# Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig 

$d$ locally indistinguishable maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$
by
Mao-Sheng Li, Yan-Ling Wang, Shao-Ming Fei, and Zhu-Jun Zheng


# $d$ locally indistinguishable maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ 

Mao-Sheng $\mathrm{Li}^{1}$, Yan-Ling Wang ${ }^{1}$, Shao-Ming Fei ${ }^{2}{ }^{2}$, Zhu-Jun Zheng ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, South China University of Technology, Guangzhou 510640, China<br>${ }^{2}$ School of Mathematical Sciences, Capital Normal University, Beijing 100048, China<br>${ }^{3}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany


#### Abstract

We give a explicit construction of $d$ locally indistinguishable orthogonal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ for any $d \geq 4$. This gives an answer to the conjecture proposed by S . Bandyopadhyay in 2009. Thus it reflects the nonlocality of the fundamental feature of quantum mechanics.


PACS numbers: 03.67.-a

In compound quantum systems, global operators can not be implemented generally by using only local operations and classical communication (LOCC). This reflects the fundamental feature of nonlocality in quantum mechanics. The understanding of the limitation of quantum operators that can be implemented by LOCC is one of the most important problems in quantum information theory. The local distinguishability of quantum states plays important roles in exploring quantum nonlocality [1, 2]. In the bipartite case, Alice and Bob share a quantum system which is chosen from one of a known set of mutually orthogonal quantum states. Their goal is to identify the given state by using only LOCC. The nonlocality of quantum information is therefore revealed when a set of orthogonal states can not be distinguished by LOCC. The local distinguishability has also practical applications in quantum cryptography primitives such as secret sharing and data hiding $[3,4]$.

The local distinguishability problem of orthogonal quantum states has received considerable attention in recent years. Walgate et.al. showed that any two orthogonal pure states can be distinguishable by LOCC [5]. In [6], it has been showed that in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$, any three mutually orthogonal maximally entangled states can be distinguishable by LOCC. It has been observed in [6-9] that no more than $d$ maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ can be perfectly distinguished. Since then it has been an interesting open problem if there exit any $N \leq d$ orthogonal maximally entangled states which are indistinguishable under LOCC [8]. Bandyopadhyay conjectured the existence of $d$ or $d-1$ indistinguishable LOCC maximally entangled states by presenting some sets of quantum states which are one-way LOCC indistinguishable [10].

Since it is difficult to formulate the LOCC in general, one uses the partial-positive transpose (PPT) measurements instead [11-15]. If a set of quantum states can not be distinguished by PPT measurements, then neither can it be distinguished by LOCC. In [11], Yu presented four maximally entangled states which are PPT indistinguishable. More recently, Ref.[14] gave a construction of $d=2^{n}$ PPT-indistinguishable states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. In [15] the authors gave $N<d$ PPT-indistinguishable states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ for $d=2^{n}, n>3$.

In this paper, we give an explicit construction of $d$ locally indistinguishable maximally entangled states in
$\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ for any $d \geq 4$. This gives an answer to the conjecture proposed by S. Bandyopadhyay in [10]. We first use the method in [14] to transfer the PPT-distinguishable problem to a semidefinite program problem. The major difficulty in solving the semidefinite program problem is to find a feasible solution of its dual program. We show that if the partial transposed operators of given states have a common eigenvector corresponding to negative eigenvalue, then a feasible solution can be obtained. Moreover, we give a sufficient and necessary condition on feasible solutions of the semidefinite program. At last, we investigate the case of $d \geq 4$ by constructing a set of $n^{2}$ states such that any $2 n$ states chosen from this set is PPT-indistinguishable.

Let $A$ and $B$ be the $d$-dimensional complex vector spaces associated with the Alice and Bob's systems. Let Herm $(A \otimes B)$ and $\operatorname{Pos}(A \otimes B)$ denote the sets of all Hermitian operators and positive semidefinite operators on $A \otimes B$ respectively. We say that $M_{1} \geq M_{2}$ if $M_{1}-M_{2}$ is positive semidefinite for any Hermitian operators $M_{1}$ and $M_{2}$. Denote $L(A, B)$ the set of all linear maps from $A$ to $B(L(A, A)=L(A)$ for short $)$. Let $T_{A}$ be the partial transpose map $T \otimes I_{B}$ from $A \otimes B$ to $A \otimes B$, where $T$ is the transpose map from $A$ to $A, I_{B}$ is the identity operator on $B$. We call a positive semidefinite operator $M \in A \otimes B$ a PPT operator if $T_{A}(M) \geq 0$. By $\operatorname{PPT}(A: B)$ we denote the set of all PPT operators on the tensor product space $A \otimes B$.

Consider $d$ orthogonal maximally entangled states $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Generally, $\left|\psi_{i}\right\rangle=\left(I \otimes U_{i}\right)\left|\psi_{1}\right\rangle$, where $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i i\rangle$, and $U_{i}$ are unitary matrices. Since there is a one to one correspondence between a maximally entangled state $\left|\psi_{i}\right\rangle$ and the unitary matrix $U_{i}$, we call the unitary matrices $\left\{U_{i}\right\}_{i=1}^{d}$ the defining unitary matrices of the maximally entangled states $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$. With respect to the pure state $\left|\psi_{i}\right\rangle$, the corresponding density matrix is given by

$$
\begin{equation*}
\rho_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| . \tag{1}
\end{equation*}
$$

A set of states $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ is called PPT-distinguishable if there exist PPT measurements $\left\{P_{i}\right\}_{i=1}^{d}$ such that $\left\langle P_{i}, \rho_{j}\right\rangle=\delta_{i j}$, namely, $\frac{1}{d} \sum_{j=1}^{d}\left\langle P_{j}, \rho_{j}\right\rangle=1$. Otherwise, the set $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ is said to be PPT-indistinguishable. To find the maximal success probability of distinguishing the
set of states $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ with PPT measurements is equivalent to the following semidefinite program [14],

$$
\begin{equation*}
\operatorname{maximize} \frac{1}{d} \sum_{j=1}^{d}\left\langle P_{j}, \rho_{j}\right\rangle, \tag{2}
\end{equation*}
$$

subject to $P_{1}+\cdots+P_{d}=I_{A} \otimes I_{B}$, and $P_{1}, \ldots, P_{d} \in$ $\operatorname{PPT}(A: B)$. The dual problem [14] to minimize $\operatorname{Tr}(\gamma) / d$, subject to $\gamma-\rho_{j} \geq T_{A}\left(Q_{j}\right)$ for $j=1, \ldots, d$, $\gamma \in \operatorname{Herm}(A \otimes B), Q_{1}, \ldots, Q_{d} \in \operatorname{Pos}(A \otimes B)$, which is still difficult to tackle with. If one further constrains the dual problem by imposing equality instead of inequality constraints in the above program, one gets the following program:

$$
\begin{equation*}
\operatorname{minimize} \frac{1}{d} \operatorname{Tr}(\gamma) \tag{3}
\end{equation*}
$$

subject to $\gamma \geq T_{A}\left(\rho_{j}\right)$ for $j=1, \ldots, d, \gamma \in$ Herm $(A \otimes B)$. As has been pointed out in [14], any feasible solution of program (3) provides an upper bound of program (2). In the following we study the program (3) and give a sufficient and necessary condition for program (3) to have a feasible solution.

Theorem 1. For any $d \geq 4$, there exist $d$ PPTindistinguishable, hence LOCC indistinguishable, mutually orthogonal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$.

These $d$ PPT-indistinguishable mutually orthogonal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ have to be constructed separately for $d=4 n(n \geq 1), d=4 n+1$, $d=4 n+3(n \geq 2)$ and $d=5,7,11$. Before proving theorem 1 , let us first introduce some useful results. For given $\rho_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|,\left|\psi_{i}\right\rangle=\left(I \otimes U_{i}\right)\left|\psi_{1}\right\rangle$, one has $T_{A}\left(\rho_{i}\right)=\left(I \otimes U_{i}\right) T_{A}\left(\rho_{1}\right)\left(I \otimes U_{i}^{\dagger}\right)$. In particular, the eigenvalues of $T_{A}\left(\rho_{1}\right)$ are either $\frac{1}{d}$ or $-\frac{1}{d}$.
Lemma Let $V_{\lambda}(M)$ denote the set of all eigenvectors of an $n \times n$ matrix $M$ corresponding to an eigenvalue $\lambda$. Then

$$
\begin{aligned}
& V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)=\operatorname{span}\{|k l\rangle-|l k\rangle, 1 \leq k<l \leq d\}, \\
& V_{\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)=\operatorname{span}\{|k l\rangle+|l k\rangle, 1 \leq k \leq l \leq d\} .
\end{aligned}
$$

The number of linear independent eigenvectors of $\left.T_{A}\left(\rho_{1}\right)\right)$ corresponding to the eigenvalue $-\frac{1}{d}$ and $\frac{1}{d}$ are $L=\frac{(d-1) d}{2}$ and $M=\frac{(d+1) d}{2}$, respectively.
Theorem 2. For the states $\rho_{i}$ defined in (1), we have $\bigcap_{i=1}^{d} V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{i}\right)\right) \neq\{0\}$ if and only if there is a feasible solution of the semidefinite program (3) satisfying

$$
\gamma \leq \frac{1}{d} I_{A} \otimes I_{B}, \text { with } \gamma \neq \frac{1}{d} I_{A} \otimes I_{B}
$$

Proof: Suppose $0 \neq|v\rangle \in \bigcap_{i=1}^{d} V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{i}\right)\right)$ for $i=$ $1, \ldots, d$, that is, $T_{A}\left(\rho_{i}\right)|v\rangle=-\frac{1}{d}|v\rangle$ for $i=1, \ldots, d$. As $T_{A}\left(\rho_{i}\right)$ is an Hermitian unitary matrix, from singular value decomposition there exist orthogonal normal vec-
tors $\left|v_{i}^{l}\right\rangle$ and $\left|w_{i}^{m}\right\rangle$ such that

$$
\begin{aligned}
& T_{A}\left(\rho_{i}\right)=-\frac{1}{d}|v\rangle\langle v|-\frac{1}{d} \sum_{l=2}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right|+\frac{1}{d} \sum_{m=1}^{M}\left|w_{i}^{m}\right\rangle\left\langle w_{i}^{m}\right|, \\
& I_{A} \otimes I_{B}=|v\rangle\langle v|+\sum_{l=2}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right|+\sum_{m=1}^{M}\left|w_{i}^{m}\right\rangle\left\langle w_{i}^{m}\right| .
\end{aligned}
$$

Hence we have

$$
\frac{1}{d} I_{A} \otimes I_{B}-\frac{2}{d}|v\rangle\langle v|-T_{A}\left(\rho_{i}\right)=\frac{2}{d} \sum_{l=2}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right| \geq 0
$$

Clearly, $\gamma=\frac{1}{d} I_{A} \otimes I_{B}-\frac{2}{d}|v\rangle\langle v| \in \operatorname{Herm}(A \otimes B)$. Therefore $\gamma$ is a feasible solution of semidefinite program (3) which satisfies $\gamma \leq \frac{1}{d} I_{A} \otimes I_{B}$ and $\gamma \neq \frac{1}{d} I_{A} \otimes I_{B}$.

Conversely, if $\gamma$ is a feasible solution satisfying $\gamma \leq$ $\frac{1}{d} I_{A} \otimes I_{B}$, we can suppose $\frac{1}{d} I_{A} \otimes I_{B}-\gamma=\sum_{k=1}^{K} \mu_{k}\left|v^{k}\right\rangle\left\langle v^{\bar{k}}\right|$ with $\mu_{k} \geq 0$ for all $k=1, \ldots, K$ and at least one of the $\mu_{k}$ strictly positive, say, $\mu_{1}>0$. Since $\gamma$ is a feasible solution, we have the following inequalities for all $i=$ $1, \ldots, d$,

$$
\frac{1}{d} I_{A} \otimes I_{B}-\sum_{k=1}^{K} \mu_{k}\left|v^{k}\right\rangle\left\langle v^{k}\right| \geq T_{A}\left(\rho_{i}\right)
$$

which implies

$$
\begin{equation*}
\frac{1}{d} I_{A} \otimes I_{B}-T_{A}\left(\rho_{i}\right) \geq \mu_{1}\left|v^{1}\right\rangle\left\langle v^{1}\right| \tag{4}
\end{equation*}
$$

For each $1 \leq i \leq d, T_{A}\left(\rho_{i}\right)$ has the following singular value decomposition,

$$
\begin{equation*}
T_{A}\left(\rho_{i}\right)=-\frac{1}{d} \sum_{l=1}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right|+\frac{1}{d} \sum_{m=1}^{M}\left|w_{i}^{m}\right\rangle\left\langle w_{i}^{m}\right|, \tag{5}
\end{equation*}
$$

where $\left\{\left|v_{i}^{l}\right\rangle\right\}_{l=1}^{L} \cup\left\{\left|w_{i}^{m}\right\rangle\right\}_{m=1}^{M}$ form an orthogonal normal base of $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Hence we have the following identity,

$$
\begin{equation*}
I_{A} \otimes I_{B}=\sum_{l=1}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right|+\sum_{m=1}^{M}\left|w_{i}^{m}\right\rangle\left\langle w_{i}^{m}\right| . \tag{6}
\end{equation*}
$$

From (4), (5) and (6) we have

$$
\frac{2}{d} \sum_{l=1}^{L}\left|v_{i}^{l}\right\rangle\left\langle v_{i}^{l}\right| \geq \mu_{1}\left|v^{1}\right\rangle\left\langle v^{1}\right| .
$$

Therefore $\left|v^{1}\right\rangle \in \operatorname{span}\left\{\left|v_{i}^{l}\right\rangle\right\}_{l=1}^{L}$. From the singular value decomposition (5), one has that span $\left\{\left|v_{i}^{l}\right\rangle\right\}_{l=1}^{L}$ is just the set of the eigenvectors of $T_{A}\left(\rho_{i}\right)$ corresponding to the eigenvalue $-\frac{1}{d}$. Hence $\left|v^{1}\right\rangle$ must be an eigenvector of $T_{A}\left(\rho_{i}\right)$ corresponding to the eigenvalue $-\frac{1}{d}$. That is, $T_{A}\left(\rho_{i}\right)\left|v^{1}\right\rangle=-\frac{1}{d}\left|v^{1}\right\rangle$. Hence $\left|v^{1}\right\rangle \in$ $\bigcap_{i=1}^{d} V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{i}\right)\right)$.

Theorem 3. $\bigcap_{i=1}^{d} V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{i}\right)\right) \neq\{0\}$ if and only if $\bigcap_{i=1}^{d}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) \neq\{0\}$.

Proof: If $0 \neq|v\rangle \in \bigcap_{i=1}^{d} V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{i}\right)\right) \neq\{0\}$, that is, $T_{A}\left(\rho_{i}\right)|v\rangle=-\frac{1}{d}|v\rangle, i=1,2, \ldots, d$. We have $(I \otimes$ $\left.U_{i}\right) T_{A}\left(\rho_{1}\right)\left(I \otimes U_{i}^{\dagger}\right)|v\rangle=-\frac{1}{d}|v\rangle$, and $T_{A}\left(\rho_{1}\right)\left(I \otimes U_{i}^{\dagger}\right)|v\rangle=$ $-\frac{1}{d}\left(I \otimes U_{i}^{\dagger}\right)|v\rangle$. Hence $|v\rangle \in \bigcap_{i=1}^{d}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$. The converse can be proved straightforwardly.
Corollary If $\bigcap_{i=1}^{d}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) \neq\{0\}$, then the set $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ defined by $\left\{U_{i}\right\}_{i=1}^{d}$ is PPT indistinguishable. Particularly, $\left\{\left|\psi_{i}\right\rangle\right\}_{i=1}^{d}$ is LOCC indistinguishable. Remark If $|v\rangle \in \bigcap_{i=1}^{d}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$, we have $|v\rangle \in V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$ as $U_{1}=I_{B}$. Hence the matrices $I \otimes U_{i}^{\dagger}$ transform the same $|v\rangle \in V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$ to the eigenvectors of $T_{A}\left(\rho_{1}\right)$ with eigenvalue $-\frac{1}{d}$.

We now prove the theorem 1 by investigating the following cases:
Case I: $\boldsymbol{d}=\mathbf{2 n}$. Set $w=e^{\frac{2 \pi \sqrt{-1}}{n}}$. We construct the $2 n$ orthogonal unitary matrices as follows:

$$
\begin{aligned}
& U_{1}= \operatorname{diag}\left(1, w^{0}, \ldots, w^{0(n-1)}, 1, w^{0}, \ldots, w^{0(n-1)}\right), \\
& U_{2}= \operatorname{diag}\left(1, w, \ldots, w^{n-1}, 1, w, \ldots, w^{n-1}\right), \\
& \ldots \\
& U_{n}= \operatorname{diag}\left(1, w^{n-1}, \ldots, w^{(n-1)^{2}}, 1, w^{n-1}, \ldots, w^{(n-1)^{2}}\right), \\
& U_{n+2}= \operatorname{diag}\left(1, w, \ldots, w^{n-1}, w^{n-1}, 1, w, \ldots, w^{n-2}\right) U_{n+1}, \\
& \ldots \\
& U_{2 n}= \operatorname{diag}\left(1, w^{(n-1) \times 1}, \ldots, w^{(n-1)^{2}}, w^{(n-1)^{2}}, 1,\right. \\
&\left.w^{(n-1) \times 1}, \ldots, w^{(n-1)(n-2)}\right) U_{n+1},
\end{aligned}
$$

while

$$
U_{n+1}=\left[\begin{array}{cc}
S & \mathbf{0} \\
\mathbf{0} & S^{T}
\end{array}\right]
$$

where

$$
S^{T}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

In fact, the above unitary matrices can be defined as the first $2 n$ matrices of the following $n^{2}$ orthogonal unitary matrices $\left\{U_{k n+l}\right\}$ which, under the computational base $\{|m\rangle\}_{m=1}^{2 n}$, can be expressed as

$$
\begin{aligned}
& \sum_{m=1}^{n}\left(w^{(m+k-1)(l-1)}|k \oplus m\rangle\langle m|\right. \\
& \left.\quad+w^{(m-k-1)(l-1)}|n+m\rangle\langle n+(k \oplus m)|\right)
\end{aligned}
$$

where $k=0, \ldots, n-1, l=1, \ldots, n$ and $k \oplus m$ stands for
the number $k+m \bmod n$. As

$$
\begin{aligned}
& \left(I \otimes U_{k n+l}\right) \sum_{m=1}^{n}(|m\rangle|n+m\rangle-|n+m\rangle|m\rangle) \\
& \quad=\sum_{m=1}^{n} w^{(m+k-1)(l-1)}(|k \oplus m\rangle|n+m\rangle \\
& \quad \quad-|n+m\rangle|k \oplus m\rangle) .
\end{aligned}
$$

From Lemma we notice that the right hand side of the above equality is also in $V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$. Set

$$
|v\rangle=\sum_{m=1}^{n}(|m\rangle|n+m\rangle-|n+m\rangle|m\rangle) .
$$

Then

$$
\begin{equation*}
|v\rangle \in \bigcap_{i=1}^{n^{2}}\left(I \otimes U_{i}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) . \tag{7}
\end{equation*}
$$

In particular, we obtain

$$
|v\rangle \in \bigcap_{i=1}^{d}\left(I \otimes U_{i}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) .
$$

Therefore we can conclude that the $2 n$ states $\left\{\left|\psi_{i}\right\rangle=\right.$ $\left.\left(I \otimes U_{i}^{\dagger}\right)\left|\psi_{1}\right\rangle\right\}_{i=1}^{2 n}$ are PPT-indistinguishable.
Case II: $\boldsymbol{d}=2 \boldsymbol{2 n}+1$. Now we give a construction of $2 n+1$ PPT-indistinguishable states. We deal with the problem according to (i) $d=4 n+1, n \geq 2$ and (ii) $d=4 n+3, n \geq 3$. The cases for $n=5,7,11$ will be considered separately.
(i). We construct $U_{j}$ to be block unitary matrices of the form $\operatorname{diag}\left(V_{j}, W_{j}\right)$, where $V_{j}$ are $(2 n+2) \times(2 n+2)$ matrices and $W_{j}$ are $(2 n-1) \times(2 n-1)$ matrices. We chose $V_{j}$ to be the $(n+1)^{2}$ matrices defined above in the Case $\boldsymbol{I}$ with $d=2(n+1)$, and $W_{j}$ the $(2 n-1)^{2}$ generalized $(2 n-1) \times(2 n-1)$ Pauli matrices defined by $\left\{X^{a} Z^{b} \mid a, b=0,1, \ldots, n-1\right\}$, where $X=|0\rangle\langle n-1|+$ $\sum_{i=0}^{n-2}|i+1\rangle\langle i|, Z=\sum_{i=0}^{n-1} w^{i}|i\rangle\langle i|, w=e^{\frac{2 \pi \sqrt{-1}}{n}}$, and $\{|i\rangle\}_{i=0}^{n-1}$ is the computational basis. If $n \geq 2$, we have $(n+1)^{2} \geq 4 n+1$ and $(2 n-1)^{2} \geq 4 n+1$. So we can really construct $4 n+1$ orthogonal unitary matrices $\left\{U_{j}\right\}$.
(ii). Similar to the above construction, we assume $U_{j}$ be of the form $\operatorname{diag}\left(V_{j}, W_{j}\right)$, where $V_{j}$ are $(2 n+2) \times$ $(2 n+2)$ matrices and $W_{j}$ are $(2 n+1) \times(2 n+1)$ matrices. Suppose $V_{j}$ are chosen from the $(n+1)^{2}$ matrices defined above in the Case $\boldsymbol{I}$ for $d=2(n+1)$. And $W_{j}$ are chosen from the $(2 n+1)^{2}$ generalized $(2 n+1) \times(2 n+1)$ Pauli matrices. If $n \geq 3$, we have $(n+1)^{2} \geq 4 n+3$ and $(2 n+1)^{2} \geq 4 n+3$. Then we can construct $4 n+3$ orthogonal unitary matrices $\left\{U_{j}\right\}$.

In these two cases, the orthogonality of $\left\{U_{j}\right\}$ can be derived from the orthogonality of $\left\{V_{j}\right\}$ and the generalized Pauli matrices $\left\{V_{j}\right\}$. Denote $|v\rangle=\sum_{k=1}^{n+1}(|k\rangle \mid n+1+$ $k\rangle-|n+1+k\rangle|k\rangle$ ). It is easily verified that

$$
|v\rangle \in \bigcap_{i=1}^{d}\left(I \otimes U_{i}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) .
$$

Hence we can conclude that when $n \geq 2, d=4 n+1$ or $n \geq 3, d=4 n+3$, the $d$ states $\left\{\left|\psi_{i}\right\rangle=\left(I \otimes U_{i}^{\dagger}\right)\left|\psi_{1}\right\rangle\right\}_{i=1}^{2 n+1}$ are PPT-indistinguishable.
Case III: $\boldsymbol{d}=\mathbf{5 , 7 , 1 1}$. We consider now the exceptional cases of odd $d, d=5,7,11$. For $d=5,5 \mathrm{PPT}$ indistinguishable states have been presented in [14]. Foe $d=7$, we chose $U_{i}=\operatorname{diag}\left(V_{i}, W_{i}\right)$, where $V_{1}, V_{2}, V_{3}$, and $V_{4}$ are the matrices defined in Case I and

$$
V_{5}=\left[\begin{array}{llll} 
& 1 & & \\
1 & & \\
& & \\
& & 1
\end{array}\right], \quad V_{6}=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right]
$$

$W_{i+1}=\operatorname{diag}\left(1, \omega^{i}, \omega^{2 i}\right), W_{i+4}=\operatorname{diag}\left(1, \omega^{i}, \omega^{2 i}\right) S$ for $i=0,1,2$, where

$$
S=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Set $|v\rangle=\frac{1}{2}(|13\rangle-|31\rangle+|24\rangle-|42\rangle)$. We have

$$
|v\rangle \in \bigcap_{i=1}^{6}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{7}}\left(\rho_{1}\right)
$$

Let $\gamma=\frac{1}{7} I_{A} \otimes I_{B}-\frac{2}{7}|v\rangle\langle v|$. Then $\gamma \geq T_{A}\left(\rho_{i}\right)$, where $\rho_{i}$ is given by $\left|\psi_{i}\right\rangle=\left(I \otimes U_{i}\right)\left|\psi_{1}\right\rangle, i=1,2, \cdots, 6$. We chose the seventh unitary matrix $U_{7}$ to be

$$
U_{7}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

$U_{7}$ is orthogonal to the above six unitary matrices $\left\{U_{i}\right\}_{i=1}^{6}$. From $U_{7}$ one has $\left|\psi_{7}\right\rangle=\left(I \otimes U_{7}\right)\left|\psi_{1}\right\rangle$. After a lengthy calculation, we obtain $|v\rangle=\sqrt{\frac{3}{8}}|u\rangle+\sqrt{\frac{5}{8}}|w\rangle$, where $|u\rangle$ and $|w\rangle$ are the eigenvectors of $T_{A}\left(\rho_{7}\right)$ with $\rho_{7}=\left|\psi_{7}\right\rangle\left\langle\psi_{7}\right|, T_{A}\left(\rho_{7}\right)|u\rangle=-\frac{1}{7}|u\rangle$ and $T_{A}\left(\rho_{7}\right)|w\rangle=$ $\frac{1}{7}|w\rangle$, satisfying $\langle u \mid u\rangle=\langle w \mid w\rangle=1$.

Unfortunately, we can not find a feasible solution of programm (3) with the form given by Theorem 2. Instead, we find a feasible solution of program (3) with the form

$$
\widetilde{\gamma}=\frac{1}{7}_{A} \otimes I_{B}-\frac{\lambda}{7}|v\rangle\langle v|+\frac{\mu}{7}|w\rangle\langle w| .
$$

Then we must have

$$
\begin{equation*}
\frac{1}{7} I_{A} \otimes I_{B}-\frac{\lambda}{7}|v\rangle\langle v|+\frac{\mu}{7}|w\rangle\langle w|>T_{A}\left(\rho_{7}\right) \tag{8}
\end{equation*}
$$

Suppose that the singular value decomposition of $T_{A}\left(\rho_{7}\right)$ have the form:
$T_{A}\left(\rho_{7}\right)=\frac{1}{7}\left(-|u\rangle\langle u|-\sum_{l=2}^{L}\left|u_{l}\right\rangle\left\langle u_{l}\right|+|w\rangle\langle w|+\sum_{m=2}^{M}\left|w_{m}\right\rangle\left\langle w_{m}\right|\right)$.

We have
$I_{A} \otimes I_{B}=|u\rangle\langle u|+\sum_{l=2}^{L}\left|u_{l}\right\rangle\left\langle u_{l}\right|+|w\rangle\langle w|+\sum_{m=2}^{M}\left|w_{m}\right\rangle\left\langle w_{m}\right|$.
A direct calculation shows that the inequality (8) is equivalent to
$\frac{1-\frac{3}{8} \lambda}{7}|u\rangle\langle u|-\frac{\frac{\sqrt{15}}{8} \lambda}{7}(|u\rangle\langle w|+|w\rangle\langle u|)+\frac{\mu-\frac{5}{8} \lambda}{7}|w\rangle\langle w| \geq 0$,
which is satisfied if the following inequalities hold.

$$
\left\{\begin{array}{l}
1-\frac{3}{8} \lambda>0, \\
\left(1-\frac{3}{8} \lambda\right)\left(\mu-\frac{5}{8} \lambda\right)-\frac{15}{64} \lambda^{2}>0 .
\end{array}\right.
$$

To find a feasible solution $\widetilde{\gamma}$ with $\frac{1}{7} \operatorname{Tr}(\widetilde{\gamma})<1$, must have $\mu<\lambda$. Hence we get $\mu<\lambda<\mu\left(\frac{5}{8}+\frac{3}{8} \mu\right)^{-1}$. By choosing $\mu=1 / 2$ and $\lambda=7 / 13$, the corresponding $\widetilde{\gamma}$ satisfies $\widetilde{\gamma} \geq$ $T_{A}\left(\rho_{7}\right)$, which follows from $\gamma \geq T_{A}\left(\rho_{i}\right)$ for $i=1,2, \cdots, 6$. Therefore $\widetilde{\gamma}$ is a feasible solution of the program (3) with $\operatorname{Tr}(\widetilde{\gamma}) / 7<1$. Hence the seven states defined above are PPT-indistinguishable.

At last, consider $d=11$. Assume $U_{j}=\operatorname{diag}\left(V_{j}, W_{j}\right)$ with $V_{j} 6 \times 6$ unitary matrices and $W_{j} 5 \times 5$ unitary matrices. Suppose that the $6 \times 6$ unitary matrices $V_{j}$ are chosen from the following ones,

$$
\begin{aligned}
V_{i}= & (|1\rangle\langle 1|+|2\rangle\langle 2|)+w^{i}(|3\rangle\langle 3| \\
& +|4\rangle\langle 4|)+w^{2 i}(|5\rangle\langle 5|+|6\rangle\langle 6|), \\
V_{3+i}= & (|3\rangle\langle 2|-|1\rangle\langle 4|)-w^{i}(|4\rangle\langle 6| \\
& +|5\rangle\langle 3|)+w^{2 i}(|2\rangle\langle 5|-|6\rangle\langle 1|), \\
V_{6+i}= & (|1\rangle\langle 3|+|4\rangle\langle 2|)+w^{i}(|5\rangle\langle 1| \\
& -|2\rangle\langle 6|)+w^{2 i}(|3\rangle\langle 5|+|6\rangle\langle 4|), \\
V_{9+i}= & (|5\rangle\langle 2|-|1\rangle\langle 5|)-w^{i}(|2\rangle\langle 4| \\
& +|3\rangle\langle 1|)+w^{2 i}(|4\rangle\langle 6|-|6\rangle\langle 3|),
\end{aligned}
$$

where $i=1,2,3$. If we choose the 12 unitary matrices $W_{j}$ from the generalized $5 \times 5$ Pauli matrices, then the twelve unitary matrices $\left\{U_{j}\right\}$ are orthogonal each others. Moreover, $|v\rangle=(|12\rangle-|21\rangle)+(|34\rangle-|43\rangle)+(|56\rangle-|65\rangle)$ satisfies

$$
|v\rangle \in \bigcap_{j=1}^{12}\left(I \otimes U_{j}\right) V_{-\frac{1}{11}}\left(T_{A}\left(\rho_{1}\right)\right) .
$$

This implies that the eleven states defined by $\left\{\left|\psi_{i}\right\rangle=\right.$ $\left.\left(I \otimes U_{i}^{\dagger}\right)\left|\psi_{1}\right\rangle\right\}_{i=1}^{11}$ are PPT-indistinguishable.

Summarizing the above results for Case I,II,III, we obtain the Theorem 1.
We have proved the existence of $d$ PPTindistinguishable mutually orthogonal maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ for any $d \geq 4$, by presenting the detailed constructions of these states. Such constructions are in fact might be not unique. As an
example, in the following we present a construction for $d=4 n$, which is different from the Case $I$ even $n=2 m$ for some integer $m$.

First, we recall the four PPT indistinguishable states in $\mathbb{C}^{4} \otimes \mathbb{C}^{4}$ given in [11]. The corresponding defining unitary matrices are given by,

$$
\begin{gathered}
V_{1}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right], \quad V_{2}=\left[\begin{array}{lll} 
& & 1 \\
& & 1 \\
& 1 & \\
1 & &
\end{array}\right] \\
V_{3}=\left[\begin{array}{llll} 
& & & \\
& & & \\
& & & \\
& & & \\
-1 & & &
\end{array}\right], \quad V_{4}=\left[\begin{array}{lll}
1 & & \\
& & \\
& & -1
\end{array}\right] .
\end{gathered}
$$

It is direct to verify the following identities:

$$
\begin{array}{r}
\left(I \otimes V_{2}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=|12\rangle-|34\rangle+|43\rangle-|21\rangle, \\
\left(I \otimes V_{3}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=|12\rangle+|34\rangle-|43\rangle-|21\rangle, \\
\left(I \otimes V_{4}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=-|14\rangle-|32\rangle+|41\rangle+|23\rangle .
\end{array}
$$

From Lemma, we see that all the vectors on the right hand side of the above equalities belong to $V_{-\frac{1}{4}}\left(T_{A}\left(\rho_{1}\right)\right)$. Hence we have

$$
(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \in \bigcap_{i=1}^{4}\left(I \otimes V_{i}^{\dagger}\right) V_{-\frac{1}{4}}\left(T_{A}\left(\rho_{1}\right)\right) .
$$

By Corollary, we have that the above four states are PPT-indistinguishable, as has been proven in [14].

Based on the above four states, we give a construction of $4 n$ PPT-indistinguishable states in $\mathbb{C}^{4 n} \otimes \mathbb{C}^{4 n}$. Let $W_{i}=\operatorname{diag}\left(1, w^{i}, w^{2 i}, \ldots, w^{(n-1) i}\right), i=0, \ldots, n-1$, where $w=e^{\frac{2 \pi \sqrt{-1}}{n}}$. We define

$$
\begin{array}{ll}
U_{i+1}=W_{i} \otimes V_{1}, & U_{n+i+1}=W_{i} \otimes V_{2} \\
U_{2 n+i+1}=W_{i} \otimes V_{3}, & U_{3 n+i+1}=W_{i} \otimes V_{4}
\end{array}
$$

for $i=0,1, \ldots, n-1$. Clearly we have

$$
\begin{array}{r}
\left(I \otimes U_{i}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=|13\rangle-|31\rangle+|42\rangle-|24\rangle, \\
\left(I \otimes U_{n+i}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=|12\rangle-|34\rangle+|43\rangle-|21\rangle, \\
\left(I \otimes U_{2 n+i}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=|12\rangle+|34\rangle-|43\rangle-|21\rangle, \\
\left(I \otimes U_{3 n+i}^{\dagger}\right)(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \\
=-|14\rangle-|32\rangle+|41\rangle+|23\rangle,
\end{array}
$$

for $i=1,2, \ldots, n$. Therefore we have

$$
(|13\rangle-|31\rangle+|42\rangle-|24\rangle) \in \bigcap_{i=1}^{d}\left(I \otimes U_{i}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right) .
$$

Moreover, one can check that $|4 k+1,4 k+3\rangle-\mid 4 k+$ $3,4 k+1\rangle+|4 k+4,4 k+2\rangle-|4 k+2,4 k+4\rangle \in \bigcap_{i=1}^{d}(I \otimes$ $\left.U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)$ for any $k=0,1, \ldots, n-1$. We obtain

$$
\operatorname{dim}\left(\bigcap_{i=1}^{d}\left(I \otimes U_{i}^{\dagger}\right) V_{-\frac{1}{d}}\left(T_{A}\left(\rho_{1}\right)\right)\right) \geq n
$$

Then by Corollary, we conclude that the $4 n$ states defined by $\left\{\left|\psi_{i}\right\rangle=\left(I \otimes U_{i}\right)\left|\psi_{1}\right\rangle\right\}_{i=1}^{4 n}$ are PPT-indistinguishable.

We have studied the locally indistinguishable maximally entangled states in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ with $d \geq 4$. From the investigation of the semidifinite program, which is equivalent to the PPT-indistinguishable problem, we have obtained a sufficient and necessary condition for its weak dual semidefinite program having a feasible solution of particular form. We have presented an explicit construction of the $d$ mutually orthogonal maximally entangled states which are PPT-indistinguishable in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ for any $d \geq 4$. Our results also give an answer to the conjecture proposed by S. Bandyopadhyay in [10].

Acknowledgments This work is supported by the NSFC 11475178 and NSFC 11275131.
[1] C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, and W.K. Wootters, Phys. Rev. A, 59:1070-1091, (1999).
[2] J. Walgate, L. Hardy, Phys. Rev. Lett, 89, 147901 (2002).
[3] D.P. DiVincenzo, D.W. Leung and B.M. Terhal, IEEE Trans. Inf. Theory 48, 580 (2002).
[4] D. Markham and B. C. Sanders. Phys. Rev. A 78, 042309 (2008).
[5] J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Phys. Rev. Lett 85, 4972 (2000).
[6] M. Nathanson, J. Math. Phys. 46, 062103 (2005)
[7] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Phys. Rev. Lett 87, 277902, (2001).
[8] S. Ghosh, G. Kar, A. Roy, and D. Sarkar. Phys. Rev. A 70, 022304, (2004).
[9] H. Fan, Phys. Rev. Lett 92, 177905 (2004).
[10] S. Bandyopadhyay, S. Ghosh, and G. Kar, New J. Phys. 13 123013, (2011).
[11] N. Yu, R. Duan, and M. Ying, Phys. Rev. Lett 109, 020506 (2012).
[12] N. Yu, R. Duan, and M. Ying, IEEE Trans. Inf. Theory Vol. 60, No. 4 (2014).
[13] M. Nathanson, Phys. Rev. A, 88, 062316, (2013).
Computation, 14, 1098-1106, (2014).
[14] A. Cosentino, Phys. Rev. A, 87, 012321, (2013).
[15] A. Cosentino and V. Russo, Quantum Information \&

