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Abstract: We study maximally entangled bases in bipartite systems Cd ⊗ Ckd (k ∈ Z+) which are
mutually unbiased. By systematically constructing maximally entangled bases, we present an approach
in constructing mutually unbiased maximally entangled bases. In particular, five maximally entangled
bases in C2⊗C4 and three maximally entangled bases in C2⊗C6 that are mutually unbiased are presented.
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I. Introduction

Quantum entanglement is central in quantum information processing and quantum
computation[1−12]. In particular, maximally entangled states play vital role in quantum
information processing tasks such as perfect teleportation[5−19]. It has been proved that
mixed maximally entangled states also exist when the two individual dimensions of a
bipartite system are not equal[13]. A pure state |ψ⟩ is said to be a d⊗d′ (d′ > d) maximally
entangled state if and only if for an arbitrary given orthonormal complete basis {|iA⟩} of
subsystem A, there exists an orthonormal basis {|iB⟩} of subsystem B such that |ψ⟩ can
be written as |ψ⟩ = 1√

d

∑d−1
i=0 |iA⟩ ⊗ |iB⟩[14]. There are many references for the bases of

entangled states[15−18].

Mutually unbiased bases (MUBs) play central roles in quantum kinematics[19], quan-
tum state tomography[20−21] and in quantifying wave-particle duality in multipath in-
terferometers [22]. Moreover, the importance of the mutually unbiased bases has been
demonstrated in various tasks in quantum information processing, such as quantum key
distribution[23], cryptographic protocols[23−24], mean king problem[25], quantum teleporta-
tion and superdense coding[26−28].
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11275131; the Natural Science Foundation of Jilin Province under number 201215239.
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Two orthogonal bases B1 = {|ϕi⟩}di=1 and B2 = {|ψi⟩}di=1 of Cd are said to be mutually
unbiased if

|⟨ϕi|ψj⟩| =
1√
d
, i, j = 1, 2, . . . , d.

A set of orthonormal bases B1,B2, . . . ,Bm in Cd is said to be a set of mutually unbiased
bases if every pair of the bases in the set is mutually unbiased.

Recent years, there are many interesting topics combining mutually unbiased bases
with other bases, such as product bases (PB)[29], unextendible product basis (UPB)[30] and
unextendible maximally entangled basis (UMEB)[31−32]. The UPB is a set of incomplete
orthogonal product states in Cd⊗Cd such that whose complementary space has no product
states. The UMEB is a set of less than d2 orthogonal maximally entangled states in
Cd ⊗ Cd such that whose complementary space has no maximally entangled vectors that
are othogonal to all of them. In [32], two complete UMEBs which are mutually unbiased
in C2 ⊗ C3 have been presented.

Ever since the introduction of mutually unbaised bases, considerable theoretical results
with useful applications have been obtained. One main concern is about the maximal
number of MUBs for given dimension d. It has been shown that the maximum number
N(d) of MUBs in Cd is no more than d + 1 [21] and N(d) = d + 1 if d is a prime power.
Different constructions of MUBs, especially for prime power and qubits systems, have
been presented in [33 − 40]. Whereas d is a composite number, N(d) is still unknown.
Since the dimension of Cd⊗Ckd (k ∈ Z+) is kd2, it is still a challenging problem to study
N(kd2) and construct MUBs in Cd ⊗ Ckd.

In this paper, we first study the maximally entangled bases in arbitrary bipartite
system Cd ⊗ Ckd (k ∈ Z+). We provide a systematic way of constructing maximally
entangled bases in Cd ⊗ Ckd. Moreover, we present explicit constructions of mutually
unbiased maximally entangled bases in C2 ⊗ C4 and C2 ⊗ C6.

II. Maximally entangled basis in Cd ⊗ Ckd (k ∈ Z+)

Let us first consider maximally entangled basis(MEB) in C2 ⊗ C4. Let {|0⟩, |1⟩} and
{|0′⟩, |1′⟩, |2′⟩, |3′⟩} be the orthonormal bases in C2 and C4, respectively. We consider the
following orthogonal basis in C2 ⊗ C4:

|ϕj
i ⟩ =

1√
2
(σi ⊗ I4)(|0⟩|(2j)′⟩+ |1⟩|(2j + 1)′⟩), i = 0, 1, 2, 3; j = 0, 1, (1)

where {σi}3i=1 are the Pauli matrices and σ0 = I2 is the 2× 2 identity matrix.

It can be easily checked that the above eight states in (1) are orthogonal maximally
entangled states, which constitute a MEB in C2 ⊗ C4.

Now we generalize the above construction of MEB to the case of Cd ⊗ Ckd (k ∈ Z+).
Let {|j⟩}d−1

j=0 and {|i′⟩}kd−1
i=0 denote the orthonormal bases of Cd and Ckd, respectively.
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Consider a set of unitary matrices

Un,m =
d−1∑
ℓ=0

ωnℓ
d |ℓ⊕m⟩⟨ℓ|, n,m = 0, 1, . . . , d− 1, (2)

where ωd = e
2π

√
−1

d , and ℓ⊕m denotes (ℓ+m) mod d. These matrices {Un,m}d−1
n,m=0 form

a basis of the operator space on Cd and satisfy

Tr(U †
n′,m′Un,m) = dδn′,nδm′,m. (3)

The above d2 operators defined in (2) accurately corresponds to the Weyl-Heisenberg
group.

Let us consider k maximally entangled states in Cd ⊗ Ckd:

|ϕj⟩ = 1√
d

d−1∑
p=0

|p⟩|(p+ dj)′⟩, j = 0, 1, . . . , k − 1. (4)

Applying the unitary matrices (2) to the first space of the maximally entangled states in
(4), we get kd2 orthogonal maximally entangled states:

|ϕ(j)
n,m⟩ = (Un,m ⊗ Ikd)|ϕj⟩, j = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1. (5)

Hence the above kd2 orthogonal maximally entangled states (5) give rise to a MEB in
Cd ⊗ Ckd.

Substituting (2) into (5), we can simplify the above MEB (5) as follows:

|ϕ(j)
n,m⟩ =

1√
d

d−1∑
p=0

ωnp
d |p⊕m⟩|(p+ dj)′⟩, j = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1. (6)

Let {|a′i⟩}kd−1
i=0 be another orthonormal basis in Ckd, which is different with {|i′⟩}kdi=0.

Similar to the above discussion, we can get another MEB in Cd ⊗ Ckd:

|ψ(j)
n,m⟩ =

1√
d

d−1∑
p=0

ωnp
d |p⊕m⟩|a′p+dj⟩, j = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1. (7)

Eq.(6) and Eq.(7) will be useful in the next section to construct mutually unbiased
maximally entangled bases in Cd ⊗ Ckd.

III. Mutually unbiased maximally entangled bases in Cd ⊗ Ckd

In this section, we investigate special MUBs comprised of only MEBs in Cd ⊗ Ckd,
namely, we establish a method to construct mutually unbiased maximally entangled
bases(MUMEBs) in Cd ⊗ Ckd.
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It is easy to show that the two MEBs (6) and (7) in Cd⊗Ckd are MUBs if they satisfy
the following property

|⟨ϕ(i)
n,m|ψ(j)

x,y⟩| =
1√
kd2

, i, j = 0, 1, . . . , k − 1; n,m, x, y = 0, 1, . . . , d− 1. (8)

Let A denote the transition matrix from the basis {|i′⟩}kd−1
i=0 to the basis {|a′i⟩}kd−1

i=0 in
Ckd, that is 

|a′0⟩
|a′1⟩
...

|a′(kd−1)⟩

 = A


|0′⟩
|1′⟩
...

|(kd− 1)′⟩

 , (9)

i.e. |a′i⟩ =
∑kd−1

j=0 Aij|j′⟩, Aij are entries of the matrix A.

Then conditions (8) are valid if and only if A satisfies the following relations:

|
d−1∑
p=0

ωℓp
d Ap+dj,p⊕q+di| =

1√
k
, i, j = 0, 1, . . . , k − 1; ℓ, q = 0, 1, . . . , d− 1, (10)

Obviously, the above conditions (8) imply that the unitary matrix A is a kind of complex
Hadamard matrix[41].

Let B be the transition matrix from the basis {|a′i⟩}kd−1
i=0 to the third basis{|b′i⟩}kd−1

i=0 ,
i.e., |b′i⟩ =

∑kd−1
j=0 Bij|a′j⟩. Then the following MEB

|λ(j)n,m⟩ =
1√
d

d−1∑
p=0

ωnp
d |p⊕m⟩|b′p+dj⟩, j = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1. (11)

in Cd ⊗ Ckd is mutually unbiased with (6) and (7), if and only if the matrices A and B
satisfy the following relations:

|
d−1∑
p=0

ωℓp
d Bp+dj,p⊕q+di| =

1√
k
, |

d−1∑
p=0

ωℓp
d (BA)p+dj,p⊕q+di| =

1√
k
, (12)

where i, j = 0, 1, . . . , k − 1; ℓ, q = 0, 1, . . . , d− 1.

By inductive method, more mutually unbiased MEBs can be constructed and so on.
For a detailed construction of MUMEBs, we first consider the case of C2 ⊗ C4. In the
following for simplicity we denote

(|x′⟩) =


|x′0⟩
|x′1⟩
|x′2⟩
|x′3⟩


4



for x = a, b, c, d, e, with |e′i⟩ = |i′⟩ for i = 0, 1, 2, 3.

By using (1) we have the first MEB in C2 ⊗ C4. Taking the second basis {|a′i⟩}3i=0 in
C4 as

(|a′⟩) = A (|e′⟩) , (13)

where

A =
1

2


1 1 1 1
i i −i −i
i −i i −i
1 −1 −1 1

 ,

with i =
√
−1. Then the second MEB in C2 ⊗ C4 is as follows:

|ψj
i ⟩ =

1√
2
(σi ⊗ I4)(|0⟩|a′2j⟩+ |1⟩|a′2j+1⟩), i = 0, 1, 2, 3; j = 0, 1. (14)

It is direct to verify that the transformation matrix A satisfies the relation (10), then
the two MEBs (1) and (14) in C2 ⊗ C4 are mutually unbiased.

The third orthonomal basis {|b′i⟩}3i=0 in C4 can be obtained by

(|b′⟩) = B (|a′⟩) , (15)

where

B =
1

2


1 1 −i −i
i i −1 −1
i −i −1 1
1 −1 −i i


Hence, the third MEB in C2 ⊗ C4 can be constructed by

|λji ⟩ =
1√
2
(σi ⊗ I4)(|0⟩|b′2j⟩+ |1⟩|b′2j+1⟩), i = 0, 1, 2, 3; j = 0, 1. (16)

One can directly check that A and B satisfy the relations in (12). Hence the above three
MEBs (1) , (14) and (16) are mutually unbiased.

The fourth and fifth MEBs in C2⊗C4 can be similarly constructed from the following
orthonomal bases {|c′i⟩}3i=0 and {|d′i⟩}3i=0 in C4:

(|c′⟩) = C (|b′⟩) , (|d′⟩) = D (|c′⟩) , (17)

where

C =
1

2


1 i −1 −i
−1 i 1 −i
1 i 1 i
1 −i 1 −i

 ; D =
1

2


−i −1 −1 −i
−i −1 1 i
1 i i 1
1 i −i −1

 .
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The corresponding MEBs in C2 ⊗ C4 are given by

|µj
i ⟩ =

1√
2
(σi ⊗ I4)(|0⟩|c′2j⟩+ |1⟩|c′2j+1⟩), i = 0, 1, 2, 3; j = 0, 1; (18)

|νji ⟩ =
1√
2
(σi ⊗ I4)(|0⟩|d′2j⟩+ |1⟩|d′2j+1⟩), i = 0, 1, 2, 3; j = 0, 1. (19)

one can directly check that any two matrices of A,B,C,D satisfy the relations in (10) and
(12), hence the five complete MEBs (1), (14), (16), (18) and (19) are mutually unbiased.

Thus, by suitably choosing the bases in C4, we have presented an approach in con-
structing maximally entangled states which are mutually unbiased in C2 ⊗ C4.

Remark In [17], the authors showed that a complete set of MUBs of a bipartite system
contains a fixed amount of entanglement, independent on the choice of the complete set.
Moreover, in [36] Klimov showed that there are four structures of MUBs in C2⊗C2⊗C2:
(2,3,4), (3,0,6), (0,9,0) and (1,6,2), where the three numbers in a bracket represents the
number of triseparable, biseparable and nonseparable bases, respectively. We don’t know
whether our 5 MUMEBs are extendible to 9 since we can not construct the sixth maximally
entangled basis. Recently, based on different constructions, in [42] the authors presented
a set of 5 MUBs in dimension 8. These MUBs are not necessary maximally entangled.
But the set of these 5 MUBs is found to be unextendible. It is possible that the set of
our 5 maximally entangled MUBs is also unextendible.

Nevertheless, our approach is more general than the case of multi-qubit systems. Next,
to give an example which is not included in Cd⊗Cd⊗...⊗Cd systems, we present a detailed
construction of MUMEBs in C2 ⊗ C6, which is absolutely different from qubits systems.

In the following, for simplicity we denote (|y′⟩) = (|y′0⟩, |y′1⟩, |y′2⟩, |y′3⟩, |y′4⟩, |y′5⟩)
t for

y = f, g, h with |f ′
j⟩ = |j′⟩ for j = 0, 1, 2, 3, 4, 5, where t stands for transpose.

According to (6) we have the first MEB in C2 ⊗ C6:

|ϕ(j)
n,m⟩ =

1√
2

1∑
p=0

ωnp
2 |p⊕m⟩|(p+ 2j)′⟩, j = 0, 1, 2; n,m = 0, 1. (20)

where ω2 = e
2π

√
−1

2 and p⊕m denotes (p+m) mod 2.

For the second MEB in C2 ⊗ C6, we take the basis {|g′j⟩}5j=0 in C6 as

(|g′⟩) = X (|f ′⟩) , (21)

where

X =
1√
6


iv∗ −iv∗ iv∗ −iv∗ iv∗ −iv∗
v∗ v∗ v∗ v∗ v∗ v∗

i −i iv −iv iv∗ −iv∗
1 1 v v v∗ v∗

i −i iv∗ −iv∗ iv −iv
1 1 v∗ v∗ v v

 ,
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with v = −1
2
+

√
3i
2
, ∗ denotes conjugate. Then the second MEB in C2 ⊗C6 has the form:

|ψ(j)
n,m⟩ =

1√
2

1∑
p=0

ωnp
2 |p⊕m⟩|g′p+2j⟩, j = 0, 1, 2; n,m = 0, 1. (22)

It is direct to verify that the transformation matrix X satisfies the relation (10), then the
two MEBs (20) and (22) in C2 ⊗ C6 are mutually unbiased.

The third orthonomal basis {|h′j⟩}5j=0 in C6 can be obtained by

(|h′⟩) = Y (|g′⟩) , (23)

where

Y =
1√
6


1 1 1 1 1 1
i −i i −i i −i
1 1 v v v∗ v∗

i −i iv −iv iv∗ −iv∗
1 1 v∗ v∗ v v
i −i iv∗ −iv∗ iv −iv

 .

Then the third MEB in C2 ⊗ C6 can be constructed by

|λ(j)n,m⟩ =
1√
2

1∑
p=0

ωnp
2 |p⊕m⟩|h′p+2j⟩, j = 0, 1, 2; n,m = 0, 1. (24)

One can directly check that X and Y satisfy the relations in (12). Therefore the above
three MEBs (20), (22) and (24) in C2 ⊗ C6 are mutually unbiased.

It would be interesting to mention that no more than 3 MUB are known in dimension
12 (despite 13 is the upper bound), then our construction of three MUMEBs (20), (22)
and (24) in C2⊗C6 are exactly a breakthrough, which is also different from those in qubits
systems. In fact, our approach applies to general bipartite systems Cd ⊗ Ckd (k ∈ Z+).
Such constructions of orthonormal bases of MEBS by applying local unitaries (Weyl-
Heisenberg group) have been adopted in [18], corresponding to the case Cd ⊗ Ckd with
k = 1.

IV. Conclusion and discussion

We have provided an explicit construction of maximally entangled basis in arbitrary
bipartite spaces Cd⊗Ckd (k ∈ Z+). Based on such bases, we have established an method
to construct mutually unbiased maximally entangled bases in Cd ⊗ Ckd (k ∈ Z+). As
detailed examples, we have constructed five mutually unbiased maximally entangled bases
in C2 ⊗ C4 and three mutually unbiased maximally entangled bases in C2 ⊗ C6.

The problem we have investigated about maximally entangled basis is different from
that of unextendible maximally entangled basis. There are still many open problems
related to maximally entangled basis and mutually unbiased maximally entangled bases,
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such as the construction of mutually unbiased bases which are comprised of one maximally
entangled basis and one unextendible maximally entangled basis in Cd⊗Ckd (k ∈ Z+) or
Cd ⊗ Cd′(d ̸= d′), as well as to the roles played by such bases in information processing.
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[20] I. D. Ivanović, J. Phys. A. 14, 3241 (1981).

[21] W. K. Wootters and B. D. Fields, Ann. Phys. (NY) 191, 363 (1989).

[22] B. -G. Englert, D. Kaszlikowski, L. C. Kwek, and W. H. Chee, Int. J. Quant. Inform.
6, 129 (2008).

[23] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.Rev. Lett. 88, 127902
(2002).

[24] S. Brierley, arXiv:0910.2578

[25] Y. Aharonov and B. -G. Englert, Z. Naturforsch. A: Phys. Sci. 56a, 16 (2001)

[26] T. Durt, arXiv:quant-ph/0401046.

[27] A. B. Klimov, D. Sych, L. L. Sánchez-Soto, and G. Leuchs, Phys. Rev. A. 79, 052101
(2009).

[28] M. Revzen, Phys. Rev. A. 81, 012113 (2010).

[29] D. McNulty and S. Weigert, J. Phys. A: Math. Theor. 45, 102001 (2012) .

[30] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M.
Terhal, Phys. Rev. Lett. 82, 5385 (1999).

[31] S. Bravyi and J. A. Smolin, Phys. Rev. A. 84, 042306 (2011).

[32] B. Chen and S. M. Fei, Phys. Rev. A. 88, 034301 (2013).

[33] W. K. Wootters, IBM J. Res. Dev. 48, 99 (2004).

[34] K. S. Gibbons, M. J. Hoffman and W. K. Wootters. Phys. Rev. A. 70, 062101 ( 2004).

[35] A. B. Klimov, J. L. Romero, G. Björk, L. L. Sánchez-Soto. J. Phys. A: Math. Theor.
40, 3987 (2007).
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