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Abstract

Quantum deficit originates in questions regarding work extraction from quantum systems coupled

to a heat bath [Phys. Rev. Lett. 89, 180402 (2002)]. It links quantum correlations with quantum

thermodynamics and provides a new standpoint for understanding quantum non-locality. In this

paper, we propose a new method to evaluate the one-way deficit for a class of two-qubit states. The

dynamic behavior of the one-way deficit under decoherence channel is investigated and it is shown

that the one-way deficit of the X states with five parameters is more robust against decoherence

than entanglement.
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I. INTRODUCTION

Quantum entanglement is a resource in quantum information processing such

as teleportation[1], super-dense coding[2], quantum cryptography[3], remote-state

preparation[4, 5], and so on. However, there are quantum correlations other than en-

tanglement which are also useful and has attracted much attention recently [6–11]. One

remarkable and widely accepted quantum correlation is quantum discord. Quantum discord

is a measure of the difference between the mutual information and maximum classical mu-

tual information, which is generally difficult to calculate even for two qubit quantum system

[12–16].

Other nonclassical correlations besides entanglement and quantum discord have arisen

recently; for example, the quantum deficit [17, 18], measurement-induced disturbance [19],

geometric discord [20, 21], and continuous-variable discord [22, 23], see a review [11]. Quan-

tum deficit originates on asking how to use nonlocal operation to extract work from a

correlated system coupled to a heat bath [17]. It is also closely related to other forms of

quantum correlations. Oppenheim et al. define the work deficit [17]

∆ ≡ Wt −Wl, (1)

where Wt is the information of the whole system and Wl is the localizable information

[24, 25]. As with quantum discord, quantum deficit is also equal to the difference of the

mutual information and classical deficit [26]. Recently, Streltsov et al. [27, 28] give the

definition of the one-way information deficit (one-way deficit) in terms of relative entropy,

which reveals an important role of quantum deficit as a resource for the distribution of

entanglement. One-way deficit by von Neumann measurement on one side is given by [29]

∆→(ρab) = min
{Πk}

S(
∑
k

Πkρ
abΠk)− S(ρab). (2)

From the definition we can see that the one-way deficit and quantum discord are different

kinds of quantum correlations. The one-way deficit is related to the work that can be ex-

tracted from the total system, and the work that can be extracted from the subsystems

after suitable LOCC operations. While quantum discord quantifies the difference between

the mutual information and maximal classical mutual information. Moreover, the minimiza-

tions involved in computing one-way deficit and quantum discord are also different. One may

wonder whether the analytical formula or the calculation method for a class of two-qubit

states like quantum discord can be obtained. In this paper, we will endeavor to calculate

the one-way deficit for two qubit X States with five parameters.
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II. ONE-WAY DEFICIT FOR X STATES WITH FIVE PARAMETERS

We first introduce the form of two qubit X states. By using appropriate local unitary

transformations, we can write ρab as

ρab =
1

4
(I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
i=1

ciσi ⊗ σi), (3)

where r and s are Bloch vectors and {σi}3i=1 are the standard Pauli matrices. When r=s=0,

ρ reduces to the two-qubit Bell-diagonal states. When we assume that the Bloch vectors

are in the z direction, that is, r = (0, 0, r), s = (0, 0, s), the state in Eq. (3) turns into the

following form

ρab =
1

4
(I ⊗ I + rσ3 ⊗ I + I ⊗ sσ3 +

3∑
i=1

ciσi ⊗ σi). (4)

In the computational basis |00⟩, |01⟩, |10⟩, |11⟩, the density matrix of ρab is

ρ =
1

4


1 + r + s+ c3 0 0 c1 − c2

0 1 + r − s− c3 c1 + c2 0

0 c1 + c2 1− r + s− c3 0

c1 − c2 0 0 1− r − s+ c3

 . (5)

From Eq. (4) in [14], after some algebraic calculations, we can obtain that parameters

x, y, s, u, t in [14] can be substituted for r, s, c1, c2, c3 of the X states in Eq. (5) successively

and

r, s, c1, c2, c3 ∈ [−1, 1]. (6)

One can also change them to be x or y direction via an appropriate local unitary trans-

formation without losing its diagonal property of the correlation terms [30].

The eigenvalues of the X states in Eq. (5) are given by

u± =
1

4
[1− c3 ±

√
(r − s)2 + (c1 + c2)2],

v± =
1

4
[1 + c3 ±

√
(r + s)2 + (c1 − c2)2].
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The entropy is given by

S(ρ) = 2− [
1

4
(1− c3 +

√
(r − s)2 + (c1 + c2)2) log(1− c3 +

√
(r − s)2 + (c1 + c2)2)

+
1

4
(1− c3 −

√
(r − s)2 + (c1 + c2)2) log(1− c3 −

√
(r − s)2 + (c1 + c2)2)

+
1

4
(1 + c3 +

√
(r + s)2 + (c1 − c2)2) log(1 + c3 +

√
(r + s)2 + (c1 + c2)2)

+
1

4
(1 + c3 −

√
(r + s)2 + (c1 − c2)2) log(1 + c3 −

√
(r + s)2 + (c1 − c2)2)]

. (7)

Next, we evaluate the one-way deficit of the X states in Eq. (5). Let {Πk = |k⟩⟨k|, k =

0, 1} be the local measurement for the party b along the computational base |k⟩; then any

von Neumann measurement for the party b can be written as

{Bk = VΠkV
† : k = 0, 1}

for some unitary V ∈ U(2). For any unitary V , we have

V = tI + iy⃗ · σ⃗

with t ∈ R, y⃗ = (y1, y2, y3) ∈ R3, and t2 + y21 + y22 + y23 = 1. After the measurement Bk, the

state ρab will be changed to the ensemble {ρk, pk} with

ρk :=
1

pk
(I ⊗Bk)ρ(I ⊗Bk), pk = tr(I ⊗Bk)ρ(I ⊗Bk).

To evaluate ρk and pk, we write

pkρk = (I ⊗Bk)ρ(I ⊗Bk)

=
1

4
(I ⊗ V )(I ⊗ Πk)[I + rσ3 ⊗ I + sI ⊗ V †σ3V

†

+
3∑

j=1

cjσj ⊗ (V †σjV )](I ⊗ Πk)(I ⊗ V †).

By the relations [19]

V †σ1V = (t2 + y21 − y22 − y23)σ1 + 2(ty3 + y1y2)σ2 + 2(−ty2 + y1y3)σ3,

V †σ2V = 2(−ty3 + y1y2)σ1 + (t2 + y22 − y21 − y23)σ2 + 2(ty1 + y2y3)σ3,

V †σ3V = 2(ty2 + y1y3)σ1 + 2(−ty1 + y2y3)σ2 + (t2 + y23 − y21 − y22)σ3,

and

Π0σ3Π0 = Π0,Π1σ3Π1 = −Π1,ΠjσkΠj = 0, forj = 0, 1, k = 1, 2,
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after some algebra, we obtain

p0ρ0 =
1

4
[I + sz3I + c1z1σ1 + c2z2σ2 + (r + c3z3)σ3]⊗ (VΠ0V

†),

p1ρ1 =
1

4
[I − sz3I − c1z1σ1 − c2z2σ2 + (r − c3z3)σ3]⊗ (VΠ1V

†),

where

z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3), z3 = t2 + y23 − y21 − y22.

Then, We will evaluate the eigenvalues of
∑
k

Πkρ
abΠk by

∑
k

Πkρ
abΠk = p0ρ0 + p1ρ1, (8)

and

p0ρ0 + p1ρ1

=
1

4
[(I + rσ3) + (sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)]⊗ (VΠ0V

†)

+
1

4
[(I + rσ3)− (sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)]⊗ (VΠ1V

†)

=
1

4
(I + rσ3)⊗ (VΠ0V

† + VΠ1V
†)

+
1

4
(sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)⊗ (VΠ0V

† − VΠ1V
†)

=
1

4
(I + rσ3)⊗ I +

1

4
(sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)⊗ V σ3V

†.

The eigenvalues of p0ρ0+p1ρ1 are the same with the eigenvalues of the states (I⊗V †)(p0ρ0+

p1ρ1)(I ⊗ V ), and

(I ⊗ V †)(p0ρ0 + p1ρ1)(I ⊗ V )

=
1

4
(I + rσ3)⊗ I +

1

4
(sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)⊗ σ3. (9)

The eigenvalues of the states in the equation (9) are

λ1,2 =
1

4

(
1− sz3 ±

√
r2 − 2rc3z3 + c21z

2
1 + c22z

2
2 + c23z

2
3

)
,

λ3,4 =
1

4

(
1 + sz3 ±

√
r2 + 2rc3z3 + c21z

2
1 + c22z

2
2 + c23z

2
3

)
. (10)

It can be directly verified that z21 + z22 + z23 = 1. Set ϕ = z3, and

ϕ ∈ [−1, 1]. (11)
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Let us put θ = c21z
2
1 + c22z

2
2 + c23z

2
3 , c = min{|c1|, |c2|, |c3|}, C = max{|c1|, |c2|, |c3|}, then

c2 = min{c21, c22, c23}, C2 = max{c21, c22, c23}, c2 ≤ θ ≤ C2, and the equality can be readily

obtained by appropriate choice of t, yj [19]. Therefore, we see that the range of values

allowed for θ is [c2, C2]. The entropy of
∑
k

Πkρ
abΠk is

S(
∑
k

Πkρ
abΠk) = f(ϕ, θ) = −

4∑
i=1

λi log λi

= 2− 1

4
[(1− sϕ+

√
r2 − 2rc3ϕ+ θ) log(1− sϕ+

√
r2 − 2rc3ϕ+ θ)

+(1− sϕ−
√
r2 − 2rc3ϕ+ θ) log(1− sϕ−

√
r2 − 2rc3ϕ+ θ)

+(1 + sϕ+
√

r2 + 2rc3ϕ+ θ) log(1 + sϕ+
√
r2 + 2rc3ϕ+ θ)

+(1 + sϕ−
√
r2 + 2rc3ϕ+ θ) log(1 + sϕ−

√
r2 + 2rc3ϕ+ θ)].

(12)

From Eqs.(6) and (11), we can obtain 1∓ sϕ ≥ 0 and

∂f

∂θ
=

1

ln 256

(
ln(1− sϕ−

√
r2 − 2rc3ϕ+ θ)− ln(1− sϕ+

√
r2 − 2rc3ϕ+ θ)√

r2 − 2rc3ϕ+ θ

+
ln(1 + sϕ−

√
r2 + 2rc3ϕ+ θ)− ln(1 + sϕ+

√
r2 + 2rc3ϕ+ θ)√

r2 + 2rc3ϕ+ θ

)

=
1

ln 256

 ln
1−sϕ−

√
r2−2rc3ϕ+θ

1−sϕ+
√

r2−2rc3ϕ+θ√
r2 − 2rc3ϕ+ θ

+
ln

1+sϕ−
√

r2+2rc3ϕ+θ

1+sϕ+
√

r2+2rc3ϕ+θ√
r2 + 2rc3ϕ+ θ

 < 0. (13)

It converts the problem about min
{Πk}

S(
∑
k

Πkρ
abΠk) to the problem about the function of one

variable ϕ for minimum. That is

min
{Πk}

S(
∑
k

Πkρ
abΠk)

= min
ϕ

f(ϕ,C)

= min
ϕ

{2− 1

4
[(1− sϕ+

√
r2 − 2rc3ϕ+ C2) log(1− sϕ+

√
r2 − 2rc3ϕ+ C2)

+(1− sϕ−
√
r2 − 2rc3ϕ+ C2) log(1− sϕ−

√
r2 − 2rc3ϕ+ C2)

+(1 + sϕ+
√
r2 + 2rc3ϕ+ C2) log(1 + sϕ+

√
r2 + 2rc3ϕ+ C2)

+(1− sϕ−
√
r2 + 2rc3ϕ+ C2) log(1 + sϕ−

√
r2 + 2rc3ϕ+ C2)]}.

(14)
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By Eqs. (2), (7), (14), the one-way deficit of the X states in Eq. (5) is given by

∆→(ρab) = min
{Πk}

S(
∑
k

Πkρ
abΠk)− S(ρab)

=
1

4

[
(1− c3 +

√
(r − s)2 + (c1 + c2)2) log(1− c3 +

√
(r − s)2 + (c1 + c2)2)

+(1− c3 −
√

(r − s)2 + (c1 + c2)2) log(1− c3 −
√
(r − s)2 + (c1 + c2)2)

+(1 + c3 +
√

(r + s)2 + (c1 − c2)2) log(1 + c3 +
√

(r + s)2 + (c1 − c2)2)

+(1 + c3 −
√

(r + s)2 + (c1 − c2)2) log(1 + c3 −
√

(r + s)2 + (c1 − c2)2)
]

−max
ϕ

1

4

[
(1− sϕ+

√
r2 − 2rc3ϕ+ C2) log(1− sϕ+

√
r2 − 2rc3ϕ+ C2)

+(1− sϕ−
√

r2 − 2rc3ϕ+ C2) log(1− sϕ−
√

r2 − 2rc3ϕ+ C2)

+(1 + sϕ+
√

r2 + 2rc3ϕ+ C2) log(1 + sϕ+
√

r2 + 2rc3ϕ+ C2)

+(1 + sϕ−
√

r2 + 2rc3ϕ+ C2) log(1 + sϕ−
√
r2 + 2rc3ϕ+ C2)

]
,

(15)

where C = max{|c1|, |c2|, |c3|}, ϕ ∈ [−1, 1].

For example, we set r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4, c3 = 0.56, and use the minimun

command

MinValue[{∆→(ρab),−1 ≤ ϕ ≤ 1}, ϕ] (16)

in “Wolfram Mathematics8.0” software, and obtain the value of the one-way deficit 0.130614.

When r = s = 0, ρ reduces to the two-qubit Bell-diagonal states. One-way deficit of

Bell-diagonal states is

∆→(ρab) = min
{Πk}

S(
∑
k

Πkρ
abΠk)− S(ρab)

=
1

4
[(1− c1 − c2 − c3) log(1− c1 − c2 − c3)

+(1− c1 + c2 + c3) log(1− c1 + c2 + c3)

+(1 + c1 − c2 + c3) log(1 + c1 − c2 + c3)

+(1 + c1 + c2 − c3) log(1 + c1 + c2 − c3)]

−1− C

2
log(1− C)− 1 + C

2
log(1 + C), (17)

which is in consistent with the result using the simultaneous diagonalization theorem ob-

tained in [31].

It is worth mentioning that we have obtained a formula for solving one-way deficit. It is

simpler than the method using the joint entropy theorem[32].
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III. DYNAMICS OF ONE-WAY DEFICIT UNDER LOCAL NONDISSIPATIVE

CHANNELS

The concurrence of the X states in Eq. (5) can be calculated in terms of the eigenvalues

of ρρ̃, where ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy. The eigenvalues of ρρ̃ are

λ5 =
1

16
(c1 − c2 −

√
(1 + c3)2 − (r + s)2)2

=
1

16
(c1 − c2 −

√
(1 + r + s+ c3)(1− r − s+ c3))

2,

λ6 =
1

16
(c1 − c2 +

√
(1 + c3)2 − (r + s)2)2

=
1

16
(c1 − c2 +

√
(1 + r + s+ c3)(1− r − s+ c3))

2,

λ7 =
1

16
(c1 + c2 −

√
(1− c3)2 − (r − s)2)2

=
1

16
(c1 + c2 −

√
(1 + r − s− c3)(1− r + s− c3))

2,

λ8 =
1

16
(c1 + c2 +

√
(1− c3)2 − (r − s)2)2

=
1

16
(c1 + c2 +

√
(1 + r − s− c3)(1− r + s− c3))

2.

The concurrence of the X states in Eqs. (5) is given by

C(ρab) = max{2max{
√
λ5,
√
λ6,
√
λ7,
√

λ8} −
√
λ5 −

√
λ6 −

√
λ7 −

√
λ8, 0}. (18)

In the following we consider that the X states in Eq. (5) undergoes the phase

flip channel [33], with the Kraus operators Γ
(A)
0 = diag(

√
1− p/2,

√
1− p/2) ⊗ I,

Γ
(A)
1 = diag(

√
p/2,−

√
p/2) ⊗ I, Γ

(B)
0 = I⊗ diag(

√
1− p/2,

√
1− p/2), Γ

(B)
1 = I⊗

diag(
√

p/2,−
√

p/2), where p = 1− exp(−γt), γ is the phase damping rate [33, 34]. Let ε(·)
represent the operator of decoherence. Then under the phase flip channel we have

ε(ρ) =
1

4
(I ⊗ I + rσ3 ⊗ I + I ⊗ sσ3 + (1− p)2c1σ1 ⊗ σ1

+(1− p)2c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3). (19)

We will only consider the following further simplified family of the X states in Eq. (5),

where

|c1| < |c2| < |c3|. (20)
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FIG. 1: (Color online) (Color online) Concurrence(blue dashed line) and one-way deficit(red solid

line) under phase flip channel for r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4 and c3 = 0.56.

As ε(ρ) satisfies conditions in Eqs. (5), (20) and the one-way deficit of the ρab under the

phase flip channel is given by

∆→(ε(ρab)) =
1

4

[
(1− c3 +

√
(r − s)2 + (1− p)4(c1 + c2)2)

× log(1− c3 +
√
(r − s)2 + (1− p)4(c1 + c2)2)

+(1− c3 −
√

(r − s)2 + (1− p)4(c1 + c2)2)

× log(1− c3 −
√

(r − s)2 + (1− p)4(c1 + c2)2)

+(1 + c3 +
√
(r + s)2 + (1− p)4(c1 − c2)2)

× log(1 + c3 +
√

(r + s)2 + (1− p)4(c1 − c2)2)

+(1 + c3 −
√

(r + s)2 + (1− p)4(c1 − c2)2)

× log(1 + c3 −
√

(r + s)2 + (1− p)4(c1 − c2)2)
]

−max
ϕ

1

4

[
(1− sϕ+

√
r2 − 2rc3ϕ+ c23) log(1− sϕ+

√
r2 − 2rc3ϕ+ c23)

+(1− sϕ−
√
r2 − 2rc3ϕ+ c23) log(1− sϕ−

√
r2 − 2rc3ϕ+ c23)

+(1 + sϕ+
√
r2 + 2rc3ϕ+ c23) log(1 + sϕ+

√
r2 + 2rc3ϕ+ c23)

+(1 + sϕ−
√
r2 + 2rc3ϕ+ c23) log(1 + sϕ−

√
r2 + 2rc3ϕ+ c23)

]
.

(21)

As an example, for r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4, c3 = 0.56, the dynamic behavior

of correlation of the state under the phase flip channel is depicted in Fig.1. Here one

sees that the concurrence become zero after the transition. We find that sudden death of
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entanglement appears at p = 0.217617. Therefore for these states concurrence is weaker

against decoherence than one-way deficit.

IV. SUMMARY

We have given a new method to evaluate the one-way deficit for X states with five

parameters. By this way, we can evaluate one-way deficit of the wide range states than

the method using the simultaneous diagonalization theorem. Meanwhile, this way is more

simpler than the method using the joint entropy theorem. The dynamic behavior of the

one-way deficit under decoherence channel is investigated. It is shown that one-way deficit

of the X states is more robust against the decoherence than concurrence.
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