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REGULARITY THEORY FOR 2-DIMENSIONAL ALMOST MINIMAL
CURRENTS I: LIPSCHITZ APPROXIMATION

CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

Abstract. We construct Lipschitz Q-valued functions which approximate carefully in-
tegral currents when their cylindrical excess is small and they are almost minimizing in a
suitable sense. This result is used in two subsequent works to prove the discreteness of the
singular set for the following three classes of 2-dimensional integral currents: area minimiz-
ing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional
area minimizing cones.

This paper is the second in a series of works aimed at establishing an optimal regular-
ity theory for 2-dimensional integral currents which are almost minimizing in a suitable
sense. Building upon the monumental work of Almgren [1], Chang in [4] established that
2-dimensional area-minimizing currents in Riemannian manifolds are classical minimal sur-
faces, namely they are regular (in the interior) except for a discrete set of branching singu-
larities. The argument of Chang is however not entirely complete since a key starting point
of his analysis, the existence of the so-called “branched center manifold”, is only sketched
in the appendix of [4] and requires the understanding (and a suitable modification) of the
most involved portion of the monograph [1].

An alternative proof of Chang’s theorem has been found by Rivière and Tian in [15] for
the special case of J-holomorphic curves. Later on the approach of Rivière and Tian has
been generalized by Bellettini and Rivière in [3] to handle a case which is not covered by
[4], namely that of special Legendrian cycles in S5 (see also [2] for a further generalization).

Meanwhile the first and second author revisited Almgren’s theory giving a much shorter
version of his program for proving that area-minimizing currents are regular up to a set of
Hausdorff codimension 2, cf. [5, 6, 7, 8, 9]. In this note and its companion papers [10, 11]
we build upon the latter works in order to give a complete regularity theory which includes
both the theorems of Chang and Bellettini-Rivière as special cases. In order to be more
precise, we introduce the following terminology (cf. [12, Definition 0.3]).

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ ∩ U is area-
minimizing in Σ ∩ U if M(T + ∂S) ≥ M(T ) for any m + 1-dimensional integral
current S with spt(S) ⊂⊂ Σ ∩ U .

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every
x ∈ Σ, where ‖·‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral

current T with spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.
1
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(c) An m-dimensional integral current T supported in ∂BR(p) ⊂ Rm+n is a spherical
cross-section of an area-minimizing cone if p××T is area-minimizing.

In what follows, given an integer rectifiable current T , we denote by Reg(T ) the subset of
spt(T )\ spt(∂T ) consisting of those points x for which there is a neighborhood U such that
T U is a (costant multiple of) a regular submanifold. Correspondingly, Sing(T ) is the set
spt(T ) \ (spt(∂T ) ∪ Reg(T )). Observe that Reg(T ) is relatively open in spt(T ) \ spt(∂T )
and thus Sing(T ) is relatively closed. The main result of this and the works [10, 11] is then
the following

Theorem 0.2. Let Σ and ω be as in Definition 0.1, let T be as in (a), (b) or (c) and
assume in addition that m = 2, that Σ is of class C3,α and ω of class C2,α for some
positive α. Then Sing(T ) is discrete.

Clearly Chang’s result is covered by case (a). As for the case of special Lagrangian cycles
considered by Bellettini and Rivière in [3] observe that they form a special subclass of both
(b) and (c). Indeed these cycles arise as spherical cross-sections of 3-dimensional special
lagrangian cones: as such they are then spherical cross sections of area-minimizing cones
but they are also semicalibrated by a specific smooth form on S5.

Following the Almgren-Chang program, Theorem 0.2 will be established through a suit-
able “blow-up argument” which requires several tools. The first important tool is the
theory of multiple-valued functions, for which we will use the results and terminology of
the papers [5, 6]. The second tool is a suitable approximation result for area-minimizing
currents with graphs of multiple valued functions. The one needed to carry out the proof
in case (a) is already contained in [7]. However the latter paper does not cover the cases
(b) and (c): therefore the purpose of this note is to extend the theorems in [7] to these
cases. Moreover, since the corresponding theorems can be proved for all dimensions m
without any additional effort, in this note we will state all the results in such generality

The final tool is the so-called “center manifold”: this will be constructed in [10], whereas
the final argument for Theorem 0.2 will then be given in [11]. We note in passing that
Theorem 0.2 uses heavily the uniqueness of tangent cones for T . This result is a, by now
classical, theorem of White for area-minimizing 2-dimensional currents in the euclidean
space, cf. [17]. Chang extended it to case (a) in the appendix of [4], whereas Pumberger
and Rivière covered case (b) in [14]. A general derivation of these results for a wide class
of almost minimizers has been given in [12]: the theorems in there cover, in particular, all
the cases of Definition 0.1.

0.1. Acknowledgments. The research of Camillo De Lellis and Luca Spolaor has been
supported by the ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. Notation and statement of the main theorem

We start recalling here several geometric facts which have been shown in [12]. The first
is given by the following technical lemma.



LIPSCHITZ APPROXIMATION FOR ALMOST MINIMAL CURRENT 3

Lemma 1.1 (Lemma 1.1 in [12]). Let k ∈ N \ {0}, ε0 ∈ [0, 1], Σ ⊂ Rm+n be a Ck+1,ε0

(m + n̄)-dimensional submanifold, V ⊂ Rm+n an open subset and ω a Ck,ε0 m-form on
V ∩ Σ. If T is a cycle in V ∩ Σ semicalibrated by ω, then T is semicalibrated in V by a
Ck,ε0 form ω̃.

For this reason, without loss of generality we will from now on consider semicalibrated
currents directly in the Euclidean space. The ambient manifold Σ will then play a role
only in case (a) of Definition 0.1. Next we recall

Proposition 1.2 (Proposition 1.2 in [12]). Let T be as in Definition 0.1 (b) (in which case
we assume Σ = Rm+n) or (c). Then there is a constant Ω such that

M(T ) ≤M(T + ∂S) + Ω M(S) ∀S ∈ Im+1(Rm+n) with compact support. (1.1)

Ω ≤ ‖dω‖0 in case (b) and Ω ≤ (m+ 1)R−1 in case (c).
Moreover, if χ ∈ C∞c (Rm+n \ spt(∂T ),Rm+n), we have

δT (χ) = T (dω χ) in case (b), (1.2)

δT (χ) =

∫
mR−1 x · χ(x) d‖T‖(x) in case (c). (1.3)

In the case of Riemannian minimizers we introduce a further relevant quantity, the
maximum norm of the second fundamental form of Σ, which according to the notation of
the papers [5, 6, 7] will be denoted by A. Therefore we have

A := sup
x∈Σ
|AΣ(x)| . (1.4)

For the notation concerning submanifolds Σ ⊂ Rm+n we refer to [6, Section 1]. With
Br(p) and Br(x) we denote, respectively, the open ball with radius r and center p in Rm+n

and the open ball with radius r and center x in Rm. Cr(x) will always denote the cylinder
Br(x) × Rn and the point x will be omitted when it is the origin. In fact, by a slight
abuse of notation, we will often treat the center x as a point in Rm+n, avoiding the correct,
but more cumbersome, (x, 0). ei will denote the unit vectors in the standard basis, π0 the
(oriented) plane Rm × {0} and ~π0 the m-vector e1 ∧ . . . ∧ em orienting it. We denote by
p and p⊥ the orthogonal projections onto, respectively, π0 and its orthogonal complement
π⊥0 . In some cases we need orthogonal projections onto other planes π and their orthogonal
complements π⊥, for which we use the notation pπ and p⊥π . For what concerns integral
currents we use the definitions and the notation of [16]. We isolate the main assumption
of our approximation theorem in the following

Assumption 1.3. In case (a) Σ ⊂ Rm+n is a C2 submanifold of dimensionm+n̄ = m+n−l,
which is the graph of an entire function Ψ : Rm+n̄ → Rl and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (1.5)

where c0 is a positive (small) dimensional constant. ω is a C1 m-form. T is an integral
current of dimension m with bounded support. Moreover it satisfies one of the three
conditions (a), (b) or (c) in Definition 0.1. In particular in case (a) we have spt(T ) ⊂ Σ
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and T is area-minimizing in Σ. In case (b) we assume Σ = Rm+n and T is semicalibrated
by ω. In case (c) we have that Σ coincides with a portion of ∂BR(p), which is the graph of
a map Ψ : Ω→ R satisfying (1.5), for some Ω ⊂ Rm+n−1. Finally, for some open cylinder
C4r(x) (with r ≤ 1) and some positive integer Q,

p]T = Q JB4r(x)K and ∂T C4r(x) = 0 . (1.6)

Definition 1.4 (Excess measure). For a current T as in Assumption 1.3 we define the
cylindrical excess E(T,Cr(x)), the excess measure eT and its density dT :

E(T,Cr(x)) :=
‖T‖(Cr(x))

ωmrm
−Q,

eT (A) := ‖T‖(A× Rn)−Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscripts T will be omitted
if clear from the context).

The main theorem of the paper is then the following approximation result (for the
notation concerning multiple valued functions and their graphs we refer to [5, 6, 7]).

Theorem 1.5. There exist costants M,C21, β0, ε21 > 0 (depending on m,n, n̄, Q) with the
following property. Assume that T satisfies Assumption 1.3 in the cylinder C4r(x) and E =
E(T,C4r(x)) < ε21. Then, there exist a map f : Br(x)→ AQ(Rn), with {x}×spt(f(x)) ⊂ Σ
for every x, and a closed set K ⊂ Br(x) such that

Lip(f) ≤C21E
β0 + C21Ωr in case (a) and (c) , (1.7)

Lip(f) ≤C21E
β0 in case (b) (1.8)

Gf (K × Rn) = T (K × Rn) and |Br(x) \K| ≤ C21E
β0
(
E + r2Ω2

)
rm , (1.9)∣∣∣‖T‖ (Cr(x))−Qωmrm −

1

2

∫
Br(x)

|Df |2
∣∣∣ ≤ C21E

β0
(
E + r2Ω2

)
rm , (1.10)

where Ω = A in case (a). If in addition h(T,C4r(x)) := sup{|p⊥(x) − p⊥(y)| : x, y ∈
spt(T ) ∩C4r(x)} ≤ r, then

osc(f) ≤ C21h(T,C4r(x)) + C21(E1/2 + rΩ)r in case (a) and (c) , (1.11)

osc(f) ≤ C21h(T,C4r(x)) + C21rE
1/2 in case (b). (1.12)

First of all we observe that the case of area minimizing currents in a Riemannian manifold
(case (a) of Definition 0.1) is already covered by [7, Theorem 1.4] (note that the estimate [7,
(1.4)], which corresponds to (1.7), misses the term rΩ = rA: this is however only a typo),
so we only need to prove Theorem 1.5 for semicalibrated currents and for spherical cross
sections of area minimizing cones. Secondly, our proof does not exploit all the structure
implied by the conditions (b) and (c) in Definition 0.1: without any additional effort we
achieve in fact the following more general version of the corresponding portions of Theorem
1.5.
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Definition 1.6 (Ω-minimality). A current with compact support satisfying condition (1.1)
will be called Ω-minimal.

Proposition 1.7. There exist costants M,C21, β0, ε21 > 0 (depending on m,n,Q) with
the following property. Assume that T ∈ Im(Rm+n) is Ω-minimal, it satisfies (1.6) in the
cylinder C4r(x) and E = E(T,C4r(x)) < ε21. Then, there exist a map f : Br(x)→ AQ(Rn)
and a closed set K ⊂ Br(x) satisfying (1.7), (1.9) and (1.10). If in addition h(T,C4r(x)) ≤
r, then (1.12) also holds.

The rest of the paper is devoted to prove Proposition 1.7. This will be achieved in four
sections. In the first we recall some results from [7], which can be applied in our case
without any modification. In the second we improve upon the almost minimality condition
under the assumption that the cylindrical excess is small: this section contains, indeed,
the most significant new ideas compared to [7]. In the two subsequent sections we modify
accordingly the computations of [7] to prove Proposition 1.7. Observe that the graph of
the map of Proposition 1.7 is not supported in Σ = ∂BR(p) in case (c). We will thus
need to show how this last requirement can be achieved respecting the estimates claimed
in Theorem 1.5: this will be accomplished in the very last section. From now on constants
which depend only upon m, n and Q will be called dimensional constants.

2. Preliminaries

All the results stated in this section are proved in [7] in the more general case of m-
dimensional currents which minimize the area in a Riemannian manifold. However since
as noted before we will need them only in the euclidean setting, we shall restrict ourselves
to this easier case. Here we adopt the notation and terminology on Q-valued maps of the
papers [5, 6, 7]: we therefore refer the reader to these works for all the terms and symbols
used in what follows.

The first result is a procedure to approximate general integral currents without boundary.
To state it we need the following definition.

Definition 2.1 (Maximal function of the excess measure). Given a current T as in As-
sumption 1.3 we introduce the “non-centered” maximal function of eT :

meT (y) := sup
y∈Bs/2(w)⊂B4r(x)

eT (Bs(w))

ωm sm
= sup

y∈Bs/2(w)⊂B4r(x)

E(T,Cs(w)).

Notice that with respect to [7, Definition 2.1], we define the Maximal function taking
the supremum over balls of radius s/2 and not s. This is just a techninality which allows
to construct the Lipschitz approximation of the next Proposition in the ball of radius 7r/2.

Proposition 2.2 (Lipschitz approximation; cf. [7, Proposition 2.2]). There exists a con-
stant C22(m,n,Q) > 0 with the following property. Let T be as in Proposition 1.7 in the
cylinder C4s(x). Set E = E(T,C4r(x)), let 0 < δ < 1 be such that

r0 := 16
m

√
E

δ
< 1,
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and define K :=
{
meT < δ

}
∩B7r/2(x). Then, there is u ∈ Lip(B7r/2(x),AQ(Rn)) such that

Lip(u) ≤ C22 δ
1/2,

Gu (K × Rn) = T (K × Rn),

|Bs(x) \K| ≤ 10m

δ
eT

(
{meT > 2−mδ} ∩Bs+r0s(x)

)
∀ s ≤ 7r

2
. (2.1)

When δ = E2β, the map u given by the proposition will be called Eβ-Lipschitz approxi-
mation of T in C7r/2(x).

The second result deals with the construction of suitable competitors (in energetic terms)
for a sequence of W 1,2 Q-valued functions whose Dirichlet energy is uniformly bounded.
Before stating it we need a definition and a concentration compactness lemma.

Definition 2.3 (Translating sheets). Let Ω ⊂ Rm be a bounded open set. A sequence of
maps {hl}l∈N ⊂ W 1,2(Ω,AQ(Rn)) is called a sequence of translating sheets if there are:

(a) integers J ≥ 1 and Q1, . . . , QJ ≥ 1 satisfying
∑J

j=1 Qj = Q,

(b) vectors yjl ∈ Rn (for j ∈ {1, . . . , J} and l ∈ N) with

lim
l→∞
|yjl − y

i
l | = +∞ ∀ i 6= j, (2.2)

(c) and maps ζj ∈ W 1,2(Ω,AQj) for j ∈ {1, . . . , J},
such that hl =

∑J
j=1Jτyjl ◦ ζ

jK (see [5, Section 3.3.3] for the notation).

Translating sheets are a useful device to recover a suitable “compactness statement” for
sequences of Q-valued maps with equi-bounded energy.

Proposition 2.4 (Concentration compactness; cf.[7, Proposition 3.3]). Let Ω ⊂ Rm be a
bounded open set and (gl)l∈N ⊂ W 1,2(Ω,AQ) a sequence of functions with supl

∫
Ω
|Dgl|2 <

∞. Then, there exist a subsequence (not relabeled) and a sequence of translating sheets hl
such that ‖G(gl, hl)‖L2 → 0 and the following inequalities hold for every open Ω′ ⊂ Ω and
any sequence of measurable sets Jl with |Jl| → 0:

lim inf
l→+∞

(∫
Ω′\Jl
|Dgl|2 −

∫
Ω′
|Dhl|2

)
≥ 0 (2.3)

lim sup
l→+∞

∫
Ω

(|Dgl| − |Dhl|)2 ≤ lim sup
l→∞

∫
Ω

(
|Dgl|2 − |Dhl|2

)
. (2.4)

They are also the key tool in the construction of competitors for the energy.

Proposition 2.5 (Construction of a competitor; cf. [7, Proposition 3.4]). Consider two
radii 1 ≤ r0 < r1 < 4 and maps gl, hl ∈ W 1,2(Br1 ,AQ(Rn)) such that {hl}l is a sequence of
translating sheets,

sup
l

Dir(gl, Br1) < +∞ and ‖G(gl, hl)‖L2(Br1\Br0 ) → 0.

For every η > 0, there exist r ∈]r0, r1[, a subsequence of {gl}l (not relabeled) and functions
Hl ∈ W 1,2(Br1 ,AQ(Rn)) such that Hl|Br1\Br = gl|Br1\Br and Dir(Hl, Br1) ≤ Dir(hl, Br1)+η.
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In addition, there is a dimensional constant C23 and a constant C∗(η) (depending also on
the two sequences, but not on l) such that

Lip(Hl) ≤ C∗(η) (Lip(gl) + 1), (2.5)

‖G(Hl, hl)‖L2(Br) ≤ C23Dir(gl, Br) + C23Dir(Hl, Br) , (2.6)

‖η ◦Hl‖L1(Br1 ) ≤ C23 ‖η ◦ gl‖L1(Br1 ) + C23‖η ◦ hl‖L1(Br1 ) . (2.7)

The third result we recall here is about the higher integrability of Dir-minimizing Q-
valued function.

Theorem 2.6 (Higher integrability of Dir-minimizers; cf. [7, Theorem 5.1]). There exists
p1 > 2 such that, for every Ω′ ⊂⊂ Ω ⊂ R2 open domains, there is a constant C24 > 0 such
that

‖Du‖Lp1 (Ω′) ≤ C24 ‖Du‖L2(Ω) for every Dir-minimizing u ∈ W 1,2(Ω,AQ(Rn)). (2.8)

The fourth and final result of this section is the existence of a special projection from
RN to Q, which avoids loss of energy when composed with a W 1,2 Q-valued map.

Proposition 2.7 (Cf. [7, Proposition 6.2]). For every n,Q ∈ N \ {0} there are geo-
metric constants δ0, C24 > 0 with the following property. For every δ ∈]0, δ0[ there is

ρ?δ : RN(Q,n) → Q = ξ(AQ(Rn)) such that |ρ?δ(P )− P | ≤ C24 δ
8−nQ for all P ∈ Q and, for

every u ∈ W 1,2(Ω,RN), it holds∫
|D(ρ?δ ◦ u)|2 ≤

(
1 + C24 δ

8−nQ−1
)∫
{dist(u,Q)≤δnQ+1}

|Du|2 + C24

∫
{dist(u,Q)>δnQ+1}

|Du|2 .

(2.9)

3. Homotopy lemma

Before proving the main Lipchitz approximation theorem we need a lemma which esti-
mates carefully the difference in mass between an Ω-almost minimizer and a competitor
in terms of a power of the excess and the costant Ω. The key idea is to choose the surface
S in (1.1) to be an homotopy between the Eβ approximation of T and that of S.

Lemma 3.1 (Homotopy Lemma). Let T be an Ω-almost minimizer which satisfies (1.6).
There are positive dimensional constants ε22 and C25 such that, if E = E(T,C4r(x)) ≤ ε22,
then the following holds. For every R ∈ Im(C3r(x)) such that ∂R = ∂(T C3r(x)), we have

‖T‖(C3r(x)) ≤M(R) + C25r
m+1ΩE

1/2 . (3.1)

Moreover, let β ≤ 1
2m

, s ∈]r, 2r[, R = Gg Cs(x) for some Lipschitz map g : Bs → AQ(Rn)

with Lip(g) ≤ 1 and f be the Eβ-approximation of T in C3r. If f = g on ∂Bs and
P ∈ Im(Rm+n) is such that ∂P = ∂((T −Gf ) Cs), then

‖T‖(Cs(x)) ≤M(Gg) + M(P ) + C25Ω
(
E

3/4rm+1 + (M(P ))1+1/m +

∫
Bs(x)

G(f, g)
)
. (3.2)
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Proof. We will first show (3.1): in fact (3.2) follows easily from a portion of the same
argument, as it will be highlighted at the end.

Without loss of generality we assume x = 0. If ‖T‖(C3r) ≤M(R) then there is nothing
to prove. Hence we can suppose

M(R) ≤ ‖T‖(C3r). (3.3)

Define the current R′ ∈ Im(C4r) by R′ := R+T (C4r \C3r). Observe that ∂(T −R′) = 0.
So ∂(p](T − R′)) = 0. On the other hand p](T − R′) = k JB4rK for some constant k and
thus we conclude p](T − R′) = 0. Therefore R′ satisfies (1.6). Moreover we notice that,
thanks to (3.3), the cylindrical excess of R′ enjoys the following bound:

E(R′, C4r) =
M(R′)

ωm(4r)m
−Q

(3.3)

≤ M(T )

ωm(4r)m
−Q = E(T,C4r) =: E.

Let f, h : B7r/2 → AQ(Rn) be the Eβ-Lipschitz approximations of T and R′ respectively, in
the cylinders C7r/2 (the exponent β will be chosen to equal 1

2m
in the proof of (3.1), but

we choose to keep the symbol β to highlight the changes needed in order to achieve (3.2)).
Then there exist sets KT , KR′ ⊂ B7r/2(x) such that T (KT × Rn) = Gf (KT × Rn) and
R′ (KR′ × Rn) = Gh (KR′ × Rn), fulfilling the following estimates:

M((T −Gf ) C7r/2) ≤ C21r
mE1−2β and M((R′ −Gh) C7r/2) ≤ C21r

mE1−2β, (3.4)

|B7r/2 \KT | ≤ C21r
mE1−2β and |B7r/2 \KR′ | ≤ C21r

mE1−2β, (3.5)

Lip(f) ≤ C21E
β and Lip(h) ≤ C21E

β. (3.6)

Next we set K := KT ∩KR′ and we notice that by (3.5)

|B7r/2 \K| ≤ C21r
mE1−2β. (3.7)

Let | · | be the function |(x, y)| := |x|2 for every (x, y) ∈ Rm×Rn, where |x|2 is the euclidean
norm of the vector x. By the slicing theory, (3.4), (3.7) and Fubini’s Theorem there exists
s ∈ (3r, 7/2r) such that

M(〈T −Gf , | · |, s〉) + M(〈R′ −Gh, | · |, s〉) ≤ C21r
m−1E1−2β (3.8)

and

|∂Bs \K| ≤ C21r
m−1E1−2β . (3.9)

By the Isoperimetric Inequality, there exists PT , PR ∈ Im(Rm+n) such that

∂PT = 〈T −Gf , | · |, s〉 ∂PR = 〈R′ −Gh, | · |, s〉
and

M(PT ) + M(PR) ≤ C
(
M(〈T −Gf , | · |, s〉

)m/(m− 1)
+ C

(
M(〈R′ −Gh, | · |, s〉

)m/(m− 1)

≤ CrmEm(1−2β)/(m−1).

Choosing β = 1
2m

, we can conclude that

∂((T −Gf ) Cs) = ∂PT ∂((R′ −Gh) Cs) = ∂PR (3.10)
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with

M(PT ) + M(PR) ≤ CrmE . (3.11)

Next consider the functions

f ′ := ξ ◦ f : B7r/2 → Q ⊂ RN(Q,n) and h′ := ξ ◦ h : B7r/2 → Q ⊂ RN(Q,n) .

and the homotopy between them, defined by

H̃(x, t) : [0, 1]×B7r/2(x) 3 (t, x)→ (x, tf ′(x) + (1− t)h′(x)) ∈ Rm × RN .

Consider the Lipschitz map

φ : Rm × RN 3 (x, y)→ (x, ξ−1(ρ(y))) ∈ Rm ×AQ(Rn)

and define H := φ ◦ H̃. H can be seen as a Q-valued map H : B2r × [0, 1] → AQ(Rm+n).
Without changing notation for H we restrict it to [0, 1]×Bs and following the notation of
[6, Definition 1.3] we define S := TH . If we set G := H|[0,1]×∂Bs we can use [6, Theorem
2.1] to conclude that

∂S = (Gf −Gh) Cs + TG = (Gf −Gh) Cs + P , (3.12)

where P := TG. We now want to estimate M(S) and M(P ) and we will do it using
the Q-valued area formula in [6, Lemma 1.9]. We start with M(S). We fix a point of
differentiability p where DH =

∑
JDHiK. On [0, 1]×Bs we use the coordinates (t, x) and

on the target space Rm+n the coordinates (x, y). Let p = (t0, x0). It is then obvious that
the matrix DHi can be decomposed as

DHi(p) =

(
Im×m 0m×1

An×m vn×1 .

)
where the matrices A and v can be bound using the following observation. If we consider
the map t 7→ Φ(t) := H(x0, t) and x 7→ Λ(x) := H(t0, x), we then have |v| ≤ CLip(Φ) and
|A| ≤ CLip(Λ), where the constant C depends only on n and Q. On the other hand, it
is easy to see that Lip(Φ) ≤ CG(f(x0), h(x0)) and Lip(Λ) ≤ C(Lip(h) + Lip(f)) ≤ Eβ =
E1/2m. Thus we can estimate

JHi :=
√

det(DH∗i ·DHi) ≤ CG(f(x0), g(x0)) .

Using [6, Lemma 1.9] we then conclude

M(S) ≤ C

∫
Bs

G(f, h)

and, arguing in a similar fashion,

M(P ) ≤ C

∫
∂Bs

G(f, h) .

Observe that f and h coincide, respectively, with the slices of the currents T and R′ on any
x0 ∈ K. On the other hand, s > 3r and T C4r \C3r = R′ C4r \C3r. We thus conclude
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that h = f on K ∩ ∂Bs. Let x ∈ ∂Bs \K. By (3.9), there exists x0 ∈ K ∩ ∂Bs such that
|x− x0| ≤ CrE(1−2β)/(m−1) = CrE2β (recall that β = 1

2m
). Thus

G(f(x), h(x)) ≤ (Lip(f) + Lip(h)) |x− x0| ≤ CrE3β ,

and so we conclude

M(P ) ≤ C

∫
∂Bs

G(f, h) ≤ CrE3β|∂Bs \K| ≤ CrmE1+β ≤ CrmE . (3.13)

On the other hand, we recall that, by a standard variant of the Poincaré inequality,∫
Bs

G(f, h) ≤ Cr‖G(f, h)‖L1(∂Bs) + Cr‖D(G(f, h))‖L1(Bs)

(3.13)

≤ Crm+1E + Cr1+m/2

(∫
(|Df |2 + |Dh|2

)1/2

≤ Crm+1E
1/2 . (3.14)

Thus,
(Gf −Gh) Cs = ∂S + P (3.15)

with
M(P ) ≤ CrmE and M(S) ≤ Crm+1E

1/2. (3.16)

Now observe that

0 = ∂(T −R′) = ∂((Gf −Gh) Cs) + ∂(PT − PR) = ∂∂S + ∂P + ∂(PT − PR) .

Hence, ∂(P + PT − PR) = 0 and, by the isoperimetric inequality, there is an S ′ with
M(S ′) ≤ Crm+1E1+1/m and ∂S ′ = P +PT −PR. Additionally, again using the isoperimetric
inequality, there are currents ST and SR such that

∂ST = (T −Gf ) Cs − PT
∂SR = (R′ −Gh) Cs − PR

and

M(ST ) ≤ C (‖T −Gf‖(Cs) + M(PT ))
(m + 1)/m ≤ CE

3/4rm+1

M(SR) ≤ C (‖T −Gh‖(Cs) + M(PR))
(m + 1)/m ≤ CE

3/4rm+1 .

In the latter inequalities we have used ‖T − Gh‖(Cs) + ‖T − Gf‖(Cs) ≤ CE1−2βrm =
CE(m−1)/mrm: in particular (1 − 2β)(m + 1)/m = 1 − 1/m2 ≥ 3/4; observe that this
estimate is valid even if β < 1/(2m) and explains the exponent of E in the third summand
of the right hand side of (3.2).

Thus, setting S ′′ = S + ST − SR + S ′ we finally achieve (T − R′) Cs = ∂S ′′ and
M(S ′′) ≤ Crm+1E1/2. Recalling that s > 3r and that R′ = R+ T (C4r \C3r) we conclude
∂S ′′ = (T −R) C3r. Applying now the Ω-minimality of T we conclude

‖T‖(C3r) ≤M(R) + C25r
m+1ΩE

1/2 .

For the proof of (3.2) we conclude with the same computations, except that this time f = g
on ∂Bs and the current R is already given by Gg C. The modifications to the argument
are then straightforward, given the remark of the previous paragraph. �
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4. Harmonic approximation and gradient Lp estimates

In this and in the next section we follow largely [7] with minor modifications: on the one
hand we have the additional Ω-error terms, but on the other hand the ambient Riemannian
manifold is the euclidean space. Thus the arguments are somewhat less technical.

4.1. Harmonic Approximation. In this subsection we prove that if T is an almost
minimizer then its Eβ-Lipschitz approximation is close to a Dir-minimizing function w.
This comes with an o(E)-improvement of the estimates in Proposition 2.2.

Remark 4.1. There exists a dimensional constant c > 0 such that, if E ≤ c, then the
Eβ-Lipschitz approximation satisfies the following estimates:

Lip(f) ≤ C Eβ, (4.1)∫
B3s(x)

|Df |2 ≤ C E sm. (4.2)

Indeed (4.1) follows from Proposition 2.2, while (4.2) follows from the Taylor expansion of
the mass of Gu:

M(Gf ) = Q |B3s(x)|+
∫
B3s(x)

|Df |2

2
+

∫
B3s(x)

∑
i

R(Dfi),

where R : Rn×m → R is a C1 function satisfying |R(D)| = |D|3 L(D) for some positive
function L such that L(0) = 0 and Lip(L) ≤ C (cp. [6, Corollary 3.3]). Indeed, for E
sufficiently small we have∫

B3s(x)

∑
i

R(Dfi) ≤ C E2β

∫
B3s(x)

|Df |2 < 1

4

∫
B3s(x)

|Df |2,

and therefore, since T (K × Rn) = Gf (K × Rn),∫
B3s(x)

|Df |2 ≤C (M(Gf C3s(x))−Qωm (3 s)m)

≤C (M(T (K × Rn))−Qωm (3 s)m) + C M(Gf (B3s(x) \K)× Rn)

≤C (M(T C3s(x))−Qωm (3 s)m) + C E2β |B3s(x) \K| ≤ C E sm.

Theorem 4.2 (First harmonic approximation). For every η1, δ > 0 and every β ∈ (0, 1
2m

),
there exists a constant ε23 > 0 with the following property. Let T be an Ω-almost minimizer
which satisfies Assumption 1.3 in C4s(x) . If E = E(T,C4s(x)) ≤ ε23 and sΩ ≤ ε23E

1/2,
then the Eβ-Lipschitz approximation f in C3s(x) satisfies∫

B2s(x)\K
|Df |2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)). (4.3)
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Moreover, there exists a Dir-minimizing function w such that

s−2

∫
B2s(x)

G(f, w)2 +

∫
B2s(x)

(
|Df | − |Dw|

)2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)) , (4.4)∫
B2s(x)

|D(η ◦ f)−D(η ◦ w)|2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)) . (4.5)

Proof of Theorem 4.2. By rescaling and translating, it is not restrictive to assume that
x = 0 and s = 1. We proceed by contradiction. Assume there exist a constant c1 > 0,
a sequence of positive real numbers (εl)l, a sequence of Ωl-minimal currents (Tl)l∈N and

corresponding Eβ
l -Lipschitz approximations (fl)l∈N such that

El := E(Tl,C4) ≤ εl → 0, Ωl ≤ εlE
1/2
l and

∫
B2\Kl

|Dfl|2 ≥ c1El, (4.6)

where Kl := {x ∈ B3 : meTl(x) < E2β
l }. Set Γl := {x ∈ B4 : meTl(x) ≤ 2−mE2β

l } and
observe that Γl ∩B3 ⊂ Kl. From Proposition 2.2, it follows that

Lip(fl) ≤ C22E
β
l , (4.7)

|Br \Kl| ≤ C22E
−2β
l eT

(
Br+r0(l) \ Γl

)
for every r ≤ 3 , (4.8)

where r0(l) = 16E
(1−2β)/m
l < 1

2
. Then, (4.6), (4.7) and (4.8) give

c1El ≤
∫
B2\Kl

|Dfl|2 ≤ C22 eTl(Bs \ Γl) ∀ s ∈
[

5
2
, 3
]
.

Setting c2 := c1/(2C22), we have 2c2El ≤ eTl(Bs \Γl) = eTl(Bs)−eTl(Bs∩Γl), thus leading
to

eTl(Γl ∩Bs) ≤ eTl(Bs)− 2 c2El , (4.9)

for l large enough. Next observe that ωm4mEl = eTl(B4) ≥ eTl(Bs). Therefore, by the
Taylor expansion in [6, Corollary 3.3], (4.9) and El ↓ 0, it follows that, for every s ∈ [5/2, 3],∫

Γl∩Bs

|Dfl|2

2
≤ (1 + C E2β

l ) eTl(Γl ∩Bs)

≤ (1 + C E2β
l )
(
eTl(Bs)− 2 c2El

)
≤ eTl(Bs)− c2El. (4.10)

Our aim is to show that (4.10) contradicts the Ω-almost minimizing property (1.1) of

Tl. To construct a competitor consider gl := El
−1/2fl. Observe that from the estimates

of Remark 4.1, we easily infer Dir(fl, B3) ≤ CEl. Hence, supl Dir(gl, B3) < ∞. Since
|B3 \ Γl| → 0, by Proposition 2.4 we can find a subsequence (not relabelled) of translating
sheets hl satisfying (2.3) - (2.4) and ‖G(gl, hl)‖L2(B3) → 0. In particular, we are in the
position to apply Proposition 2.5 to gl and hl, with r0 = 5

2
, r1 = 3 and η = c2

2
, and find
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r ∈
(

5
2
, 3
)

and competitor functions Hl satisfying Hl|B3\Br = gl|B3\Br ,

Dir(Hl, Br) ≤ Dir(gl, Br ∩ Γl) +
c2

2
, (4.11)

Lip(Hl) ≤ C∗E
β−1/2
l (4.12)

‖G(Hl, gl)‖L2(Br) ≤ C23 Dir(gl, Br) + C23 Dir(Hl, Br) ≤M <∞. (4.13)

Note that (4.12) follows from (2.5) observing that E
β−1/2
l ↑ ∞: thus C∗ depends on c2 and

the two chosen sequences, but not on l. From now on, although this and similar constants
are not dimensional, we will keep denoting them by C, with the understanding that they
do not depend on l. Note that, from (4.7) and (4.8), one gets

‖Tl −Gfl‖(C3) = ‖Tl‖(B3 \Kl)× Rn) + ‖Gfl‖((B3 \Kl)× Rn)

≤ Q |B3 \Kl|+ El +Q |B3 \Kl|+ C |B3 \Kl|Lip(fl)
2

≤ El + C E1−2β
l ≤ C E1−2β

l . (4.14)

Consider the function ϕ(z, y) = |z| and the slice 〈Tl −Gfl , ϕ, r〉. For every l, there exists

rl ∈ (r, 3) such that M
(
〈Tl −Gfl , ϕ, rl〉

)
≤ C E1−2β

l .

Let now ul := El
1/2 Hl|Brl , and consider the current Zl := Gul Crl . Since ul|∂Brl =

fl|∂Brl , one gets ∂Zl = 〈Gfl , ϕ, rl〉 and, hence, M(∂(Tl Crl − Zl)) ≤ CE1−2β
l . By the

Isoperimetric Inequality there is an integral current Rl such that

∂Rl = ∂(Tl Crl − Zl) and M(Rl) ≤ CE
m(1−2β)/(m−1)
l .

Set Sl = Tl (C4 \Crl) +Zl +Rl. Notice that ∂Sl = ∂Tl. We assume from now on β < 1
2m

and we let γ be such that 1 < 1 + γ ≤ m(1− 2β)/(m− 1) > 1. We want to compare the
mass of Sl with that of Tl to achieve a contradiction in the limit for l→∞.∫

Brl

|Dul|2 −
∫
Br∩Γl

|Dfl|2 = Dir(Brl , ul)−Dir(Brl ∩ Γl, fl)
(4.11)

≤ c2

2
El

where the factor El in the last inequality comes from the renormalizations ul = E
1/2
l Hl and

fl = E
1/2
l gl. By possibly changing γ so that 2β ≥ γ, we can then write

M(Sl)−M(Tl) ≤M(Zl) + C M(Rl)−M(Tl Cr)

≤ Q |Br|+
∫
Br

|Dul|2

2
+ C E1+γ

l −Q|Br| − eTl(Br)

≤
∫
Br∩Γl

|Dfl|2

2
+
c2

2
El + C E1+γ

l − eTl(Br)

(4.10)

≤ − c2El
4

+ C E1+β
l + C E1+γ

l . (4.15)

Hence,

M(Sl) < M(Tl) for l large enough. (4.16)
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This would be already a contradiction if T were area-minimizing. In our case, by (3.1) of
Lemma 3.1 we have the upper bound

M(Sl)−M(Tl) ≥ −C25ΩlE
1/2
l ≥ −C25εlEl.

Combining this inequality with (4.15) we obtain

c2El
4
≤ CE1+γ

l + CεlEl

which for El, εl sufficiently small (and hence for l large enough) provides the desired con-
tradiction.

For what concerns (4.4), we argue similarly. Let (Tl)l be a sequence with vanishing
El := E(Tl,C4), contradicting the second part of the statement and perform the same
analysis as before. Up to subsequences, one of the following statement must be false:

(i) liml

∫
B2
|Dgl|2 =

∫
B2
|Dhl0|2, for any l0 (recall that

∫
B2
|Dhl|2 is constant);

(ii) hl is Dir-minimizing in B2.

If (i) is false, then there is a positive constant c2 such that, for every r ∈ [5/2, 3],∫
Br

|Dhl|2

2
≤
∫
Br

|Dgl|2

2
− c2 ≤

eTl(Br)

El
− c2

2
,

for l large enough (where the last inequality is again an effect of the Taylor expansion of
Remark 4.1. Therefore we can argue exactly as in the proof of (4.3) (using hl instead of Hl

to construct the competitors) and reach a contradiction. If (ii) is false, then hl is not Dir-
minimizing in B5/2. This implies that one of the ζj in the translating sheets hl is not Dir-
minimizing in B2. Indeed, in the opposite case, by [5, Theorem 3.9], ‖G(ζj, Q J0K)‖C0(B2) <

∞ and, since hl =
∑

iJτyil ◦ ζ
iK and |yil − y

j
l | → ∞ for i 6= j, by the maximum principle

of [5, Proposition 3.5], hl would be Dir-minimizing. Thus, we can find a competitor ζ̂j for

some ζj with less energy in the ball B2. So the functions Fl =
∑

jJτyjl ◦ ζ̂
jK satisfy, for any

r ∈ [5/2, 3],∫
Br

|DFl|2

2
≤
∫
Br

|Dhl|2

2
− c2 ≤ lim

l

∫
Br

|Dgl|2

2
− 2 c2 ≤

eT (Br)

El
− c2

2
,

provided l is large enough (where c2 > 0 is a constant indepedent of r and l). On the other
hand Fl = hl on B3 \B5/2 and therefore ‖G(Fl, gl)‖L2(B3\B5/2) → 0. We then argue as above
with Fl in place of Hl and reach a contradiction in this case as well. �

4.2. Improved excess estimate. The higher integrability of the Dir-minimizing func-
tions and the harmonic approximation lead to the following estimate, which we call “weak”
since we will improve it in the next section with Theorem 5.1.

Proposition 4.3 (Weak excess estimate). For every η2 > 0, there exist ε24, C26 > 0 with
the following property. Let T be an Ω-almost minimizer and assume it satisfies (1.6) in
C4s(x). If E = E(T,C4s(x)) ≤ ε24, then

eT (A) ≤ η2 eT (B4s(x)) + C26 Ω2 sm+2, (4.17)
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for every A ⊂ Bs(x) Borel with |A| ≤ ε24|Bs(x)| (C26 depends only on η2,m, n and Q).

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: ε̂2E ≤ Ω2 and Ω2 ≤ ε̂2E, where ε̂ ≤ ε24 is a parameter whose choice will
be specified later. In the former, clearly eT (A) ≤ C E ≤ C Ω2. In the latter, we let f
be the E1/4m-Lipschitz approximation of T in C3. By a Fubini-type argument as the ones
already used in the previous secions, we find a radius r ∈ (1, 2) and a current P with
M(P ) ≤ CE1+γ and ∂((T − Gf ) Cr) = ∂P for some γ(m) > 0. We can thus apply
Lemma 3.1 to R = Gf Cr + P + T (C3 \ Cr). Recalling the Taylor expansion in [6,
Corollary 3.3], we have

‖T‖(Cr) ≤M(R Cr) + CΩE
1/2 ≤ ‖Gf‖(Cr) + Cε̂E + CE1+γ

≤ Q |Br|+
∫
Br

|Df |2

2
+ Cε̂E + C E1+γ, (4.18)

for some positive γ (possibly smaller than the previous one). On the other hand, using
again the Taylor expansion for the part of the current which coincides with the graph of
f , we deduce as well that

‖T‖(Cr) = ‖T‖((Br \K)× Rn) + ‖T‖((Br ∩K)× Rn)

≥ ‖T‖((Br \K)× Rn) +Q |Br ∩K|+
∫
Br∩K

|Df |2

2
− C E1+γ. (4.19)

Subtracting (4.19) from (4.18), we deduce

eT (Br \K) ≤
∫
Br\K

|Df |2

2
+ Cε̂E + CE1+γ, (4.20)

where the constant C is independent of ε̂. If ε24 is chosen small enough, we infer from
(4.20) and (4.3) in Theorem 4.2 that

eT (Br \K) ≤ η eT (B4) + CE1+γ, (4.21)

for a suitable η = ε̂/2C to be specified later. Let now A ⊂ B1 be such that |A| ≤ ε24 ωm.
Combining (4.21) with the Taylor expansion, we have

eT (A) ≤ eT (A \K) +

∫
A

|Df |2

2
+ C E1+γ ≤

∫
A

|Df |2

2
+ η eT (B4) + CE1+γ. (4.22)

If ε24 is small enough, we can again use Theorem 4.2 and Theorem 2.6 in (4.22) to get, for
a Dir-minimizing w,

eT (A)
(4.4)

≤
∫
A

|Dw|2

2
+ 2 η eT (B4) + CE1+γ ≤

(
C24|A|1−

2/p1 + 2η
)

eT (B4) + CE1+γ. (4.23)

Hence, if ε24 and η are suitably chosen, (4.17) follows from (4.23). �
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4.3. Gradient Lp estimate. The density d of the excess measure is naturally an L1

function. We prove here that for Ω-almost minimizer this function is in fact Lp, for some
p > 1.

Theorem 4.4 (Gradient Lp estimate). There exist constants p2 > 1 and C, ε25 > 0 (de-
pending on n,Q) with the following property. Assume T satisfies (1.6) in the cylinder C4.
If T is an Ω-almost minimizer and E = E(T,C4) < ε25, then∫

{d≤1}∩B2

dp2 ≤ C Ep2−1
(
E + Ω2

)
. (4.24)

Proof. We assume without loss of generality that E > 0 and divide the proof into two
steps.

Step 1. There exist constants γ ≥ 2m and % > 0 such that, for every c ∈ [1, (γ E)−1] and
s ∈ [2, 4] with s̄ = s+ 2 c−1/m ≤ 4, we have∫

{γ cE≤d≤1}∩Bs
d ≤ γ−%

∫
{ cEγ ≤d≤1}∩Bs̄

d + C c−
2/m Ω2. (4.25)

In order to prove it, let NB be the constant in Besicovich’s covering theorem [13, Section
1.5.2] and choose N ∈ N so large that NB < 2N−1. Let ε24 be as in Proposition 4.3 when
we choose η2 = 2−2m−N , and set

γ = max{2m, ε−1
24 } and % = min

{
− logγ(NB/2

N−1),
1

4

}
.

Let c and s be any real numbers as above. For almost every x ∈ {γ cE ≤ d ≤ 1} ∩ Bs,
there exists rx such that

E(T,C4rx(x)) ≤ cE and E(T,Ct(x)) ≥ cE ∀t ∈]0, 4 rx[. (4.26)

Indeed, since d(x) = limr→0 E(T,Cr(x)) ≥ γ cE ≥ 22cE and

E(T,Ct(x)) =
eT (Bt(x))

ωm tm
≤ 4mE

tm
≤ cE for t ≥ 4

m
√
c
,

we just choose 4rx = min{t ≤ 4/ m
√
c : E(T,Ct(x)) ≤ cE}. Note also that rx ≤ 1/ m

√
c.

Consider the current T in C4rx(x). Setting A = {γ cE ≤ d} ∩B4rx(x), we have that

E(T,C4rx(x)) ≤ cE ≤ E

γ E
≤ ε24 and |A| ≤ cE |B4rx(x)|

γ cE
≤ ε24|B4rx(x)|.

Hence, we can apply Proposition 4.3 to T C4rx(x) to get∫
Brx (x)∩{γ cE≤d≤1}

d ≤
∫
A

d ≤ eT (A) ≤ 2−2m−N eT (B4rx(x)) + C rm+2
x Ω2

≤ 2−2m−N (4 rx)
m ωm E(T,C4rx(x)) + C rm+2

x Ω2
(4.26)

≤ 2−N eT (Brx(x)) + C rm+2
x Ω2. (4.27)
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Thus,

eT (Brx(x)) =

∫
Brx (x)∩{d>1}

d +

∫
Brx (x)∩{ cEγ ≤d≤1}

d +

∫
Brx (x)∩{d< cE

γ }
d

≤
∫
A

d +

∫
Brx (x)∩{ cEγ ≤d≤1}

d +
cE

γ
ωm r

m
x

(4.26), (4.27)

≤
(
2−N + γ−1

)
eT (Brx(x)) + C rm+2

x Ω2 +

∫
Brx (x)∩{ cEγ ≤d≤1}

d. (4.28)

Therefore, recalling that γ ≥ 2m ≥ 4, from (4.27) and (4.28) we infer:

∫
Brx (x)∩{γ cE≤d≤1}

d ≤ 2−N

1− 2−N − γ−1

∫
Brx (x)∩{ cEγ ≤d≤1}

d + C rm+2
x Ω2

≤ 2−N+1

∫
Brx (x)∩{ cEγ ≤d≤1}

d + C rm+2
x Ω2.

By Besicovich’s covering theorem, we choose NB families of disjoint balls Brx(x) whose
union covers {γ cE ≤ d ≤ 1} ∩ Bs and, since as already noticed rx ≤ 1/ m

√
c for every x,

we conclude:∫
{γ cE≤d≤1}∩Bs

d ≤ NB 2−N+1

∫
{ cEγ ≤d≤1}∩Bs+2/ m

√
c

d + C c−
2/m Ω2,

which, for the above defined %, implies (4.25).

Step 2. We iterate (4.25) in order to conclude (4.24). Denote by L the largest integer
smaller than 2−1 logγ (E−1 − 1), sL = 2 and recursively sk = sk+1 + 2 γ−2k/m for k ∈
{L,L− 1, . . . , 1}. Notice that, since γ ≥ 2m, sk < 4 for every k. Thus, we can apply (4.25)
with c = γ2k, s = sk and s̄ = sk−1 to conclude∫

{γ2k+1 E≤d≤1}∩Bsk

d ≤ γ−%
∫
{γ2k−1 E≤d≤1}∩Bsk−1

d + C γ−
4k/mΩ2 ∀ k ∈ {1, . . . , L} .

In particular, iterating this estimate we get

∫
{γ2 k+1 E≤d≤1}∩B2

d ≤ γ−k %
∫
{γ E≤d≤1}∩Bs0

d + C Ω2

k−1∑
l=0

γ−( 4 (k−l)
m

+l %). (4.29)
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Set A0 = {d < γ E}, Ak = {γ2k−1E ≤ d < γ2k+1 E} for k = 1, . . . , L, and AL+1 =
{γ2L+1E ≤ d ≤ 1}. Since ∪Ak = {d ≤ 1}, for p2 < 1 + %

2
≤ 1 + 1

2
, we conclude:∫

B2∩{d≤1}
dp2 =

L+1∑
k=0

∫
Ak∩B2

dp2 ≤
∑
k

γ(2 k+1) (p2−1)Ep2−1

∫
Ak∩B2

d

(4.29)

≤ C
∑
k

γk (2 (p2−1)−%) Ep2 + C
∑
k

k−1∑
l=0

γk(2 (p2−1)−4/m)+l (4/m−%)Ep2−1 Ω2

≤ CEp2 + C
∑
k

γk(2(p2−1)−%) Ω2. �

5. Strong excess estimate and proof of Proposition 1.7

5.1. Almgrem’s strong excess estimate. Thanks to the higher integrability of Theorem
4.4, we can control the excess where d ≤ 1. To control it outside this region, we will need
the following estimate.

Theorem 5.1 (Almgren’s strong excess estimate). There are constants ε21, γ2, C27 > 0
(depending on n,Q) with the following property. Assume T satisfies Assumption 1.3 in C4

and is Ω almost minimizing. If E = E(T,C4) < ε21, then

eT (A) ≤ C27

(
Eγ2 + |A|γ3

) (
E + Ω2

)
for every Borel A ⊂ B1. (5.1)

5.2. Regularization by convolution. Theorem 5.1 will be proved using a suitable com-
petitor constructed via convolution of the Eβ1-Lipschitz approximation. The precise claim
is contained in the following proposition.

Proposition 5.2. Let β1 ∈
(
0, 1

2m

)
and T be an Ω-almost minimizing current satisfying

(1.6) in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist constants γ3, C28 >
0 and a subset of radii B ⊂ [1, 2] with |B| > 1/2 with the following properties. For every
σ ∈ B, there exists a Q-valued function g ∈ Lip(Bσ,AQ) such that

g|∂Bσ = f |∂Bσ , Lip(g) ≤ C28E
β1

and ∫
Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + C28E
1+γ3 . (5.2)

Proof. Since |Df |2 ≤ C dT ≤ CE2β1 ≤ 1 on K, by Theorem 4.4 there exists q2 = 2 p2 > 2
such that

‖|Df |‖2
Lq2 (K∩B2) ≤ C E1−1/p1(E + Ω2)

1/p1 ≤ C(E + Ω2) . (5.3)

Given two (vector-valued) functions h1 and h2 and two radii 0 < s < r, we denote by
lin(h1, h2) the linear interpolation in Br \ B̄s between h1|∂Br and h2|∂Bs . More precisely, if
(θ, t) ∈ Sm−1 × [0,∞) are spherical coordinates, then

lin(h1, h2)(θ, t) =
r − t
r − s

h2(θ, s) +
t− s
r − s

h1(θ, r) .
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Next, let δ > 0 and ε > 0 be two parameters and let 1 < r1 < r2 < r3 < 2 be three radii,
all to be chosen later. To keep the notation simple, we will write ρ? in place of ρ?δ , where
ρ?δ is the map of Proposition 2.7. Let ϕ ∈ C∞c (B1) be a standard (nonnegative!) mollifier.
We set f ′ := ξ ◦ f . Recall the map ρ of [5, Theorem 2.1] and define:

g′ :=


√
E ρ ◦ lin

(
f ′√
E
,ρ?

(
f ′√
E

))
in Br3 \Br2 ,

√
E ρ ◦ lin

(
ρ?
(

f ′√
E

)
,ρ?

(
f ′√
E
∗ ϕε

))
in Br2 \Br1 ,

√
E ρ?

(
f ′√
E
∗ ϕε

)
in Br1 .

(5.4)

Finally set g := ξ−1 ◦ g′. We claim that, for σ := r3 in a suitable set B ⊂ [1, 2] with
|B| > 1/2, we can choose r2 = r3 − s and r1 = r2 − s so that g satisfies the conclusion of
the proposition. Some computations will be simplified taking into account that our choice
of the parameters will imply the following inequalities:

δ2·8−nQ ≤ s , ε ≤ s and E1−2β1 ≤ εm . (5.5)

We start noticing that clearly g|∂Br3 = f |∂Br3 . Moreover we have Lip(g) ≤ CEβ1 , indeed
Lip(g) ≤ C Lip(f ′ ∗ ϕε) ≤ C Lip(f) ≤ C Eβ1 in Br1 ,

Lip(g) ≤ C Lip(f ′) + C
‖f ′−f ′∗ϕε‖L∞

s
≤ C(1 + ε

s
) Lip(f ′) ≤ C Eβ1 in Br2 \Br1 ,

Lip(g) ≤ C Lip(f ′) + C E1/2 δ8−nQ

s
≤ C Eβ1 + C E1/2 ≤ C Eβ1 in Br3 \Br2 .

In the second inequality of the last line we have used that, since Q is a cone, E−1/2f ′(x) ∈ Q
for every x: therefore |ρ?(f ′/E1/2) − f ′/E1/2| ≤ Cδ8−n̄Q . We pass now to estimate the
Dirichlet energy of g.

Step 1. Energy in Br3 \ Br2. By Proposition 2.7, |ρ?(P ) − P | ≤ C24 δ
8−n̄Q for all P ∈ Q.

Thus, elementary estimates on the linear interpolation give∫
Br3\Br2

|Dg|2 ≤ C E

(r3 − r2)2

∫
Br3\Br2

∣∣∣ f ′√
E
− ρ?

(
f ′√
E

)∣∣∣2 + C

∫
Br3\Br2

|Df ′|2

+ C

∫
Br3\Br2

|D(ρ? ◦ f ′)|2 ≤ C

∫
Br3\Br2

|Df |2 + C E s−1 δ2·8−n̄Q . (5.6)

Step 2. Energy in Br2 \Br1. Here, using the same interpolation inequality and a standard
estimate on convolutions of W 1,2 functions, we get∫

Br2\Br1
|Dg|2 ≤ C

∫
Br2\Br1

|Df |2 +
C

(r2 − r1)2

∫
Br2\Br1

|f ′ − ϕε ∗ f ′|2

≤C
∫
Br2\Br1

|Df |2 + C ε2s−2

∫
B3

|Df ′|2 = C

∫
Br2\Br1

|Df |2 + C ε2E s−2 . (5.7)
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Step 3. Energy in Br1. Define Z :=
{

dist
(

f ′√
E
∗ ϕε,Q

)
> δnQ+1

}
and use (2.9) to get∫

Br1

|Dg|2 ≤
(

1 + C δ8−n̄Q−1
)∫

Br1\Z
|D (f ′ ∗ ϕε)|2 + C

∫
Z

|D (f ′ ∗ ϕε)|2 =: I1 + I2. (5.8)

We consider I1 and I2 separately. For I1 we first observe the elementary inequality

‖D(f ′ ∗ ϕε)‖2
L2 ≤‖|Df ′| ∗ ϕε‖2

L2 ≤ ‖(|Df ′|1K) ∗ ϕε‖2
L2 + ‖(|Df ′|1Kc) ∗ ϕε‖2

L2

+ 2‖(|Df ′|1K) ∗ ϕε‖L2‖(|Df ′|1Kc) ∗ ϕε‖L2 , (5.9)

where Kc is the complement of K in B3. Recalling r1 + ε ≤ r1 + s ≤ r2 we estimate the
first summand in (5.9) as follows:

‖(|Df ′|1K) ∗ ϕε‖2
L2(Br1 ) ≤

∫
Br1+ε

(|Df ′|1K)
2 ≤

∫
Br3∩K

|Df |2 . (5.10)

To treat the other terms recall that Lip(f) ≤ C Eβ1 and |Kc| ≤ C E1−2β1 :

‖(|Df ′|1Kc)∗ϕε‖2
L2(Br1 ) ≤ CE2β1‖1Kc∗ϕε‖2

L2 ≤ CE2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2 ≤
CE2−2β1

εm
. (5.11)

Putting (5.10) and (5.11) in (5.9) and recalling E1−2β1 ≥ εm and
∫
|Df ′|2 ≤ CE, we get

I1 ≤
∫
Br2∩K

|Df |2 + C δ8−nQ−1

E + C ε−
m/2 E

3/2−β1 . (5.12)

For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 ≤ C

∫
Z

((|Df ′|1K) ∗ ϕε)2
+ C ε−

m/2E
3/2−β1 . (5.13)

Then, regarding the first summand in (5.13), we note that

|Z| δ2nQ+2 ≤
∫
Br1

∣∣∣ f ′√
E
∗ ϕε − f ′√

E

∣∣∣2 ≤ C ε2. (5.14)

Recalling that q2 = 2p2 > 2, we use (5.3) to obtain∫
Z

((|Df ′|1K) ∗ ϕε)2 ≤ |Z|
p1−1
p1 ‖(|Df ′|1K) ∗ ϕε‖2

Lq2 ≤ C
( ε

δnQ+1

) 2 (p1−1)
p1 ‖|Df ′|‖2

Lq2 (K)

≤ C
( ε

δnQ+1

) 2 (p1−1)
p1 (E + Ω2) . (5.15)

Gathering all the estimates together, (5.8), (5.12), (5.13) and (5.15) give∫
Br1

|Dg|2 ≤
∫
Br2∩K

|Df |2 + C
(
Eδ8−nQ−1

+
E3/2−β1

εm/2
+ (E + Ω2)

( ε

δnQ+1

) 2 (p1−1)
p1

)
. (5.16)
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Final estimate. Summing (5.6), (5.7) and (5.16) (and recalling ε < s), we conclude∫
Br3

|Dg|2 ≤
∫
Br1∩K

|Df |2 + C

∫
Br1+3s\Br1

|Df |2

+ C E

(
ε2

s2
+
δ2·8−Q

s
+
E1/2−β1

εm/2
+
(
1 + Ω2E−1

) ( ε

δnQ+1

) 2 (p1−2)
p1

)
.

We set ε = Ea, δ = Eb and s = Ec, where

a =
1− 2 β1

2m
, b =

1− 2 β1

4m (nQ+ 1)
and c =

1− 2 β1

8nQ 4m (nQ+ 1)
.

This choice respects (5.5). Assume E is small enough so that s ≤ 1
8
. Now, if C > 0 is a

sufficiently large constant, there is a set B′ ⊂ [1, 7
8
] with |B′| > 1/2 such that,∫

Br1+3s\Br1
|Df |2 ≤ C s

∫
B2

|Df |2 ≤ C E1+c for every r1 ∈ B′.

For σ = r3 ∈ B = s+B′ we then conclude, for some γ(β1, n,N,Q) > 0,∫
Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + CE1+γ. �

5.3. Proof of Theorem 5.1. Using the isoperimetric inequality and a slicing argument,
we find a radius σ ∈ (1, 2) for which Proposition 5.2 applies and such that there is P ∈
Im(Rm+n) with ∂P = ∂((T − Gf ) Cs) and M(P ) ≤ CE1+γ. We can therefore apply
Lemma 3.1 to conclude that

‖T‖(Cσ) ≤ ‖Gg‖(Cσ) + CΩ

∫
Bσ

G(g, f) + CE1+γ . (5.17)

In order to estimate
∫
Bσ

G(g, f), we recall how g is constructed, and in particular, using
the notation of the previous section∫

Bσ

G(f, g) ≤ C

∫
Bσ\Bσ−s

∣∣∣f ′ −√Eρ ◦ lin
( f ′√

E
,ρ?
( f ′√

E

))∣∣∣︸ ︷︷ ︸
I1

+

+C

∫
Bσ−s\Bσ−2s

∣∣∣f ′ −√Eρ ◦ lin
(
ρ?
( f ′√

E

)
,ρ?
( f ′√

E
∗ ϕε

))∣∣∣︸ ︷︷ ︸
I2

+

+C

∫
Bs−2η

∣∣∣f ′ −√Eρ?( f ′√
E
∗ ϕε

)∣∣∣︸ ︷︷ ︸
I3

.
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We will estimate I1, I2, I3 separately. Recall that ρ ◦ f ′ = f ′, ρ is Lipschitz and moreover
λρ(P ) = ρ(λP ), for every λ > 0, P ∈ Q, since Q is a cone.

I1 ≤ C

∫ σ

σ−s

∫
∂Bt

√
E
∣∣∣ f ′√
E
− t+ s− σ

s

f ′√
E
− σ − t

s
ρ?
( f ′√

E

)∣∣∣ dt
= C
√
E

∫ σ

σ−s

σ − t
s

∫
∂Bt

∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣ dt ≤ C
√
Eδ8−nQ |Bσ \Bσ−s| ≤ CE

1/2+c

where we used |Bσ \Bσ−s| ≤ Cs ≤ CEc. We next bound I2.

I2 ≤ C
√
E

∫ σ−s

σ−2s

∫
∂Bt

∣∣∣ f ′√
E
− t+ 2s− σ

s
ρ?
( f ′√

E

)
− σ − s− t

s
ρ?
( f ′√

E
∗ ϕε

)∣∣∣
≤ C
√
E

∫ σ−s

σ−2s

∫
∂Bt

(∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣+
σ − s− t

s

∣∣∣ρ?( f ′√
E

)
− ρ?

( f ′√
E
∗ ϕε

)∣∣∣) dt

≤ CE
1/2+c + C

∫
Bσ−s\Bσ−2s

∣∣f ′ − f ′ ∗ ϕε∣∣
where we have used the fact that ρ? is Lipschitz. The estimate for I3 is then

I3 ≤ C
√
E

∫
Bσ−2s

(∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣+
∣∣∣ρ?( f ′√

E

)
− ρ?

( f ′√
E
∗ ϕε

)∣∣∣)
≤ CE

1/2+c + C

∫
Bσ−2s

|f ′ − f ′ ∗ ϕε| .

We therefore achieve the estimate

I2 + I3 ≤ CE
1/2+c +

∫
Bσ−s

|f ′ − f ′ ∗ ϕε|

and to conclude, we compute∫
Bσ−s

∣∣f ′ − f ′ ∗ ϕε∣∣ ≤ ∫
Bσ−s

∫
Bε

ϕε(x)|f ′(y − x)− f ′(y)| dy dx

≤
∫
Bσ−s

∫
Bε

∫ 1

0

ϕε(x)|Df ′(y − tx) · x| dt dy dx

≤
∫ 1

0

∫
Bε

ϕε(x)ε

∫
Bσ−s

|Df(y − tx)| dy dx dt ≤ ε ‖Df‖L1(Bσ) ≤ CE
1/2+a ,

(where we have used the fact that ε ≤ s). Putting everything together we conlude that

M(S) ≤ CE
1/2+γ

for a suitable γ > 0. Then, from (5.17), the Taylor expansion for M(Gg) and Proposition
5.2 we achieve

‖T‖(Cσ) ≤ Q |Bσ|+
∫
Bσ∩K

|Df |2

2
+ CEγ(E + Ω2) . (5.18)
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On the other hand, by the Taylor’s expansion in [6, Corollary 3.3],

‖T‖(Cs) = ‖T‖((Bs \K)× Rn) + ‖Gf‖((Bs ∩K)× Rn)

≥ ‖T‖((Bs \K)× Rn) +Q |K ∩Bs|+
∫
K∩Bs

|Df |2

2
− C E1+γ. (5.19)

Hence, from (5.18) and (5.19), we get eT (Bs \K) ≤ C Eγ (E + Ω2).
This is enough to conclude the proof. Indeed, let A ⊂ B1 be a Borel set. Using the

higher integrability of |Df | in K (and therefore possibly selecting a smaller γ > 0) we get

eT (A) ≤ eT (A ∩K) + eT (A \K) ≤
∫
A∩K

|Df |2

2
+ C E1+γ + C Eγ (E + Ω2)

≤ C |A ∩K|
p1−1
p1

(∫
A∩K
|Df |q2

)2/q2

+ C E1+γ + C Eγ (E + Ω2)

≤ C |A|
p1−1
p1

(
E + Ω2

)
+ C Eγ (E + Ω2) + C E1+γ.

5.4. Proof of Proposition 1.7. As usual we assume, w.l.o.g., r = 1 and x = 0. Choose
β2 < min{ 1

2m
, γ3

2(1+γ3)
}, where γ3 is the constant in Theorem 5.1. Let f be the Eβ2-Lipschitz

approximation of T . Clearly (1.7) follows directly from Proposition 2.2 if γ1 < β2. Set
next A :=

{
meT > 2−mE2β2

}
∩ B9/8. By Proposition 2.2, |A| ≤ CE1−2β2 . Apply estimate

(5.1) to A to conclude:

|B1 \K| ≤ C E−2β2 eT (A) ≤ C Eγ3−2β2(1+γ3)(E + Ω2).

By our choice of γ3 and β2, this gives (1.9) for some positive β0. Finally, set S = Gf .
Recalling the strong Almgren’s estimate (5.1) and the Taylor expansion in [6, Corollary
3.3], we conclude:∣∣∣∣‖T‖(C1)−Qωm −

∫
B1

|Df |2

2

∣∣∣∣ ≤ eT (B1 \K) + eS(B1 \K) +

∣∣∣∣eS(B1)−
∫
B1

|Df |2

2

∣∣∣∣
≤ C Eγ3(E + Ω2) + C |B1 \K|+ C Lip(f)2

∫
B1

|Df |2 ≤ C Eγ1(E + Ω2).

The L∞ bound follows from Proposition 2.2.

6. Proof of Theorem 1.5

As already mentioned, case (a) is contained in [7]. Note also that case (b) follows directly
from Proposition 1.7. It remains to handle case (c), because the graph of the map f given
by Proposition 1.7 is not necessarily contained in Σ. We show here how to modify it in
such a way to fulfill the requirements of Theorem 1.5.

We assume that Ψ is a function whose graph coincides with Σ (the connected component
of ∂BR(p) ∩ C4r(x) containing spt(T )) and arguing as in [7, Remark 1.5] we can assume
that ‖Ψ0‖ ≤ CE1/2r + CΩr2, ‖DΨ‖0 ≤ CE1/2 + CΩr and ‖D2Ψ‖0 ≤ CΩ. The domain of
Ψ is a subset of B4r(x)×Rn−1. Let now f =

∑
i JfiK be the function given by Proposition
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1.7 and let f̄ =
∑

i

q
f̄i

y
, where f̄i(y) gives the first n − 1 coordinates of fi(y). Observe

that on the set K we necessarily have

f(y) =
∑
i

q
(f̄i(y),Ψ(y, f̄i(y))

y
.

We then can extend f̄ to Br(x) \ K with Lip(f̄) ≤ CLip(f) and osc (f̄) ≤ Cosc (f) and

hence define f̂(y) =
∑

i

q
(f̄i(y),Ψ(y, f̄i(y))

y
for every y ∈ Br(x) (it must be shown that

(y, f̄i(y)) belongs to the domain of definition of Ψ, but this follows easily from the smallness

of osc (f̄)). Obviously f = f̂ on K. On the other hand it is straightforward to check that

Lip(f̂) ≤C Lip(f̄) + C(Lip(f̄) + 1)‖DΨ0‖ ≤ CEβ
0 + CΩr (6.1)

osc (f̂) ≤C osc (f) + ‖Ψ‖0 ≤ Ch(T,C4r(x)) + C(E
1/2 + Ωr)r . (6.2)

In addition we conclude∣∣∣∣∫
Br(x)

|Df |2 −
∫
Br(x)

|Df̂ |2
∣∣∣∣ ≤ (Lip(f)2 + Lip(f̂)2)|Br(x) \K| ≤ C|K| .

Thus the estimates in Proposition 1.7 complete the proof.
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