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Abstract: We study mutually unbiased bases in Cd ⊗ C2ld′
. A systematic way of constructing

mutually unbiased maximally entangled bases (MUMEBs) in Cd ⊗ C2ld′
(l ∈ Z+) from MUMEBs in

Cd⊗Cd′
(d′ = kd, k ∈ Z+), and a general approach to construct mutually unbiased unextendible maximally

entangled bases (MUUMEBs) in Cd⊗C2ld′
(l ∈ Z+) from MUUMEBs in Cd⊗Cd′

(d′ = kd+ r, 0 < r < d)
have been presented. Detailed examples are given.
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I. Introduction

Mutually unbiased bases (MUBs) [1, 2] have attracted much attention ever since the
concept had been introduced. They play the central roles in the formulation of the discrete
Wigner function [3, 4], cryptographic protocols [5, 6], quantum error correction codes [7]
and quantum state tomography [8, 9]. MUBs also have applications in increasing the
security of the ping-pong protocol [10] and in the solutions to the mean king problem
[11, 12].

Let B1 = {|ϕi⟩}di=1 and B2 = {|ψi⟩}di=1 be two orthonormal bases of a d-dimensional
complex vector space Cd. B1 and B2 are said to be mutually unbiased bases (MUBs) if
and only if

|⟨ϕi|ψj⟩| =
1√
d
, ∀i, j = 1, 2, . . . , d.

It has been shown that there are d+ 1 MUBs when d is a prime power [8], and there are
many useful results [13]. However, for general d, the maximum number of MUBs is still
unknown, let alone the detailed constructions of the MUBs.

When one considers MUBs in tensor spaces, the problem becomes more interesting
and complicated: the MUBs can be product basis [14], maximally entangled basis [15],
unextendible product basis [16], and unextendible maximally entangled basis [17] and so
on.

∗Corresponding author : Hua Nan, E-mail: nanhua@ybu.edu.cn
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The entangled connection between mutually unbiased bases and another essential fea-
ture of quantum mechanics, quantum entanglement were studied in [18]. The quantum
entanglement is an essential feature of quantum mechanics. Its importance has been
demonstrated in various quantum information processing such as teleportation [19], su-
perdense coding [20, 21] etc. Particularly, the maximally entangled states play very
important roles in many quantum information processing tasks [22].

A state |ψ⟩ is said to be a d ⊗ d′ (d′ > d) maximally entangled if for an arbitrary
given orthonormal complete basis {|iA⟩} of subsystem A, there exists an orthonormal
basis {|i′B⟩} of subsystem B such that |ψ⟩ can be written as |ψ⟩ = 1√

d

∑d−1
i=0 |iA⟩ ⊗ |i′B⟩

[23]. A basis constituted by maximally entangled states is called a maximally entangled
basis (MEB).

A set of states {|ϕi⟩ ∈ Cd ⊗ Cd′ : i = 1, 2, . . . , n, n < dd′} is said to be an n-member
unextendible maximally entangled bases (UMEBs) if (i) |ϕi⟩, i = 1, 2, . . . , n, are maximally
entangled; (ii) ⟨ϕi|ϕj⟩ = δij; (iii) if ⟨ϕi|ψ⟩ = 0 for all i = 1, 2, . . . , n, then |ψ⟩ cannot be
maximally entangled.

In [17] the authors first time considered the mutually unbiased bases in which all the
bases are unextendible maximally entangled ones. And a systematic way of constructing
a set of d2 orthonormal maximally entangled states in Cd

⊗
Cd′(d

′

2
< d < d′) is provided.

Necessary conditions of constructing a pair of mutually unbiased unextendible maximally
entangled bases (MUUMEBs) in C2

⊗
C3 are derived in [24]. In [25, 26], UMEBs in

Cd
⊗

Cd′ with d′ = dq + r, 0 < r < d, have been constructed. UMEBs in Cd
⊗

Cd have
been investigated in [27].

In this paper, we study MUBs in arbitrary bipartite spaces Cd ⊗ C2ld′ , l ∈ Z, on
condition that a pair of MUBs are given in Cd⊗Cd′ (d′ = kd+r, k, r ∈ Z). In section II we
investigate the case d′ = kd. We show that once a pair of MUMEBs are given in Cd⊗Cd′ ,
there is a systematic method of constructing mutually unbiased MEBs (MUMEBs) in
Cd ⊗ C2ld′ . For the case d′ = kd + r, 0 < r < d, we put forward a systematic method
to construct mutually unbiased UMEBs (MUUMEBs) in Cd ⊗ C2ld′ from MUUMEBs in
Cd ⊗ Cd′ in section III. Discussions and conclusions are given in section IV.

II. MUMEBs in Cd ⊗ C2ld′ (d′ = kd).

Let {|p⟩}d−1
p=0 be the orthonormal bases in Cd. Consider a set of unitary operators,

which forms a basis of the operator space on Cd:

Un,m =
d−1∑
p=0

ξnpd |p⊕m⟩⟨p|, n,m = 0, 1, . . . , d− 1,

where ξd = e
2π

√
−1

d , and p⊕m denotes (p+m) mod d. Let {|p′⟩}d′−1
p=0 and {µ′

p}d
′−1

p=0 denote

two orthonormal bases of Cd′ . In bipartite Hilbert space Cd ⊗ Cd′ (d′ = kd), we can
construct two MEBs in the following way:

|ϕt
n,m⟩ = (Un,m ⊗ Id′)|ϕt⟩, t = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1, (1)
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|ψt
n,m⟩ = (Un,m ⊗ Id′)|ψt⟩, t = 0, 1, . . . , k − 1; n,m = 0, 1, . . . , d− 1, (2)

where |ϕt⟩ = 1√
d

∑d−1
p=0 |p⟩|(p+dt)′⟩, |ψt⟩ = 1√

d

∑d−1
p=0 |p⟩|µ′

(p+dt)⟩, (t = 0, 1, . . . , k−1). Then

(1) and (2) are mutually unbiased if and only if∣∣⟨ϕt1
n1,m1

|ψt2
n2,m2

⟩
∣∣ = 1√

dd′
, n1, n2,m1,m2 = 0, 1, . . . , d− 1; t1, t2 = 0, 1, · · · , k − 1. (3)

Moreover, there must be a unitary transition matrix A such that

(|µ′
0⟩, |µ′

1⟩, · · · , |µ′
d′−1⟩)T = A(|0′⟩, |1′⟩, · · · , |(d′ − 1)′⟩)T . (4)

For the simple case d′ = d, there is a method to get the transition matrix A in (4)
for the Cd′ . We choose the dephased form of such vector v = 1√

d
(1, eiα1 , · · · , eiαd−1) in

Cd′(d′ = d) with real parameters αp ∈ [0, 2π] , p = 1, 2, · · · , d − 1, where i =
√
−1. The

vector v is mutually unbiased to 1√
d

d−1∑
p=0

ξnpd |p′⟩ (n = 0, 1, · · · , d− 1) if

∣∣∣∣∣
d−1∑
p=0

ξnpd e
iαp

∣∣∣∣∣ = √
d, n = 0, 1, · · · , d− 1, (5)

defining α0 = 1. The solutions of these equations can provide unit vectors which can be
to compose the bases |µ′

p⟩ (p = 0, 1, · · · , d − 1) in (4). And from the formula (4), we
know that v is the row of the matrix A. In [28], the solutions of (5) are given when d
equals 2 to 5. For general case d′ = kd, k ≥ 1, we have that (3) are valid if and only if
A = (as,t) (s, t = 0, 1, · · · , d− 1) satisfies∣∣∣∣∣

d−1∑
p=0

ξnpd ap+dj,πl(p)+di

∣∣∣∣∣ = 1√
k
, i, j = 0, 1, · · · , k − 1; n, l = 0, 1, · · · , d− 1, (6)

where π denotes the permutation of {0, 1, · · · , d−1} defined by π =

(
0 1 · · · d− 1
1 2 · · · 0

)
.

Let us first consider the case d = d′ = 3. Set |ϕ0⟩ = 1√
3
(|0⟩|0′⟩+ |1⟩|1′⟩+ |2⟩|2′⟩). The

first MEB in C3 ⊗ C3 can be chosen to be

|ϕn,m⟩ = (Un,m ⊗ I3)|ϕ0⟩, n,m = 0, 1, 2. (7)

By(5),we can get a unitary transition matrix

A =
1√
3

 1 1 1
1 ω ω
1 ω ω

 , ω =
−1 +

√
3i

2
,

so we get an alternative orthonormal basis {|ε′j⟩}2j=0 in C3,

(|ε′0⟩, |ε′1⟩, |ε′2⟩)T = A(|0′⟩, |1′⟩, |2′⟩)T .
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Let |ψ0⟩ = 1√
3
(|0⟩|ε′0⟩+ |1⟩|ε′1⟩+ |2⟩|ε′2⟩). We get the second MEB in C3 ⊗ C3,

|ψn,m⟩ = (Un,m ⊗ I3)|ψ0⟩, n,m = 0, 1, 2. (8)

It is easy to check that (7) and (8) are mutually unbiased.

Based on the MUMEBs in C3 ⊗ C3, we construct the MUMEBs in C3 ⊗ C12. Let

|ϕs
nm⟩ =

1√
3

2∑
p=0

wnp|p⊕m⟩|(3s+ p)′⟩, s = 0, 1, 2, 3, (9)

|ψs
nm⟩ =

1√
3

2∑
p=0

wnp|p⊕m⟩|ν ′3s+p⟩, s = 0, 1, 2, 3, (10)

where 
|ν ′0⟩
|ν ′1⟩
...

|ν ′11⟩

 =
1

2


A A A A
A −A A −A
A A −A −A
A −A −A A




|0′⟩
|1′⟩
...

|11′⟩

 .

It is straightforward to verify that (9) and (10) are MUMEBs in C3 ⊗ C12.

The above construction of MUMEB can be generalized to Cd⊗C2ld′(l ∈ Z+). Namely,
based on the MUMEBs (1)and (2) in Cd ⊗Cd′ , we construct the MUMEBs in Cd ⊗C2ld′ .
Let {Bn} be a sequence of matrices which satisfy the following recurrence relation:

Bn =
1√
2

(
Bn−1 Bn−1

Bn−1 −Bn−1

)
,

where B0 = A. Since

B†
1B1 =

1

2

(
2B†

0B0 0

0 2B†
0B0

)
=

(
I

I

)
= I,

all {Bn} are unitary matrices. Hence, we can get an alternative orthonormal basis

{|ν ′p⟩}2
ld′−1

p=0 of C2ld′(d′ = kd, l, k ∈ Z+) from the orthonormal basis {|p′⟩}2ld′−1
p=0 ,

(|ν ′0⟩, |ν ′1⟩, · · · , |ν ′2ld′−1⟩)
T = Bl(|0′⟩, |1′⟩, · · · , |(2ld′ − 1)′⟩)T .

Let

|ϕst⟩ = 1√
d

d−1∑
p=0

|p⟩|(d′s+ dt+ p)′⟩, |ψst⟩ = 1√
d

d−1∑
p=0

|p⟩|ν ′d′s+dt+p⟩,

and

|ϕs,t
n,m⟩ = (Un,m ⊗ I2ld′)|ϕst⟩, (11)

|ψs,t
n,m⟩ = (Un,m ⊗ I2ld′)|ψst⟩, (12)
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where n,m = 0, 1, · · · , d− 1; s = 0, 1, · · · , 2l − 1; t = 0, 1, · · · , k − 1. Obviously, {ϕs,t
n,m}

and {ψs,t
n,m} are two MEBs in Cd ⊗C2ld′ . For the case Cd ⊗C2d′ (l = 1), according to (3)

we have ∣∣⟨ϕs1,t1
n1,m1

|ψs2,t2
n2,m2

⟩
∣∣ = ∣∣∣∣ 1√

2
⟨ϕt1

n1,m1
|ψt2

n2,m2
⟩
∣∣∣∣ = 1√

2

1√
dd′

,

where n1, n2,m1,m2 = 0, 1, . . . , d − 1; s1, s2 = 0, 1; t1, t2 = 0, 1, · · · , k − 1. While in the
space Cd ⊗ C2ld′ , we also have∣∣⟨ϕs1,t1

n1,m1
|ψs2,t2

n2,m2
⟩
∣∣ = ∣∣∣∣ 1√

2l
⟨ϕt1

n1,m1
|ψt2

n2,m2
⟩
∣∣∣∣ = 1√

2l
1√
dd′

,

where n1, n2,m1,m2 = 0, 1, . . . , d − 1; s1, s2 = 0, 1, · · · , 2l − 1; t1, t2 = 0, 1, · · · , k − 1.
Therefore by induction we have the following conclusion:

Theorem 1. Giving that (1) and (2) are MUMEBs in Cd ⊗ Cd′ (d′ = kd), the
maximally entangled bases (11) and (12) are MUMEBs of Cd ⊗ C2ld′ .

III. MUUMEBs in Cd ⊗ C2ld′(d′ = kd+ r, 0 < r < d)

In [17] and [25], a systematic way of constructing kd2-member UMEBs in Cd⊗Cd′ has
been introduced. Let {|p′⟩}d′−1

p=0 and {µ′
p}d

′−1
p=0 denote two orthonormal bases of Cd′ , and

|ϕt⟩ = 1√
d

∑d−1
p=0 |p⟩|(dt+ p)′⟩, |ψt⟩ = 1√

d

∑d−1
p=0 |p⟩|µ′

(p+dt)⟩ (t = 0, 1, · · · , k − 1). Then

|ϕt
n,m⟩ = (Un,m ⊗ Id′)|ϕt⟩, n,m = 0, 1, · · · , d− 1; t = 0, 1, · · · k − 1, (13)

and
|ψt

n,m⟩ = (Un,m ⊗ Id′)|ψt⟩, n,m = 0, 1, · · · , d− 1; t = 0, 1, · · · k − 1, (14)

are two kd2-member UMEBs in Cd ⊗ Cd′(d′ = kd+ r, 0 < r < d).

Suppose that {|ai⟩} and {|bi⟩} are two alternative orthonormal bases in Cd. Set

|ϕji⟩ = |ai⟩ ⊗ |j′⟩, j = kd, · · · , d′ − 1; i = 0, 1, · · · , d− 1, (15)

|ψji⟩ = |bi⟩ ⊗ |µ′
j⟩, j = kd, · · · , d′ − 1; i = 0, 1, · · · , d− 1, (16)

such that (13) together with the rd orthonormal product state (15) constitute a complete
UMEB |Φt

n,m⟩ in Cd ⊗ Cd′ , and (14) together with the rd orthonormal product state(16)

constitute another complete UMEB |Ψt
n,m⟩ in Cd⊗Cd′ , and these two UMEBs are mutually

unbiased. They satisfy∣∣⟨Φt1
n1,m1

|Ψt2
n2,m2

⟩
∣∣ = ∣∣⟨Φj1,i1 |Ψt2

n2,m2
⟩
∣∣ = ∣∣⟨Φt1

n1,m1
|Ψj2,i2⟩

∣∣ = 1√
dd′

. (17)

There should exist a unitary transition matrix D such that

(|µ′
0⟩, |µ′

1⟩, · · · , |µ′
d′−1⟩)T = D(|0′⟩, |1′⟩, · · · , |((d′ − 1)′⟩)T .

In Cd′ , d′ = kd + r (0 < r < d), the transition matrix D is not easy to find. In
Ref[17, 18, 25], the authors provided the transition matrices for C2 ⊗ C3, C3 ⊗ C4 and
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C2 ⊗ C6. In other bipartite system, constructing the transition matrices is still an open
problem. For low dimension, it can be found by using the method in [24].

Similar approach in section II can be used to construct MUUMEBs in Cd⊗C2ld′ , pro-
viding that a pair of MUUMEBs in Cd⊗Cd′ are given as above. Suppose that {|p′⟩}2ld′−1

p=0

and {ε′p}2
ld′−1

p=0 are two orthonormal bases of C2ld′ with

(|ε′0⟩, |ε′1⟩, · · · , |ε′2ld′−1⟩)
T = Dl(|0′⟩, |1′⟩, · · · , |(2ld′ − 1)′⟩)T ,

where

Dl =
1√
2

(
Dl−1 Dl−1

Dl−1 −Dl−1

)
with D0 = D.

Now we construct the following UMEBs in Cd ⊗ C2ld′ (2lr < d):{
|Φs,t

n,m⟩ = (Un,m ⊗ I2ld′)|ϕst⟩,

|Φs
j,i⟩ = |ai⟩ ⊗ |(d′s+ j)′⟩,

(18)

{
|Ψs,t

n,m⟩ = (Un,m ⊗ I2ld′)|ψst⟩,

|Ψs
j,i⟩ = |bi⟩ ⊗ |ε′d′s+j⟩,

(19)

where n,m = 0, 1, · · · , d−1; s = 0, 1, · · · , 2l−1; t = 0, 1, · · · , k−1, j = kd, · · · , d′−1; i =
0, 1, · · · , d− 1, and

|ϕst⟩ = 1√
d

d−1∑
p=0

|p⟩|(d′s+ dt+ p)′⟩, |ψst⟩ = 1√
d

d−1∑
p=0

|p⟩|ε′d′s+dt+p⟩.

The next conclusion can be obtained:

Theorem 2. The UMEBs (18) and (19) in bipartite spaces Cd ⊗ C2ld′ (2lr < d) are
mutually unbiased, providing that the complete MUUMEBs |Φt

n,m⟩ given by (13), (15)

and |Ψt
n,m⟩ given by (14), (16) in Cd ⊗Cd′ (d′ = kd+ r, 0 < r < d) are mutually unbiased

UMEBs.

Proof. Similar to the verification of theorem 1, according to (17) we have

∣∣⟨Φs1,t1
n1,m1

|Ψs2,t2
n2,m2

⟩
∣∣ = ∣∣∣∣ 1√

2l
⟨Φt1

n1,m1
|Ψt2

n2,m2
⟩
∣∣∣∣ = 1√

2l
1√
dd′

,

∣∣⟨Φs1
j1,i1

|Ψs2,t2
n2,m2

⟩
∣∣ = ∣∣∣∣ 1√

2l
⟨Φj1,i1 |Ψt2

n2,m2
⟩
∣∣∣∣ = 1√

2l
1√
dd′

,

∣∣⟨Φs1,t1
n1,m1

|Ψs2
n2,m2

⟩
∣∣ = ∣∣∣∣ 1√

2l
⟨Φt1

n1,m1
|Ψj2,i2⟩

∣∣∣∣ = 1√
2l

1√
dd′

.
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Let V denotes the subspace spanned by {|Φs,t
n,m⟩, n,m = 0, 1, . . . , d−1; t = 0, 1, · · · , 2l−

1}. Then Dim(V ) = 2ld2, and Dim(V ⊥) = 2ldd′−2ld2 = 2lrd. Here the condition 2lr < d
is necessary, otherwise, there may exist maximally entangled state |Ψ⟩ ∈ V ⊥ such that
⟨Φt

nm|Ψ⟩ = 0.

Example. Let us give a detailed example of MUUMEBs in C3 ⊗ C8.

Two sets of complete MUUMEBs {|ϕn,m⟩} and {|ψn,m⟩} (n = 0, 1, 2, 3; m = 0, 1, 2) in
C3 ⊗ C4 were constructed in [25]:

|ϕnm⟩ =
1√
3

2∑
j=0

ωnj |j ⊕m⟩|j′⟩, n,m = 0, 1, 2,

|ϕ30⟩ =
1√
3
(|0⟩+ |1⟩+ |2⟩) |3′⟩,

|ϕ31⟩ =
1√
3
(|0⟩+ ω|1⟩+ ω̄|2⟩) |3′⟩,

|ϕ32⟩ =
1√
3
(|0⟩+ ω̄|1⟩+ ω|2⟩) |3′⟩,

and

|ψnm⟩ =
1√
3

2∑
j=0

ωnj|j ⊕m⟩|µ′
j⟩, n,m = 0, 1, 2,

|ψ3,0⟩ =
1√
3
(|0⟩+ ω|1⟩+ ω|2⟩) |µ′

3⟩,

|ψ3,1⟩ =
1√
3
(ω|0⟩+ |1⟩+ ω|2⟩) |µ′

3⟩,

|ψ3,2⟩ =
1√
3
(ω|0⟩+ ω|1⟩+ |2⟩) |µ′

3⟩,

where (|µ′
0⟩), |µ′

1⟩, |µ′
2⟩, |µ′

3⟩))T = D(|0′⟩, |1′⟩, |2′⟩, |3′⟩)T ,

D =
1

2


1 ω −ω ω
−ω ω ω 1
ω −1 ω 1
ω ω ω −1


with ω = −1+

√
3i

2
.

From these MUUMEBs in C3⊗C4 we can construct two sets of complete MUUMEBs
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{Φt
nm}, {Ψt

nm} in C3 ⊗ C8 as follows:

|Φt
nm⟩ =

1√
3

2∑
j=0

ωnj |j ⊕m⟩|(4t+ j)′⟩,

|Φt
30⟩ =

1√
3
(|0⟩+ |1⟩+ |2⟩) |(4t+ 3)′⟩,

|Φt
31⟩ =

1√
3
(|0⟩+ ω|1⟩+ ω̄|2⟩) |(4t+ 3)′⟩,

|Φt
32⟩ =

1√
3
(|0⟩+ ω̄|1⟩+ ω|2⟩) |(4t+ 3)′⟩,

and

|Ψt
nm⟩ =

1√
3

2∑
j=0

ωnj |j ⊕m⟩|ν ′(4t+j)⟩,

|Ψt
30⟩ =

1√
3
(|0⟩+ ω|1⟩+ ω|2⟩) |ν ′(4t+3)⟩,

|Ψt
31⟩ =

1√
3
(ω|0⟩+ |1⟩+ ω|2⟩) |ν ′(4t+3)⟩,

|Ψt
32⟩ =

1√
3
(ω|0⟩+ ω|1⟩+ |2⟩) |ν ′(4t+3)⟩,

where n,m = 0, 1, 2; t = 0, 1, and

(|ν ′0⟩, |ν ′1⟩, · · · , |ν ′7⟩)
T
=

1√
2

(
D D
D −D

)
(|0′⟩, |1′⟩, · · · , |7′⟩)T .

It is direct to verify that

∣∣⟨Φt1
n1,m1

|Ψt2
n2,m2

⟩
∣∣ = ∣∣∣∣ 1√

2
⟨ϕn1,m1 |ψn2,m2⟩

∣∣∣∣ = 1√
24
,

where n1, n2 = 0, 1, 2, 3, m1,m2 = 0, 1, 2, t1, t2 = 0, 1.

V. Discussions and Conclusion

The prerequisite of the methods presented in this paper is the assumption that there
exists the unitary transition matrix for the Cd′(d′ = kd, or d′ = kd + r, 0 < r < d)
system. In part II and part III, we give the way of approaching the transition matrix A
in Cd′(d′ = kd), and discuss the transition matrix in Cd′(d′ = kd+ r, 0 < r < d′) with low
dimension.

The construction of mutually unbiased bases with maximally entangled bases and
unextendible maximally entangled bases are open problems. Partial solutions have been
given for low dimensional cases. The construction of mutually unbiased unextendible
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maximally entangled bases is more complicated. We have presented a way to construct
MUMEBs and MUUMEBS in higher dimensions from the corresponding MUMEBs and
MUUMEBS in low dimensions: MUMEBs in Cd ⊗ C2ld′(l ∈ Z+) from MUMEBs in Cd ⊗
Cd′(d′ = kd, k ∈ Z+), and MUUMEBs in Cd ⊗ C2ld′(l ∈ Z+) from MUUMEBs in Cd ⊗
Cd′(d′ = kd+ r, 0 < r < d).

There might be several UMEBs with different numbers in a bipartite space [26]. For
a given UMEB in a space Cd ⊗ Cd′ , the vectors that are supplement to the maximally
entangled basic vectors may not be product ones. In this paper, we have only concerned
the case that supplementary basic vectors are all product states. It would be desirable
that our approach can be similarly applied in constructing MUMEBs for the case that
the basic vectors in the supplement space of UMEBs are not product states in Cd ⊗ Cd′ .
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[1] I. D. Ivanović, J. Phys. A 14, 3241 (1981).

[2] T. Durt, B-G. Englert, I. Bengtsson and K. Życzkowski, Int. J. Quant. Inf. 8, 535
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