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Abstract

We derive uncertainty relation inequalities according to the mutually
unbiased measurements. Based on the calculation of the index of coin-
cidence of probability distribution given by d+1 MUMs on any density
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of lower entropic bounds are given. Furthermore, we formulate uncer-
tainty relations for MUMs in terms of Rényi and Tsallis entropies.
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1 Introduction

Uncertainty relation and complementarity principle are two key concepts in both quan-

tum mechanics and quantum information theory. The best known form of Heisenberg’s

uncertainty relations, given by Robertson [7], states that if one prepares a large number

of copies of a state |ψ⟩, and measures two observables O1 and O2 individually, then the

standard deviation ∆(Oi) of Oi, defined as ∆(Oi) =
√
⟨O2

i ⟩ − ⟨Oi⟩2, i = 1, 2, satisfy the

following inequality

∆O1∆O2 ≥
1

2
|⟨ψ|[O1, O2]|ψ⟩|,

where [O1, O2] is the commutator of O1 and O2. As a consequence of uncertainty relations,

the complementarity principle claims that it is impossible to simultaneously determine

the exact values of the two non-commuting observables.

Uncertainty and complementarity provide the limitations on how much information

one can obtain by measuring a physical system. Uncertainty relations can be characterized

in terms of entropies given by the probability distributions of the measurement outcomes,

depending on types of the measurements adopted. As the average amount of information

contained in each message received, entropy characterizes the uncertainty about the source

of information. The Tsallis entropy plays an essential role in nonextensive statistics [1]

and is tightly related to many physical phenomena such as the distribution characterizing

the motion of cold atoms in dissipative optical lattices [2, 3], the fluctuations of the

magnetic field in the solar wind [4], the velocity distributions in driven dissipative dusty

plasma [5] and spin glass relaxation [6]. As a special case it gives rise to the well-known

Shannon entropy which provides an absolute limit on the best possible average length of

lossless encoding or compression of any communication, assuming that the communication

may be represented as a sequence of independent and identically distributed random

variables. The Rényi entropy generalizes the Shannon entropy. It is important in ecology

and statistics as indices of diversity, and in quantum information theory as a measure

of entanglement. The entropic uncertainty relations give the limitations on how much

information one can obtain under certain kinds of measurements.

The so-called entropic uncertainty relations were originally pointed out by Deutsch

[8] and later improved by Maassen and Uffink [9], who derived an entropic uncertainty

relation for a pair of mutually unbiased bases (MUBs). Two orthonormal bases in d-

2



dimensional complex vector space Cd are said to be mutually unbiased if the absolute

values of the inner products of any vector from one basis and any vector from another

basis are 1/
√
d. A set of orthonormal bases is called a set of mutually unbiased bases

if every pair of bases in the set are mutually unbiased. The maximum number N(d) of

MUBs in a set of mutually unbiased bases is no more than d+ 1, and N(d) = d+ 1 when

d is a prime power [16]. However, it is not known for d not being prime power [17]. MUBs

play an important role in the investigation of uncertainty relations [11, 12, 13, 14, 15].

In Ref.[14], assuming the existence of M MUBs, the authors presented a number of

inequalities which lead to tighter and more general entropic uncertainty relations than

the previous ones. Recently, Kalev and Gour generalize the concept of MUBs to mutually

unbiased measurements (MUMs) [18]. They show that there exists a complete set of d+1

MUMs for arbitrary d, which can be explicitly constructed. MUMs can also be used to

derive entropic uncertainty relations, and a state-independent formulation is obtained in

[18].

Similar to mutually unbiased bases, another important concept in quantum infor-

mation theory is the symmetric informationally complete positive operator-valued mea-

surements (SIC-POVMs). A set of d2 operators in Cd is said to be a SIC-POVM, if it

is a POVM in which all elements are of the form d−1 times a rank-one projector, and

the operator inner products of any two elements are the same. Although in a number of

low-dimensional cases, the existence of SIC-POVMs has been proved analytically, and nu-

merically for all dimensions up to 67, it is still unknown whether or not SIC-POVMs exist

for arbitrary d [19]. In Ref. [20], Gour and Kalev generalize the concept of SIC-POVMs

to general symmetric informationally complete (SIC) measurements. They construct the

set of all general SIC measurements, in which the elements need not be of rank-one. Like

MUBs and MUMs, SIC-POVMs and general SIC measurements are also useful in studying

uncertainty relations [21, 22].

Besides Shannon entropy, other entropies also play key roles in classical and quantum

information theory, especially in the investigation of entropic uncertainty relations. In Ref.

[21], the author formulated uncertainty relations for MUBs and SIC-POVMs in terms of

Rényi and Tsallis entropies. Lower entropic bounds for general SIC measurements in terms

of such entropies are derived in Ref. [22]. In Ref. [23], Pucha la et al. derived lower bounds

for the sum of Rényi entropies in studying entropic uncertainty relations by making use of
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the majorization technique. This majorization-based approach was improved latter, and

stronger entropic uncertainty relations were presented in Ref. [24, 25].

In this paper, we first calculate the so-called index of coincidence of probability dis-

tribution given by a complete set of mutually unbiased measurements on any density

operator ρ. This general result, including two special cases in Ref. [14, 18], can be used

to derive a state-dependent entropic uncertainty relation (see theorem 2). The previous

state-independent entropic uncertainty inequality obtained in Ref. [18] can be deduced

from our result, accounting to the fact that Tr(ρ2) ≤ 1. Furthermore, we provide some

state-dependent and state-independent uncertainty relations based on MUMs, as well as

a single general SIC measurements by using the Harremoës-Topsøe theorem, an approach

used in Ref. [14] in deriving entropic uncertainty relations for M MUBs in Cd. At last,

we discuss uncertainty relations in terms of Rényi and Tsallis entropies for MUMs, as for

general SIC measurements in Ref. [22].

2 Index of coincidence for MUMs and entropic un-

certainty relations

Let us first recall some basic notions of mutually unbiased measurements [18]. Two

POVM measurements on Cd, P(b) = {P (b)
n }dn=1, b = 1, 2, are said to be mutually unbiased

measurements if

Tr(P (b)
n ) = 1,

Tr(P (b)
n P

(b′)
n′ ) =

1

d
, b ̸= b′,

Tr(P (b)
n P

(b)
n′ ) = δn,n′ κ+ (1 − δn,n′)

1 − κ

d− 1
,

(1)

where 1
d
< κ ≤ 1, and κ = 1 if and only if all P

(b)
n ’s are rank one projectors, which

gives rise to two mutually unbiased bases. Unlike the existence of MUBs which depends

on the dimension of the system, there always exist d+1 MUMs which can be explicitly

constructed [18]. Let {Fn,b : n = 1, 2, . . . , d − 1, b = 1, 2, . . . , d + 1} be a set of d2 − 1

Hermitian, traceless operators acting on Cd, satisfying Tr(Fn,bFn′,b′) = δn,n′δb,b′ . Define

d(d+ 1) operators

F (b)
n =

F
(b) − (d+

√
d)Fn,b, n = 1, 2, . . . , d− 1;

(1 +
√
d)F (b), n = d,

(2)
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where F (b) =
∑d−1

n=1 Fn,b, b = 1, 2, . . . , d+ 1. Then the operators

P (b)
n =

1

d
I + tF (b)

n , (3)

with b = 1, 2, · · · , d + 1, n = 1, 2, · · · , d, form d + 1 MUMs, as long as t is chosen such

that P
(b)
n ≥ 0. Moreover, any d+ 1 MUMs can be expressed in such form.

Note that the operators F
(b)
n satisfy the following properties

Tr(F (b)
n F

(b)
n′ ) = (1 +

√
d)2[δnn′(d− 1) − (1 − δnn′)],

d∑
n=1

F (b)
n = 0,

Tr(F (b)
n F

(b′)
n′ ) = 0, ∀b ̸= b′, ∀n, n′ = 1, 2, . . . , d.

(4)

The parameter κ is given by

κ =
1

d
+ t2(1 +

√
d)2(d− 1). (5)

In general, one can not have κ = 1, since in this case one would obtain a set of d + 1

MUBs by the above construction.

To derive entropic uncertainty relations for MUMs, we have to calculate the so-called

index of coincidence of probability distribution given by d + 1 MUMs on any density

operator ρ acting on Cd. For a given probability distribution p = (p1, p2, . . . pd), the index

of coincidence is defined by C(p) =
∑d

i=1 p
2
i [26]. Let {P(b)}d+1

b=1 be a set of d + 1 MUMs

on Cd with the parameter κ, where P(b) = {P (b)
n }dn=1, b = 1, 2, . . . , d+ 1. Let p

(b)
n denotes

the probability of the outcome when measuring ρ with P
(b)
n , i.e. p

(b)
n = Tr(P

(b)
n ρ).

Theorem 1 Denote C(κ, ρ) the index of coincidence for probability distribution {p(b)n }.
We have

C(κ, ρ) =
(dκ− 1)[dTr(ρ2) − 1] + d2 − 1

d(d− 1)
. (6)

Proof. Any quantum state can be written as [18],

ρ =
1

d
I +

d+1∑
b=1

d∑
n=1

r(b)n F (b)
n .

Using formulae (4), one can easily get

Tr(ρ2) =
1

d
+ (1 +

√
d)2

d+1∑
b=1

[d
d∑

n=1

(r(b)n )2 − (
d∑

n=1

r(b)n )2].
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From the construction of MUMs (3), we have

p(b)n = Tr(P (b)
n ρ) =

1

d
+ t(1 +

√
d)2(dr(b)n −

d∑
n′=1

r
(b)
n′ ).

Therefore

C(κ, ρ) =
d+1∑
b=1

d∑
n=1

(p(b)n )2

=
d+ 1

d
+ t2(1 +

√
d)4

d+1∑
b=1

d∑
n=1

(d r(b)n −
d∑

n′=1

r
(b)
n′ )2

+2t(1 +
√
d)2

d+1∑
b=1

d∑
n=1

(r(b)n − 1

d

d∑
n′=1

r
(b)
n′ )

=
d+ 1

d
+ t2(1 +

√
d)4

d+1∑
b=1

d∑
n=1

[
d2 (r(b)n )2 + (

d∑
n′=1

r
(b)
n′ )2 − 2 d r(b)n

d∑
n′=1

r
(b)
n′

]

=
d+ 1

d
+ t2(1 +

√
d)4

d+1∑
b=1

[
d2

d∑
n=1

(r(b)n )2 − d(
d∑

n′=1

r
(b)
n′ )2

]

=
d+ 1

d
+ t2(1 +

√
d)2(dTr(ρ2) − 1).

From (5) we get (6). �

If κ = 1, the set of d+ 1 MUMs {P(b)}d+1
b=1 is reduced to a complete set of MUBs, and

C(1, ρ) = Tr(ρ2) + 1, which gives rise to the result in Ref. [14]. If ρ is a pure state, then

C(κ, ρ) = κ+ 1, which gives rise to the result in Ref. [18].

Now we can derive uncertainty relations by using the theorem. We first consider the

Shannon entropy defined by H(p) = −
∑d

j=1 pj log2 pj, where the probability distribution

p = (p1, p2, . . . pd). Entropic uncertainty relations in terms of the Rényi and Tsallis

entropies will be discussed in the next section.

Theorem 2 For a set of d + 1 MUMs {P(b)}d+1
b=1 on Cd with the parameter κ, we have

the following state-dependent entropic uncertainty relation:

1

d+ 1

d+1∑
b=1

H(P(b)|ρ) ≥ log2

d+ 1

C(κ, ρ)
,

where H(P(b)|ρ) denotes the Shannon entropy of the probability distribution generated by

P(b) with respect to ρ, and C(κ, ρ) is given by (6).
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Proof. As P(b) = {P (b)
n }dn=1, b = 1, 2, . . . , d + 1, and p

(b)
n = Tr(P

(b)
n ρ). From the

concavity of the log function [18], we have the following inequality,

1

d+ 1

d+1∑
b=1

H(P(b)|ρ) ≥ − 1

d+ 1

d+1∑
b=1

log2

d∑
n=1

(p(b)n )2

≥ − log2

[
1

d+ 1

d+1∑
b=1

d∑
n=1

(p(b)n )2

]

= log2

d+ 1

C(κ, ρ)
,

where C(κ, ρ) is given by theorem 1. �

Accounting to the fact that Tr(ρ2) ≤ 1, we can derive the state-independent entropic

uncertainty relation,

1

d+ 1

d+1∑
b=1

H(P(b)|ρ) ≥ log2

d+ 1

κ+ 1
, (7)

which was derived in Ref. [18]. If κ = 1, our theorem coincides with the result in Ref.

[14].

In Ref. [14], assuming that there exist M MUBs in Cd, the authors derived some

entropic uncertainty relations by using Harremoës-Topsøe theorem [26]. This method

is also valid for MUMs. For a given probability distribution p = (p1, p2, . . . pd), the

Harremoës-Topsøe theorem tells us that the Shannon entropy H(p) and the index of

coincidence C(p) =
∑d

i=1 p
2
i satisfy the following inequality for any integer 1 ≤ x ≤ d−1:

H(p) ≥ [(x+ 1) log2(x+ 1) − x log2 x] − C(p)x(x+ 1)[log2(x+ 1) − log2 x].

Following the above notation, we have

d+1∑
b=1

H(P(b)|ρ) ≥ (d+ 1)[(x+ 1) log2(x+ 1) − x log2 x]

−C(κ, ρ)x(x+ 1)[log2(x+ 1) − log2 x].

Let C be an upper bound for C(κ, ρ). Then

d+1∑
b=1

H(P(b)|ρ) ≥ (d+ 1)[(x+ 1) log2(x+ 1) − x log2 x] − Cx(x+ 1)[log2(x+ 1) − log2 x]

= (d+ 1 − Cx)(x+ 1) log2(x+ 1) − [d+ 1 − C(x+ 1)]x log2 x

:= f(x).
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It has been proved that [14] f(x) gets its maximal value at x = ⌊d+1
C

⌋. Therefore, we have

the following entropic uncertainty inequality:

Theorem 3

d+1∑
b=1

H(P(b)|ρ) ≥ aC (h+ 1) log2(h+ 1) + (1 − a)C h log2 h,

where C is an upper bound for C(κ, ρ), h = ⌊d+1
C

⌋ and a = d+1
C

− h.

We can choose C = 1 + κ since Tr(ρ2) ≤ 1. Then we obtain the following state-

independent inequality which is stronger (as noted in [14]) than (7).

Corollary 1

1

d+ 1

d+1∑
b=1

H(P(b)|ρ) ≥ log2 h+

[
1 − (

κ+ 1

d+ 1
)h

]
(h+ 1) log2(1 +

1

h
),

where h = ⌊ d+1
κ+1

⌋.

We now briefly discuss uncertainty relations for a single general SIC measurements

by using the Harremoës-Topsøe theorem. A set of d2 positive-semidefinite operators P =

{Pj}d
2

j=1 on Cd is said to be a general SIC measurements, if (1)
∑d2

j=1 Pj = I, (2)Tr(P 2
j ) =

a,Tr(PjPk) = 1−da
d(d2−1)

, ∀j, k ∈ {1, 2, . . . , d2}, j ̸= k, where I is the identity operator. The

parameter a satisfies 1
d3
< a ≤ 1

d2
, and a = 1/d2 if and only if all Pj are rank one, which

gives rise to a SIC-POVM. It can be shown that Tr(Pj) = 1
d

for all j [20].

Let ρ be an density operator in Cd and pj = Tr(Pjρ). The index of coincidence for

general SIC measurements has been calculated as [22]

C(a, ρ) =
d2∑
j=1

p2j =
(ad3 − 1)Tr(ρ2) + d(1 − ad)

d(d2 − 1)
.

Let C be an upper bound of C(a, ρ), and x be any integer such that 1 ≤ x ≤ d2 − 1. By

using the Harremoës-Topsøe theorem, we get

H(P|ρ) ≥ [(x+ 1) log2(x+ 1) − x log2 x] − Cx(x+ 1)[log2(x+ 1) − log2 x].

The right-hand side of the above inequality reaches its maximal value at x = ⌊ 1
C
⌋ [14].

Thus we have the following state-dependent uncertainty relation for a single general SIC
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measurements:

d+1∑
b=1

H(P(b)|ρ) ≥ aC (h+ 1) log2(h+ 1) + (1 − a)C h log2 h,

where h = ⌊ 1
C
⌋ and a = 1

C
− h. To obtain the state-independent form, we only need to

set C = ad2+1
d(d+1)

in the above inequality since Tr(ρ2) ≤ 1.

3 Uncertainty relations for MUMs in terms of Rényi

and Tsallis entropies

In this section, we discuss some lower entropic bounds for mutually unbiased measure-

ments in terms of Rényi and Tsallis entropies.

For a given probability distribution p = (p1, p2, . . . pd), the Rényi entropy is defined

by [27]

Rα(p) =
1

1 − α
ln(

d∑
j=1

pαj ),

where the parameter α > 0 and α ̸= 1. When α → 1, one gets the standard Shannon

entropy H(p) = −
∑d

j=1 pj ln pj (here we choose the natural logarithm ln in stead of log2).

There are two more special cases which are respectively useful in studying uncertainty

relations and cryptography: α = 2 gives rise to the so-called collision entropy [28]

R2(p) = − ln(
d∑

j=1

p2j),

and when α → ∞, one has the min-entropy [29]

R∞(p) = − ln(max pj).

For α ∈ [2,∞), it has been shown that [21]

Rα(p) ≥ α

2(1 − α)
lnC(p),

where C(p) is the index of coincidence of p. Let {P(b)}d+1
b=1 be a set of d+ 1 MUMs on Cd

with the parameter κ. Accounting to the convexity of the function f(x) = (1 − α)−1 ln x

for α ≥ 2 [21], we obtain the following state-dependent uncertainty relation for MUMs in

terms of Rényi entropy:
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Theorem 4
1

d+ 1

d+1∑
b=1

Rα(P(b)|ρ) ≥ α

2(1 − α)
ln
C(κ, ρ)

d+ 1
,

where C(κ, ρ) is given by (6), α ≥ 2.

Taking into account that Tr(ρ2) ≤ 1, we have the state-independent inequality:

Corollary 2

1

d+ 1

d+1∑
b=1

Rα(P(b)|ρ) ≥ α

2(1 − α)
ln
κ+ 1

d+ 1
,

where α ≥ 2.

Note that the function f(x) = − ln x is convex. Concerning the min-entropy R∞(p) =

− ln(max pj), we have

1

d+ 1

d+1∑
b=1

R∞(P(b)|ρ) ≥ − ln

[
1

d+ 1

d+1∑
b=1

( max
1≤n≤d

p(b)n )

]
,

where p
(b)
n = Tr(P

(b)
n ρ) and P(b) = {P (b)

n }dn=1, b = 1, 2, . . . , d+ 1. Define the function

gd(x) = d−1(1 +
√
d− 1

√
xd− 1),

which is concave and increasing. It has been proved that [21],

1

d+ 1

d+1∑
b=1

( max
1≤n≤d

p(b)n ) ≤ 1

d+ 1

d+1∑
b=1

gd
(
C(b)(κ, ρ)

)
,

where C(b)(κ, ρ) =
∑d

n=1(p
(b)
n )2. Using the concavity of gd(x), we have

1

d+ 1

d+1∑
b=1

gd
(
C(b)(κ, ρ)

)
≤ gd

(
C(κ, ρ)

d+ 1

)
,

where C(κ, ρ) is the index of coincidence of the set of MUMs. Thus we obtain a state-

dependent uncertainty relation for MUMs in terms of min-entropy:

Theorem 5
1

d+ 1

d+1∑
b=1

R∞(P(b)|ρ) ≥ − ln gd

(
C(κ, ρ)

d+ 1

)
,

where C(κ, ρ) is given by (6).

10



Note that the function − ln gd(x) is decreasing and Tr(ρ2) ≤ 1, we have the following

state-independent uncertainty relation:

Corollary 3

1

d+ 1

d+1∑
b=1

R∞(P(b)|ρ) ≥ − ln gd

(
κ+ 1

d+ 1

)
.

For α > 0 and α ̸= 1, the Tsallis entropy of probability distribution p = (p1, p2, . . . pd)

is defined as [30]

Hα(p) =
1

1 − α
(

d∑
j=1

pαj − 1).

Define the α-logarithm for x > 0 as

lnα(x) =
x1−α − 1

1 − α
,

the Tsallis entropy can be rewritten as

Hα(p) = −
d∑

j=1

pαj lnα(pj) =
d∑

j=1

pj lnα(
1

pj
).

When α→ 1, the α-logarithm is reduced to lnx, and H1(p) is just the Shannon entropy.

For α ∈ (0, 2], it has been proved that [21]

Hα(p) ≥ lnα(
1

C(p)
),

where C(p) is the index of coincidence of p. Using the convexity of the function f(x) =

lnα( 1
x
) [21], we have the following state-dependent uncertainty relation for MUMs in terms

of Tsallis entropy:

Theorem 6
1

d+ 1

d+1∑
b=1

Hα(P(b)|ρ) ≥ lnα(
d+ 1

C(κ, ρ)
),

where C(κ, ρ) is given by (6), 0 < α ≤ 2.

Note that the function f(x) = lnα( 1
x
) is decreasing for 0 < α ≤ 2 and Tr(ρ2) ≤ 1, we

have the following state-dependent uncertainty relation:

Corollary 4

1

d+ 1

d+1∑
b=1

Hα(P(b)|ρ) ≥ lnα(
d+ 1

κ+ 1
),

where 0 < α ≤ 2.
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4 Conclusion

We have formulated uncertainty relations related to the mutually unbiased measurements.

We have presented a number of inequalities and derived the lower entropic bounds by cal-

culating the index of coincidence for MUMs. Both state-dependent and state-independent

inequality forms have been given. Furthermore, we have considered the uncertainty re-

lations for MUMs in terms of Rényi and Tsallis entropies. These entropies have been

widely used in quantum information theory, especially in studying uncertainty relations

[21]. The results presented in this work depend on the parameter κ of MUMs. The lower

entropic bounds become tighter when κ increases.
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