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Abstract. In this paper the first equation within a class of well known chemo-
taxis systems is derived as a hydrodynamic limit from a stochastic interacting

many particle system on the lattice. The cells are assumed to interact with

attractive chemical molecules on a finite number of lattice sites, but they only
directly interact among themselves on the same lattice site. The chemical envi-

ronment is assumed to be stationary with a slowly varying mean, which results

in a non-trivial macroscopic chemotaxis equation for the cells. Methodologi-
cally the limiting procedure and its proofs are based on results by Koukkus

[18] and Kipnis/Landim [17]. Numerical simulations extend and illustrate the

theoretical findings.

Contents

1. Introduction and result 1
2. The general result 5
3. Proof of Theorem 2.1 8
3.1. One block estimate 9
3.2. Two blocks estimate 14
4. Outlook and Examples: numerical simulations 14
5. Concluding remarks 19
References 19

1. Introduction and result

In this paper we derive chemotaxis-like equations as a hydrodynamic limit of a
stochastic lattice gas. Chemotaxis describes the directed motion of mainly biolog-
ical species towards higher or lower concentrations of chemical signals. Here we
consider positive chemotaxis of cells, i.e. motion towards higher concentrations of
a chemical signal, therefore the chemical signal is denoted as chemo-attractant.

Keller and Segel proposed in [16] a phenomenological chemotaxis model on the
macroscopic level for the aggregation and self-organization of the cellular slime
mold amoeba Dictyostelium discoideum (Dd). This can be written as

∂tρ = ∇ ·
(
k(ρ, ϑ)∇ρ− χ(ρ, ϑ)∇ϑ

)
(1.1)

= ∇ ·
(
k(ρ, ϑ)∇ρ− χ̃(ρ, ϑ)ρ∇ϑ

)
,

∂tϑ = ∆ϑ+ r(ρ, ϑ),(1.2)

Date: August 14, 2015.
Key words and phrases. chemotaxis, interacting stochastic many particle system, hydrody-

namic limit, stochastic lattice gas, block estimates.
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where ρ is the (volume) density of amoebae, ϑ is the density of the attractive chem-
ical molecules, k and χ̃ = χ/ρ are functional parameters describing the strength
of random motion of the cells and their chemotactic sensitivity, respectively, and
r comprises the reaction mechanisms. In [16], this cross-diffusion system was mo-
tivated by the macroscopic phenomenon being experimentally observed, namely
movement of the amoebae in direction of higher concentrations of a chemical sig-
nal, i.e. their movement up chemical gradients. Such general types of chemotaxis
systems are relevant also in the context of other biological species. One expects
this system to be an accurate description for chemotaxis phenomena occuring in
systems of many cells and signal molecules. There is a large literature on the formal
derivation of macroscopic equations from microscopic particle systems in such set-
tings. Rigorously this has been achieved in much fewer cases, e.g. by hydrodynamic
or so-called moderate limits. The lack of an ellipticity condition for the limiting
PDE-system, respectively the strong clustering of the cells is a major technical
problem in this case.
The first rigorous derivation of a general class of chemotaxis systems from a sto-
chastic interacting many particle system was given in [37], where the cells and the
chemical molecules interact moderately with each other in the sense described in
[28]. The motion of the cells and the molecules are governed by interacting sto-
chastic differential equations, and production and decay of the chemical molecules
are modeled via Poisson point processes. In [37] explicit error estimates could be
given, which show that the total number of particles does not have to be too large
for the limiting PDE-system to be a good approximation for the particle model. The
moderate rescaling requires that in the limiting procedure, when the total particle
number (cells and chemical molecules) tends to infinity, the main range of inter-
action of the particles tends to zero. The number of particles sensed in this main
range of interaction tends to infinity too, while this number is still only a vanishing
fraction of the total particle number. This is sufficient for correlations to become
small enough in the limit. The main technical complication in the proof is the
cross-diffusion structure of the chemotaxis system. The ellipticiy condition, heavily
used in [28], is no longer valid in this case. To overcome this problem, two shadow
systems were introdcued, in order to freeze the critical non-linearity and a priori es-
timates were derived. This technique applies also to more general systems of PDEs.

In principle it would be desirable to also derive chemotaxis like systems as hydro-
dynamic limits in the sense of [17]. In this paper, we rigorously derive equation
(1.1) from a microscopic stochastic many particle system on a lattice, so only one
equation, not the full system. The cells are assumed to interact via a finite number
of lattice sites with the chemical molecules. This corresponds to the assumption
that the cells detect chemical molecules in a fixed small region around themselves.
They do not change the chemical environment in this case. The interaction of the
cells among themselves takes place only at the same lattice site and not among
cells located on neighboring sites. This interaction is described by a function g
which among others fulfills conditions comparable to an ellipticity condition for
the related limiting PDE. These will be specified later. So we consider the case,
where a too strong clustering/aggregation of cells - a typical and important effect
of chemotaxis and self-organization in Dd - is avoided.
Such an interaction with a finite number of lattice sites introduces specific mathe-
matical difficulties. One has to deduce a weak equation for the limit density from
empirical measures (see Section 2) which converge weakly, cf. the discussion in
[27, Introduction]. To be more precise, we are modeling the cells/particles by an
interacting particle system as introduced in [34] and derive limit equations via a
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hydrodynamic limit, analogous to the procedure in [17]. Interacting particle sys-
tems in this sense are continuous-time Markov jump processes which also involve
discrete particles moving on a lattice.

So far we were not able to derive the full system (1.1), (1.2) as hydrodynamic limit.
It seems to be a major challenge to identify suitable particle models with invariant
product measures. This would be one option in order to prove a hydrodynamic
limit for systems of equations such as (1.1) and (1.2). Hydrodynamic limits without
product measures for single-species monotone particle systems where established in
[4, 5]. Stochastically monotone systems preserve a partial order on state space
over time, which allows the use of coupling techniques following first results in [32].
Monotonicity usually leads to homogeneous mass distributions, and indeed it has
been shown recently that particle systems with invariant product measures that
exhibit a particular form of clustering are necessarily non-monotone [31].
A generic example which exhibits invariant product measures is given by the zero-
range process (ZRP), where the jump rate of particles at any given site depends
only on the occupation number at this site. It is known, see [13], that multi-species
ZRPs have invariant product measures if the jump rates of particles satisfy certain
symmetry relations, i.e. the Onsager relations. However, in our case this would
not allow for purely diffusive motion of the chemo-attractant in (1.2). Instead, the
attractive chemical molecules would need to undergo a kind of chemotactic motion
too, in order for the Onsager relations to hold. From the modeling point of view
this is definitely not the case here.
Another method to derive a system of a PDE coupled to an ODE via a hydrody-
namic limit without the use of invariant product measures was introduced in [10]
for a specific two-species cellular system on the lattice. The authors new method
employs energy estimates for the mesoscopic empirical averages of the particles oc-
cupation number by which they obtain H2

1 a-priori bounds and thus are able to
derive a substitute for the two block estimates. For the most crucial terms in their
setting homogenization techniques are used, which play the role of the one block
estimates. For a discussion of the respective particle model itself see also [23]. It
would be interesting to see whether in our case one can find scaling regimes where
the existence of gradients (and not only densities as in [10]) can rigorously be proved
for the full limiting PDE system.
One typical approximation of system (1.1), (1.2) is to assume a quasisteady chemo-
attractant density, i.e. to set the left hand side of (1.2) equal to zero. Formally, this
is justified by assuming that the diffusivity of the chemo-attractant is much larger
than the random motion of the cells, see e.g. [14]. There are also recent results on
random walks in dynamic random environments driven by exclusion processes [3],
which are based on separation of time-scales argument. Otherwise there are only
very few rigorous results on hydrodynamic limits for two-species systems, see e.g.
[11, 7], since such processes are in general also non-monotone.
It is obvious from a modeling point of view, how a full chemotaxis model for the
behavior of particles on a lattice could look like, compare e.g. [29]. One ansatz
relates to attractive reinforced random walks for many particles with diffusion and
decay of the attractive weight. Deriving a hydrodynamic limit for such, or similar
models would be the final goal. We expect the Keller-Segel model to also hold in
this context, but a proof is still missing.

As a first step towards understanding chemotaxis as a hydrodynamic limit, we
therefore consider chemotaxis of cells in a stationary, but random, environment. In
order to obtain a non-trivial macroscopic chemotactic motion, we impose a slowly
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varying mean on the random chemical environment. There have been several stud-
ies of hydrodynamic limits of particles in random media: The hydrodynamic limit
for a ZRP a with stationary, ergodic environment on the sites has been obtained in
[18], and corresponding large deviations have been considered in [19]. The case of
a stationary, ergodic environment on the edges was treated in [12]. The hydrody-
namic limit for the ZRP with slowly varying but not random environment is given
in [9]. For a result unifying all these situations of “locally convergent” media in the
special case of the simple exclusion processes compare [15]. Our main result in the
present paper concerns the modeling of chemotaxis via a ZRP in a random envi-
ronment with slowly varying mean and it is summarized in Theorem 2.1, Section
2. A special case of this result is given in Corollary 1.1 below.

At each site x ∈ TdN on the periodic lattice TdN = {1, . . . , N}d one distributes
ζ(x) ∈ N molecules of the chemo-attractor such that ζ(x) is a Poisson random
variable with parameter ϑ( xN ) and these are kept fixed for all time. Let f : N→ [a, b]
for some a, b > 0 and set

f̃
(
ϑ( xN )

)
:= E

[
1

f(ζ(x))

]−1

.

Now we specify the type of chemotactic motion we consider here for the cells. We
start with an initial distribution of η(x) cells at x ∈ TdN . All cells perform inde-
pendent random walks with a site-dependent jump-rate which is N2f(ζ(x)). Thus
each cell remains at its current site x ∈ TdN for an exponentially distributed random
waiting time with parameter N2f(ζ(x)) and then jumps to a random neighboring
site on the lattice. In this way, particles are more likely to stay at a site x if f(ζ(x))
is large and therefore f is one way of formulating the microscopic behavior which
results in a chemotactic drift towards higher concentrations of the chemical signal.
To take the limit as N →∞, we embed the discrete torus TdN into the continuous
torus Td = Rd/Zd via x 7→ x

N . Thus the number of cells in an interval I ⊆ Td is
given by

#{cells in I} =
∑

x∈NI∩TdN

η(x),

where NI is I rescaled by N . The cell density in I is then obtained as∑
x∈NI η(x)/(|I|Nd).

Corollary 1.1. Let η0(x) be distributed with a profile ρ0(u), i.e. for each interval
I ⊆ Td, the density converges in probability:

lim
N→∞

#{cells in I}
|I|Nd

=

∫
I

ρ0(u) du.

Then for all later times t > 0 and all intervals I, almost surely with respect to the
distribution of chemical molecules ζ, it holds that

lim
N→∞

#{cells in I}
|I|Nd

=

∫
I

ρt(u) du

in probability, where ρt solves

(1.3) ∂tρt(u) = ∆
[
f̃(ϑ(u))ρt(u)

]
= ∇ ·

[
f̃(ϑ(u))∇ρt(u) + f̃ ′(ϑ(u))ρt(u)∇ϑ(u)

]
,

which is of the form (1.1).

For the derivation of this result from Theorem 2.1 we refer to the discussion in
Section 4. Let us first make several remarks concerning this result.
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Remark 1.2. (1) The assumption of independent random walks treated in Corol-
lary 1.1 yields a linear limit equation and is much weaker than necessary, see The-
orem 2.1. It is presented here in order to give the reader an intuition for the

connection between the macroscopic bias f̃(ϑ(u)) induced by the chemical signal
and the related microscopic bias f(ζ(x)).
(2) Note that instead of the Poisson distribution, we can let the environment be
given by any distribution in N depending continuously (in distributional topology)
on its parameter.
(3) In case of a stationary chemical environment, the solution is always global and
no blow-up can occur, thus excluding a prominent feature of the full chemotaxis
system, where the possibility of finite time blow-up in two space dimensions for a
suitable parameter range is of important biological relevance for self-organization
phenomena in the cellular slime mold amoebae Dd, [8], [14].
(4) Finally, let us mention that some microscopic descriptions for chemotactic cell
motion are based on the feature that the cells can detect concentration gradients
along their cell surface. Our result supports the idea that chemotactic effects can
also occur if the cells only sense the absolute values of the concentration of the
chemo-attractant without needing to sense its (local) gradients. An alternative ap-
proach would be to let each particle perform asymmetric random walks (and its
nonlinear versions involving a zero range interaction g(·), see below) with jump rates
across edges of the lattice proportional to p(x, y). Here x, y are neighboring sites,
and p(x, y) is a random variable, which in our case is determined by the attractive
chemical environment ζ(x)., see also [29] and the microscopic approaches in [2]. A
typical example for an asymmetric random walk would be p(x, y) = f

(
ζ(y)−ζ(x)

)
,

representing a microscopic gradient for an appropriate function f . This approach
would lead us to consider problems of the type investigated in [12].
(5) For positive chemotaxis effects, i.e. clustering/aggregation of the cells the sign
of the second term on the right hand side of (1.1), (1.3) is crucial. Further, already

in [33] it was pointed out that the diffusivity f̃ , k and the chemotactic sensitivity

−f̃ ′, χ̃ of the cells are not completely independent functionals. A suggestion in [33]

is that the diffusivity f̃ in (1.3) relates to the chemotactic sensitivity −f̃ ′, which is
supposed to have a positive sign in case of positive chemotaxis, as follows:
f̃ ′ = −χ0f̃Φ̃′(ϑ) for a suitable function Φ̃, e.g. Φ̃(ϑ) = ϑ and χ0 > 0.

This results in f̃ = C exp(−χ0Φ̃(ϑ)), e.g. f̃ = C exp(−χ0ϑ).

So for large chemical concentrations f̃ becomes small.

The outline of the paper is as follows. In Section 2, we present a general result
on hydrodynamic limits in a random environment with slowly varying mean. Its
proof is given in Section 3 where we highlight the differences to the proofs found in
[18, 17]. Then in Section 4, we show how to deduce Corollary 1.1 from the general
result and present numerical simulations of the particle system.

2. The general result

In this paper, we apply the entropy method as given in [25] to obtain a generalization
of equation (1.3), namely for the chemotactically moving cells, in a stationary, yet
random, environment, which represents the density of a heterogeneously distributed
attractive chemical signal. To avoid technicalities concerning boundary conditions,
we shall work in a periodic domain. Thus we consider a Markov (Feller) process,

describing the motion of the cells, with state space NTdN , where TdN = {1, . . . , N}d
denotes the perodic lattice with N + 1 ≡ 1. Elements of the state space will
be called particle configurations and denoted by the Greek letters η, ζ, ξ. Thus
η(x) ∈ N denotes the number of particles of the configuration η at site x. The
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elements of TdN will be denoted by the letters x, y, z and are called microscopic
variables. Two microscopic sites x, y ∈ TdN are called neighbors, in short x ∼ y, if
|x − y| = 1. The discrete torus is embedded in the continuous torus Td = Rd/Zd
via x 7→ x/N . Elements of the continuous torus will be denoted by u and are called
macroscopic variables. For simplicity, we consider only symmetric nearest-neighbor
jumps; then the Markov process is given by the generator

(2.1) LNf(η) =
∑
x∼y

g(η(x))pNx
(
f(ηx,y)− f(η)

)
for all f ∈ Cb(NTdN ), where the sum is taken over all (ordered) pairs of neighbors
x and y. Here ηx,y denotes the configuration obtained from η after one particle
has jumped from site x to y and pNx > 0 describes the chemical environment.
Throughout this article, we assume that

pNx = v( xN ) + qx,

where v ∈ C1(Td,R) describes the slowly varying mean of the environment and

(qx)x∈Zd ⊂ RZd is a uniformly bounded stationary and ergodic sequence of random
variables with zero mean. In order to avoid degeneracies, we assume strictly positive
jump rates, i.e. without loss of generality we assume pNx , qx ∈ [a, b] with 0 < a < b.

We denote the law of q by m, so that m is a probability measure on RZd .
It is also possible to think of pNx as a random variable. Note, however, that for
technical reasons in what follows we fix the ergodic part q of the environment
independently of N . The dependence of the jump rates on the number of cells is
given by the function g : N→ [0,∞). In addition to the standard condition

g(n) = 0 ⇔ n = 0

to avoid degeneracies, we make the following regularity assumptions on g through-
out the paper.

Assumption 1. (i) Suppose that g is uniformly Lipschitz-continuous, i.e. there
exists a constant g∗ such that

sup
n∈N
|g(n+ 1)− g(n)| ≤ g∗.

(ii) Further assume that g grows at least linearly, i.e. there exists g0 > 0 such that

inf
n∈N

g(n)

n
≥ g0.

These assumptions are not optimal but they are standard in the literature, see e.g.
[17, Theorem 5.1.1], on which our proof is based. Under these assumptions, the
process with generator (2.1) has invariant product measures νN,p that satisfy the
detailed balance condition

pNx g(n)νN,p[η(x) = n]νN,p[η(y) = k]

= pNy g(k + 1)νN,p[η(x) = n− 1]νN,p[η(y) = k + 1]

for all neighbors x, y ∈ TdN and k, n ∈ N.
Indeed for any ϕ ≥ 0, there exists such a measure νN,pϕ given by

(2.2) νN,pϕ (η) =
∏
x∈TdN

[
(pNx )−1ϕ

]η(x)

Z((pNx )−1ϕ)g(η(x))!
,

where g(n)! = g(1)g(2) . . . g(n), g(0)! = 1 and

(2.3) Z(ϕ) =

∞∑
n=0

ϕn

g(n)!
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is the partition function. The detailed balance condition ensures that the generator
LN in (2.1) is L2(νN,pϕ )-selfadjoint and in particular the measure νN,pϕ is an invariant

product measure. Let ν1
ϕ denote the one-site marginal without environment, i.e.

ν1
ϕ(n) =

ϕn

Z(ϕ)g(n)!
.

The associated density then is

(2.4) M(ϕ) = Eν1
ϕ

[η(0)].

Assumption 1 implies that Z is finite on [0,∞). Hence the product measure νN,pϕ

exists for all ϕ ∈ [0,∞) and environments (pNx )x∈TdN . The parameter ϕ ≥ 0 is called

fugacity, and it controls the expected particle density which is given by

(2.5) R(u, ϕ) := Em
[
M
(

ϕ
v(u)+q0

)]
for all u ∈ Td. The family of distributions (2.2) is also called the grand-canonical
ensemble. One can show that for each u ∈ Td, the function R(u, ·) is strictly
increasing, cf. [17], and we then define Φ(u, ·) to be its inverse function. Note that

Em
[
EνN,p

Φ( x
N
,ρ)

[
η(0)

]]
= ρ and Em

[
EνN,pϕ

[
g(η(x))pNx

]]
= Φ( xN , ϕ).

We shall see that the limit equation is given by

(2.6) ∂tρt(u) = ∆Φ(u, ρt(u)).

Finally we need a suitable notion of distance between probability measures, which

in our case is given by the relative entropy. Consider measures ν, µ ∈ P (NTdN ) such
that µ is absolutely continuous with respect to ν (i.e. µ � ν). Then the relative
entropy is given by

H(µ|ν) =

∫
NTd
N

log
dµ

dν
(η) dµ(η),

where dµ
dν denotes the Radon-Nikodym derivative of µ with respect to ν. The main

result of this section is the following.

Theorem 2.1. Let µN0 ∈ P (NTdN ) be the initial datum of the particle process with
an associated initial profile ρ0 ∈ L∞(Td), i.e. it holds

lim
N→∞

µN0

(∣∣∣ 1

Nd

∑
x∈TdN

G( xN )η(x)−
∫
Td
G(u)ρ0(u) du

∣∣∣ ≥ δ) = 0 m-almost surely

for all G ∈ C(Td) and δ > 0. Furthermore we suppose the bounds

H(µN0 |νN,pϕ ) ≤ CNd and EµN0

[ ∑
x∈TdN

η(x)2

]
≤ CNd

to hold for some (and hence all) ϕ > 0. Denote by µNt ∈ P (NTdN ) the measure
obtained from the evolution of the ZRP with rate function g and by ρt ∈ L∞(Td)
the density obtained from equation (2.6). Then under Assumption 1, it holds that

lim
N→∞

µNt

(∣∣∣ 1

Nd

∑
x∈TdN

G( xN )η(x)−
∫
Td
G(u)ρt(u) du

∣∣∣ ≥ δ) = 0 m-almost surely

for all t > 0, G ∈ C(Td) and δ > 0.
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Remark 2.2. In order to fully connect Corollary 1.1 with Theorem 2.1, we note
that weak convergence of the empirical measures implies convergence of the densities
over intervals by the Portmanteau theorem [6, Theorem 2.1]. This follows from the
absolute continuity (with respect to the Lebesgue measure) of the limit measure
ρt(u) du.

To prove this result, we adapt the method in [18] to a random environment with
slowly varying mean. The paper [18] is based on the entropy method given in [25]
and proves a hydrodynamic limit for a zero range process in a stationary (ergodic)
random environment. The case of a zero range process in a slowly varying deter-
ministic environment was treated in [9]. Thus, from a purely technical point of
view, our result is a combination of the previous two. Indeed, our method is close
to the methods presented in [18]. Therefore we mainly highlight the differences
here. The basic idea of the proof lies in the fact that the slowly varying mean is
locally almost constant and hence in small boxes we are essentially in the situation
of [18].

3. Proof of Theorem 2.1

The first step of the proof is to obtain a priori bounds and tightness of the particle
process. Indeed we can understand the convergence result of Theorem 2.1 in terms
of the empirical measure

αNη (du) =
1

Nd

∑
x∈TdN

η(x)δ x
N

(du) ∈M+,

where δu denotes a Dirac delta, u ∈ Td, andM+ is the space of all positive Radon
measures on Td. For all t ≥ 0, the configuration ηt is a random variable distributed
according to µNt . Note that it suffices to prove Theorem 2.1 for all 0 ≤ t ≤ T
with a fixed, but arbitrary, T > 0. Since for any environment p the ZRP is a
jump process on the state space, (ηt)t∈[0,T ] is a random variable on the path space

D([0, T ];NTd). Here D([0, T ];NTd) denotes the space of functions [0, T ] → NTd

that are right-continuous in time with left limits. We denote the distribution of
(ηt)t∈[0,T ] by µN . In the same vein, (αNηt)t∈[0,T ] is a random variable on the path

space D([0, T ];M+); let QN,p denote its distribution. The entropy dissipation of
µNt can be defined in terms of the Dirichlet form

D(µNt |νN,pϕ ) :=

∫
NTd
N

√
dµNt

dνN,pϕ

LN

√
dµNt

dνN,pϕ

dνN,pϕ .

Throughout this paper we suppose that the assumptions of Theorem 2.1 are satis-
fied.

Lemma 3.1. It holds that

H(µNt |νN,pϕ ) ≤ CNd for all t ∈ [0, T ] and
1

T

∫ T

0

D(µNt |νN,pϕ ) dt ≤ CNd.

Lemma 3.2. For any environment p, the sequence of probability measures (QN,p)N∈N
is tight.

Lemma 3.3. For any environment p, all limit points Q∗,p of (QN,p)N∈N are sup-
ported on {π ∈ D([0, T ];M+(Td)) : πt(du) � du}, i.e. at each time t, the limit
measures are absolutely-continuous with respect to the Lebesgue measure.

Lemma 3.4. For any environment p, if πt(du) = ρt(u) du is distributed according
to Q∗,p, then ρt(u) is the unique solution of (2.6) in L2((0, T )× Td).
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The proofs of Lemma 3.1 – 3.4 are similar to the proofs of the corresponding
results for the usual ZRP, see Lemma 2.1 – 2.4 in [18] and Lemma V.1.5 and V.1.6
in [17]. Once these results have been obtained, Theorem 2.1 is a straight-forward
consequence. The main difficulty consists in the proof of the so-called replacement
lemma, which is the key to Lemma 3.4. In order to state the replacement lemma,
we need some additional notation to describe averages over mesoscopic blocks. Set

ηl(x) =
1

(2l + 1)d

∑
|x−y|≤l

η(y)

and

V px,l(η) :=

∣∣∣∣ 1

(2l + 1)d

∑
|x−y|≤l

pNy g(η(y))− Φ( xN , η
l(x))

∣∣∣∣.
Lemma 3.5 (Replacement Lemma). For every δ > 0, m-almost surely it holds
that

lim sup
ε→0

lim sup
N→∞

µN
(∫ T

0

1

Nd

∑
x∈TdN

V px,εN (ηt) dt ≥ δ
)

= 0,

where τx denotes the translation by x ∈ TdN .

In the remainder of this section we will mainly prove Lemma 3.5, where we sketch
the modifications necessary to adapt the proof in [18] in order to take into account
the slowly varying average of the environment v( xN ). First we prove the replacement
over small boxes of size l ∈ N.

3.1. One block estimate.

Lemma 3.6 (One Block Estimate). It holds that

lim sup
l→∞

lim sup
N→∞

EµN
[ ∫ T

0

1

Nd

∑
x∈TdN

V px,l(ηt) dt

]
= 0

m-almost surely.

Setting

fNt (η) =
dµNt

dνN,pϕ

(η), FN (η) =

∫ T

0

fNt (η) dt,

we see that

EµN
[ ∫ T

0

1

Nd

∑
x∈TdN

V px,l(ηt) dt

]
=

1

Nd

∑
x∈TdN

∫
NTd
N

V px,l(η)FN (η) dνN,pϕ (η) .

Lemma 3.1, together with convexity of the entropy and Dirichlet form, yields the
bounds

HN,p(FN ) := H(FN dνN,pϕ | dνN,pϕ ) ≤ CNd,

DN,p(FN ) := D(FN dνN,pϕ | dνN,pϕ ) ≤ CNd−2.
(3.1)

For future reference, we also note the following expression of the Dirichlet form via
the density FN . It holds that

(3.2) DN,p(FN ) =
∑
x∼y

∫
NTd
N

1

2
pNx g(η(x))

[√
FN (ηx,y)−

√
FN (η)

]2
dνN,pϕ .

The next lemma allows us to restrict ourselves to bounded particle configurations.
Its proof is analogous to the proof of [17, Lemma V.4.2] with the entropy inequality
as additional ingredient.
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Lemma 3.7. Under the conditions of Theorem 2.1, we have

lim sup
A→∞

lim sup
l→∞

lim sup
N→∞

sup
p,f

∫
NTd
N

1

Nd

∑
x∈TdN

V px,l(η)χ{ηl(x)>A}(η)f(η) dνN,pϕ (η) = 0.

where the supremum is taken over all densities f such that HN,p(FN ) ≤ CNd,

DN,p(FN ) ≤ CNd−2 and all environments p = pN ⊂ [a, b]T
d
N . For every set A, we

denote by χA the characteristic function of A.

Therefore we just need to prove

lim sup
l→∞

lim sup
N→∞

1

Nd

∑
x∈NTd

N

∫
NTd
N

V px,l,A(η)FN (η) dνN,pϕ (η) = 0

m-almost surely, where we set V px,l,A(η) := V px,l(η)χ{ηl(x)≤A}(η). In fact, due to the

bounds (3.1) on the Dirichlet form of FN , it suffices to find an upper bound for

(3.3)
1

Nd

∑
x∈TdN

∫
NTd
N

V px,l,A(η)FN (η) dνN,pϕ (η)− γCN2−dDN,p(FN )

for all γ > 0. Next we restrict the problem to translations of the small box Λl :=
{−2l, . . . , 2l}. Denote by νx,l,pϕ the Λx,l-marginal of νN,pϕ and by Fx,l(η) the density

of the Λx,l-marginal of the measure FN (η)dνN,pϕ (η) with respect to νx,l,pϕ . We will
sometimes drop the index for x = 0 for such quantities when taken at the origin.
Furthermore we define a Dirichlet form on Λx,l by

Dpx,l(f) =
∑
y∼z

y,z∈Λx,l

Ipy,z(f), where we have set

Ipy,z(f) =
1

2

∫
NTd
N

pNy g(η(y))
(√

f(ηy,z)−
√
f(η)

)2

dνN,pϕ .

By convexity of the ”bond”-Dirichlet forms Ipx,y, we have Ipy,z(Fx,l) ≤ Ipy,z(FN ) for
all neighbors x, y ∈ Λx,l and thus

1

Nd

∑
x∈TdN

Dpx,l(Fx,l) ≤
C(l)

Nd
DN,p(FN ).

Hence instead of expression (3.3), we just need to find an upper bound for

(3.4)
1

Nd

∑
x∈TdN

{∫
NTd
N

V px,l,A(η)Fx,l(η) dνx,l,pϕ (η)− γC(l)N2Dpx,l(Fx,l)
}
.

Next we need to take care of the random part of the environment. The method
to keep track of the environment is due to [18] and constitutes the main deviation
from the proof of the hydrodynamic limit for the usual ZRP as exhibited in [17].
Thus we fix α, δ > 0 and let n ∈ N be sufficiently large such that 1

n < δ. Divide the

interval [a, b] into sub-intervals of length not greater than δ(b−a) via Iδj = [βj , βj+1)
for 0 ≤ j ≤ n− 2 where

βj = a+ (b− a)
j

n
(j = 0, . . . , n− 1)

and Iδn−1 = [βn−1, b]. Fix k < l and let L = [(2l + 1)/(2k + 1)]d, where [x] denotes
the Gaussian bracket, i.e. the largest integer smaller than or equal to x ∈ R. Now we
divide Λl into disjoint cubes of the form x+ Λk, where we take Bi, i = 1, . . . , L−1,
such that

Bi ⊆ Λl, Bi ∩Bj = ∅ for i 6= j, and Bi = xi + Λl for some xi ∈ Zd.
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Then set BL = Λl \
⋃L−1
i=1 Bi and without restriction take x1 = 0, i.e. B1 = Λk.

Also set Bi(x) = x+Bi for x ∈ Zd. For x ∈ TdN , α ∈ (0, 1) and q ∈ [a, b]Λl , set

(3.5)

N l,k,δ
x,j,i (q) :=

1

(2k + 1)d

∑
z∈Bi(x)

χIδj (qz),

Al,k,δx,i,α :=
{

(qz)z∈Λl :
∣∣∣N l,k,δ

x,j,i (q)− Em[χIδj (qz)]
∣∣∣ ≤ α, j = 0, . . . , n− 1

}
,

Al,k,δx,α :=

{
(qz)z∈Λl :

1

L

L∑
i=1

χAl,k,δx,i,α
(q) ≥ 1− α

}
.

Since V pl,A ≤ C(A) is bounded, the expression (3.4) is bounded form above by

(3.6)

1

Nd

∑
x∈TdN

{
χAl,k,δx,α

(p)

(∫
NTd
N

V px,l,A(η)Fx,l(η) dνx,l,pϕ (η)− γC(l)N2Dpx,l(Fx,l)
)

+ C(A)(1− χAl,k,δx,α
(q))

}
.

Now we take care of the non-random part of the enviroment. To this end, set

Ãl,k,δx,u,α =
{

(pz)z∈Λl : pz = qz + vz, q ∈ Al,k,δx,α , sup
z∈Λl

|vx+z − v(u)| ≤ α
}

Since v is smooth, in particular (uniformly) continuous, for every α we can choose
N large enough such that vx+z := v((x + z)/N) does not differ from v(x/N) by
more than α. Thus (3.6) is bounded from above by

(3.7)

1

Nd

∑
x∈TdN

{
χÃl,k,δ

x, x
N
,α

(p)

(∫
NTd
N

V px,l,A(η)Fx,l(η) dνx,l,pϕ (η)− γC(l)N2Dpx,l(Fx,l)
)

+ C(A)(1− χAl,k,δx,α
(q))

}
.

Since the random part q of the environment is stationary and ergodic by assumption,
it holds

1

Nd

∑
x∈TdN

(
1− χAl,k,δx,α

(q)
)

N→∞−−−−→ Pm(q /∈ Al,k,δ0,α ),

which in turn vanishes by ergodicity in the limit as l → ∞ and k → ∞. The
remaining term in (3.7) is bounded from above by

sup
u∈Td

χÃl,k,δ
[uN],u,α

(p)

(∫
NTd
N

V p[uN ],l,A(η)F[uN ],l(η) dν[uN ],l,p
ϕ (η)

− γC(l)N2Dp[uN ],l(F[uN ],l)

)
.

Again τ−[uN ]p is in Ãl,k,δ0,u,α for large enough N and the term involving Φ( [uN ]
N , ρ)

which appears in V p[uN ],l,A converges uniformly in u and ρ ≤ A to Φ(u, ρ). Thus we

see that, up to an error that vanishes as N →∞, it suffices to estimate

(3.8) sup
u∈Td

sup
p∈Ãl,k,δ0,u,α

sup
f

(∫
NΛl

V pl,A(η)f(η) dνl,pϕ (η)− γC(l)N2Dp0,l(f)

)
,
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where the inner supremum is taken over all densities f on NΛl . For fixed l ∈ N, the
term V p0,l,A is only non-zero on the compact space of configurations in NΛl of at most

(2l + 1)dA particles, the Dirichlet form is lower-semicontinuous and this property
is conserved by the supremum. Hence the limit superior of (3.8) is bounded from
above by

(3.9) sup
u∈Td

sup
p∈Ãl,k,δ0,u,α

sup
f

∫
NΛl

V pl,A(η)f(η) dνl,pϕ (η),

where now the inner supremum is taken over all densities f on NΛl with vanishing
Dirichlet form Dpl (f) = 0. A density f has vanishing Dirichlet form if and only if it
is constant along all hyperplanes of a given number of particles. With this in mind,
we introduce the canonical measures

νpl,K( · ) := ν0,l,p
ϕ ( · |

∑
x∈Λl

η(x) = K) .

Since the probability density f is constant on {
∑
x∈Λl

η(x) = K}, we can esti-

mate (3.9) from above by

(3.10) sup
u∈TdN

sup
p∈Ãl,k,δ0,u,α

max
0≤K≤(2l+1)dA

{∫
NTd
N

1

L

L∑
i=1

∫ ∣∣∣ 1

(2k + 1)d

∑
x∈Bi

pxg(η(x))

− Φ
(
u, K

(2l+1)d

)∣∣∣ dνpl,K(η)

}
,

where we have inserted the explicit form of V p0,l,A and applied the triangle inequality.

For given u and p ∈ Ãl,k,δ0,u,α, we define ϕpK by

(3.11) Eνl,p
ϕ
p
K

[ηl(x)] =
K

(2l + 1)d
.

Note that 0 ≤ ϕpK ≤ C(A) is uniformly bounded in 0 ≤ K ≤ (2l+ 1)dA and l ∈ N.
The next lemma concerns the closeness of the grand-canonical and the canonical
measures.

Lemma 3.8 (Equivalence of ensembles). For all F : NΛk → R with finite second
moments with respect to νk,pϕ for all ϕ ≤ C(A), it holds that

lim
l→∞

sup
p∈[a,b]Zd

max
0≤K≤(2l+1)dA

∣∣∣∣Eνl,p
ϕ
p
K

[
F (η)

]
− Eνpl,K

[
F (η)

]∣∣∣∣ = 0.

Proof. Thanks to the uniform bounds a ≤ px ≤ b, the equivalence of ensembles can
be proved as explained in [17, Appendix 2], see also [18, Lemma 3.3]. �

By applying Lemma 3.8 to

F (η) =
1

(2k + 1)d

∑
x∈Bi

pxg(η(x)),

we just need to find an upper bound for

(3.12) sup
u∈TdN

sup
p∈Ãl,k,δ0,u,α

max
0≤K≤(2l+1)dA

{∫
NTd
N

1

L

L∑
i=1

∫ ∣∣∣ 1

(2k + 1)d

∑
x∈Bi

pxg(η(x))

− Φ
(
u, K

(2l+1)d

)∣∣∣ dνl,pϕpK (η)

}
.
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The next two lemmas yield convergence of this expression in the limit as l → ∞
and then k →∞. In a certain sense, the first lemma describes the “ergodic” error
between spatial averages and the quenched grand-canonical average.

Lemma 3.9. For all α, δ > 0, it holds that

lim sup
k→∞

lim sup
l→∞

sup
u∈TdN

sup
p∈Ãl,k,δ0,u,α

max
0≤K≤(2l+1)dA{∫

NTd
N

1

L

L∑
i=1

∫ ∣∣∣ 1

(2k + 1)d

∑
x∈Bi

pxg(η(x))− ϕpK
∣∣∣ dνl,pϕpK (η)

}
= 0.

The second lemma describes the difference between the quenched and annealed
grand-canonical averages.

Lemma 3.10. It holds that

lim sup
δ→0

lim sup
α→0

lim sup
k→∞

lim sup
l→∞

sup
u∈TdN

sup
p∈Ãl,k,δ0,u,α

max
0≤K≤(2l+1)dA

∣∣∣ϕpK − Φ
(
u, K

(2l+1)d

)∣∣∣
= 0.

Proof of Lemma 3.9. Under the law νl,p
ϕpK

, the random variables (pxg(η(x))−ϕpK)x∈Bi
are independent with zero mean. Furthermore their variance is uniformly bounded
by continuity in p and K. Thus the expression to be bounded vanishes by a law of
large numbers. �

Proof of Lemma 3.10. The absolute value in the given equation is obviously con-

tinuous in p and K. Using the fact that Ãl,k,δ0,u,α is closed and v(·) is continuous, it
is straight-forward to prove that the supremum over p and K is continuous with
respect to u. Hence for every l ∈ N, the supremum in the hypothesis is achieved for

some u ∈ Td, p ∈ Ãl,k,δ0,u,α and 0 ≤ K ≤ (2l + 1)dA. For these maximizers, let ϕ be

a limit point as l→∞ and ϕpK the corresponding subsequence. Then the absolute
value in the given formula in Lemma 3.10 is bounded from above by

(3.13)
∣∣∣ϕpK − ϕ∣∣∣+

∣∣∣ϕ− Φ
(
u, 1

(2l+1)d

∑
z∈Λl

M
(
ϕ
pz

))∣∣∣
+
∣∣∣Φ(u, 1

(2l+1)d

∑
z∈Λl

M
(
ϕ
pz

))
− Φ

(
u, 1

(2l+1)d

∑
z∈Λl

M
(ϕpK
pz

))∣∣∣,
where we have used (2.4), (2.2) and (3.11). By continuity and since ϕpK converges
to ϕ as l→∞, the first and last terms vanish in the limit. Now by definition of Φ
and (2.5), we write

ϕ = Φ(u,R(u, ϕ)) = Φ
(
u,Em

[
M
(

ϕ
v(u)+q0

)])
.

Since Φ(u, ·) is Lipschitz continuous uniformly in u ∈ Td, the second term in (3.13)
is bounded from above by a multiple of∣∣∣∣Em[M( ϕ

v(u)+q0

)]
− 1

(2l + 1)d

∑
z∈Λl

M
(
ϕ
pz

)∣∣∣∣.
By the triangle inequality and since p ∈ Ãl,k,δ0,u,α is of the form pz = qz + vz with

|vz − v(u)| ≤ α, this term is bounded from above by

1

L

L∑
i=1

χAl,k,δ0,i,α
(q)

∣∣∣∣Em[M( ϕ
v(u)+q0

)]
− 1

(2k + 1)d

∑
z∈Bi

M
(

ϕ
v(u)+qz

)∣∣∣∣+ Cα
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for all small enough α > 0. Hence it is enough to consider

sup
q∈Al,k,δ0,1,α

∣∣∣∣Em[M( ϕ
v(u)+q0

)]
− 1

(2k + 1)d

∑
z∈Λk

M
(

ϕ
v(u)+qz

)∣∣∣∣.
For each q, the absolute value in this formula is bounded from above by∣∣∣∣Em[M( ϕ

v(u)+q0

)]
−
n−1∑
j=1

M
(

ϕ
v(u)+βj

)
m(Iδj )

∣∣∣∣
+

∣∣∣∣ n−1∑
j=1

M
(

ϕ
v(u)+βj

)(
m(Iδj )−N l,k,δ

j,1 (q)
)∣∣∣∣

+

∣∣∣∣ 1

(2k + 1)d

∑
z∈Λk

n−1∑
j=0

(
M
(

ϕ
v(u)+βj

)
−M

(
ϕ

v(u)+qz

))
χIδj (qz)

∣∣∣∣.
By the Lipschitz-continuity of M and since n ≤ Cδ−1, this expression is bounded

from above by C(δ+αδ−1) for all q ∈ Al,k,δ0,1,α. Taking the limit, first for α→ 0 and
then for δ → 0, finishes the proof of the one block estimate. �

Remark 3.11. The above estimates correspond to the approximation of the inte-
gral with respect to the measure m by an integral of simple functions.

3.2. Two blocks estimate. Similarly, we can prove the two blocks estimate, which
shows that the difference between averages over boxes of size l and εN is negligible
in the limit.

Lemma 3.12 (Two Blocks Estimate). It holds that

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
|y|≤εN

EµN
[ ∫ T

0

1

Nd

∑
x∈TdN

∣∣ηlt(x+ y)− ηεNt (x)
∣∣ dt] = 0

m-almost surely.

We will skip the proof here and just note that it follows in a similar manner like
the one block estimate — the main difference lying in restricting the process to two
boxes of size l (that are at most εN apart) instead of just one. For details, the
reader may refer to [17, 18].

4. Outlook and Examples: numerical simulations

In this section, we present examples for chemotactic motion of particles in a slowly
varying chemical attractive environment in a slightly more general setting than our
theory has so far addressed. This is done in order to get further insight into the
behavior of such particle systems. Consider the (smooth) function ϑ : Td → (0,∞).
Assume that the attractive chemical environment ζ(x) on the lattice TdN is given
by independent Poisson random variables with parameter ϑ( xN ) at site x ∈ TdN . As
before, let m denote the law of this random environment. One might think of this
distribution as resulting from independent diffusion of attractive chemical molecules
on a time-scale much faster than the typical time-scale of the diffusive motion of
cells so that it is effectively time independent with respect to the random motion of
the cells. This assumption on the time-scales is biologically reasonable and helpful
also for theoretical reasons as outlined in the introduction. We suppose that the
cells motion is described by a Markov process with generator given by (2.1), where
the environment pN depends on the number of attractive chemical molecules ζ via

pNx = f(ζ(x)) for all x ∈ TdN .
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Thus f : N → (0,∞) provides a microscopic description of the chemical bias.
For simplicity, let us suppose for the rate g(η) = η, i.e. that the cells diffuse
independently in the random environment pN . Note that the “random part”
pNx − Em[f(ζ(x))] consists of independent but not stationary random variables,
so our theory given before does not apply directly in this case. However, on local
boxes the density ϑ( xN ) is approximately constant, say ϑ(u), and the environment
consists of almost identically and independently distributed particles, so that we
expect that with techniques as given above a hydrodynamic limit can be derived in
this case, too. To identify this limit, consider M given as in (2.4). Since g is the
identity, ν1

ϕ is a product of identical Poisson distributions with parameter ϕ and it
follows M(ϕ) = ϕ. Therefore we see that R as defined in (2.5) is given by

R(u, ϕ) = EPois(ϑ(u))

[
ϕ

f(ζ(x))

]
,

where the average on the right hand side is taken over a Poisson distribution with
parameter ϑ(u). Solving for ϕ yields

Φ(u, ρ) = EPois(ϑ(u))

[
1

f(ζ(x))

]−1

ρ.

In other words, the effective influence of the environment is given by its harmonic
mean. This is reminiscent of analogous formulas in (one-dimensional) stochastic
homogenization, cf. [30]. Let us denote

f̃(ϑ(u)) := EPois(ϑ(u))

[
1

f(ζ(x))

]−1

,

which yields the relationship between the microscopic chemical bias f and its macro-

scopic counterpart f̃ . Analogous to (2.6) the equation describing the limit of the
empirical measures is then explicitly given by

(4.1) ∂tρ(t, u) = ∆
[
f̃(ϑ)ρ

]
(t, u), (t, u) ∈ [0, T ]× Td,

which we rewrite as

∂tρ = ∇ ·
(

[f̃(ϑ)∇ρ+ f̃ ′(ϑ)ρ∇ϑ
]
,

which is of the form (1.1) with k(ρ, ϑ) = f̃(ϑ) and χ(ρ, ϑ) = −ρf̃ ′(ϑ), respectively

χ̃(ρ, ϑ) = −f̃ ′(ϑ). From (4.1) it follows that the stationary states are given by
multiples of

(4.2) ρ∞(u) =
1

f̃(ϑ(u))
= EPois(ϑ(u))

[
1

f(ζ(x))

]
.

The respective coefficient is determined by the initial mass, which is conserved. In
order to perform numerical simulations, let us suppose that the dependence of f(ζ)
on the attractive chemical molecules is explicitly given by

f(ζ) = ν +
χ0

1 + ζ(x)

with parameters ν, χ0 > 0 describing the relative strengths of the free diffusion and
the chemotactic motion. Specifically, we set χ0 = 2 and ν = 0.5. Furthermore, let

(4.3) ϑ(u) = 30 exp
(
− 60((u1 − 0.5)2 + (u2 − 0.5)2)

)
.

The simulations of the stochastic particle system are carried out with an algorithm
based on random sequential updates. Here the particle densities are measured
over balls in T2 of radius 0.05. The results are then compared with the numerical
solution of the corresponding limiting PDE, which is obtained by using a standard
finite difference method. Since we only deal with the first equation of a chemotaxis
system and because we are not in the situation where blowup in finite time is
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expected, we do not go into further details concerning more refined algorithms for
the PDE in this illustrating section.
The simulations for a lattice size of N ×N with N = 250 and uniform initial con-
figuration η(x) = 4 for all x ∈ T2

N are shown in Figs. 1–10.

Figure 1. Cell density
for particle system, t =
0.0008

Figure 2. PDE solu-
tion, t = 0.0008

Figure 3. Cell density
for particle system, t =
0.004

Figure 4. PDE solu-
tion, t = 0.004

Figure 5. Cell density
for particle system, t =
0.01

Figure 6. PDE solu-
tion, t = 0.01
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Figure 7. Cell density
for particle system, t =
0.04

Figure 8. PDE solu-
tion, t = 0.04

Figure 9. Cell density
for particle system, t =
0.2

Figure 10. PDE solu-
tion, t = 0.2

The simulations for the cell density exhibit an interesting phenomenon near the
boundary of the support of the positive density of the chemo-attractant, which it-
self is not visualized in the figures. Initially a ring of lower cell density forms around
the area where the cells finally will concentrate due to positive chemotaxis, best vis-
ible as the blue ring in Figures 2 and 4. This can be explained by particles jumping
out of the region of this ring into the domain of positive chemical attraction where
they get stuck due to their lower motility there. If they jump out of this domain
again, then they may not move very far away from it by random motion. This
leads to a density profile which is a non-monotone function of the distance from the
centre. For longer times this effect vanishes, however, and the density approaches
the steady state, which (in the hydrodynamic limit as N → ∞) is numerically in-
distinguishable from the solution of the PDE at time t = 0.2 shown in Figure 10.
Initially, the fluctuations of the initial condition dominate in the simulation of the
particle system, which explains the rather large difference to the deterministic so-
lution of the PDE. Averaging over several realizations of the particle system would
lead to closer resemblance between the two.

Finally, let us remark that it is possible to also consider models with a strong local-
ization of particles. Again we assume that the chemical environment results from
a random process. For the case considered below we do not have a proof for a
hydrodynamic limit so far, but expect a similar outcome as before. Also, we do
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not have stationarity in this case but convergence towards a stationary random
variable. Now we simulate only the respective particle model, since the solution for
the limiting PDE would require more refined numerical schemes than given above,
because now blow-up phenomena may occur.
Our example here is the following, let us consider a zero range process within the
range of so-called condensation. Specifically, we consider a ZRP with a constant
jump rate g(n) = g0 for all n > 0. As soon as ϕ > g0, the partition function Z
defined in (2.3) does not converge and the corresponding grand-canonical measure
(2.2) does not exist. As shown in [20, 21], for large enough densities the particles
tend to concentrate on only a few sites with the lowest exit rate. However, in this
case, this behavior is not due to the reinforced interaction of the cells and the at-
tractive chemical molecules, but instead it is solely due to the stochastic properties
of the ZRP. Such strong localization effects may relate to finite time blow-up of
solutions of related limiting objects.

Figs. 11–15 show the results of simulations for this model with N = 100, g(n) = 3,
and all other parameters given as before, i.e. uniform initial configuration η(x) = 4,
χ0 = 2, ν = 0.5 and ϑ given in (4.3) with final averaging over the empirical measure
with radius 0.05. In fact, this radius can be seen explicitly at points where many
particles have clustered in the figures below. Figure 16 shows the random density
of the chemo-attractant in order to compare with the location of the cell aggregate.

Figure 11. Cell den-
sity, t = 0.008

Figure 12. Cell den-
sity, t = 0.04

Figure 13. Cell den-
sity, t = 0.1

Figure 14. Cell den-
sity, t = 0.4
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Figure 15. Cell den-
sity, t = 2

Figure 16. Density of
the chemo-attractant ϑ
(random)

If the total density in the system is high enough, we expect that eventually a fi-
nite fraction of all particles will concentrate on the site with the highest number of
chemical molecules.

5. Concluding remarks

In this paper we derived the first equation of a general class of chemotaxis systems
via a hydrodynamic limit of a stochastic lattice gas. The attractive chemical envi-
ronment is prescribed in our case and assumed to be random and stationary, with
a slowly varying mean. The situation of very strong clustering of the particles on
single lattice sites is excluded in our theory, although this phenomenon can happen
during selforganization of chemotactic particles in certain situations, and then it
is of important biological relevance, like for the slime mold amoebae Dictyostelium
discoideum. It would be interesting to be able to derive the full chemotaxis system
from a hydrodynamic limit. Technically this is more challenging and methods of
scale separation might play a role here.
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