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We study the local indistinguishability of mutually orthogonal product basis quantum states in
the high-dimensional quantum system. In the quantum system of C% ® C?, where d is odd, Zhang et
al have constructed d? orthogonal product basis quantum states which are locally indistinguishable
in [Phys. Rev. A. 90, 022313(2014)]. We find a subset contains with 6d — 9 orthogonal product
states which are still locally indistinguishable. Then we generalize our method to arbitrary bipartite
quantum system C™ ® C™. We present a small set with only 3(m +n) — 9 orthogonal product states
and prove these states are LOCC indistinguishable. Even though these 3(m + n) — 9 product states
are LOCC indistinguishable, they can be distinguished by separable measurements. This shows that
separable operations are strictly stronger than the local operations and classical communication.

I. INTRODUCTION

Many global operators can not be implemented us-
ing only local operations and classical communication
(LOCC). Many researchers aim at studying the limi-
tation of quantum operators that can be implemented
by LOCC. And the local distinguishability of quantum
states plays an important role for the study of the limita-
tion of LOCC [1]. Moreover, the local indistinguishability
of pure product states exhibits the phenomenon of non-
locality without entanglement[l, 2]. Suppose Alice and
Bob share a bipartite quantum system. They are not told
which state their combined system is in, but they know
it has been chosen from a specific set of mutually orthog-
onal states, that set being known to each of them. Their
task is to identity the given state by using only LOCC.
Distinguishing is essentially primitive for many quantum
information tasks, such as quantum cryptography [3] and
quantum algorithms [4].

Recently, lots of authors paid attentions to the local
distinguishablity of quantum states. Some of them con-
sidered the set with maximally entangled states [5, 6,
7, 8,9, 10, 11, 12, 13, 14], while the others aimed at
the set with product states [2, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26]. Both of these researches can
lead us a better understanding the limitation of the lo-
cal operations and classical communication. Because the
structure of LOCC operations is mathematically compli-
cated, some researchers investigated the difference limi-
tation between the LOCC operations and the separable
operations [27, 28, 29]. Clearly, every local operator is
a separable operator. So it’s natural to ask whether the
separable operations are strictly stronger than local oper-
ations? In C3 ®C?, the answer is positive and was shown
in the paper of Bennett et al [1]. In this paper, we give
a positive answer to this question for high-dimensional
system.

In 1999, Bennett et al [1] first presented nine product
states in C3 ® C3 and proved that it cannot be distin-
guished by LOCC. This is the first example to exhibit the
nonlocality property without entanglement. After that,

Walgate et al gave a sufficient and necessary condition
for the distinguishablity of orthogonal states in C? ® C,
and used it to prove the LOCC indistinguishability of the
nine product states in C3®@C? [2]. Since then, the authors
in [15, 16, 17, 20, 25] studied the LOCC distinguishabil-
ity of pure product states. More recently, in [24], the
authors generalized the result to high-dimensional sys-
tem and constructed d? orthogonal product basis quan-
tum states which are locally indistinguishable in C%®C?,
where d is odd.

The unextendible product bases (UPB) is helpful for
us to generate an entangled state with partial positive
transpose(PPT) [30, 31, 32, 33, 34, 35]. It is well known
that the set of UPB constitutes a special class of locally
indistinguishable product states [16, 30]. So it is interest-
ing to ask whether there are some other classes of locally
indistinguishable orthogonal product states except the
UPB. This paper gives a positive answer to this ques-
tion. Recently, the authors in [36] gave a necessary and
sufficient condition for an UPB to be distinguished by
separable measurements. So in this paper we also con-
sider the distinguishablity of the set of product states by
separable measurements.

In this paper, we concentrate ourselves on finding the
set of LOCC indistinguishable product states in C"®C".
If a set of quantum states are LOCC distinguishable,
then there should be a nontrivial measurement that can
preserve the orthogonality of these states. If not, these
quantum states must be LOCC indistinguishable. As in
Ref.[24], the authors asked whether a subset of the quan-
tum base they constructed is also LOCC indistinguish-
able. And we give an affirm answer to this question.
First, we give an example. In C” ® C7, the LOCC indis-
tinguishable subset we present only contains 33 states.
Then we generalize it to higher odd dimensions. These
give a complete answer to the question asked by the au-
thors in [24]. Then we generalize our method to arbi-
trary bipartite quantum system and give a small set of
LOCC indistinguishable product states which contains
only 3(m+n)—9 states in C"™ @ C"™. Then we prove the
set of product states we constructed is not an UPB. Even
though these product states are LOCC indistinguishable,



they can be distinguished by separable measurements.
This shows that separable operations are stronger than
the local operations and classical communication.

II. SMALL SET OF LOCC
INDISTINGUISHABLE PRODUCT STATES

In this section, we first construct a subset (denote as
T) of LOCC indistinguishable orthogonal product basis
quantum states in C% @ C?, where d is odd. For a better
understanding, we first show our construction in C” ® C”
as an example, then we generalize it to higher dimensions.
In this paper, we use a rectangle to represent a quantum
states. A rectangle contains two squares always presents
two states: if the rectangle consists of the i*? row, j*" and
(7 4+ 1)*™ columns, then the rectangle represents the two
states |7)(|j) |7 +1)). And a rectangle contains only one
square always presents one state: if the square consists
of the i*" row and j*" column, then the square represents
the state |¢)|7). We make an agreement that the set T' of
product states are only chosen from the rectangle with
grey color or black color. If the rectangle is black, we
choose both of the represented states, if the rectangle is
grey we only choose one (the positive one), so the rectan-
gle with only one square being chosen is always grey. For
example, the first one rectangle of the first row in Fig.1
represents two states |1)(]1) & |2)), while the second one
of the first row represents the state [1)(|3)+]4)). And the
square in the center of Fig.1 represents the state |4)]4).
There are 12 rectangles with black color and 9 rectangles
with grey color, so the set T" contains 12 x2+9 x 1 = 33
product states .
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Fig.1 Product states representation in C” & C”
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Ezample: In C" @ C7, the 33 states defined in the Fig.1
are LOCC indistinguishable.

Proof: Since these states are symmetrical, we know
that if the states cannot be distinguished with Alice going
first, then these states cannot be distinguished with Bob
going first either. Thus, we only need to prove that these

states cannot be distinguished by LOCC with Alice going
first.

Suppose Alice do the first measurement {M?}. Next
we prove that for any matrix M that preserves the or-
thogonality of these states we constructed, then MTM
al for some o € R. Suppose MM is the following form
under the basis {|1),(2),...,|7)}.

mi1 Mmiz - My
MM = ma1 Mg -+ May
m.71 77”&.72 SRR (1
We have 7 states
[1) = [1)(13) + [4)), [v2) = [2)(]4) +[5)),
[v3) = [3)(13) + [4)), [¥a) = [4)[4),
[vs) = [5)(|4) + [5)), [v6) = 6)(]3) + |4)),
[7) = [7)(14) + [5)).

If {|¢:)}32, are LOCC distinguishable, then {M ®
I|;)}33, are pairwise orthogonal. Particularly, for the
above 7 states, we have

0= (V| MTM&I|;) = (i|MTM|5){(¢s|¢;) = mij, i j.

Because |¢;) = [3) + [4), |4) + |5), or|4), so (¢i]¢;) = 1,
then the third equality of the above equation holds. So
we have m;; = 0 for ¢ # j.

Now we consider |¢1) = (|1) +2))|7) and |¢p2) = (|1) —
[2))|7). By the orthogonality of (M ® I)|¢1) and (M ®
I)|g2), we get

(01| MTM @ I|¢ha) = may + mag1 — mig — Mgy = 0.

Since m;; = 0 for @ # j, so we get mi; = maa. If we
consider |¢3) = ([2) + [3))[6) and |$s) = (|2) — [3))]6),
we get Mmoo = mgz. Similarly, we can obtain mg33 =
M44, Mag = M55, M55 = Mee, Mee = Mr7. Hence MTM =
diag(a,a,...,a) = al for some a € R.

In order to preserve the orthogonality of our given
states, any measurement { M} Alice can do is the trivial
measurement. This implies the LOCC indistinguishabil-
ity of the orthogonal product states we constructed. W



Fig.2 Product states representation in C% &) C?

Theorem 1. In C¢ @ C?, where d is odd. The 6d — 9
states defined in the Fig.2 is LOCC indistinguishable.
And we denote the set of product states we constructed
as T .

Proof: We define the middle horizon states in Fig.2
from upper to below as |¢;), ¢=1,2,...,2n+1 and the
black vertical states

|67) = (i) + i + 1))]i),i = 1,2,.
|67) = (li = 1) £1@))lé),i = n+ 1, nt2,.
Suppose these states can be LOCC distinguished, then
either Alice or Bob can perform a nontrivial measurement
{MZ-A} that can preserve the orthogonality of these states.
As the states we constructed are symmetry, so we can
suppose Alice do the first measurement {M;'}. We prove
that for any matrix M that preserves the orthogonality
of [¢h;)and |¢F) , then MTM o aI for some o € R.
If M is one of such matrix, we can suppose MTM =
{mi;}¢,—,. From the orthogonality of M ® I|¢;) and
M ® I;), we have

2n—|—1.

0= (s MTM ;) i .

Now for the orthogonality between M ® I|¢;) and M ®
I|¢; ), we have

= Myy,

0= (o] MM @ I|$; ) = msi — Miit1 + Mig1,i — Mit1,i41,
0= (f MM @1I|¢;) = mj—1,j-1 —mj—1; + my -1 —my;,
1<i<n, n+1<75<2n.

Because m;; = 0, for i # j, we can deduce m;; = mgp =
-+ = Map+1,2n+1. Hence, MTM o< ol for some a € R.
So we can conclude that, the only measurement for
Alice that preserves the orthogonality of these states is
the trivial measurement. |
Now we consider the small set of locally indistinguish-
able product states in C™ ®@C™. We separate it into three
cases C2k+1 ® (C2l+1,(C2k Q C2l+1 and (C2k ® (C2l.

Firstly, in C2**! @ C%+1, we construct 6(k + 1) —
states.

\¢i>:|>(\>i|z+1>) i=1,3,...,2l—1;
WE) = [2k + 1)(|i) £ |i+1), i=2,4,...,20—2
\w» lk+1)]i), i=2,3,...,2[;

65) = () £ 1 + )2+ 1), j=13,...,2%—1;
\¢i>:(\>ilj+1>)|1> j=2,4,...,2k—2;
\¢J> INI+1), j=23,...,2k

In C° ® C®, these states are plotted as in Fig.3:
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Fig.3 Product states representation in C® @) C®
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Secondly, in C?* @ C?'*!, we construct 6(k +1) — 6 states:

\¢i>:| Y)Yy £ i +1), i=1,3,...,21 —1;
[E) = |2 k)(\i>i|i+1)), i=2,4,...,21—2
W}z>_|z>|3> =2,3,...,2k—

67) = (IJ ):|:|j+1>)|2l+1> j=1,3,...,2k—3;
\¢i>:(\ DE D)), §=2,4,...,2k—4;
\%k o) = (12k — 2) £ ]2k — 1))[2);

|631) = (|2k — 1) £ [2k))[1);

|B5) = 12)17), 7 =2,3,...,2L

In C® @ C?, these states are plotted as in Fig.4:
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Fig.4 Product states representation in C% &) C*
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Thirdly, in C?* @ C?, we construct 6(k + 1) — 9 states:

) = [1)(ji) £ i+ 1)), i=1,3,...,20 - 3;
[WEY = |2k) (i) £ |i + 1)), i=2,4,...,2] — 4
|wj> |j>|3>7 j:3747~~~72k_1

Iwzl 0) = |2k — 1)(|21 — 2) £ 21 — 1));
;1) = |2k} (|2 — 1) £ [21));

i) = [2)]i), i=2,3,...,20—1

|¢i> () 17+ 1020, G=1,3,...,2%—3;
|¢ Y= £+, §=2,4,...,2k—4;
|¢2k 2) = (12k —2) £ |2k — 1))2);

|63_1) = (12k — 1) & [2k))[1).

In C® ® CY, these states are plotted as in Fig.5:
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Fig.5 Product states representation in C6®C*
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Theorem 2. In C™ ®C™, there are 3(m+mn)—9 product
states that are LOCC indistinguishable and these states
are constructed as above, and we denote the set as T.

Proof: Now we just give the proof of the second case,
others are just as similar. If these states are LOCC dis-
tinguishable when Alice goes first, then Alice can perform
a nontrivial measurement { M/} which preserves the or-
thogonality of these states. Next we prove that for any
matrix M that preserves the orthogonality of the given
states, then MM o ol for some o € R. We can suppose
MTM = (m;;). Because the label i of |t;) runs from 2,
to 2k — 1, we can define |11) = |17, [thor) = [¥;). Then
by the orthogonality of M ®I]t);) and M ®1|1;), we have

0= (| MTM @ I|¢ys) = myy,i # j.

Then we have m;; = 0 for ¢ # j. So the matrix M is a
diagonal matrix. Next we show all the diagonal elements
in the matrix M are equal to each other. By the orthogo-
nality of M @I|¢]) and M@ I|¢;) (j =1,2,...,2k—1),
we have

0= (¢fIMTMI|¢]) =m,,
Then we have My = Mjt1,5+1 for mj41,5 = My 41 = 0
where j = 1,2,...,2k — 1. So we deduce mqi; = mos =

- = may 2x. Hence MTM o al for some a € R.

So we can deduce that the only measurement for Alice
that preserves the orthogonality of these states is the
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trivial measurement. Similarly, if Bob goes first, we can
also prove that the measurement Bob can do is also a
trivial measurement. |

We can easily notice that the set T' of product states
we constructed in theorem 1 and theorem 2 is not an
UPB.

Lemma. The set T of product states we constructed in
theorem 1 and theorem 2 is not an UPB. Moreover, the
set T can be extended to an orthogonal product base.

Proof : Because the states in theorem 1 are only a
subset of a product base constructed in [24], so it can be
extended to a product base obviously. Next, we consider
the rectangle representation of the product states we con-
structed in theorem 2. For the case in C"™ ® C", there are
mn —3(m-+n)+9 white squares. Each square represents
a product state. Then we have mn—3(m+n)+9 product
states, and we denote this set as S. It is not difficult to
show that the states in S U T are mutually orthogonal.
And there are exactly mn elements in the set SUT . So
we can conclude that SUT is an orthogonal product base
in C™ ® C". ]

Theorem 8. The LOCC indistinguishable product
states we constructed in theorem 1 and theorem 2 can
be distinguished by separable measurements.

Proof: In C™ ® C™, we have construct N =
3(m + n) + 9 product states. We can denote it as
[1), [2), ..., |¥N). From the above lemma, these N
product states can be extended to an orthogonal product
base, so we can denote the other mn — N product states
as [Yn+1), [WN<2)s s [Ymn). Now we define a measure-
ment {M;}", where M; = |1;)(¢;]. Because the set
{|1; }i* is an orthogonal normal base of C™ @ C", the
completeness equation holds. That is,

DM = )] =1
i=1 i=1

As any [1);) is a product state, we can conclude that M;
is separable. So {M;}"" is a separable measurement.
Now we state that these N product states [¢1),
[tha), ..., |¥n) can be distinguished by the above separable
measurement. First, we have the following equations:

(W3 Mi|abs) = (sl (ilps) = 635, 1 < i <mn, 1 < j < N.

So the outcome could not be greater than N. More-
over, if the outcome is 4, then we can correctly conclude
that the given state is [¢);). Hence the set of product
states |¢1), [2), ..., |¢n) can be distinguished by separa-
ble measurement. |

III. CONCLUSION

We study the locally indistinguishable problem of or-
thogonal pure product states in bipartite quantum sys-
tem. First, we find a small set of pure product states
which is LOCC indistinguishable in C? ® C?%.  This
gives an answer of the question raised by the authors



in Ref.[24]. Then we generalize our method to arbitrary
bipartite quantum system C™ ® C™ and construct a set
contains only 3(m + n) — 9 pure product states which
are LOCC indistinguishable. What surprising us is that
the set of 3(m + n) — 9 pure product states can be dis-
tinguished by separable measurements for it can be ex-
tended to a orthogonal product base. This shows that
separable operations are stronger than the local opera-
tions and classical communication. We hope that our

results will help us a better understanding the nonlocal-
ity without entanglement.
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