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1 Introduction

One of the most fundamental and intriguing tasks in quantum information theory and

quantum information processing is the detection of entanglement. It is widely known that

entangled states are useful resources in many quantum cryptography protocols, and can

be used to enhance efficiency of quantum computing (see reviews [1, 2] and the references

therein). There have been numerous criteria to distinguish quantum entangled states from

the separable ones, such as positive partial transposition criterion [3, 4, 5], realignment

criterion [6, 7, 8, 9, 10], covariance matrix criterion [11], and correlation matrix criterion

[12, 13]. In Ref. [14], Li et al. proposed a generalized form of the correlation matrix

criterion which is more effective than the previous criteria.

While mathematical methods presented above have been extensively studied, experi-

mental implementation of entanglement detection for unknown quantum states has fewer

results [15, 16, 17, 18]. In Ref. [19], the authors linked the separability problem with

the concept of mutually unbiased bases (MUBs) [20]. They presented separability criteria

for two-qudit, multipartite and continuous-variable quantum systems. These separability

criteria are shown to be very powerful, and can be implemented experimentally. After

that, Chen et al. [21] generalized such idea and provided a separability criterion for two-

qudit states by using mutually unbiased measurements (MUMs) [22]. It is shown that

the criterion based on MUMs is more effective than the criterion based on MUBs, and

for isotropic states this criterion becomes both necessary and sufficient. Very recently,

Liu et al. [23] derived separability criteria for arbitrary high-dimensional bipartite and

multipartite systems using sets of MUMs.

Besides mutually unbiased bases, another related topic in quantum information the-

ory is the symmetric informationally complete positive operator-valued measures (SIC-

POVMs). MUBs and SIC-POVMs have many interesting and useful connections, from

both operational link [24] and applications in quantum information theory such as quan-

tum state tomography [20, 25, 26, 27] and uncertainty relations [28]. In [29], the author

introduced the concept of general symmetric informationally complete (SIC) measure-

ments in which the elements need not be of rank one, and showed that such general SIC

measurements exist in all finite dimensions. Recently, Gour and Kalev [30] constructed the

set of all general SIC measurements from the generalized Gell-Mann matrices. Naturally,
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one may expect that these general symmetric informationally complete measurements can

be also used to detect entanglement experimentally.

In this paper we present separability criteria for both d-dimensional bipartite and mul-

tipartite systems by using the general symmetric informationally complete measurements.

The criteria are shown to be powerful in detecting some well known classes of quantum

states. Moreover, this criteria require less local measurements than the criterion based

on mutually unbiased measurements. The paper is organized as follows. In Section 2, we

recall some basic notions of SIC-POVMs and the general symmetric informationally com-

plete measurements. In Section 3, we provide separability criteria based on the general

symmetric informationally complete measurements, and illustrate the power of entangle-

ment detection via some examples. We also compare the criterion for bipartite systems

to the one based on mutually unbiased measurements. We conclude the paper in Section

4.

2 SIC-POVMs and General SIC Measurements

Let us first review some basic definitions of SIC-POVMs and general symmetric informa-

tionally complete measurements. A POVM with d2 rank one operators acting on Cd is

symmetric informationally complete, if every operator is of the form

Pj =
1

d
|ϕj⟩⟨ϕj|, j = 1, 2, . . . , d2,

the vectors |ϕj⟩ satisfying
| ⟨ϕj|ϕk⟩ |2=

1

d+ 1
, j ̸= k.

The existence of SIC-POVMs in arbitrary dimension d is an open problem. Only in a num-

ber of low-dimensional cases, the existence of SIC-POVMs has been proved analytically,

and numerically for all dimensions up to 67 (see [31] and the references therein).

Recently, the concept and different constructions of general SIC measurements were

introduced in Ref. [29, 30]. A set of d2 positive-semidefinite operators {Pα}d
2

α=1 on Cd is

said to be a general SIC measurements, if

(1)
∑d2

α=1 Pα = I,

(2) Tr(P 2
α) = a, Tr(PαPβ) =

1−da
d(d2−1)

, ∀α, β ∈ {1, 2, . . . , d2}, α ̸= β,

where I is the identity operator, the parameter a satisfies 1
d3

< a ≤ 1
d2
, a = 1/d2 if
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and only if all Pα are rank one, which gives rise to a SIC-POVM. It can be shown that

Tr(Pα) =
1
d
for all α [30].

Like the mutually unbiased measurements, these general symmetric informationally

complete measurements can be also explicitly constructed for arbitrary dimensional spaces

[30]. Let {Fα}d
2−1

α=1 be a set of d2−1 Hermitian, traceless operators acting on Cd, satisfying

Tr(FαFβ) = δα,β. Define F =
∑d2−1

α=1 Fα, then the d2 operators

Pα =
1

d2
I + t[F − d(d+ 1)Fα], α = 1, 2, . . . , d2 − 1,

Pd2 =
1

d2
I + t(d+ 1)F,

(1)

form a general SIC measurements. Here t should be chosen such that Pα ≥ 0, and the

parameter a is given by

a =
1

d3
+ t2(d− 1)(d+ 1)3. (2)

These general symmetric informationally complete measurements have many useful

applications in quantum information theory. In Ref. [32], based on the calculation of

the so-called index of coincidence, the author derived a number of uncertainty relation

inequalities via general SIC measurements. In the following, we study entanglement

detection using general symmetric informationally complete measurements.

3 General SIC-POVM Based Separability Criterion

The entanglement detection via SIC-POVMs has been briefly discussed in Ref. [28].

But the method is subject to the existence of SIC-POVMs, which is an open question.

Fortunately, unlike the SIC-POVMs, general symmetric informationally complete mea-

surements do exist for arbitrary dimension d, and the separability criterion for two-qudit

states can be explicitly presented.

Theorem 1. Let ρ be a density matrix in Cd
⊗

Cd. Let {Pj}d
2

j=1 and {Qj}d
2

j=1 be any two

sets of general symmetric informationally complete measurements on Cd with the same

parameter a. Define Ja(ρ) =
∑d2

j=1 Tr(Pj

⊗
Qjρ). If ρ is separable, then Ja(ρ) ≤ ad2+1

d(d+1)
.

Proof. It is obvious that Ja(ρ) is a linear function of ρ. Hence we need only to consider
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pure separable states, ρ = |ϕ⟩⟨ϕ| ⊗ |ψ⟩⟨ψ|. We have

Ja(ρ) =
d2∑
j=1

Tr(Pj

⊗
Qjρ)

=
d2∑
j=1

Tr(Pj|ϕ⟩⟨ϕ|)Tr(Qj|ψ⟩⟨ψ|)

≤ 1

2

d2∑
j=1

{[Tr(Pj|ϕ⟩⟨ϕ|)]2 + [Tr(Qj|ψ⟩⟨ψ|)]2}.

Note that
d2∑
j=1

[Tr(Pjρ)]
2 =

(ad3 − 1)Tr(ρ2) + d(1− ad)

d(d2 − 1)

for any density matrix ρ in Cd [32], and Tr(ρ2) = 1 as ρ is a pure state. Thus we have

Ja(ρ) ≤ ad2+1
d(d+1)

. �

Let {Pj}d
2

j=1 be a set of general symmetric informationally complete measurements on

Cd with the parameter a. Let Pj denote the conjugation of Pj. Then {Pj}d
2

j=1 is another set

of general SIC-POVM with the same parameter a. To show effectiveness of our criterion,

let us consider some examples in the following.

Example 1. We first consider the maximally entangled pure state |Φ+⟩ = 1√
d

∑d−1
i=0 |ii⟩.

We have

Ja(|Φ+⟩) =
d2∑
j=1

Tr(Pj

⊗
Pj|Φ+⟩⟨Φ+|)

= da >
ad2 + 1

d(d+ 1)
,

since a > 1
d3

from (2). Thus the criterion can detect all the maximally entangled pure

states.

In Ref. [28], the maximally entangled pure states can be also detected by the criterion

based on the SIC-POVMs, but the criterion depends on the existence of SIC-POVMs.

Here we can detect all the maximally entangled pure states for arbitrary dimensions.

Example 2. Let us consider the isotropic states, which are locally unitarily equivalent

to a maximally entangled state mixed with white noise:

ρiso = α|Φ+⟩⟨Φ+|+ 1− α

d2
I,
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where 0 ≤ α ≤ 1. One can easily get that

Ja(ρiso) =
d2∑
j=1

Tr(Pj

⊗
Pjρiso)

= daα+
1− α

d2
.

If α > 1
d+1

, then Ja(ρiso) >
ad2+1
d(d+1)

and ρiso must be entangled by our theorem. Thus the

criterion can detect all the entanglement of the isotropic states, since it has been proven

that ρiso is entangled for α > 1
d+1

, and separable for α ≤ 1
d+1

[33]. That is to say that our

criterion is both necessary and sufficient for the separability of isotropic states, similar to

the criterion based on mutually unbiased measurements [21].

Example 3. We consider now the Bell-diagonal states,

ρBell =
d−1∑
s,t=0

ps,t|Φ+
s,t⟩⟨Φ+

s,t|,

where ps,t ≥ 0,
∑d−1

s,t=0 ps,t = 1, |Φ+
s,t⟩ = (Us,t

⊗
I)|Φ+⟩, and Us,t =

∑d−1
j=0 ζ

sj
d |j⟩⟨j ⊕ t|,

s, t = 0, 1, · · · , d − 1, are Weyl operators, ζd = e
2π

√
−1

d and j ⊕ t denotes (j + t) mod d.

Denoting A ≥ B if A−B is positive for operators A and B, we have

ρBell ≥ c|Φc⟩⟨Φc|,

where c = max{ps,t : s, t = 0, 1, · · · , d − 1}, 1
d2

≤ c ≤ 1, and |Φc⟩ is the corresponding

maximally entangled pure state. Thus we obtain

Ja(ρBell) =
d2∑
j=1

Tr(Pj

⊗
PjρBell)

≥
d2∑
j=1

Tr[(Pj

⊗
Pj(c|Φc⟩⟨Φc|)]

= cda.

If c > (1+ 1
ad2

)/(d+1), then Ja(ρBell) >
ad2+1
d(d+1)

and ρBell must be entangled by the theorem.

It can be easily seen that the criterion detects more entanglement as a increases.

When a = 1
d2
, i.e. the general SIC measurements is given by the rank one SIC-

POVM, we get c > 2
d+1

. This condition is the same as the one obtained by the mutually

unbiased measurements, in which the parameter κ = 1 [21], i.e. the mutually unbiased
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measurements is given by the mutually unbiased bases. But for general cases, we do not

know which criterion is more effective in detecting the Bell-diagonal states, since we do

not know the relation between the parameter a and κ for fixed d.

Example 4. In [34], the authors discussed the entanglement of a bipartite state in

Cd
⊗

Cd:

ρ = a1|Φ+⟩⟨Φ+|+
d∑

k=1,i=2

ai
d
|k⟩⟨k| ⊗ |k + i− 1⟩⟨k + i− 1|,

where ai > 0, i = 1, 2, . . . , d,
∑d

i=1 ai = 1. If ai ≥ a1(i ̸= 1), then the state is separable

[34]. We now consider a special case where ai = a2, for i ̸= 1. It is obvious that ρ must be

entangled, when a1 >
1
d
. We employ two sets of general SIC measurements {Pj}d

2

j=1 and

{Pj}d
2

j=1 as above, and denote the diagonal elements of Pj as {P (1)
j , P

(2)
j , . . . , P

(d)
j }. Note

that
∑d

k=1[P
(k)
j ]2 ≤ [Tr(Pj)]

2, since P
(k)
j ’s are non-negative numbers. Then we have

Ja(ρ) =
d2∑
j=1

Tr(Pj

⊗
Pjρ)

= a1da+
a2
d

d2∑
j=1

d∑
k=1,i=2

P
(k)
j P

(k+i−1)
j

= a1da+
a2
d

d2∑
j=1

d∑
k=1

P
(k)
j [Tr(Pj)− P

(k)
j ]

= a1da+
a2
d

d2∑
j=1

{[Tr(Pj)]
2 −

d∑
k=1

[P
(k)
j ]2}

≥ a1da.

Similar to the discussion of Bell-diagonal states, we can conclude that the state ρ =

a1|Φ+⟩⟨Φ+|+ a2
d

∑d
k=1,i=2 |k⟩⟨k|⊗|k+i−1⟩⟨k+i−1| is entangled when a1 > (1+ 1

ad2
)/(d+1).

Note that when d is large enough, the separability threshold (1 + 1
ad2

)/(d + 1) derived

from our criterion approaches to 1
d
, independent of the exact value of a.

The criterion for two-qudit states can also be extended to d-dimensional multipartite

states. We have the following theorem.

Theorem 2. Let ρ be a density matrix in (Cd)⊗N . Let {P (i)
j }d2j=1, i = 1, 2, . . . , N,

be N sets of general symmetric informationally complete measurements on Cd with the
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parameters ai, respectively. If ρ is fully separable, then

J(ρ) ≤ 1

N

N∑
i=1

aid
2 + 1

d(d+ 1)
,

where J(ρ) =
∑d2

j=1 Tr(
⊗N

i=1 P
(i)
j ρ).

Proof. Similar to Ja(ρ) defined in Theorem 1, J(ρ) is also a linear function of ρ.

Therefore we only need to consider fully separable pure states, ρ =
⊗N

i=1 |ϕi⟩⟨ϕi|. We

have

J(ρ) =
d2∑
j=1

N∏
i=1

Tr(P
(i)
j |ϕi⟩⟨ϕi|).

Note that 0 ≤ Tr(P
(i)
j |ϕi⟩⟨ϕi|) ≤ 1

d
. Using the inequality for N non-negative real numbers

[23]: x1x2 · · ·xN ≤ (
x2
1+x2

2+···+x2
N

N
)
N
2 , we obtain

J(ρ) ≤
d2∑
j=1

{ 1

N

N∑
i=1

[Tr(P
(i)
j |ϕi⟩⟨ϕi|)]2}

N
2

≤
d2∑
j=1

1

N

N∑
i=1

[Tr(P
(i)
j |ϕi⟩⟨ϕi|)]2

=
1

N

N∑
i=1

d2∑
j=1

[Tr(P
(i)
j |ϕi⟩⟨ϕi|)]2

=
1

N

N∑
i=1

aid
2 + 1

d(d+ 1)
.

Therefore, J(ρ) ≤ 1
N

∑N
i=1

aid
2+1

d(d+1)
holds for all d-dimensional fully separable states ρ. �

Obviously, Theorem 1 is a special case of Theorem 2 for N = 2 and a1 = a2.

Let us make a comparison between the criterion for bipartite quantum states presented

in this work and the one based on mutually unbiased measurements in Ref. [21]. Let

{Pj}d
2

j=1 be a set of general SIC measurements on Cd with the parameter a. By expanding

a two-qudit state ρ in terms of the operator basis adopted in {Pj}d
2

j=1, we get

Ja(ρ) =
d2∑
j=1

Tr(Pj

⊗
Pjρ)

=
1

d2
+

2(ad2 − 1/d)

d2 − 1
Tr(T ),
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where T is the correlation matrix of ρ. If ρ is separable, then we obtain Tr(T ) ≤ d−1
2d

, which

is the same as the inequality deduced from the criterion based on the mutually unbiased

measurements in Ref. [21]. It is also a special case of the inequality satisfied by separable

states [14]. However, the separability criterion based on general SIC-Measurement and

mutually unbiased measurement can be experimentally implemented. One does not need

to do tomography of an unknown state first. Moreover, the criterion for bipartite quantum

states based on general SIC measurements is superior to the one based on mutually

unbiased measurements, since the former only needs d2 joint local measurements, while

the later needs d(d+1) joint local measurements, which greatly reduces the experimental

implementation complexity.

4 Conclusion and Discussions

We have studied the separability problem via general symmetric informationally complete

measurements. More experimentally feasible quantum separability criteria for two-qudit

states and for d-dimensional multipartite states have been presented. The criterion for

bipartite quantum states has been shown to be powerful in detecting the quantum entan-

glement for maximally entangled pure states, the isotropic states and the Bell-diagonal

states. Especially, for isotropic states, this criterion is both necessary and sufficient.

Comparing with the criterion based on the mutually unbiased measurements, our cri-

terion based on the general symmetric informationally complete measurements requires

much less measurements. It would be also worthwhile to generalize the present results to

arbitrary high-dimensional multipartite systems.
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