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We give a explicit construction of d locally indistinguishable orthogonal maximally entangled
states in Cd⊗Cd for any d ≥ 4. This gives an answer to the conjecture proposed by S. Bandyopadhyay
in 2009. Thus it reflects the nonlocality of the fundamental feature of quantum mechanics.
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In compound quantum systems, global operators can
not be implemented generally by using only local opera-
tions and classical communication (LOCC). This reflects
the fundamental feature of nonlocality in quantum me-
chanics. The understanding of the limitation of quantum
operators that can be implemented by LOCC is one of the
most important problems in quantum information the-
ory. The local distinguishability of quantum states plays
important roles in exploring quantum nonlocality [1, 2].
In the bipartite case, Alice and Bob share a quantum
system which is chosen from one of a known set of mutu-
ally orthogonal quantum states. Their goal is to identify
the given state by using only LOCC. The nonlocality of
quantum information is therefore revealed when a set of
orthogonal states can not be distinguished by LOCC. The
local distinguishability has also practical applications in
quantum cryptography primitives such as secret sharing
and data hiding [3, 4].

The local distinguishability problem of orthogonal
quantum states has received considerable attention in re-
cent years. Walgate et.al. showed that any two orthog-
onal pure states can be distinguishable by LOCC [5]. In
[6], it has been showed that in C3 ⊗C3, any three mutu-
ally orthogonal maximally entangled states can be distin-
guishable by LOCC. It has been observed in [6–9] that no
more than dmaximally entangled states in Cd⊗Cd can be
perfectly distinguished. Since then it has been an inter-
esting open problem if there exit any N ≤ d orthogonal
maximally entangled states which are indistinguishable
under LOCC [8]. Bandyopadhyay conjectured the exis-
tence of d or d−1 indistinguishable LOCC maximally en-
tangled states by presenting some sets of quantum states
which are one-way LOCC indistinguishable [10].

Since it is difficult to formulate the LOCC in general,
one uses the partial-positive transpose (PPT) measure-
ments instead [11–15]. If a set of quantum states can
not be distinguished by PPT measurements, then neither
can it be distinguished by LOCC. In [11], Yu presented
four maximally entangled states which are PPT indistin-
guishable. More recently, Ref.[14] gave a construction of
d = 2n PPT-indistinguishable states in Cd ⊗ Cd. In [15]
the authors gave N < d PPT-indistinguishable states in
Cd ⊗ Cd for d = 2n, n > 3.

In this paper, we give an explicit construction of d
locally indistinguishable maximally entangled states in

Cd⊗Cd for any d ≥ 4. This gives an answer to the conjec-
ture proposed by S. Bandyopadhyay in [10]. We first use
the method in [14] to transfer the PPT-distinguishable
problem to a semidefinite program problem. The ma-
jor difficulty in solving the semidefinite program prob-
lem is to find a feasible solution of its dual program. We
show that if the partial transposed operators of given
states have a common eigenvector corresponding to neg-
ative eigenvalue, then a feasible solution can be obtained.
Moreover, we give a sufficient and necessary condition on
feasible solutions of the semidefinite program. At last, we
investigate the case of d ≥ 4 by constructing a set of n2

states such that any 2n states chosen from this set is
PPT-indistinguishable.

Let A and B be the d-dimensional complex vector
spaces associated with the Alice and Bob’s systems. Let
Herm (A⊗B) and Pos (A⊗B) denote the sets of all Her-
mitian operators and positive semidefinite operators on
A ⊗ B respectively. We say that M1 ≥ M2 if M1 −M2

is positive semidefinite for any Hermitian operators M1

and M2. Denote L(A,B) the set of all linear maps from
A to B (L(A,A) = L(A) for short). Let TA be the partial
transpose map T⊗IB from A⊗B to A⊗B, where T is the
transpose map from A to A, IB is the identity operator
on B. We call a positive semidefinite operatorM ∈ A⊗B
a PPT operator if TA(M) ≥ 0. By PPT(A : B) we de-
note the set of all PPT operators on the tensor product
space A⊗B.

Consider d orthogonal maximally entangled states
{|ψi⟩}di=1 in Cd ⊗ Cd. Generally, |ψi⟩ = (I ⊗ Ui)|ψ1⟩,
where |ψ1⟩ = 1√

d

∑d
i=1 |ii⟩, and Ui are unitary matri-

ces. Since there is a one to one correspondence between
a maximally entangled state |ψi⟩ and the unitary ma-
trix Ui, we call the unitary matrices {Ui}di=1 the defin-
ing unitary matrices of the maximally entangled states
{|ψi⟩}di=1. With respect to the pure state |ψi⟩, the cor-
responding density matrix is given by

ρi = |ψi⟩⟨ψi|. (1)

A set of states {|ψi⟩}di=1 is called PPT-distinguishable
if there exist PPT measurements {Pi}di=1 such that

⟨Pi, ρj⟩ = δij , namely, 1
d

∑d
j=1 ⟨Pj , ρj⟩ = 1. Otherwise,

the set {|ψi⟩}di=1 is said to be PPT-indistinguishable. To
find the maximal success probability of distinguishing the
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set of states {|ψi⟩}di=1 with PPT measurements is equiv-
alent to the following semidefinite program [14],

maximize
1

d

d∑
j=1

⟨Pj , ρj⟩ , (2)

subject to P1 + · · · + Pd = IA ⊗ IB , and P1, . . . , Pd ∈
PPT (A : B). The dual problem [14] to minimize
Tr(γ)/d, subject to γ − ρj ≥ TA(Qj) for j = 1, . . . , d,
γ ∈ Herm (A⊗B), Q1, . . . , Qd ∈ Pos (A⊗B), which is
still difficult to tackle with. If one further constrains the
dual problem by imposing equality instead of inequality
constraints in the above program, one gets the following
program:

minimize
1

d
Tr(γ), (3)

subject to γ ≥ TA(ρj) for j = 1, . . . , d, γ ∈
Herm (A⊗B). As has been pointed out in [14], any fea-
sible solution of program (3) provides an upper bound of
program (2). In the following we study the program (3)
and give a sufficient and necessary condition for program
(3) to have a feasible solution.

Theorem 1. For any d ≥ 4, there exist d PPT-
indistinguishable, hence LOCC indistinguishable, mutu-
ally orthogonal maximally entangled states in Cd ⊗ Cd.

These d PPT-indistinguishable mutually orthogonal
maximally entangled states in Cd ⊗ Cd have to be con-
structed separately for d = 4n (n ≥ 1), d = 4n + 1,
d = 4n + 3 (n ≥ 2) and d = 5, 7, 11. Before prov-
ing theorem 1, let us first introduce some useful results.
For given ρi = |ψi⟩⟨ψi|, |ψi⟩ = (I ⊗ Ui)|ψ1⟩, one has

TA(ρi) = (I⊗Ui)TA(ρ1)(I⊗U†
i ). In particular, the eigen-

values of TA(ρ1) are either 1
d or − 1

d .

Lemma Let Vλ(M) denote the set of all eigenvectors of
an n × n matrix M corresponding to an eigenvalue λ.
Then

V− 1
d
(TA(ρ1)) = span{|kl⟩ − |lk⟩, 1 ≤ k < l ≤ d},

V 1
d
(TA(ρ1)) = span{|kl⟩+ |lk⟩, 1 ≤ k ≤ l ≤ d}.

The number of linear independent eigenvectors of
TA(ρ1)) corresponding to the eigenvalue − 1

d and 1
d are

L = (d−1)d
2 and M = (d+1)d

2 , respectively.

Theorem 2. For the states ρi defined in (1), we have∩d
i=1 V− 1

d
(TA(ρi)) ̸= {0} if and only if there is a feasible

solution of the semidefinite program (3) satisfying

γ ≤ 1

d
IA ⊗ IB , with γ ̸= 1

d
IA ⊗ IB .

Proof: Suppose 0 ̸= |v⟩ ∈
∩d

i=1 V− 1
d
(TA(ρi)) for i =

1, ..., d, that is, TA(ρi)|v⟩ = − 1
d |v⟩ for i = 1, ..., d. As

TA(ρi) is an Hermitian unitary matrix, from singular
value decomposition there exist orthogonal normal vec-

tors |vli⟩ and |wm
i ⟩ such that

TA(ρi) = −1

d
|v⟩⟨v| − 1

d

L∑
l=2

|vli⟩⟨vli|+
1

d

M∑
m=1

|wm
i ⟩⟨wm

i |,

IA ⊗ IB = |v⟩⟨v|+
L∑

l=2

|vli⟩⟨vli|+
M∑

m=1

|wm
i ⟩⟨wm

i |.

Hence we have

1

d
IA ⊗ IB − 2

d
|v⟩⟨v| − TA(ρi) =

2

d

L∑
l=2

|vli⟩⟨vli| ≥ 0.

Clearly, γ = 1
dIA⊗ IB − 2

d |v⟩⟨v| ∈ Herm (A⊗B). There-
fore γ is a feasible solution of semidefinite program (3)
which satisfies γ ≤ 1

dIA ⊗ IB and γ ̸= 1
dIA ⊗ IB .

Conversely, if γ is a feasible solution satisfying γ ≤
1
dIA⊗IB , we can suppose 1

dIA⊗IB−γ =
∑K

k=1 µk|vk⟩⟨vk|
with µk ≥ 0 for all k = 1, ...,K and at least one of the
µk strictly positive, say, µ1 > 0. Since γ is a feasible
solution, we have the following inequalities for all i =
1, ..., d,

1

d
IA ⊗ IB −

K∑
k=1

µk|vk⟩⟨vk| ≥ TA(ρi),

which implies

1

d
IA ⊗ IB − TA(ρi) ≥ µ1|v1⟩⟨v1|. (4)

For each 1 ≤ i ≤ d, TA(ρi) has the following singular
value decomposition,

TA(ρi) = −1

d

L∑
l=1

|vli⟩⟨vli|+
1

d

M∑
m=1

|wm
i ⟩⟨wm

i |, (5)

where {|vli⟩}Ll=1 ∪{|wm
i ⟩}Mm=1 form an orthogonal normal

base of Cd ⊗ Cd. Hence we have the following identity,

IA ⊗ IB =
L∑

l=1

|vli⟩⟨vli|+
M∑

m=1

|wm
i ⟩⟨wm

i |. (6)

From (4), (5) and (6) we have

2

d

L∑
l=1

|vli⟩⟨vli| ≥ µ1|v1⟩⟨v1|.

Therefore |v1⟩ ∈ span{|vli⟩}Ll=1. From the singular
value decomposition (5), one has that span{|vli⟩}Ll=1 is
just the set of the eigenvectors of TA(ρi) correspond-
ing to the eigenvalue − 1

d . Hence |v1⟩ must be an
eigenvector of TA(ρi) corresponding to the eigenvalue
− 1

d . That is, TA(ρi)|v1⟩ = − 1
d |v

1⟩. Hence |v1⟩ ∈∩d
i=1 V− 1

d
(TA(ρi)).
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Theorem 3.
∩d

i=1 V− 1
d
(TA(ρi)) ̸= {0} if and only if∩d

i=1(I ⊗ U†
i )V− 1

d
(TA(ρ1)) ̸= {0}.

Proof: If 0 ̸= |v⟩ ∈
∩d

i=1 V− 1
d
(TA(ρi)) ̸= {0}, that

is, TA(ρi)|v⟩ = − 1
d |v⟩, i = 1, 2, ..., d. We have (I ⊗

Ui)TA(ρ1)(I ⊗U†
i )|v⟩ = − 1

d |v⟩, and TA(ρ1)(I ⊗U†
i )|v⟩ =

− 1
d (I ⊗ U†

i )|v⟩. Hence |v⟩ ∈
∩d

i=1(I ⊗ U†
i )V− 1

d
(TA(ρ1)).

The converse can be proved straightforwardly.

Corollary If
∩d

i=1(I ⊗U†
i )V− 1

d
(TA(ρ1)) ̸= {0}, then the

set {|ψi⟩}di=1 defined by {Ui}di=1 is PPT indistinguish-
able. Particularly, {|ψi⟩}di=1 is LOCC indistinguishable.

Remark If |v⟩ ∈
∩d

i=1(I ⊗ U†
i )V− 1

d
(TA(ρ1)), we have

|v⟩ ∈ V− 1
d
(TA(ρ1)) as U1 = IB . Hence the matrices I⊗U†

i

transform the same |v⟩ ∈ V− 1
d
(TA(ρ1)) to the eigenvec-

tors of TA(ρ1) with eigenvalue − 1
d .

We now prove the theorem 1 by investigating the fol-
lowing cases:

Case I: d=2n. Set w = e
2π

√
−1

n . We construct the 2n
orthogonal unitary matrices as follows:

U1 = diag(1, w0, ..., w0(n−1), 1, w0, ..., w0(n−1)),

U2 = diag(1, w, ..., wn−1, 1, w, ..., wn−1),

· · ·
Un = diag(1, wn−1, ..., w(n−1)2 , 1, wn−1, ..., w(n−1)2),

Un+2 = diag(1, w, ..., wn−1, wn−1, 1, w, ..., wn−2)Un+1,

· · ·
U2n = diag(1, w(n−1)×1, ..., w(n−1)2 , w(n−1)2 , 1,

w(n−1)×1, ..., w(n−1)(n−2))Un+1,

while

Un+1 =

[
S 0
0 ST

]
,

where

ST =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .

In fact, the above unitary matrices can be defined as
the first 2n matrices of the following n2 orthogonal uni-
tary matrices {Ukn+l} which, under the computational
base {|m⟩}2nm=1, can be expressed as

n∑
m=1

(w(m+k−1)(l−1)|k ⊕m⟩⟨m|

+ w(m−k−1)(l−1)|n+m⟩⟨n+ (k ⊕m)|),

where k = 0, ..., n − 1, l = 1, ..., n and k ⊕m stands for

the number k +m mod n . As

(I ⊗ Ukn+l)
n∑

m=1

(|m⟩|n+m⟩ − |n+m⟩|m⟩)

=
n∑

m=1

w(m+k−1)(l−1)(|k ⊕m⟩|n+m⟩

− |n+m⟩|k ⊕m⟩).

From Lemma we notice that the right hand side of the
above equality is also in V− 1

d
(TA(ρ1)). Set

|v⟩ =
n∑

m=1

(|m⟩|n+m⟩ − |n+m⟩|m⟩).

Then

|v⟩ ∈
n2∩
i=1

(I ⊗ Ui)V− 1
d
(TA(ρ1)). (7)

In particular, we obtain

|v⟩ ∈
d∩

i=1

(I ⊗ Ui)V− 1
d
(TA(ρ1)).

Therefore we can conclude that the 2n states {|ψi⟩ =

(I ⊗ U†
i )|ψ1⟩}2ni=1 are PPT-indistinguishable.

Case II: d=2n+1. Now we give a construction of
2n + 1 PPT-indistinguishable states. We deal with the
problem according to (i) d = 4n + 1, n ≥ 2 and (ii)
d = 4n + 3, n ≥ 3. The cases for n = 5, 7, 11 will be
considered separately.

(i). We construct Uj to be block unitary matrices of
the form diag(Vj ,Wj), where Vj are (2n+ 2)× (2n+ 2)
matrices and Wj are (2n − 1) × (2n − 1) matrices. We
chose Vj to be the (n + 1)2 matrices defined above in
the Case I with d = 2(n + 1), and Wj the (2n − 1)2

generalized (2n − 1) × (2n − 1) Pauli matrices defined
by {XaZb|a, b = 0, 1, ..., n − 1}, where X = |0⟩⟨n − 1| +∑n−2

i=0 |i + 1⟩⟨i|, Z =
∑n−1

i=0 w
i|i⟩⟨i|, w = e

2π
√

−1
n , and

{|i⟩}n−1
i=0 is the computational basis. If n ≥ 2, we have

(n+1)2 ≥ 4n+1 and (2n−1)2 ≥ 4n+1. So we can really
construct 4n+ 1 orthogonal unitary matrices {Uj}.

(ii). Similar to the above construction, we assume Uj

be of the form diag(Vj ,Wj), where Vj are (2n + 2) ×
(2n+2) matrices andWj are (2n+1)×(2n+1) matrices.
Suppose Vj are chosen from the (n+1)2 matrices defined
above in the Case I for d = 2(n + 1). And Wj are
chosen from the (2n+1)2 generalized (2n+1)× (2n+1)
Pauli matrices. If n ≥ 3, we have (n + 1)2 ≥ 4n + 3
and (2n + 1)2 ≥ 4n + 3. Then we can construct 4n + 3
orthogonal unitary matrices {Uj}.

In these two cases, the orthogonality of {Uj} can be
derived from the orthogonality of {Vj} and the general-

ized Pauli matrices {Vj}. Denote |v⟩ =
∑n+1

k=1(|k⟩|n+1+
k⟩ − |n+ 1 + k⟩|k⟩). It is easily verified that

|v⟩ ∈
d∩

i=1

(I ⊗ Ui)V− 1
d
(TA(ρ1)).



4

Hence we can conclude that when n ≥ 2, d = 4n + 1 or

n ≥ 3, d = 4n+3, the d states {|ψi⟩ = (I⊗U†
i )|ψ1⟩}2n+1

i=1
are PPT-indistinguishable.
Case III: d=5,7,11. We consider now the exceptional
cases of odd d, d = 5, 7, 11. For d = 5, 5 PPT indistin-
guishable states have been presented in [14]. Foe d = 7,
we chose Ui = diag(Vi,Wi), where V1, V2, V3, and V4 are
the matrices defined in Case I and

V5 =

 1
1

1
1

 , V6 =

 1
−1

1
−1

 .
Wi+1 = diag(1, ωi, ω2i), Wi+4 = diag(1, ωi, ω2i)S for
i = 0, 1, 2, where

S =

 0 0 1
1 0 0
0 1 0

 .
Set |v⟩ = 1

2 (|13⟩ − |31⟩+ |24⟩ − |42⟩). We have

|v⟩ ∈
6∩

i=1

(I ⊗ U†
i )V− 1

7
(ρ1).

Let γ = 1
7IA ⊗ IB − 2

7 |v⟩⟨v|. Then γ ≥ TA(ρi), where ρi
is given by |ψi⟩ = (I ⊗ Ui)|ψ1⟩, i = 1, 2, · · · , 6. We chose
the seventh unitary matrix U7 to be

U7 =



0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


.

U7 is orthogonal to the above six unitary matrices
{Ui}6i=1. From U7 one has |ψ7⟩ = (I ⊗ U7)|ψ1⟩. After

a lengthy calculation, we obtain |v⟩ =
√

3
8 |u⟩ +

√
5
8 |w⟩,

where |u⟩ and |w⟩ are the eigenvectors of TA(ρ7) with
ρ7 = |ψ7⟩⟨ψ7|, TA(ρ7)|u⟩ = −1

7 |u⟩ and TA(ρ7)|w⟩ =
1
7 |w⟩, satisfying ⟨u|u⟩ = ⟨w|w⟩ = 1.
Unfortunately, we can not find a feasible solution of

programm (3) with the form given by Theorem 2. In-
stead, we find a feasible solution of program (3) with the
form

γ̃ =
1

7A
⊗ IB − λ

7
|v⟩⟨v|+ µ

7
|w⟩⟨w|.

Then we must have

1

7
IA ⊗ IB − λ

7
|v⟩⟨v|+ µ

7
|w⟩⟨w| > TA(ρ7). (8)

Suppose that the singular value decomposition of TA(ρ7)
have the form:

TA(ρ7) =
1

7
(−|u⟩⟨u|−

L∑
l=2

|ul⟩⟨ul|+|w⟩⟨w|+
M∑

m=2

|wm⟩⟨wm|).

We have

IA ⊗ IB = |u⟩⟨u|+
L∑

l=2

|ul⟩⟨ul|+ |w⟩⟨w|+
M∑

m=2

|wm⟩⟨wm|.

A direct calculation shows that the inequality (8) is
equivalent to

1− 3
8λ

7
|u⟩⟨u|−

√
15
8 λ

7
(|u⟩⟨w|+|w⟩⟨u|)+

µ− 5
8λ

7
|w⟩⟨w| ≥ 0,

which is satisfied if the following inequalities hold.{
1− 3

8λ > 0,

(1− 3
8λ)(µ− 5

8λ)−
15
64λ

2 > 0.

To find a feasible solution γ̃ with 1
7Tr(γ̃) < 1, must have

µ < λ. Hence we get µ < λ < µ( 58 + 3
8µ)

−1. By choosing
µ = 1/2 and λ = 7/13, the corresponding γ̃ satisfies γ̃ ≥
TA(ρ7), which follows from γ ≥ TA(ρi) for i = 1, 2, · · · , 6.
Therefore γ̃ is a feasible solution of the program (3) with
Tr(γ̃)/7 < 1. Hence the seven states defined above are
PPT-indistinguishable.

At last, consider d = 11. Assume Uj = diag(Vj ,Wj)
with Vj 6 × 6 unitary matrices and Wj 5 × 5 unitary
matrices. Suppose that the 6× 6 unitary matrices Vj are
chosen from the following ones,

Vi = (|1⟩⟨1|+ |2⟩⟨2|) + wi(|3⟩⟨3|
+|4⟩⟨4|) + w2i(|5⟩⟨5|+ |6⟩⟨6|),

V3+i = (|3⟩⟨2| − |1⟩⟨4|)− wi(|4⟩⟨6|
+|5⟩⟨3|) + w2i(|2⟩⟨5| − |6⟩⟨1|),

V6+i = (|1⟩⟨3|+ |4⟩⟨2|) + wi(|5⟩⟨1|
−|2⟩⟨6|) + w2i(|3⟩⟨5|+ |6⟩⟨4|),

V9+i = (|5⟩⟨2| − |1⟩⟨5|)− wi(|2⟩⟨4|
+|3⟩⟨1|) + w2i(|4⟩⟨6| − |6⟩⟨3|),

where i = 1, 2, 3. If we choose the 12 unitary matrices
Wj from the generalized 5 × 5 Pauli matrices, then the
twelve unitary matrices {Uj} are orthogonal each others.
Moreover, |v⟩ = (|12⟩−|21⟩)+(|34⟩−|43⟩)+(|56⟩−|65⟩)
satisfies

|v⟩ ∈
12∩
j=1

(I ⊗ Uj)V− 1
11
(TA(ρ1)).

This implies that the eleven states defined by {|ψi⟩ =

(I ⊗ U†
i )|ψ1⟩}11i=1 are PPT-indistinguishable.

Summarizing the above results for Case I,II,III , we
obtain the Theorem 1.

We have proved the existence of d PPT-
indistinguishable mutually orthogonal maximally
entangled states in Cd ⊗ Cd for any d ≥ 4, by pre-
senting the detailed constructions of these states. Such
constructions are in fact might be not unique. As an
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example, in the following we present a construction for
d = 4n, which is different from the Case I even n = 2m
for some integer m.
First, we recall the four PPT indistinguishable states

in C4 ⊗ C4 given in [11]. The corresponding defining
unitary matrices are given by,

V1 =

 1
1

1
1

 , V2 =

 1
1

1
1

 ,

V3 =

 1
1

−1
−1

 , V4 =

 1
1

−1
−1

 .
It is direct to verify the following identities:

(I ⊗ V †
2 )(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= |12⟩ − |34⟩+ |43⟩ − |21⟩,

(I ⊗ V †
3 )(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= |12⟩+ |34⟩ − |43⟩ − |21⟩,

(I ⊗ V †
4 )(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= −|14⟩ − |32⟩+ |41⟩+ |23⟩.

From Lemma, we see that all the vectors on the right
hand side of the above equalities belong to V− 1

4
(TA(ρ1)).

Hence we have

(|13⟩ − |31⟩+ |42⟩ − |24⟩) ∈
4∩

i=1

(I ⊗ V †
i )V− 1

4
(TA(ρ1)).

By Corollary, we have that the above four states are
PPT-indistinguishable, as has been proven in [14].
Based on the above four states, we give a construc-

tion of 4n PPT-indistinguishable states in C4n⊗C4n. Let
Wi = diag(1, wi, w2i, ..., w(n−1)i), i = 0, ..., n − 1, where

w = e
2π

√
−1

n . We define

Ui+1 =Wi ⊗ V1, Un+i+1 =Wi ⊗ V2,

U2n+i+1 =Wi ⊗ V3, U3n+i+1 =Wi ⊗ V4

for i = 0, 1, ..., n− 1. Clearly we have

(I ⊗ U†
i )(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= |13⟩ − |31⟩+ |42⟩ − |24⟩,

(I ⊗ U†
n+i)(|13⟩ − |31⟩+ |42⟩ − |24⟩)

= |12⟩ − |34⟩+ |43⟩ − |21⟩,
(I ⊗ U†

2n+i)(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= |12⟩+ |34⟩ − |43⟩ − |21⟩,

(I ⊗ U†
3n+i)(|13⟩ − |31⟩+ |42⟩ − |24⟩)
= −|14⟩ − |32⟩+ |41⟩+ |23⟩,

for i = 1, 2, ..., n. Therefore we have

(|13⟩ − |31⟩+ |42⟩ − |24⟩) ∈
d∩

i=1

(I ⊗ Ui)V− 1
d
(TA(ρ1)).

Moreover, one can check that |4k + 1, 4k + 3⟩ − |4k +
3, 4k+1⟩+ |4k+4, 4k+2⟩ − |4k+2, 4k+4⟩ ∈

∩d
i=1(I ⊗

U†
i )V− 1

d
(TA(ρ1)) for any k = 0, 1, ..., n− 1. We obtain

dim(
d∩

i=1

(I ⊗ U†
i )V− 1

d
(TA(ρ1))) ≥ n.

Then by Corollary, we conclude that the 4n states defined
by {|ψi⟩ = (I ⊗ Ui)|ψ1⟩}4ni=1 are PPT-indistinguishable.

We have studied the locally indistinguishable maxi-
mally entangled states in Cd ⊗ Cd with d ≥ 4. From the
investigation of the semidifinite program, which is equiv-
alent to the PPT-indistinguishable problem, we have ob-
tained a sufficient and necessary condition for its weak
dual semidefinite program having a feasible solution of
particular form. We have presented an explicit construc-
tion of the d mutually orthogonal maximally entangled
states which are PPT-indistinguishable in Cd⊗Cd for any
d ≥ 4. Our results also give an answer to the conjecture
proposed by S. Bandyopadhyay in [10].
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