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Abstract. We are interested in traveling-wave solutions to the thin-film equation

with zero microscopic contact angle (in the sense of complete wetting without

precursor) and inhomogeneous mobility h3 + λ3−nhn, where h, λ, and n ∈
(

3

2
, 7

3

)

denote film height, slip length, and mobility exponent, respectively. Existence and

uniqueness have been established by Maria Chiricotto and the first of the authors in

previous work under the assumption of sub-quadratic growth as h→∞.

In the present note we investigate the asymptotics of solutions as h ց 0 (the

contact-line region) and h → ∞. As h ց 0 we observe, to leading order, the same

asymptotics as for traveling waves or source-type self-similar solutions to the thin-film

equation with homogeneous mobility hn and we additionally characterize corrections

to this law. Moreover, as h → ∞ we identify, to leading order, the logarithmic

Tanner profile – i.e., the solution to the corresponding unperturbed problem with

λ = 0 – that determines the apparent macroscopic contact angle. Besides higher-

order terms, corrections turn out to affect the asymptotic law as h → ∞ only by

setting the length scale in the logarithmic Tanner profile. Moreover, we prove that

both the correction and the length scale depend smoothly on n. Hence, in line with

the common philosophy, the precise modeling of liquid-solid interactions (within our

model, the mobility exponent) does not affect the qualitative macroscopic properties

of the film.
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1. Introduction

We study the following free boundary problem to the thin-film equation:

∂th+ ∂z
((

h3 + λ3−nhn
)

∂3zh
)

= 0 for t > 0 and z > Z(t), (1a)

h = ∂zh = 0 for t > 0 and z = Z(t), (1b)

lim
z→Z(t)+

(

h2 + λ3−nhn−1
)

∂3zh =
dZ

dt
(t) for t > 0. (1c)

The function h = h(t, z) describes the height of a liquid viscous thin film on a flat

surface as a function of time t ≥ 0 and position z ∈ R (cf. Figure 1). Equation (1a) is

z

y

h
gas

liquid

solid

Figure 1. Schematic showing a liquid thin film with a triple junction (contact line)

where liquid, gas, and solid coalesce.

a lubrication model in which the dynamics are only driven by capillary forces (surface

tensions at the interfaces) and limited by viscous dissipation in the fluid or at the

liquid-solid interface (cf. [13, 22, 41, 58] for detailed motivations). In essence, one

may approximate the surface energy excess by E(h) := 1
2

∫

R
(∂zh)

2dz, determining the

transport velocity V of the film height h through V = m(h)h−1∂zδE(h), where δE
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denotes the first variation of E and m(h) = h3 + λ3−nhn is a given mobility. Using this

in the continuity equation

∂th+ ∂z(V h) = 0 in {h > 0},
for h yields (1a).

For simplicity we assume translation invariance in one dimension (perpendicular to

the plane spanned by the z- and y-axis, the latter being the coordinate perpendicular

to the surface the film adheres on), which is why the base point z is just a real number.

We assume that the film covers the interval z ∈ (Z(t),∞) and has a free boundary at

z = Z(t), to which we refer to as the “contact line” or “triple junction” (since liquid, gas,

and solid meet here). Then the first condition in (1b) determines the location of Z(t).

The second says that the microscopic contact angle at the triple junction, tan(∂zh|z=Z(t)),
is equal to zero. This corresponds to the so-called “complete wetting” regime in which

the three surface tensions σgs, σls, and σgl are related by (σgs−σls)/σgl ≥ 1: consequently,

the equilibrium force balance at the contact line cannot be fulfilled by attaining a positive

(microscopic) equilibrium contact angle θ (Young’s law, cf. Figure 2) and the film wets

the entire surface. Condition (1c) is a kinematic one and implies that the transport

θ~σgs

~σls

~σgl
σgs = σls + cos θ σgl

Figure 2. The surface tensions σ of the three interfaces balance at the contact line in

the partial wetting regime with contact angle θ > 0 (Young’s law).

velocity V = (h2 + λ3−nhn−1) ∂3zh of the film height h, on approaching the contact line,

has to match the velocity dZ
dt

of the free boundary.

Problem (1) contains two parameters, namely λ and the mobility exponent n,

both depending on the modeling of liquid-solid interactions. For λ = 0 solutions to

(1) exhibit the known no-slip paradox : The solution is singular at the free boundary

z = Z(t) and viscous dissipation is unbounded [18, 25]. Physically λ = 0 corresponds

to the assumption of no slip at the substrate, that is, v = 0 at the liquid-solid interface

{y = 0}, where v denotes the component of the fluid velocity in the z-direction. A way

to restore a continuum description is to introduce the length scale λ > 0, corresponding

to an in general nonlinear slip condition (cf. Figure 3 for illustrations)

v − λ3−nhn−2∂yv = 0 on {y = 0}. (2)
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Hele-Shaw cell
n = 1

v
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y

n ∈ (1, 3)
slip

v

h

z

y
n = 3

no slip

v

Figure 3. Schematics of the flow fields v close to the liquid-solid interface for different

values of the mobility exponent n. For n = 1 we observe perfect slippage (no condition

on the horizontal component v at the liquid solid-interface) which is realized for

instance for the Darcy flow in the Hele-Shaw cell. The larger the value of n, the

more restrictive the condition on v and the weaker the slippage is (cf. [24, 67] for more

detailed discussions).

Model (1) for general n can be derived by means of asymptotic expansions in a

lubrication approximation from the Navier-Stokes equations (NSE) with the general

slip condition (2) at the substrate (see e.g. [13, 22, 58]). We will assume n ∈
(

3
2
, 7
3

)

,

which contains the most natural choice n = 2: Indeed, the relation (2) is linear and

local if and only if n = 2 (in which case the slip length λ3−nhn−2 is independent of h).

The linear version of (2) was first proposed by Navier in his seminal work [57], in which

the NSE have been introduced, and is therefore also called Navier-slip condition. For

Navier slip n = 2, the dissipation functional for the (Navier-)Stokes equations is given

by (viscosity normalized to 1)

1

2

∫ ∫

∑

i,j∈{y,z}

(∂iuj∂iuj + ∂iuj∂jui) dz dy + λ−1

∫

(

v|y=0

)2
dz, (3)

where u = (uz, uy) = (v, w) denotes the fluid velocity. In this sense, Navier slip is a

balance between purely inner friction (corresponding to the first integral in (3) and no

slip at the substrate, i.e., n = 3) and purely outer friction (the second integral in (3)

corresponding to Darcy’s law and n = 1). We refer to [47] for a rigorous justification of

the Navier slip condition and to [37, 54, 55] for rigorous derivations of the lubrication

approximation in a related framework (starting from Darcy dynamics in the Hele-Shaw

cell).

Equation (1a) is mathematically challenging due to two features: The equation

degenerates at z = Z(t) (i.e., it is not uniformly parabolic), a property also shared with

the second-order analog of (1a), the porous medium equation

∂th− ∂2zhm = 0 in {h > 0}, (4)

where m > 1 [68]. In particular, the addend ∼ hn in the mobility h3 + λ3−nhn relaxes

the degeneracy if n < 3. However, unlike the second-order version (4), the fourth-

order thin-film equation (1a) does not fulfill a comparison principle, which makes the

mathematical analysis more subtle. In fact, there is a quite considerable mathematical

literature on the analytic treatment of the thin-film equation, starting with the work
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of Bernis and Friedman [6] establishing global existence of weak solutions and mainly

relying on compactness arguments and conservation/dissipation of mass, surface energy,

and entropy. In the sequel these results have been improved independently by Beretta,

Bertsch, and Dal Passo [5], as well as Bertozzi and Pugh [9] and further extended to

higher space dimensions by Dal Passo, Garcke, and Grün [21] and Grün [42] and nonzero

contact angles in [11, 56, 59]. We refer to more detailed reviews in [2, 8, 38] and some

more recent results in [29, 30, 31, 34, 56] and references therein. Notably (and again

unlike for (4)) these techniques do not allow for the proof of uniqueness or sufficient

control at the free boundary to give an expression like (1c) a meaning. This motivated

another research program starting with the work of Knüpfer and two of the authors

of this paper in [35] establishing existence and uniqueness of classical solutions close

to the equilibrium profile in the simplest possible setting (Darcy) and subsequently

extended to other situations in [32, 39, 40, 48, 52, 53, 54, 55] and references therein.

These analyses rely on maximal regularity estimates of suitable linearizations and the

treatment of nonlinear terms by contraction arguments.

In the present note, we will focus on a detailed characterization of traveling waves

to (1), the analysis being dominated by ordinary differential equations (ODE) and

dynamical systems theory. In fact, there is a considerable existing literature on the

characterization of special solutions. Traveling waves have been first discussed in the

case of homogeneous mobility by Boatto, Kadanoff, and Olla in [12] and source-type

self-similar solutions by Bernis, Peletier, and Williams in [7]. We refer to some more

recent works in [14, 15, 33, 51] and postpone a discussion of the mathematical and

physical literature relevant to our specific setting to Section 2.

Traveling waves

As outlined by Hocking in [46] (cf. [13, 17] for more recent accounts), there is an

intermediate region between the contact-line region, where the shape of the film is

governed by a balance of surface tensions (Young’s law, cf. Figure 2) determining

the equilibrium (microscopic) contact angle, and the interior of the film, where

the equilibrium shape forms a parabola (constant mean curvature in lubrication

approximation). It is in this intermediate region that the apparent (macroscopic) contact

angle is determined. The aim of this note is to precisely investigate this region and its

dependence on the physical assumptions for the liquid-solid interactions.

Therefore, it is convenient to assume a simplified situation, in which we neglect the

interior of the droplet by considering a traveling wave h(t, z) = H(x) with x = z + V t

(where H(x) is a fixed profile) propagating with constant speed −V < 0 to the left. We

can insert this ansatz into equation (1a) and integrate once, in doing so employing the

boundary conditions (1b) and (1c), so that the resulting equation reads

(

H2 + λ3−nHn−1
) d3H

dx3
= −V. (5)
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By rescaling x and H , we can assume without loss of generality V = 1
3
(a convenient

choice in view of the asymptotics as x→∞) and λ = 1. This leads to

(

H2 +Hn−1
) d3H

dx3
= −1

3
for x > 0, (6a)

H =
dH

dx
= 0 at x = 0, (6b)

where, by translation in x, without loss of generality the contact line is assumed to obey

Z(0) = 0, i.e., Z(t) = −1
3
t. Solutions to the un-rescaled problem (5) with boundary

conditions (6b) can then be obtained by rescaling the solutionH = H(x) to (6) according

to

λH
(

(3V )
1
3
x

λ

)

. (7)

Dominant behavior as x→∞

Obviously, problem (6) is lacking a third boundary condition in order to allow for

existence of a unique solution. In [16], Chiricotto and one of the authors prove‡ that
problem (6) admits a unique solution in the class C1([0,∞))∩C3((0,∞)) (i.e., a classical

solution) such that

d2H

dx2
→ 0 as x→∞. (8)

In that case, simple asymptotic considerations suggest that H approximately obeys the

third-order equation

H2d
3H

dx3
= −1

3
(9)

and that

H = x(ln x)
1
3 (1 + o(1)) as x→∞. (10)

Note that (9) was solved implicitly in terms of Airy functions by Duffy and Wilson in

[23], thus making the asymptotic result (10) rigorous on the level of the unperturbed

problem (9). Formally differentiating (10) (or using the explicit result in [23]) and

undoing the normalization of the speed V (cf. (7)), one may derive
(

dH

dx

)3

= 3V (ln x) (1 + o(1)) as x→∞. (11)

Relation (11) may be interpreted by saying that, in complete wetting, the speed of

the contact line (which in our case is identical to the speed of the traveling wave) is

proportional, up to a logarithmic correction, to the cube of the apparent (macroscopic)

contact angle, a fact which is often referred to as Tanner’s law [66] (a more general

relation including partial wetting is also referred to as the Cox-Hocking relation [20, 45]).

For this reason, we shall hereafter refer to (10) or (11) as “Tanner’s law”.

‡ Note that there only the case n = 2 is considered. However, it is apparent that the precise value of

n ∈
(

3

2
, 7

3

)

is immaterial for the analysis.
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We remark that (9) is invariant with respect to translations in x and the scaling

(H, x) 7→ (BH,Bx) for any B > 0. Up to these two transformations, the solution of (9)

meeting (8) is uniquely determined, that is, selecting an arbitrary solution H of (8)&(9),

any solution to (8)&(9) can be written as

B−1H (B(x+ c)) , where B, c > 0 are free parameters.

Dominant behavior as xց 0

As x ց 0 (i.e., H ց 0), the term Hn−1 dominates in the parantheses of (6a) and one

expects the leading order-behavior of (6) to be determined by the unperturbed problem

Hn−1d
3H

dx3
= −1

3
for x > 0, (12a)

H =
dH

dx
= 0 at x = 0. (12b)

Problem (12) was studied in detail in [12]. Since we only have two boundary conditions

(12b) for a third-order ODE (12a), we need an additional condition to uniquely determine

H . As problem (12) is invariant under the rescaling

(H, x) 7→
(

cH, c
n
3 x
)

for any c > 0,

we look for solutions H to (12) that are invariant with respect to this scaling

transformation, that is,

H(x) := HTW(x) = c−
3
nHTW (cx) for any c > 0 and all x > 0. (13)

Setting c := x−1, this amounts to having HTW = HTW(1)x
3
n , where HTW(1) can be

determined by using (12a). Thus we arrive at a solution of the form

HTW(x) = (3A)−
1
nx

3
n for x > 0, where A :=

3

n

(

3

n
− 1

)(

2− 3

n

)

.(14)

The dependence of the constant A on n clearly indicates the (known) interval n ∈
(

3
2
, 3
)

.

The further restriction n < 7
3
is due to a higher resonance for n = 7

3
, so that a

weak singularity of the model occurs, which to our knowledge was not known before

(cf. (31)&(32) and the discussion thereafter). While the leading-order behavior of H as

xց 0 is transparent, the corrections of this result are more involved. We will use ideas

developed in [33] to address this issue.

Coordinate transformations

Obviously problem (6a) is translation invariant in x. This symmetry enables us to

perform another trivial integration. We first notice that the solution H of (6)&(8)

obeys

H > 0 for all x > 0.
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Using equation (6a) we have

d3H

dx3
< 0 for all x > 0. (15)

Due to the boundary condition (8), this implies

d2H

dx2
> 0 for all x > 0. (16)

Using the second boundary condition in (6b), that is, dH
dx

= 0 at x = 0, this amounts to

dH

dx
> 0 for all x > 0. (17)

Hence H is a strictly monotone function and so we can as well formulate our equation in

terms of the position x as a function of the height H , thus getting rid of the translation

invariance. In fact, it is more convenient to consider

ψ :=

(

dH

dx

)2

> 0 as a function of H (18)

as our new unknown§. Observe

dψ

dH
= 2

d2H

dx2
(16)
> 0, (19a)

d2ψ

dH2
= 2

(

dH

dx

)−1
d3H

dx3
(15),(17)
< 0. (19b)

Equation (6a) turns into

d2ψ

dH2
+

1√
ψ
φ(H) = 0 for H > 0, where φ(H) :=

2

3 (H2 +Hn−1)
.(20a)

Because of (18), the second boundary condition in (6b) translates into

ψ = 0 at H = 0 (20b)

and due to (19a), condition (8) now reads

dψ

dH
→ 0 as H →∞. (20c)

Notably, the boundary conditions remain linear after transforming as in (18).

Additionally, only the second derivative d2ψ
dH2 and the function ψ itself appear in (20).

The main result of [16] is that problem (20) admits a unique classical solution (see

footnote ‡), i.e., a unique solution ψ ∈ C0([0,∞)) ∩ C2((0,∞)). From now on, we will

focus on discussing problem (20).

§ Our transformations are similar to those used in [7, 12, 15, 69], mainly capitalizing on the translation

invariance of the problem by using H or lnH as an independent variable.
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Dominant behavior as H →∞

In view of (18), the asymptotic expression (10) implies

ψ =

(

dH

dx

)2

= (ln x)
2
3 (1 + o(1)) as x→∞

for a solution of

d2ψ

dH2
+

2

3
ψ− 1

2H−2 = 0 for H > 0 (21a)

subject to

dψ

dH
→ 0 as H →∞. (21b)

Using x(H)
(10)
= H(lnH)−

1
3 (1 + o(1)) as H →∞, one obtains

ψ :=

(

dH

dx

)2

= (lnH)
2
3 (1 + o(1)) as H →∞. (22)

Now we obtain a one-parameter family of solutions ψ(BH) with a free parameter B > 0,

where ψ > 0 is an arbitrary solution to (21). A more detailed analysis of corrections to

(22), contained in Section 4 and Section 5, shows the asymptotic expansion

(ψ(H))
3
2 = lnH − 1

3
ln lnH + lnB + o(1) as H →∞,

so that a unique solution ψ = ψT ∈ C2 of (21) is selected (cf. Proposition 3.1) by

enforcing

(ψT(H))
3
2 = lnH − 1

3
ln lnH + o(1) as H →∞. (23)

Dominant behavior as H ց 0

Since φ(H) = 2
3
H1−n(1 + o(1)) as H ց 0, one expects the leading-order behavior of

(20a)&(20b) to be determined by (cf. (12))

d2ψ

dH2
+

2

3
H1−nψ− 1

2 = 0 for H > 0, (24a)

ψ = 0 at H = 0. (24b)

Analogous to the treatment of problem (12), we need an additional condition to select

a single solution. The scaling invariance of (24) suggests to assume

ψ(H) := ψTW(H) = c−2+ 2
3
nψTW(cH) for any c > 0. (25)

Setting c := H−1, we have ψTW(H) = ψTW(1)H2− 2
3
n and using (24a), we get (cf. (14)):

ψTW(H) = CH2− 2
3
n for H > 0, withC := 3

2
3 ((3− n)(2n− 3))−

2
3 . (26)

We will discuss corrections to this leading-order behavior in Section 6 and Section 7.
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Notation

We write f & g (of g . f) whenever a constant C > 0, only depending on n, exists such

that f ≥ Cg. We say that a property is true for f ≫ 1 (or f ≪ 1) whenever a constant

C > 0, only depending on n, exists such that the property is true for f ≥ C (or f ≤ 1
C
).

For a Banach space F and a map G : F ⊃ U → F we write ∂FG[f ]∂f for the

Gâteaux derivative of G in (f, ∂f) ∈ U × F .

We write f(x) = O(g(x)) as x → x0 whenever lim sup
x→x0

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

< ∞ and f(x) =

o(g(x)) whenever lim
x→x0

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

= 0.

2. The main result

The aim of this note is to rigorously derive the asymptotic behavior of ψ as H ց 0

and H → ∞. Furthermore, we are interested in investigating the dependence of the

asymptotic expressions on the mobility exponent n. This can be formulated in the

following statement:

Theorem 2.1. Let n ∈
(

3
2
, 7
3

)

. The unique classical solution ψ = ψ(H) of problem (20)

obeys the following asymptotic behavior: There exists a parameter B and a function

R(H) such that

ψ(H) = ψT (BH) (1 + R(H)) for BH ≫ 1, (27)

where

R(H) = O
(

(lnH)−1H−(3−n)
)

as H →∞.

Both B and locally in H also R are C1-functions of n. Furthermore,

ψ(H) = CH2− 2
3
n (1 + o(1)) as H ց 0, (28)

where C := 3
2
3 ((3− n)(2n− 3))−

2
3 (cf. (26)).

Transformation into the original variables

In terms of the unique solution H to (6)&(8), Theorem 2.1 implies in particular that
(

dH

dx

)3
(18)
= (ψ(H))

3
2

(23),(27)
= ln(BH)− 1

3
ln lnH + o(1) (29)

as x → ∞, with B a C1-function of n. Note that (29) improves (11) by setting the

length scale in the logarithmic Tanner profile. Indeed, by separation of variables of the

ODE in (29), we obtain

H = x(lnH)
1
3 (1 + o(1)) as x→∞

and inserting this expression into (29) immediately yields
(

dH

dx

)3

= ln(Bx) + o(1) as x→∞.
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Using the scaling transformation (7), we arrive at
(

dH

dx

)3

= 3V ln

(

Bx(3V )
1
3

λ

)

+ o(1) as x→∞. (30)

Note that the length scale B−1(3V )−
1
3λ in the logarithm in (30) depends on the velocity

V of the contact line as pointed out by Eggers and Stone in [27].

Discussion and comparison to other works

The essentially new insight of Theorem 2.1 is that, up to rescaling with the C1-function

B = B(n), the exponent n (determining the boundary condition at the substrate) has

no significant effect on the leading-order asymptotic behavior of ψ as H → ∞. The

first n-dependent correction in the parantheses in (27) is of order ∼ (lnH)−1H−(3−n).

Furthermore, we prove an infinitesimal statement, that is, C1-variations of the mobility

(by varying the exponent n) lead to a C1-change of B and the solution.

It appears that our method (detailed below) is applicable also to other mobility

exponents, contact lines with non-zero contact angle, or thin films with precursor.

Our prediction is that the structural result (27) is true in these cases as well: We

expect that Tanner’s law (10)&(11) is in general only perturbed through the physics of

liquid-solid interactions by a length scale and a higher-order correction – both of which

have a C1-dependence on variations of the mobility exponent, the slip length or the

contact angle (at least within the partial wetting regime), or the disjoining pressure.

This is in agreement with the physical intuition that the precise modeling of liquid-

solid interactions has no significant effect on the macroscopic properties of the thin

film, as suggested by the considerations of DeGennes [22], Hocking [46], Eggers [26],

and Eggers and Stone [27]: for instance, the parameter B in Theorem 2.1, part (b)

is used as a matching parameter in the formal asymptotic expansions of [27, 46],

leading to asymptotics of B as well. Hocking in [46, Sec. 4] even calculates a numerical

approximation for n = 2: In his notation q(0) ≈ 0.74 is related to B = B(2) through

B = 3−
1
3 e

q(0)
3 , so B ≈ 0.89 for n = 2. For general n and nonzero contact angles, B was

calculated by Eggers in [26], where a weak dependence on n was found: In an asymptotic

expansion of B in terms of a rescaled capillary number (corresponding to V in our case),

the leading-order terms are independent of n.

In this respect, it is worth mentioning that, instead, the physics at the contact line

do have a significant effect on the macroscopic properties of the thin film (as may be

easily understood by comparing steady states with different equilibrium contact angles).

Here, efforts are being recently undertaken towards continuum modeling of frictional

forces at the contact line [61, 62, 63, 64] (see also [3] for a different approach), leading to

contact-line conditions relating speed and microscopic contact angle. Formal asymptotic

results in [17] suggest that, also for these conditions, the precise modeling of liquid-solid

interactions corrects the macroscopic properties of the flow only logarithmically.
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Besides the already mentioned ones [17, 46], our result is closely related to quite a

few other works in which Tanner’s law is addressed, such as [1, 10, 23, 28, 43, 49, 50]. At

the level of the PDE (1a), the only previous rigorous work is by two of the authors [36],

where the effect of slippage on the spreading rate of the apparent support {h > λ}
of solutions to (1) is investigated: Using integral estimates on physical quantities,

Tanner’s law is demonstrated in an intermediate (in time) region (where the macroscopic

dynamics are neither governed by the initial data nor by the physics due to slippage).

However, none of the aforementioned contributions rigorously addresses either (27)

(i.e., (29)) or the dependence of logarithmic corrections on the mobility exponent (in

fact, to our knowledge none of the previous contributions even rigorously derive Tanner’s

law (10)&(11) for the perturbed problem (20), see Section 4). The Duffy-Wilson setting

in [23] – characterizing the solution of the unperturbed problem (21) by an equation

involving explicit functions – does not seem to allow for a perturbation argument as

stated in Theorem 2.1, part (b).

We mention that it was already suggested in [33] to study traveling-wave solutions

to the two-dimensional Stokes problem for a moving cusp. We expect two asymptotic

regimes (the contact-line region and the Tanner region) for this problem as well. Our

hope is to rigorously recover the lubrication limit on the level of the traveling wave as

it was done for Darcy’s flow in the Hele-Shaw cell in [36, 54, 55].

Two-variable analyticity and the limitation n < 7/3

In fact, we are able to prove a stronger result than (28), that is,

ψ(H) = CH2− 2
3
n
(

1 + µ̄
(

H3−n, Hα
))

for 0 ≤ H ≪ 1, (31)

where

α :=
1

6

√
−27 + 36n− 8n2 − 3

2
+

2

3
n (32)

and µ̄ = µ̄(y1, y2) is analytic in a neighborhood of (y1, y2) = (0, 0). The exponents α

and 3−n are related to the linearization of (20a) around ψ/ψTW = 1, see Sections 6 and

7. This two-variable analyticity was already conjectured by the authors in [33], where

source-type self-similar solutions of

∂th+ ∂z
(

hn∂3zh
)

= 0 for z ∈ {h > 0}
with n ∈

(

3
2
, 3
)

and subject to h = ∂zh = 0 at z ∈ ∂{h > 0} (cf. (1b)) have been

investigated. There indeed h(t, z) = t−
1

n+4Hs(x) with x := t−
1

n+4 z and Hs(x) =

HTW(x)
(

1 + vs
(

x, xβ
))

, where HTW is defined as in (26), vs(x1, x2) is an analytic

function in a neighborhood of (x, y) = (0, 0), and β = 3
n
α, α being the same as in

(32).

Expansion (32) can be proven with similar methods as in [33]. There a direct

method treating the corresponding nonlinear third-order ODE was detailed and a

dynamical systems approach was only briefly sketched as a possible alternative strategy
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(cf. [33, Sec. 2.2]). For the latter approach, the authors reduced the problem to the

study of an invariant manifold of the dynamical system (x, F, F ′, F ′′), where F := Hs

HTW
,

F ′ := x d
dx
F , and F ′′ :=

(

x d
dx

)2
F . Setting s := ln x, the dynamics close to the contact

line s = −∞ are then determined by all trajectories emanating from the hyperbolic

stationary point (x, F, F ′, F ′′) = (0, 1, 0, 0), that is, they have to lie on the unstable

manifold tangent to the two-dimensional unstable eigenspace, which is spanned by the

eigenvectors corresponding to the eigenvalues 1 and β, respectively. Thus one can lift

the system to the unstable manifold, locally parametrized by coordinates (F1, F2), that

is, one needs to solve the ODE
(

d

ds
−
(

1 0

0 β

))

·
(

F1

F2

)

= g(F1, F2), (33)

where g(F1, F2) = O (F 2
1 + F 2

2 ) is an analytic nonlinear correction. It was then argued

that by the contraction-mapping theorem for given data (F1(0), F2(0)) a unique solution

exists. However, the authors did not provide a proof for the claim that Fj = F̄j
(

es, eβs
)

,

where F̄j(x1, x2) are analytic functions in {|x1|+ |x2| ≪ 1}. In fact, this appears to be

nontrivial as for n ∈
(

3
2
, 3
)

, the exponent β covers the interval (0, 1) and for β = 1
k
with

an integer k ≥ 2 a resonant term ∼ F k
2 in the nonlinearity g(F1, F2) should be expected.

Inverting the linear part of (33) from s = −∞ (or (x1, x2) = (0, 0), respectively), these

resonant terms in the nonlinearity are not integrable and a fixed-point argument is

doomed to fail.

A way how to close this gap and to restore the validity of the arguments is to

parametrize the unstable manifold as a graph F ′ = F ′(x, u) with u := F − 1, that is,

x
du

dx
= G (x, u) , (34)

where G = G(x, u) is analytic in {|x|+|u| ≪ 1} with G(0, 0) = 0. Knowing ∂G
∂u
(0, 0) = β

from the parametrization of the tangent space, we can reformulate (34) as
(

x
d

dx
− β

)

u = G(x, u)− βu,

where the right-hand side is now quadratic in u. Unfolding this problem, by replacing

u with ū(x1, x2) and x
d
dx

with x1∂x1 + βx2∂x2 , we may then solve

(x1∂x1 + βx2∂x2 − β) ū = G (x1, ū)− βū,
leading to the fixed-point problem

ū(x1, x2) = −bx2+
∫ 1

0

r−β
(

G
(

rx1, ū
(

rx1, r
βx2
))

− βū
(

rx1, r
βx2
)) dr

r
,(35)

with a parameter b ∈ R (in fact b > 0 can be proven, cf. [33, Sec. 5]). As detailed for a

similar case in [33, Sec. 3, 4], the contraction-mapping theorem yields for every b ∈ R

and sufficiently small ε > 0 the existence of an analytic solution ū to (35).

In the present note, we will employ the same approach, but for simplicity we restrict

ourselves to the leading-order asymptotics only. Notably for n = 7
3
, a resonance of the
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exponents (32) in (31) occurs (α = 3 − n = 2
3
). In this case, (31) ceases to be true

and we expect logarithmic corrections in H to be present. This is reflected by the fact

that a diagonalization of the respective dynamical system is not possible anymore and a

two-dimensional Jordan block in the normal form of the linearized evolution is present.

We refer to [4], where a similar feature can be found for n = 2 (Navier slip) and nonzero

dynamic contact angles. As we are mainly interested in a perturbative result of n = 2

(Navier slip), our analysis is restricted to the interval n ∈
(

3
2
, 7
3

)

.

3. Proof of the main result: a transversality argument

Outline

Our strategy to prove Theorem 2.1 is as follows: We first construct two one-parameter

solution manifolds (hence two-dimensional manifolds in phase space) for H ≫ 1

(Section 5) andH ≪ 1 (Section 7) of the three-dimensional dynamical system
(

H,ψ, dψ
dH

)

associated to (20a). In Section 4 and Section 6 we additionally demonstrate that the

unique solution of (20) lies on these manifolds. In other words: The manifolds intersect

in a unique curve that defines the solution of (20). Then we prove that these manifolds

intersect transversally. This yields the C1-dependence of B on n.

Characterization of the solution manifolds

We are able to characterize a one-parameter solution manifold of (20a)&(20c) (the

”intermediate” region, where Tanner’s law dominates):

Proposition 3.1. For every B > 0 there exists a function RB(H) for H ≫ 1 + B−1

such that

ψB(H) = ψT (BH) (1 +RB(H)) for H ≫ 1 +B−1, (36a)

defines a solution to (20a)&(20c), where ψT = ψT(H) is the unique classical solution to

(21)&(23), and

RB(H) . B3−n(lnH)−1H−(3−n) for H ≫ 1 +B−1. (36b)

The correction RB(H), locally in H, has a C1-dependence on B and n and the boundary

condition

∂H∂BψB = − 2

9B
(lnH)−

4
3 H−1 (1 + o(1)) as H →∞ (36c)

is satisfied. Furthermore, there exists a B > 0 such that the unique solution ψ of

problem (20) coincides with ψB.

We prove this proposition in Section 4 and Section 5. The approach mainly relies

on the application of the contraction-mapping and the implicit function theorem of a

suitably transformed system, in which the dependence on the parameter B is more

transparent.

For film heights H ≪ 1 we are able to show an analogous result:
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Proposition 3.2. For every b ∈ R there exists a function µb = µb(H) for H ≪
(1 + |b|)− 1

α such that

ψb(H) = CH2− 2
3
n (1 + µb(H)) for H ≪ (1 + |b|)− 1

α (37a)

defines a solution to (20a)&(20b), where C is defined in (26) and

µb(H) = bHα
(

1 +O(Hδ)
)

as H ց 0, (37b)

with α given by (32) and δ := min{3 − n − α, α}. The function µb (and thus also ψb)

depends smoothly on n ∈
(

3
2
, 7
3

)

and b ∈ R and the boundary condition

∂bψb = CH2− 2
3
n+α (1 +O (Hα)) as H ց 0 (37c)

holds true. Furthermore, the unique solution to (20) has the structure (37) for some

b ∈ R.

The proof relies on the study of an invariant manifold of a suitable dynamical

system and is detailed in Section 6 and Section 7.

Transversality

In Propositions 3.1 and 3.2 we have constructed two one-parameter families of solutions

(ψb)b∈R and (ψB)B>0 fulfilling the boundary conditions (cf. (20b))

ψb = 0 at H = 0 (38a)

and (cf. (20c))

∂HψB → 0 as H →∞, (38b)

respectively. Differentiating ψb with respect to b, condition (38a) remains satisfied

(cf. (37c)). Additionally, ∂BψB meets condition (38b) (cf. (36c)). If b, B ∈ R are chosen

such that ψb = ψB = ψ, where ψ is the unique classical solution to (20), then ∂bψb and

∂BψB exist globally as well and satisfy the linear equation

d2η

dH2
− 1

2
ψ− 3

2φ(H)η = 0 for H > 0, (39)

where (ψ, η) ∈ {(ψb, ∂bψb), (ψB, ∂BψB)}. This follows from the C1-dependence of ψB
and ψb on B and b for H ≫B 1 and H ≪b 1, respectively (cf. Proposition 3.1 and

Proposition 3.2) together with standard ODE theory in the bulk.

For equation (39) we can prove the following uniqueness result:

Lemma 3.3. Suppose that ψ : [0,∞) → R is the unique classical solution of

problem (20) and η ∈ C0([0,∞))∩C2((0,∞)) is a solution of the corresponding linearized

equation (39) fulfilling conditions (38), i.e.,

η = 0 at H = 0, (40a)

dη

dH
→ 0 as H →∞. (40b)

Then η ≡ 0.
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Proof. Consider the function η2 ≥ 0 and note that

1

2

d2η2

dH2
=

(

dη

dH

)2

+ η
d2η

dH2

(39)
=

(

dη

dH

)2

+
1

2
ψ− 3

2φ(H)η2 ≥ 0. (41)

Since η2 ≥ 0 with η2
(40a)
= 0 at H = 0, necessarily dη2

dH
≥ 0 for a sequence H ց 0. By

(41), dη2

dH
is monotonically increasing and therefore dη2

dH
≥ 0 for all H > 0. Hence

d

dH

(

dη

dH

)2

= 2
dη

dH

d2η

dH2

(39)
=

1

2
ψ− 3

2φ(H)
dη2

dH
≥ 0.

Since
(

dη
dH

)2
= 0 at H = ∞ (cf. (40b)), this implies dη

dH
≡ 0. Again appealing to (40a),

we infer η ≡ 0.

As a corollary of Lemma 3.3 we obtain:

Corollary 3.4. Suppose that for each n ∈
(

3
2
, 7
3

)

the parameters b, B ∈ R are chosen

such that ψb = ψB =: ψ, ψ being the unique classical solution of equation (20). Then

the vectors

(∂bψb, ∂H∂bψb) and (∂BψB, ∂H∂BψB) (42)

are linearly independent for all H > 0.

Geometrically this means that the solution manifolds

{(H,ψb, ∂Hψb) : b ∈ R, H > 0} (43)

and

{(H,ψB, ∂HψB) : B ∈ R, H > 0} (44)

are transversal along (H,ψ, ∂Hψ).

Proof of Corollary 3.4. The choice of b and B is possible due to Propositions 3.1 and

3.2. By Liouville’s formula and standard uniqueness theory of ODEs, the property that

the vectors (42) are linearly independent for one H > 0 is equivalent to the property

that they are linearly independent for all H > 0. Furthermore, by the same arguments

the vectors (42) are linearly independent for one H > 0 if and only if the functions

∂BψB and ∂bψb are linearly independent. The latter can be easily proven:

Suppose that

αB ∂BψB + αb ∂bψb ≡ 0 for (αB, αb) ∈ R
2. (45)

Since ∂bψb 6≡ 0 (cf. (37)), by Lemma 3.3 and because ∂bψb fulfills (40a) (cf. (37c)), ∂bψb
cannot fulfill (40b). Hence, from (45) and the fact that ∂BψB meets (40b), we infer

αb = 0. Due to ∂BψB 6≡ 0 (cf. (36c)) necessarily also αB = 0.
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Smoothness in n and conclusion

Proof of Theorem 2.1. We already know from the uniqueness result in [16] that the

solution manifolds (43) and (44) intersect in exactly one curve defining the unique

solution of the dynamical system
(

H, dψ
dH
, d2ψ
dH2

)

associated to (20). Furthermore, by

Propositions 3.1 and 3.2, and standard ODE theory in the bulk, the curves

H 7→ (H, ∂bψb, ∂H∂bψb) and H 7→ (H, ∂BψB, ∂H∂BψB)

locally depend smoothly on n. As a consequence, this intersection curve – and thus in

particular the parameters b and B – (locally with respect to H) depends smoothly on

n. This is a consequence of the transversality (given by Corollary 3.4) in combination

with the implicit function theorem: The set of equations

ψB(H)− ψb(H) = 0 and ∂HψB(H)− ∂Hψb(H) = 0,

for any fixed H > 0, implicitly defines the parameters B and b locally as C1-functions

of n (cf. Propositions 3.1 and 3.2) provided that

det

(

∂BψB(H) ∂B∂HψB(H)

∂bψb(H) ∂b∂Hψb(H)

)

6= 0,

the latter following from Corollary 3.4.

4. Tanner’s law

Here we prove that the unique solution of (20) obtained in [16] indeed satisfies Tanner’s

law to leading order. We recognize φ(H)
(20a)
= 2

3H2 (1 + o(1)) as H → ∞ and that

problem (20) in this regime is approximately invariant under the scaling H → BH for

any B > 0. Capitalizing on this invariance, up to this approximation, the equation

becomes autonomous if we introduce the independent variable (cf. (98))

s := lnH. (46)

We also introduce the new dependent variable

u := ψ
3
2 (47)

as a function of s. Then we observe that (20a) can be recast as

3

2
u

1
3

(

d

ds
− 1

)

d

ds
u

2
3 − 1 + f = 0 for s ∈ R,

where

f :=
1

1 + e(3−n)s
(48)

and therefore

dv

ds
− v − v2

3u
= −1 + f for s ∈ R, with v :=

du

ds
. (49)
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We emphasize that the specific form for f in (48) is immaterial for the analysis of this

section as long as we have f = O (s−2 ln s) as s→∞. This can be ensured for a variety

of models of liquid-solid interaction other than our choice, that is, nonlinear slip with

mobility exponent n ∈
(

3
2
, 7
3

)

.

Proposition 4.1. The unique classical solution of problem (20) obeys










u = s
(

1− 1
3
s−1 ln s+ as−1 +O (s−2 ln s)

)

v = du
ds

= 1− 1
3
s−1 +O (s−2 ln s)

d2u
ds2

= O (s−2 ln s)











as s→∞ (50)

with some a ∈ R.

Proof. Equation (49) implies

dv

ds
− v ≥ −1 + f.

Now we may use dv
ds
− v = es d

ds
e−sv and integrate the above inequality:

∫ ∞

s

d

ds′

(

e−s
′

v (s′)
)

ds′ ≥ −e−s +
∫ ∞

s

e−s
′

f (s′) ds′. (51)

In order to evaluate the integral on the left-hand side of (51), we observe that

v
(49)
=

du

ds

(47)
=

d

ds
ψ

3
2

(46)
= es

d

dH
ψ

3
2

and therefore

e−sv =
d

dH
ψ

3
2 =

3

2
ψ

1
2
dψ

dH

(18),(19a)
> 0. (52)

We claim e−sv → 0 as s → ∞ at least for a subsequence. Else in view of (52),

lim infH→∞
d
dH
ψ

3
2 > 0 and therefore, by integration,

lim inf
H→∞

H− 2
3ψ > 0. (53)

Using equation (20a), we obtain from (53) that lim supH→∞H
7
3

∣

∣

∣

d2ψ
dH2

∣

∣

∣
< ∞. By

integrating twice, using (20c), we infer that ψ stays bounded as H → ∞, which

contradicts (53).

Therefore (51) yields

0
(52)
< v(s) =

du

ds
(s) ≤ 1−

∫ ∞

s

es−s
′

f (s′) ds′ ≤ 1. (54)

On the other hand, using (54) in equation (49), we obtain

dv

ds
− v = −1 + f +

v2

3u
≤ −1 + f +

1

3u
.

Integrating this equation as before, we conclude

v(s) ≥
∫ ∞

s

es−s
′

(

1− f (s′)− 1

3u(s′)

)

ds′. (55)
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Due to the monotonicity of u stated in (52), we infer from (55)

du

ds
= v ≥ 1− f − 1

3u
. (56)

From (54) we have u ≤ s(1 + o(1)) as s → ∞. We know that u is monotonically

increasing and u > 0 by (17). Suppose by contradiction lim sups→∞ u <∞. This implies

lim sup
H→∞

ψ
(46),(47)
= lim sup

s→∞
u

2
3 <∞.

By (18) and (20a) we have that lim supH→∞H2 d2ψ
dH2 is negative, which, using (20c),

implies positivity of lim infH→∞H dψ
dH

and thus ψ → ∞ as H → ∞. This is a

contradiction to our assumption.

Therefore u → ∞ as s → ∞. By (56) this amounts to v ≥ 1 + o(1) and

u ≥ s(1 + o(1)) as s→∞, that is, by (54),

v = 1 + o(1) and u = s(1 + o(1)) as s→∞. (57)

Utilizing equation (49) in form of

es
d

ds
e−sv =

v2

3u
− 1 + f,

we infer by integration

v(s) =

∫ ∞

s

es−s
′

(

1− f (s′)− (v(s′))2

3u(s′)

)

ds′. (58)

Inserting (57) into (58) yields

v = 1− 1

3
s−1 + o

(

s−1
)

as s→∞ (59a)

and integration gives

u = s

(

1− 1

3
s−1 ln s+ o

(

s−1 ln s
)

)

as s→∞. (59b)

Once more appealing to (58) and using (59), we obtain the refined asymptotics

du

ds
= v = 1− 1

3
s−1 +O

(

s−2 ln s
)

as s→∞,

u = s

(

1− 1

3
s−1 ln s+ as−1 +O

(

s−2 ln s
)

)

as s→∞

with an integration constant a ∈ R. Finally, from (49) we infer that also

d2u

ds2
= O

(

s−2 ln s
)

as s→∞.
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5. The solution manifold obeying Tanner’s law

For convenience we make another change of variables. Since by (50) u(s) = s(1 + o(1))

and v(s) = 1 + o(1) as s → ∞, we can invert the function u = u(s) for s ≫ 1.

Considering v = du
ds

as a function of u, we can rephrase equation (49) as

v
dv

du
− v − v2

3u
= −1 + f for u > u0, (60a)

ds

du
=

1

v
for u > u0, (60b)

where again f = 1
1+e(3−n)s (cf. (48)) and u0 > 0 will be chosen (sufficiently large) later.

In view of the asymptotics (50) in Proposition 4.1, we define the new unknowns

w := v − 1 +
1

3u
and t := s− u− ln u

3
+ a. (61)

Thus indeed

lim
u→∞

uw = 0, lim
u→∞

u
dw

du
= 0, and lim

u→∞
t = 0 (62)

for the unique solution of (20). In terms of w and t, the system (60) can be rewritten

as
dw

du
− w = f + g for u > u0, (63a)

dt

du
= r for u > u0, (63b)

where g := g
(

u, w, dw
du

)

, with

g := g (u, w, w′)

:= −
(

15− 4

u

)

1

27u2
+

(

6− 5

u

)

w

9u
+

1

3u
w′ +

w2

3u
− ww′, (63c)

r := r(u, w) :=
1

9u2
−
(

1 + 1
3u

)

w

1− 1
3u

+ w
. (63d)

In agreement with (62), we assume the boundary conditions limu→∞ uw = 0 and

limu→∞ t = 0. We can then directly read off limu→∞ udw
du

= 0 for any classical solution

of (63). In view of the definitions of f and g in (49) and (63c), (61), and the boundary

conditions (62), we have f + g = O(u−2) as u → ∞. Then (62)&(63a) lead to

w(u) = −
∫∞

u
eu−u

′

(f + g) (u′) du′ = O(u−2) as u → ∞. Once more appealing to

(63a) and (63c), we obtain dw
du

= O(u−2) as u→∞. Now appealing to (63b) and (63d),

we get

w = O(u−2),
dw

du
= O(u−2), and t = O(u−1) as u→∞. (64)

The advantage of the reformulation (63)&(64) is that a only appears through f (cf. (48))

and the relation between t and s (cf. (61)) in the problem. As we will prove in the

following, the a-dependence merely leads to an exponential correction of v = v(u) in u.

Furthermore, in case of the unperturbed traveling-wave equation (9), respectively (21a),

for which f ≡ 0, equations (63a) and (63b) decouple and (w, t) is independent of a.
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In view of the boundary conditions (64), we are led to define the following norms:

‖w‖W := max

{

sup
u≥u0

|u|2 |w(u)| , sup
u≥u0

|u|2
∣

∣

∣

∣

dw

du
(u)

∣

∣

∣

∣

}

, (65a)

‖t‖T := sup
u≥u0

|u| |t(u)| , (65b)

‖(w, t)‖W×T := max {‖w‖W , ε ‖t‖T} , (65c)

where 0 < ε ≪ 1 and u0 ≫ 1 will be conveniently fixed later. Due to (48) and (61), f

may be viewed as a local function of u and t and we may therefore define the norm

‖f‖F := max
0≤k≤2

sup
u ≥ u0,

|t| ≤ K(εu0)−1

|u|2−k
∣

∣∂kt f(u, t)
∣

∣ (66)

with a constant K > 0 to be fixed later. We note for further reference that

ε ‖t‖T ≤ K ⇒ |t| ≤ K(εu0)
−1. (67)

The spaces W , T , and F are defined as the completion of smooth functions w = w(u),

t = t(u), respectively f = f(u, t) with finite norm ‖·‖W , ‖·‖T , respectively ‖·‖F . The

norm for W × T × F is given by

‖(w, t, f)‖W×T×F := max {‖w‖W , ε ‖t‖T , ‖f‖F} . (68)

The following existence and uniqueness result can be obtained:

Proposition 5.1. For c > 0 we define NF := {f ∈ F : ‖f‖F < c}. Then, provided

K ≫ 1, ε ≪ 1, c ≪ ε, and u0 ≫ 1 +K, there exists a C1-map S : NF → W × T with

bound ‖∂FS[f ]‖F→W×T . 1 for f ∈ NF , such that (w, t) := S[f ] solves (63)&(64).

Proof. We split the proof in several parts:

Reformulation of the problem Let

N := NW×T ×NF , (69a)

with

NW×T :=
{

(w, t) ∈ W × T : ‖(w, t)‖W×T ≤ K
}

(69b)

be a neighborhood of (w, t, f) = (0, 0, 0). We can rewrite (63)&(64) as a fixed point
(

w

t

)

= G [w, t, f ] , (70)

where G : N →W × T is given by

G[w, t, f ] :=
(

SW
(

f (·, t) + g
(

·, w, dw
du

))

ST r (·, w)

)

(71)
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with integral operators

SWφ(u) := −
∫ ∞

u

eu−u
′

φ (u′) du′, (72a)

STφ(u) := −
∫ ∞

u

φ (u′) du′. (72b)

Note that the asymptotic conditions (64) are implied by the finiteness of the norms (65).

Our aim is to apply the contaction-mapping theorem and the implicit function

theorem to (70), that is, we need to show that for 0 < ε ≪ 1, c ≪ ε, K ≫ 1, and

u0 ≫ 1 +
√
K:

(a) G ∈ C1 (N ;W × T );
(b) the derivative‖ ∂W×TG[w, t, f ] has the uniform bound¶

‖∂W×TG[w, t, f ]‖W×T→W×T ≤
1

2
for every (w, t, f) ∈ N, (73)

so that in particular idW×T − ∂W×TG[w, t, f ] : W × T → W × T is

for every (w, t, f) ∈ N an isomorphism of Banach spaces with bound
∥

∥(idW×T − ∂W×TG[w, t, f ])−1
∥

∥

W×T→W×T
≤ 2;

(c) the map G[·, ·, f ] : NW×T →W ×T (where f ∈ NF is fixed) maps NW×T into itself.

Indeed, by (b) and (c) the contraction-mapping theorem yields a solution map S : NF →
NW×T such that (w, t) := S[f ] solves (70). By (a) and (b) the implicit function theorem

implies S ∈ C1 (NF ;NW×T ).

We note that formally for the directional derivatives in W , T , and F , respectively,

∂WG[w, t, f ]∂w

=

(

SW
(

∂g

∂w

(

·, w, dw
du

)

∂w + ∂g

∂w′

(

·, w, dw
du

)

d∂w
du

)

ST
∂r
∂w

(·, w)∂w

)

, (74a)

∂TG[w, t, f ]∂t =
(

SW
∂f

∂t
(·, t)∂t
0

)

, (74b)

∂FG[w, t, f ]∂f =

(

SW∂f

0

)

. (74c)

In particular

∂W×TG[w, t, f ]
(

∂w

∂t

)

=

(

SW
(

∂g

∂w

(

·, w, dw
du

)

∂w + ∂g

∂w′

(

·, w, dw
du

)

d∂w
du

+ ∂f

∂t
(·, t)∂t

)

ST
∂r
∂w

(·, w)∂w

)

. (75)

‖ Here, ∂W×T denotes the derivative with respect to W × T .
¶ The expression ‖·‖

W×T→W×T
denotes the operator norm of bounded linear operators W × T →

W × T .
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Estimates for SW and ST We start by proving estimates for the integral operators SW
and ST . We note that for u ≥ u0

|SWφ(u)|
(72a)

≤
∫ ∞

u

eu−u
′ |φ (u′)| du′

≤
∫ ∞

u

eu−u
′

(u′)
−2

du′ × sup
u′≥u0

|u′|2 |φ (u′)|

≤ u−2 sup
u′≥u0

|u′|2 |φ (u′)| ,

that is,

sup
u≥u0

|u|2 |SWφ(u)| ≤ sup
u≥u0

|u|2 |φ(u)| .

Since d
du
SWφ(u) = SWφ(u) + φ(u), we obtain

‖SWφ‖W ≤ 2 sup
u≥u0

|u|2 |φ(u)| . (76a)

Similarly

|STφ(u)| ≤
∫ ∞

u

(u′)
−2

du′ × sup
u′≥u0

|u′|2 |φ (u′)| ≤ u−1 sup
u′≥u0

|u′|2 |φ (u′)|

and therefore

‖STφ‖T ≤ sup
u≥u0

|u|2 |φ(u)| . (76b)

G [·, ·, f ] is a self-map (proof of (c)) We can estimate for (w, t, f) ∈ N
‖G[w, t, f ]‖W×T

= max

{∥

∥

∥

∥

SW g

(

·, w, dw
du

)∥

∥

∥

∥

W

+ ‖SW f(·, t)‖W , ε ‖ST r(·, w)‖T
}

(76)

≤ max

{

2 sup
u≥u0

|u|2
∣

∣

∣

∣

g

(

u, w(u),
dw

du
(u)

)∣

∣

∣

∣

+ 2 sup
u≥u0

|u|2 |f(u, t(u))| ,

ε sup
u≥u0

|u|2 |r(u, w(u))|
}

.

Then we have

sup
u≥u0

|u|2
∣

∣

∣

∣

g

(

u, w(u),
dw

du
(u)

)∣

∣

∣

∣

(63c),(65a)

.
(

1 + u−1
0

) (

1 + u−1
0 ‖w‖W + u−2

0 ‖w‖2W
)

,

and

sup
u≥u0

|u|2 |f(u, t(u))|
(66),(67)

≤ ‖f‖F ,

sup
u≥u0

|u|2 |r(u, w(u))|
(63d),(65a)

.

(

1− 1

3u0
− ‖w‖W

u20

)−1

(1 + ‖w‖W ) .
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for u0 ≫ 1+
√

‖w‖W , i.e., u0 ≫ 1+
√
K. Due to the definition of N in (69), we obtain

‖G[w, t, f ]‖W×T . 1 +
K2

u20
+ ε(1 +K) + c,

which implies that G [·, ·, f ] maps NW×T into itself provided K ≫ 1, u0 ≫ 1 +
√
K,

ε≪ 1, and c≪ 1.

Bound for ∂W×TG[w, t, f ] (proof of (b)) We first notice that

‖∂W×TG[w, t, f ] (∂w, ∂t)‖W×T

(65),(75)

≤ max

{∥

∥

∥

∥

SW
∂g

∂w

(

·, w, dw
du

)

∂w

∥

∥

∥

∥

W

+

∥

∥

∥

∥

SW
∂g

∂w′

(

·, w, dw
du

)

d∂w

du

∥

∥

∥

∥

W

+

∥

∥

∥

∥

SW
∂f

∂t
(·, t)∂t

∥

∥

∥

∥

W

, ε

∥

∥

∥

∥

ST
∂r

∂w
(·, w)∂w

∥

∥

∥

∥

T

}

(76)

≤ max

{

2 sup
u≥u0

|u|2
∣

∣

∣

∣

∂g

∂w

(

u, w(u),
dw

du
(u)

)

∂w(u)

∣

∣

∣

∣

+2 sup
u≥u0

|u|2
∣

∣

∣

∣

∂g

∂w′

(

u, w(u),
dw

du
(u)

)

d∂w

du
(u)

∣

∣

∣

∣

+2 sup
u≥u0

|u|2
∣

∣

∣

∣

∂f

∂t
(u, t(u))∂t(u)

∣

∣

∣

∣

, ε sup
u≥u0

|u|2
∣

∣

∣

∣

∂r

∂w
(u, w(u))∂w(u)

∣

∣

∣

∣

}

.

Then we can estimate separately:

sup
u≥u0

|u|2
∣

∣

∣

∣

∂g

∂w

(

u, w(u),
dw

du
(u)

)

∂w(u)

∣

∣

∣

∣

≤ sup
u≥u0

∣

∣

∣

∣

∂g

∂w

(

u, w(u),
dw

du
(u)

)∣

∣

∣

∣

× sup
u≥u0

|u|2 |∂w(u)|

(63c),(65a)

.
(

u−1
0 + u−3

0

)

(1 + ‖w‖W ) ‖∂w‖W ,

sup
u≥u0

|u|2
∣

∣

∣

∣

∂g

∂w′

(

u, w(u),
dw

du
(u)

)

d∂w

du
(u)

∣

∣

∣

∣

.
(

u−1
0 + u−2

0

)

(1 + ‖w‖W ) ‖∂w‖W ,

sup
u≥u0

|u|2
∣

∣

∣

∣

∂f

∂t
(u, t(u))∂t(u)

∣

∣

∣

∣

≤ sup
u≥u0

|u|
∣

∣

∣

∣

∂f

∂t
(u, t(u))

∣

∣

∣

∣

× sup
u≥u0

|u| |∂t(u)|
(65b),(66),(67)

≤ ‖f‖F ‖∂t‖T ,
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and, due to ∂r
∂w
r(u, w) = −

(

1− 1
3u

+ w
)−2

,

sup
u≥u0

|u|2
∣

∣

∣

∣

∂r

∂w
(u, w(u))∂w(u)

∣

∣

∣

∣

≤ sup
u≥u0

∣

∣

∣

∣

∂r

∂w
(u, w(u))

∣

∣

∣

∣

× sup
u≥u0

|u|2 |∂w(u)|

(65a)

.

(

1− 1

3u0
− ‖w‖W

u20

)−2

× ‖∂w‖W

for u0 ≫ 1 +
√

‖w‖W .

Gathering our estimates, we have

‖∂W×TG[w, t, f ] (∂w, ∂t)‖W×T

. max
{

u−1
0 (1 +K), ε−1c, ε

}

‖∂(w, t)‖W×T

for (w, t, f) ∈ N (cf. (69)) provided u0 ≫ 1 +
√
K. Then we can derive the bound (73)

provided ε≪ 1, c≪ ε, and u0 ≫ 1 +K. This implies (b).

Continuous differentiability (proof of (a)) From the above reasoning, we know that the

directional derivatives ∂WG[w, t, f ] and ∂TG[w, t, f ] exist as bounded linear operators

W → W × T , respectively T → W × T for every (w, t, f) ∈ N . Furthermore,

‖∂FG[w, t, f ]∂f‖W×T

(74c)
= ‖SW∂f‖W

(76a)

≤ sup
u≥u0

|u|2 |∂f(u, t(u))|
(67)

≤ ‖∂f‖F (77)

for (w, t, f) ∈ N , that is, also the directional derivative ∂FF [w, t, f ] is a bounded linear

operator F → F for every (w, t, f) ∈ N . Hence, in order to prove (a), it remains to

show continuity of the directional derivatives. Since ∂FG[w, t, f ]
(74c)
= SW is independent

of (w, t, f) (cf. (72a)), this statement is trivial for ∂FG[w, t, f ]. Hence, we need to show

continuity of ∂W×TG = ∂W×TG[w, t, f ] in N . In view of the definition of ∂W×TG in

(75), we apply the triangle inequality as in the previous step and consider four terms

separately:

We prove that SW
∂g

∂w

(

·, w, dw
du

)

is continuous in w:
∥

∥

∥

∥

(

SW
∂g

∂w

(

·, w1,
dw1

du

)

− SW
∂g

∂w

(

·, w2,
dw2

du

))

∂w

∥

∥

∥

∥

W

(65a),(76a)

≤ 2 sup
u≥u0

|u|2
∣

∣

∣

∣

∂g

∂w

(

u, w1(u),
dw1

du
(u)

)

− ∂g
∂w

(

u, w2(u),
dw2

du
(u)

)∣

∣

∣

∣

|∂w(u)|
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≤ 2u−2
0















sup
u ≥ u0

w ∈ conv{w1, w2}

w′ ∈ conv
{

dw1

du
,
dw2

du

}

∣

∣

∣

∣

∂2g

∂w2
(u, w, w′)

∣

∣

∣

∣

+ sup
u ≥ u0

w ∈ conv{w1, w2}

w′ ∈ conv
{

dw1

du
,
dw2

du

}

∣

∣

∣

∣

∂2g

∂w∂w′
(u, w, w′)

∣

∣

∣

∣















× ‖w1 − w2‖W ‖∂w‖W
(63c)

. u−2
0

(

1 + u−1
0

)

‖w1 − w2‖W ‖∂w‖W
and by a completely analogous reasoning

∥

∥

∥

∥

(

SW
∂g

∂w′

(

·, w1,
dw1

du

)

− SW
∂g

∂w′

(

·, w2,
dw2

du

))

∂w

∥

∥

∥

∥

W

. u−2
0 ‖w1 − w2‖W ‖∂w‖W ,

showing continuity of SW
∂g

∂w′

(

·, w, dw
du

)

in w.

Next we show continuity of SW
∂f

∂t
(·, t) in t:

∥

∥

∥

∥

(

SW
∂f

∂t
(·, t1)− SW

∂f

∂t
(·, t2)

)

∂t

∥

∥

∥

∥

W

(76a)

≤ 2 sup
u≥u0

|u|2
∣

∣

∣

∣

∂f

∂t
(u, t1(u))−

∂f

∂t
(u, t2(u))

∣

∣

∣

∣

|∂t(u)|

(65b)

≤ 2 sup
u ≥ u0

t ∈ conv{t1, t2}

∣

∣

∣

∣

∂2f

∂t2
(u, t)

∣

∣

∣

∣

× ‖t1 − t2‖T ‖∂t‖T

(66),(67)

≤ 2 ‖f‖F ‖t1 − t2‖T ‖∂t‖T .

Finally, continuity of ST
∂r
∂w

(·, w) in w follows from:
∥

∥

∥

∥

(

ST
∂r

∂w
(·, w1)− ST

∂r

∂w
(·, w2)

)

∂w

∥

∥

∥

∥

T

(76b)

≤ sup
u≥u0

|u|2
∣

∣

∣

∣

∂r

∂w
(u, w1(u))−

∂r

∂w
(u, w2(u))

∣

∣

∣

∣

|∂w(u)|

(65a)

≤ u−2
0 sup

u ≥ u0
w ∈ conv{w1, w2}

∣

∣

∣

∣

∂2r

∂w2
(u, w)

∣

∣

∣

∣

× ‖w1 − w2‖W ‖∂w‖W

(63d)

. u−2
0

(

1− 1

3u0
− K

u20

)−3

‖w1 − w2‖W ‖∂w‖W ,

using (w, t, f) ∈ N (cf. (69)) and u0 ≫ 1 +
√
K.
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Bound for the solution map S For deriving the bound on S, we differentiate (70) with
respect to f and obtain

∂FS[f ] = − (idW×T − ∂W×TG [S[f ], f ])−1 ∂FG [S[f ], f ] .
Thus the claim follows from

‖∂FS[f ]‖F→W×T

≤
∥

∥(idW×T − ∂W×TG [S[f ], f ])−1
∥

∥

W×T→W×T
‖∂FG [S[f ], f ]‖F→W×T

(77)

≤
∥

∥(idW×T − ∂W×TG [S[f ], f ])−1
∥

∥

W×T→W×T
≤ 2

by (b).

From now on, we universally fix ε, c, and K as in Proposition 5.1.

Corollary 5.2. For any a ∈ R and fa given by (48) and (61), i.e.,

fa(u, t) =
1

1 + u
3−n
3 e(3−n)(u+t−a)

,

(63)&(64) admits a unique classical solution (w, t) = (wa, ta) with ‖(wa, ta)‖W×T . 1

for u0 ≫ 1 + a+. Furthermore, for f ≡ 0, (63)&(64) admits a unique classical solution

(w, t) = (wT, tT) with ‖(wT, tT)‖W×T . 1 for u0 ≫ 1. The difference obeys

‖(wa, ta)− (wT, tT)‖W×T . ‖fa‖F . u
3+n
3

0 e−(3−n)(u0−a) (78)

for u0 ≫ 1 + a+. The solution (wa, ta) has a C1-dependence on a and n with the

asymptotic bound

‖(∂awa, ∂ata)‖W×T . u
3+n
3

0 e−(3−n)(u0−a) for u0 ≫ 1 + a+. (79)

Due to Proposition 4.1, the unique classical solution of problem (20) coincides with

the one constructed in Corollary 5.2 if the value for a is the same.

Proof. Since for f ≡ 0 trivially f ∈ NF (where NF is defined as in Proposition 5.1), the

construction of (wT, tT) immediately follows by applying Proposition 5.1.

For the construction of (wa, ta) it remains to show that ‖f‖F ≪ 1 for u0 ≫ 1+ a+.

The derivatives of fa can be computed to be

∂fa
∂t

(u, t) = − (3− n)u 3−n
3 e(3−n)(u+t−a)

(

1 + u
3−n
3 e(3−n)(u+t−a)

)2

and

∂2fa
∂t2

(u, t) = −

(

1− u 3−n
3 e(3−n)(u+t−a)

)

(3− n)2u 3−n
3 e(3−n)(u+t−a)

(

1 + u
3−n
3 e(3−n)(u+t−a)

)3
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Estimates in the F -norm are confined to |t| . u−1
0 (cf. (66)). There, we have

u0+ t−a = u0

(

1 + t−a
u0

)

& u0 provided that u0 ≫ 1+a+. Then for u0 ≫ 1+a+ indeed

u
3−n
3 e(3−n)(u+t−a) & u

3−n
3

0 e(3−n)u0 ≫ 1

and we have

‖fa‖F . u
3+n
3

0 e−(3−n)u0 ≪ 1 for u0 ≫ 1 + a+. (80)

Since (wa, ta) := S[fa], where S is the C1-solution map NF →W ×T of Proposition 5.1,

and fa is a C1-function of a and n into F (because of

∂afa =
(3− n)u 3−n

3 e(3−n)(u+t−a)

(1 + u
3−n
3 e(3−n)(u+t−a))2

(81)

and analogous expressions for derivatives in t), also wa and ta are C
1-functions of a and

n. Explicitly we have

(∂awa, ∂ata) = ∂FS[fa]∂afa so that ‖(∂awa, ∂ata)‖W×T . ‖∂afa‖F
by uniform boundedness of the derivative ∂FS[fa] : F → W × T . Due to (81) and

similar expressions for derivatives in t, ‖∂afa‖F . u
3+n
3

0 e−(3−n)(u0−a).

Finally, the difference formula (78) can be proven using the Lipschitz bound on S,
that is, ‖(wa, ta)− (wT, tT)‖W×T . ‖fa‖F , so that (78) follows from (80).

It remains to translate these results into corresponding results for ψ. This can be

done in two steps:

Lemma 5.3. Let a ∈ R and denote by ua = ua(s) the inverse function of sa = sa(u) =

u+ lnu
3
− a+ ta(u) (cf. (61)), where (wa, ta) is the unique solution of (63)&(64) with f

as in (48) (cf. Corollary 5.2). Furthermore, define uT = uT(s) as the inverse function

of sT = sT(u) = u + lnu
3

+ tT(u) (cf. (61)), where (wT, tT) is the unique solution of

(63)&(64) with f ≡ 0 (cf. Corollary 5.2). Then ua = ua(s) and uT = uT(s) are well-

defined for s≫ 1 + a−, resp. s≫ 1, with

max
k=0,1,2

∣

∣

∣

∣

dkua
dsk

(s)− dkuT
dsk

(s+ a)

∣

∣

∣

∣

. e−(3−n)(s+a) for s≫ 1 + a−, (82)

where
∣

∣

∣

∣

ua(s)−
(

s− ln s

3
+ a

)∣

∣

∣

∣

. s−1 and

∣

∣

∣

∣

uT(s)−
(

s− ln s

3

)∣

∣

∣

∣

. s−1 (83)

for s ≫ 1 + a−. The function ua(s) is locally in s a C1-function of a and n with the

asymptotic expression

∂aua = −1 + o(1) as s→∞. (84)
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Proof. First we note that due to (61) and since

‖ta‖T . 1 and ‖tT‖T . 1 (85)

by Corollary 5.2, the functions sa = sa(u) and sT = sT(u) are strictly monotone and

therefore the inverse functions ua = ua(s) and uT = uT(s) are well-defined and C1-

functions of a and n for s ≫ 1 + a+ − a = 1 + a−. The asymptotic expansion (83)

immediately follows from the definition of uT, (61), and (85). It follows from (83) that

ua(s)− uT(s+ a) = o(1) as s→∞. (86)

We define

va := wa + 1− 1

3u
and vT := wT + 1− 1

3u
. (87)

By reversing the computations in (49) and (60)–(63), we see that

dua(s)

ds
= va(ua(s)). (88)

Therefore

dua
ds

(s)− duT
ds

(s+ a)
(88)
= va (ua(s))− vT (uT(s+ a))

= (va (ua(s))− vT (ua(s)))

+ (vT (ua(s))− vT (uT(s+ a))) . (89)

By estimate (78) of Corollary 5.2 we have

|va(ua(s))− vT(ua(s))|
(87)
= |wa(ua(s))− wT(ua(s))|
(65),(78)

. (ua(s))
− 3−n

3 e−(3−n)ua(s)

(83)

. e−(3−n)(s+a) for s≫ 1 + a−.

Furthermore, by the mean value theorem,

|vT (ua(s))− vT (uT(s+ a))|

. max
σ∈[0,1]

∣

∣

∣

∣

dvT
du

(σua(s) + (1− σ)uT(s+ a))

∣

∣

∣

∣

× |ua(s)− uT(s+ a)| .

Since by (87) dvT
du

= dwT

du
− 1

3u2
and since ‖wT‖W . 1 for s≫ 1 + a−, we obtain

|vT (ua(s))− vT (uT(s+ a))|
.

(

(ua(s))
−2 + (uT(s+ a))−2

)

|ua(s)− uT(s + a)|
(83)

. s−2 |ua(s)− uT(s + a)| for s≫ 1 + a−.

Therefore (89) turns into
∣

∣

∣

∣

dua
ds

(s)− duT
ds

(s+ a)

∣

∣

∣

∣

. e−(3−n)(s+a) + s−2 |ua(s)− uT(s+ a)| (90)
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for s≫ 1 + a−. Integrating from s =∞ and using (86), we get

sup
s≥s0

|ua(s)− uT(s+ a)| . e−(3−n)(s0+a) + s−1
0 sup

s≥s0

|ua(s)− uT(s+ a)|

for s0 ≫ 1 + a−, implying (82) for k = 0. (82) for k = 1 follows from (90) and the case

k = 2 can be obtained using equation (49).

Finally, estimate (79) of Corollary 5.2 implies ∂ata = o(1) as u→∞ and therefore

∂asa(u)
(61)
= −1 + o(1) as u→∞. (91)

Differentiating ua(sa(u)) ≡ u with respect to a, we obtain

∂aua = −(∂asa)(∂sua)
(88)
= −va(∂asa)

(91)
= va(1 + o(1)) as u→ +∞;

since ‖wa‖W . 1, it follows from (87) that va(u) = 1+ o(1) as u→∞, whence (84).

For any B = ea > 0, we are able to characterize a solution ψ = ψB to (20a)&(20c)

and to characterize the leading-order asymptotics as H →∞:

Proof of Proposition 3.1. For given B > 0, let ua = ua(s) be defined as in Lemma 5.3

with a = lnB and let s = lnH . Then ψB = ψB(H), defined by ψB(H) := (ua(lnH))
2
3

(cf. (46)&(47)), solves (20a)&(20c) for H ≫ 1 + B−1. In the same way we define

ψT(H) := (uT(lnH))
2
3 (where uT is defined as in Lemma 5.3), being a solution of (21) for

H ≫ 1. The asymptotic expansion (23) immediately follows from (83) (cf. Lemma 5.3).

Also the regularity in B and n is immediate from the respective statements for ua in

Lemma 5.3 and standard ODE theory in the bulk.

The comparison formula (36a)&(36b) follows from transformation (47):

ψB − ψT = u
2
3
a − u

2
3
T =

(ua − uT)
(

u
1
3
a + u

1
3
T

)

u
2
3
a + u

1
3
au

1
3
T + u

2
3
T

.

By (82) and (83), we can infer
∣

∣

∣

∣

ψB − ψT

ψT

∣

∣

∣

∣

. B3−ns−1e−(3−n)s for s≫ 1 + (lnB)−,

which leaves us with (36b) using s = lnH (cf. (46)).

It remains to prove the asymptotic expression (36c). We notice that

∂BψB = (∂au
2
3
a )(∂Ba) = −

2

3B
u
− 1

3
a ∂aua

(83),(84)
=

2

3B
(lnH)−

1
3 (1 + o(1)) (92)

as H →∞. Differentiating (20a) yields

∂2H∂BψB =
1

2
ψ

− 3
2

B φ(H)∂BψB
(83),(92)
=

2

9B
(lnH)−

4
3 H−2 (1 + o(1))

as H →∞, so that integration immediately implies (36c).
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6. The asymptotics near the contact line

First we prove that indeed ψ(H) = ψTW(H)(1 + o(1)) as H ց 0, where ψ is a solution

of (20a)&(20b) and ψTW is given by (26):

Lemma 6.1. Let n ∈
(

3
2
, 3
)

. Any classical solution ψ of problem (20a)&(20b) fulfills

the asymptotics

ψ(H) = CH2− 2
3
n(1 + o(1)) as H ց 0, (93a)

dψ

dH
(H) = C

(

2− 2

3
n

)

H1− 2
3
n(1 + o(1)) as H ց 0, (93b)

d2ψ

dH2
(H) = C

(

2− 2

3
n

)(

1− 2

3
n

)

H− 2
3
n(1 + o(1)) as H ց 0, (93c)

where C is defined in (26).

Proof. The proof is inspired by – and simplifies – the arguments by Taliaferro in [65,

Section 3]. Let ψTW be defined by (26). We claim

lim
H→0+

ψ(H)

ψTW (H)
= L ∈ [0,+∞] (94)

and

lim
H→0+

dψTW
dH

(H) = +∞, lim
H→0+

dψ(H)

dH
= +∞. (95)

Assuming (94) and (95), we have

L = lim
H→0+

ψ(H)

ψTW(H)
= lim

H→0+

dψ(H)
dH

dψTW(H)
dH

= lim
H→0+

d2ψ(H)
dH2

d2ψTW(H)
dH2

(96)

= lim
H→0+

Hn−1
√

ψTW(H)

(H2 +Hn−1)
√

ψ(H)
=

1√
L
,

hence L = 1 and (93) follow from (96).

In order to prove (94), we consider the function H(σ), σ ∈ (0, σ0), implicitly defined

through

σ =:

∫ 1

H(σ)

dH̃
(

ψTW

(

H̃
))2 ր σ0 :=

∫ 1

0

dH̃
(

ψTW

(

H̃
))2 ∈ (0,∞],

µ(σ) :=
ψ(H(σ))

ψTW (H(σ))
− 1.

After straightforward computations using (20a) and (26), we find

d2µ

dσ2
=

(ΨTW(H))
5
2

Hn−1

(

1 + µ− 1

1 +H3−n

1√
1 + µ

)

. (97)
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Assume by contradiction that (94) is false. Then sequences σ′
k ր σ0 and σ′′

k ր σ0 of

local maxima and minima of µ, respectively, exist such that µ(σ′
k)→ L′ > L′′ ← µ(σ′′

k)

as k → +∞. In particular, we have d2µ
dσ2

(σ′
k) ≤ 0 ≤ d2µ

dσ2
(σ′′

k) and thus by (97)

(1 + µ(σ′
k))

3
2 ≤ 1

1 +H(σ′
k)

3−n
and (1 + µ(σ′′

k))
3
2 ≥ 1

1 +H(σ′′
k)

3−n
.

Since H(σ′
k)→ 0 and H(σ′′

k)→ 0 as k → +∞, this implies L′ ≤ 0 ≤ L′′, a contradiction.

Therefore (94) holds.

Since the first part of (95) is obvious, it remains to show the second part. First of

all, the limit L′ = limH→0
dψ
dH

exists (since d2ψ
dH2 is negative) and is nonnegative (since ψ

is positive for H > 0 with ψ(0) = 0). If L′ < +∞, we would have ψ(H) < (1 +L′)H as

H → 0, hence d2ψ
dH2

(20a)

. − 1
Hn−1/2 as H → 0: since n > 3/2, this contradicts L′ < +∞.

Hence L′ = +∞.

In order to parametrize solutions to problem (20a)&(20b) and to describe their

dependence on n, we now perform a sequence of transformations that reduces the

problem to the study of invariant manifolds of a suitable dynamical system.

Coordinate transformations

We use the coordinate transformation

s := lnH, (98)

so that the contact line is shifted to s = −∞. Motivated by the leading-order behavior

(93), we introduce the new unknown

1 + µ :=
ψ

ψTW
= C−1e−(2−

2
3
n)sψ. (99)

Hence, using the commutation relation d
ds
eϕs = eϕs

(

d
ds

+ ϕ
)

for ϕ ∈ R,

problem (20a)&(20b) turns into

(1 + µ)
1
2

(

3
d

ds
− (2n− 3)

)(

3
d

ds
+ 2(3− n)

)

(1 + µ)

= − 2(3− n)(2n− 3)

1 + e(3−n)s
for s ∈ R (100a)

and

lim
s→−∞

µ = 0. (100b)

Reformulation as a dynamical system

We reformulate (100a) as an autonomous three-dimensional continuous dynamical

system by introducing the additional functions

r := e(3−n)s and p :=
dµ

ds
.
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Thus (100a) turns into

d

ds







r

µ

p






= F (r, µ, p) for −s≫ 1, (101)

where

F (r, µ, p) :=







(3− n)r
p

F3(r, µ, p)






,

9F3(r, µ, p) := 3 (4n− 9) p+ 2 (2n− 3) (3− n) v

+ 2 (3− n) (2n− 3)

(

1− (1 + µ)−
1
2

1 + r

)

.

As desired, we have

F (0, 0, 0) = (0, 0, 0),

i.e., (0, 0, 0) is a stationary point of (101). The unique solution to (20) converges to it

as s→ −∞:

Lemma 6.2. We have (r, µ, p) → (0, 0, 0) as s → −∞ for the unique solution of

problem (20).

Proof. We note that, utilizing (93a) and the transformations (98) and (99), indeed

µ → 0 as s → −∞ for the unique solution of (20). Trivially r → 0 as s → −∞. For p

we may differentiate (99) and obtain p = C−1e−(2−
2
3
n)s (dψ

ds
− 3−n

3
ψ
)

so that in view of

(93a) and (93b) we have p→ 0 as s→ −∞.

7. The solution manifold near the contact line

In this section, we construct a one-parameter family of solutions to problem (20a)&(20b)

through the study of the unstable invariant manifoldM of the dynamical system (101)

in the stationary point (r, µ, p) = (0, 0, 0).

The dynamic characterization of the unstable manifold

The linearization of (101) in the stationary point (0, 0, 0) can be explicitly calculated:

∇F (0, 0, 0) =







(3− n) 0 0

0 0 1
2(3−n)(2n−3)

9
(3−n)(2n−3)

3
4n−9

3






. (102)

Its characteristic polynomial reads

P (ζ) = (ζ − (3− n))
(

ζ2 +
9− 4n

3
ζ − (3− n)(2n− 3)

3

)

= (ζ − (3− n))
(

ζ + α + 3− 4n

3

)

(ζ − α) , (103)
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where α is given by (32). Since no eigenvalue is zero, the stationary point (0, 0, 0) is

hyperbolic, so that locally, smooth stable and unstable manifolds exist [44]. As two

eigenvalues, α and 3 − n, are positive and for n ∈
(

3
2
, 7
3

)

do not coalesce+, the tangent

space T(0,0,0)M in (r, µ, p) = (0, 0, 0) and the unstable manifoldM are two-dimensional.

Furthermore, because the flow F (r, µ, p) is analytic in a neighborhood of the stationary

point (0, 0, 0), the unstable manifold is locally analytic as well (cf. [19] for a proof). By

the dynamic characterization of the unstable manifoldM (globally, it is characterized

as the set of all initial data whose solutions backwards in “time“ s converge to the

stationary point (0, 0, 0)), we must have:

Proposition 7.1. (r(s), µ(s), p(s)) ∈M for s ∈ R for the unique solution of (20).

The geometric characterization of the unstable manifold

We are now ready to prove Proposition 3.2. After the dynamic characterization, we now

use the geometric characterization of the unstable manifold: the tangent space T(0,0,0)M
is spanned by the eigenvectors of the positive eigenvalues of ∇F (0, 0, 0), α and 3− n.

Proof of Proposition 3.2. From (102), after straightforward computations we infer that

T(0,0,0)M in (r, µ, p) = (0, 0, 0) is determined by

p = αµ+
2(2n− 3) (3− n− α)

9(7− 3n)
r with (µ, r) ∈ R

2.

Hence, the unstable manifold M can be locally in a neighborhood U ⊂ R
2 of

(r, µ) = (0, 0) written as a graph p = Pn (µ, r) with (µ, r) ∈ U with

Pn(0, 0) = 0,
∂Pn
∂µ

(0, 0) = α,
∂Pn
∂r

(0, 0) =
2(2n− 3) (3− n− α)

9(7− 3n)
.(104)

The function Pn = Pn(µ, r) is analytic in (µ, r) (cf. [19]) and smoothly depends on the

parameter n∗. Hence, any solution (r, µ, p) on M subject to (r, µ, p) → (0, 0, 0) as

s→ −∞ needs to fulfill dµ
ds

= Pn
(

µ, e(3−n)s
)

for −s≫ 1. In view of (104) and since by

our choice α < 3 − n (cf. (32)), we expect the asymptotic behavior µ = beαs(1 + o(1))

as s→ −∞ with a parameter b ∈ R. Setting

y := eαs, (105)

we are lead to consider the ODE

y
dµ

dy
=

1

α
Pn (µ, y

γ) for 0 < y ≪ 1 subject to µ→ 0 as y ց 0, (106)

where γ := 3−n
α
. Note that 3− n > α, hence γ > 1, for n < 7

3
.

+ This is the reason, why our considerations are restricted to n < 7

3
, as for n = 7

3
in fact α = 3−n = 2

3

and the system cannot be diagonalized anymore.
∗ A proof in the case of discrete dynamical systems can be found in [60, App. I], where the smooth

dependence of the invariant manifold on parameters is shown, provided that the flow of the system

depends smoothly on the latter.
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Reformulation as a fixed-point problem

We may reformulate (106) as a fixed-point problem by introducing the kernel

q (µ, r, n) :=
1

α
Pn(µ, r)− µ,

so that, by (104),

q(0, 0, n) =
∂q

∂µ
(0, 0, n) = 0 (107)

and (106) takes the form

y
dµ

dy
− µ = q (µ, yγ, n) for 0 < y ≪ 1 subject to µ→ 0 as y ց 0.

Integration yields

µb(y) = by +

∫ 1

0

σ−2q (µ (yσ) , yγσγ , n) dσ for 0 < y ≪ 1,

where b ∈ R is a free parameter. By setting

θb(y) := µb(y)− by (108)

and defining

SΘφ(y) :=

∫ 1

0

σ−2φ(yσ)dσ and F [θ, b, n] := SΘq (109)

with q = q (θ(y) + by, yγ, n), we arrive at the fixed-point problem

θb = F [θb, b, n]. (110)

It remains to endow (110) with a functional-analytic framework that allows to apply

Banach’s fixed-point theorem (to construct a solution) and the implicit function theorem

(to derive the C1-dependence on the data). Therefore, we set

Θ := {θ : ‖θ‖Θ <∞} and NΘ := {θ : ‖θ‖Θ ≤ Θ0} ,
with ‖θ‖Θ := max

0≤y≤y0
y−1 |θ(y)| , (111)

where y0 ∈ (0, 1] is such that we can use the graph Pn. The values of Θ0 and y0 (y0
sufficiently small) will be chosen below, in this order. We also use the norm

‖q‖Q := max
0 ≤ µ ≤ (Θ0 + b0) y0

0 ≤ r ≤ y
γ
0

n ∈ I

j = 0, 1, 2

{∣

∣∂r∂
j
nq(µ, r, n)

∣

∣ ,
∣

∣∂2µ∂
j
nq(µ, r, n)

∣

∣ ,

∣

∣∂µ∂r∂
j
nq(µ, r, n)

∣

∣ ,
∣

∣∂2r∂
j
nq(µ, r, n)

∣

∣

}

, (112)

where I ⋐
(

3
2
, 7
3

)

and b0 > 0. Then it remains to show that for fixed I ⋐
(

3
2
, 7
3

)

and

b0 > 0 there exist Θ0 > 0 and y0 > 0 with y0 ≪ (1 + b0)
−1 and

(a) F ∈ C1 (NΘ × [−b0, b0]× I; Θ);
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(b) The derivative ∂ΘF has uniformly bounded operator norm

‖∂ΘF [θ, b, n]‖Θ→Θ ≤
1

2
for (θ, b, n) ∈ NΘ × [−b0, b0]× I, (113)

so that in particular idΘ−∂ΘF [·, b, n] is for fixed (b, n) ∈ [−b0, b0]×I an isomorphism

in Θ with uniform bound
∥

∥(idΘ − ∂ΘF [θ, b, n])−1
∥

∥

Θ→Θ
≤ 2 for (θ, b, n) ∈ NΘ×[−b0, b0]×I;(114)

(c) F [·, b, n] is a self-map in NΘ for (b, n) ∈ [−b0, b0]× I fixed.

As in the proof of Proposition 5.1, (a)–(c) imply that for any I ⋐
(

3
2
, 7
3

)

and any b0 > 0

there exists a C1-solution map [−b0, b0]× I ∋ (b, n) 7→ θb ∈ NΘ.

Bound on SΘ

We can directly infer from (109)

|SΘφ(y)| ≤
∫ 1

0

σ−2 |φ(yσ)|dσ ≤ yδ+1δ−1 max
0≤y′≤y0

(y′)−1−δ |φ (y′)|

for δ > 0, so that

‖SΘφ‖Θ ≤
yδ0
δ

max
0≤y≤y0

y−1−δ |φ(y)| for all δ > 0. (115)

Self-map (proof of (c))

We notice

q(µ, r, n)
(107)
=

∫ µ

0

∫ µ′

0

∂2µq(µ
′′, 0, n)dµ′′dµ′ +

∫ r

0

∂rq(µ, r
′, n)dr′,

so that we may estimate

‖F [θ, b, n]‖Θ
(109),(115)

≤






y0 max

0 ≤ y ≤ y0
0 ≤ µ ≤ (Θ0 + b0) y0

|θ(y) + by|2
y2

∣

∣∂2µq (µ, 0, n)
∣

∣

+
yγ−1
0

γ − 1
max

0 ≤ y ≤ y0
0 ≤ r ≤ y

γ
0

|∂rq (θ(y) + by, r, n)|







(111)

.

(

y0(Θ
2
0 + b20) +

yγ−1
0

γ − 1

)

‖q‖Q , (116)

where we have used δ = 1 and δ = γ − 1 > 0 for (115), respectively. Hence, under the

assumption that
(

y0(Θ
2
0 + b20) +

yγ−1
0

γ − 1

) ‖q‖Q
Θ0

≪ 1 for n ∈ I, (117)

indeed F [·, b, n] maps Θ into itself.
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Lipschitz bound (proof of (b))

We notice that the formal derivative ∂ΘF [θ, b, n] is given by

∂ΘF [θ, b, n]∂θ = (SΘ∂µq) ∂θ,

so that as above we may estimate

‖∂ΘF [θ, b, n]∂θ‖Θ
(115)

≤






y0 max

0 ≤ y ≤ y0
0 ≤ µ ≤ (Θ0 + b0) y0

y−2
∣

∣∂2µq (µ, 0, n)
∣

∣ |θ(y) + by| |∂θ(y)|

+
yγ0
γ

max
0 ≤ y ≤ y0
0 ≤ r ≤ y

γ
0

y−1 |∂µ∂rq (θ(y) + by, r, n)| |∂θ(y)|







(111)

.

(

y0(Θ0 + b0) +
yγ0
γ

)

‖q‖Q ‖∂θ‖Θ . (118)

Hence, the Lipschitz bound for ∂ΘF [θ, b, n] is true provided
(

y0(Θ0 + b0) +
yγ0
γ

)

‖q‖Q ≪ 1. (119)

Smallness conditions

As no further conditions will appear on Θ0 and y0, we now discuss (117) and (119). We

first choose Θ0 = 1 + b0, so that
(

y0(Θ
2
0 + b20) +

yγ−1
0

γ − 1

) ‖q‖Q
Θ0

.

(

(1 + b0)y0 +
yγ−1
0

γ − 1

)

‖q‖Q ,
(

y0(Θ0 + b0) +
yγ0
γ

)

‖q‖Q .

(

(1 + b0)y0 +
yγ0
γ

)

‖q‖Q .

We finally choose y0 so small that
(

(1 + b0)y0 +
yγ−1
0

γ − 1
+
yγ0
γ

)

‖q‖Q ≪ 1,

which is true for y0 ≪ (1 + b0)
−1, as the maximum in ‖·‖Q is taken on (cf. (112))

(µ, r, n, j) ∈ [0, (Θ0 + b0)y0]× [0, yγ0 ]× I × {1, 2, 3},
where (Θ0 + b0)y0 . (1 + b0)y0 . 1 and yγ0 . 1.
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Continuous differentiability (proof of (a))

We can also identify the other formal derivatives

∂bF [θ, b, n] = SΘ(y∂µq) and ∂nF [θ, b, n] = SΘ ((∂nγ)y
γ ln y ∂rq + ∂nq) .

For the proof of (a) we merely need to show boundedness and continuity of the directional

derivatives with respect to θ = θ(y), b, and n. Boundedness of ∂ΘF [θ, b, n] has been

already shown in the previous step. Furthermore, as in (118)

‖∂bF [θ, b, n]‖Θ
(115)

.

(

y0 (Θ0 + b0) +
yγ0
γ

)

‖q‖Q (120)

and

‖∂nF [θ, b, n]‖Θ
(115)

.

(

|∂nγ| |ln y0|
yγ−1
0

γ − 1
+ y0

(

Θ2
0 + b20

)

+
yγ−1
0

γ − 1

)

‖q‖Q ,

where SΘ∂nq can be treated as in (116) (the boundary values in (107) do not change

under differentiation with respect to n). This demonstrates boundedness of ∂bF [θ, b, n]
and ∂nF [θ, b, n].

For the continuity claim, observe

‖(∂ΘF [θ1, b1, n1]− ∂ΘF [θ2, b2, n2]) ∂θ‖Θ
= ‖SΘ (∂µq (θ1 + b1y, y

γ1, n1)− ∂µq (θ2 + b2y, y
γ2, n2)) ∂θ‖Θ

(115)

≤ y0 (‖θ1 − θ2‖Θ + |b1 − b2|) ‖q‖Q ‖∂θ‖Θ

+

(

max
n∈I

yγ0
γ
|ln y0| |∂nγ|

)

|n1 − n2| ‖q‖Q ‖∂θ‖Θ

+

(

y0(Θ0 + b0) + max
n∈I

yγ0
γ

)

|n1 − n2| ‖q‖Q ‖∂θ‖Θ ,

where the last summand, associated to ∂µ∂nq, is estimated via

|n1 − n2|max
n
‖∂µ∂nq∂θ‖Θ . |n1 − n2|max

n,y
|∂µ∂nq| ‖∂θ‖Θ

and maxn,y |∂µ∂nq| can be treated as in (116) (the boundary values in (107)

do not change under differentiation w.r.to n). This demonstrates that ∂ΘF ∈
C0 (NΘ × [−b0, b0]× I; Lin(Θ;Θ))♯.

By the same reasoning,

‖(∂bF [θ1, b1, n1]− ∂bF [θ2, b2, n2])‖Θ
= ‖SΘy (∂µq (θ1 + b1y, y

γ1, n1)− ∂µq (θ2 + b2y, y
γ2, n2))‖Θ

(115)

≤
(

y0 ‖θ1 − θ2‖Θ + y0 |b1 − b2|+
(

max
n∈I

yγ0
γ
|ln y0| |∂nγ|

)

|n1 − n2|
)

‖q‖Q

+

(

y0(Θ0 + b0) + max
n∈I

yγ0
γ

)

|n1 − n2| ‖q‖Q ,

♯ Lin(Θ;Θ) denotes the space of linear bounded operators Θ→ Θ.
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showing ∂bF ∈ C0 (NΘ × [−b0, b0]× I; Θ), and

‖(∂nF [θ1, b1, n1]− ∂nF [θ2, b2, n2])‖Θ
≤ ‖SΘ ln y ((∂nγ1) y

γ1∂rq (θ1 + b1y, y
γ1, n1)

− (∂nγ2) y
γ2∂rq (θ2 + b2y, y

γ2, n2))‖Θ
+ ‖SΘ (∂nq (θ1 + b1y, y

γ1, n1)− ∂nq (θ2 + b2y, y
γ2, n2))‖Θ

(115)

. max
n∈I

(

|ln y0|2 |∂nγ|2 + |ln y0|
∣

∣∂2nγ
∣

∣ + |ln y0| |∂nγ|
) yγ−1

0

γ − 1
‖q‖Q |n1 − n2|

+max
n∈I
|ln y0|2 |∂nγ|2

y2γ−1
0

2γ − 1
‖q‖Q |n1 − n2|

+max
n∈I
|ln y0| |∂nγ|

yγ0
γ
‖q‖Q (‖θ1 − θ2‖Θ + |b1 − b2|)

+ y0 (Θ0 + b0) ‖q‖Q (‖θ1 − θ2‖Θ + |b1 − b2|)

+

(

max
n∈I

(|ln y0| |∂nγ|+ 1)
yγ−1
0

γ − 1
+ y0(Θ

2
0 + b20)

)

‖q‖Q |n1 − n2| ,

from which ∂nF ∈ C0 (NΘ × [−b0, b0]× I; Θ) follows.

Proof of (37b) and (37c)

Estimate (116) (with y0 replaced by y) implies that θb(y) = O (yκ) as y ց 0, where

κ := min{1, γ − 1}. Therefore µb(y) = by (1 +O (yκ)) as y → 0 and (37b) follows from

y
(98),(105)

= Hα. By differentiating the fixed-point equation (110) with respect to b, we

obtain

∂bθb = (idΘ − ∂ΘF [θb, b, n])−1 ∂bF [θb, b, n],
so that we can infer

‖∂bθb‖Θ
(114)

≤ 2 ‖∂bF [θb, b, n]‖Θ
(120)

.

(

y0
(

Θ2
0 + b20

)

+
yγ0
γ

)

‖q‖Q .

This implies ∂bθb = O(y2) as y ց 0, so that by (108) ∂bµb = y (1 +O (y)) as y ց 0,

which due to y
(105)
= eαs

(98)
= Hα implies (37c).

Acknowledgments

The authors are grateful for discussions with Christian Kühn, in particular regarding
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