HB = HC. It is convenient to introduce the notation Aµν = KµρK†
ν, so that qµ = Tr

(
Aµµ

)
and ρ′µ = q−1

µ Aµµ. Since

S(ωBC) = S(Φ̂(ρ)), S(ωA) = S(∑
µ

qµρ′µ), ∑
µ

qµS(ρ′µ) = S(ωAC)− S(ωB),

one has

χ({qµ, ρ′µ}) = S
(

Φ̂(ρ)
)
⇐⇒ S(ωA) + S(ωC) = S(ωAB) + S(ωBC).

This amounts to say, by Theorem 2.1, that

ωABC = ∑
µ,ν

(
KµρK†

ν

)
A
⊗ |µ⟩⟨ν|B ⊗ |µ⟩⟨ν|C =

⊕
i,j

pijω
(ij)
aL

i BcL
j
⊗ ω

(ij)
aR

i cR
j
, (2.21)

where each ω
(ij)
aL

i BcL
j

is a pure state. Since both B and C are identical, it follows that

∑
µ

KµρK†
µ ⊗ |µ⟩⟨µ| =

⊕
i,j

pijω
(ij)
aL

i cL
j
⊗ ω

(ij)
aR

i cR
j
,

which implies that

Φ(ρ) = ωA =
⊕
i,j

pijω
(ij)
aL

i
⊗ ω

(ij)
aR

i
.

Moreover

∑
µ

qµS(ρ′µ) = S(ρ) ⇐⇒ S(ωAC)− S(ωB) = S(ωABC) = S(ωAB)− S(ωC).

This amounts to say, by Proposition 2.3, that

ωABC = ωL ⊗ |ψ⟩⟨ψ|RC, ωACB = ωL̂ ⊗ |ψ⟩⟨ψ|R̂B,

which implies that

ωA = ωL = ωL̂, ωR = ωB, ωC = ωR̂.

8



Furthermore, |ψ⟩⟨ψ|BC is a symmetric state on HB ⊗HC with HB = HC. Now we have

|ψ⟩⟨ψ|BC = ∑
µ,ν

Tr
(

KµρK†
ν

)
|µ⟩⟨ν| ⊗ |µ⟩⟨ν|.

This indicates that ∑µ,ν Tr
(
KµρK†

ν

)
|µ⟩⟨ν| ≡ Φ̂(ρ) is still a pure state. Therefore

∑
µ,ν

KµρK†
ν ⊗ |µ⟩⟨ν| = Φ(ρ)⊗ Φ̂(ρ). (2.22)

Let Tr
(
KµρK†

ν

)
= λµλ̄ν for complex numbers λµ. Then ∑µ

∣∣λµ

∣∣2 = 1. Now we can

infer from Eq. (2.22) that

Φ(ρ) =
(

λ−1
µ Kµ

)
ρ
(

λ−1
ν Kν

)†
=

(
λ−1

ν Kν

)
ρ
(

λ−1
µ Kµ

)†
∀ µ, ν

or

KµρK†
ν = λµλ̄νΦ(ρ),

which implies that

ρ = (∑
µ

K†
µKµ)ρ(∑

ν

K†
νKν) = ∑

µ,ν
K†

µ(KµρK†
ν)Kν (2.23)

= (∑
µ

λµK†
µ)Φ(ρ)(∑

ν

λνK†
ν)

† ≡ MΦ(ρ)M†, (2.24)

where M def
= ∑µ λµK†

µ. From Eq. (2.22), we can see that

S(ρ) = S(Φ(ρ)) + S(Φ̂(ρ)) = S(Φ(ρ))

as Φ̂(ρ) is a pure state. Furthermore, we can have that Ic(ρ, Φ) = S(ρ), which shows that

Φ(ρ) = ρL ⊗ ρR.

Remark 2.6. In the above process, the output of the complementary channel is a pure

state. Without loss of generality, we assume that the environment starts in a pure state,

this implies that the complementary channel is an unitary channel. Form the basic

properties of quantum channel, we obtain that the equality in the inequality (2.19) holds

if and only if the quantum channel is a unitary one.
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