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REGULARITY THEORY FOR 2-DIMENSIONAL ALMOST MINIMAL
CURRENTS II: BRANCHED CENTER MANIFOLD

CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

ABSTRACT. We construct a branched center manifold in a neighborhood of a singular
point of a 2-dimensional integral current which is almost minimizing in a suitable sense.
Our construction is the first half of an argument which shows the discreteness of the
singular set for the following three classes of 2-dimensional currents: area minimizing in
Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area
minimizing cones.

This paper is the third in a series of works aimed at establishing an optimal regular-
ity theory for 2-dimensional integral currents which are almost minimizing in a suitable
sense. Building upon the monumental work of Almgren [1], Chang in [4] established that
2-dimensional area minimizing currents in Riemannian manifolds are classical minimal
surfaces, namely they are regular (in the interior) except for a discrete set of branching
singularities. The argument of Chang is however not entirely complete since a key start-
ing point of his analysis, the existence of the so-called “branched center manifold”, is only
sketched in the appendix of [4] and requires the understanding (and a suitable modification)
of the most involved portion of the monograph [1].

An alternative proof of Chang’s theorem has been found by Riviére and Tian in [15] for
the special case of J-holomorphic curves. Later on the approach of Riviere and Tian has
been generalized by Bellettini and Riviere in [3] to handle a case which is not covered by
[4], namely that of special Legendrian cycles in S® (see also [2] for a further generalization).

Meanwhile the first and second author revisited Almgren’s theory giving a much shorter
version of his program for proving that area minimizing currents are regular up to a set of
Hausdorff codimension 2, cf. [5, 6, 7, 8, 9]. In this note and its companion papers [11, 10]
we build upon the latter works in order to give a complete regularity theory which includes
both the theorems of Chang and Bellettini-Riviere as special cases. In order to be more
precise, we introduce the following terminology (cf. [12, Definition 0.3]).

Definition 0.1. Let ¥ C R™"" be a C? submanifold and U C R™" an open set.

(a) An m-dimensional integral current 7" with finite mass and spt(7) C ¥ N U is area
minimizing in ¥ N U if M(T + 0S) > M(T) for any m + 1-dimensional integral
current S with spt(S) cCc ¥ NU.

(b) A semicalibration (in X) is a C' m-form w on ¥ such that ||w,|[. < 1 at every
xr € X, where ||-||. denotes the comass norm on A™7,3. An m-dimensional integral

—

current T with spt(7") C ¥ is semicalibrated by w if w,(T) = 1 for ||T||-a.e. .
1
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(¢) An m-dimensional integral current T supported in OBg(p) C R™™ is a spherical
cross-section of an area minimizing cone if px T is area minimizing.

In what follows, given an integer rectifiable current 7', we denote by Reg(7") the subset
of spt(7") \ spt(9T) consisting of those points = for which there is a neighborhood U such
that TL U is a (costant multiple of) a C* submanifold. Correspondingly, Sing(T’) is the set
spt(T) \ (spt(0T) U Reg(T")). Observe that Reg(T') is relatively open in spt(7) \ spt(07)
and thus Sing(7') is relatively closed. The main result of this and the works [11, 10] is then
the following

Theorem 0.2. Let m = 2 and T be as in (a), (b) or (c¢) of Definition 0.1. Assume in
addition that X is of class C**° (in case (a) and (b)) and w of class C*=° (in case (b)) for
some positive €g. Then Sing(T') is discrete.

Clearly Chang’s result is covered by case (a). As for the case of special Lagrangian cycles
considered by Bellettini and Riviere in [3] observe that they form a special subclass of both
(b) and (c). Indeed these cycles arise as spherical cross-sections of 3-dimensional special
lagrangian cones: as such they are then spherical cross sections of area minimizing cones
but they are also semicalibrated by a specific smooth form on S°.

Following the Almgren-Chang program, Theorem 0.2 will be established through a suit-
able “blow-up argument” which requires several tools. The first important tool is the
theory of multiple valued functions, for which we will use the results and terminology of
the papers [5, 6]. The second tool is a suitable approximation result for area minimizing
currents with graphs of multiple valued functions, which for the case at hand has been
established in the preceding note [11]. The last tool is the so-called “center manifold”:
this will be constructed in the present paper, whereas the final argument for Theorem
0.2 will then be given in [10]. We note in passing that all our arguments use heavily the
uniqueness of tangent cones for 1. This result is a, by now classical, theorem of White for
area minimizing 2-dimensional currents in the euclidean space, cf. [18]. Chang extended
it to case (a) in the appendix of [4], whereas Pumberger and Riviere covered case (b) in
[14]. A general derivation of these results for a wide class of almost minimizers has been
given in [12]: the theorems in there cover, in particular, all the cases of Definition 0.1.

The proof of Theorem 0.2 is based, as in [4], on an induction statement, cf. Theorem
1.8 below. This and the next paper [10] can be thought as the two main steps in its proof.
For this reason, before detailing the construction of the branched center manifold, which
is the main object of this note, we will state Theorem 1.8, show how Theorem 0.2 follows
from it and give a rough outline of the contributions of this and the next note [10].

0.1. Acknowledgments. The research of Camillo De Lellis and Luca Spolaor has been
supported by the ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. PRELIMINARIES AND THE MAIN INDUCTION STATEMENT

1.1. Basic notation and first main assumptions. For the notation concerning sub-
manifolds ¥ C R?**™™ we refer to [7, Section 1]. With B, (p) and B,(z) we denote, respec-
tively, the open ball with radius r and center p in R>*™ and the open ball with radius r
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and center z in R*. C,(p) and C,(z) will always denote the cylinder B,(z) x R", where
p = (x,y) € R? x R". We will often need to consider cylinders whose bases are parallel
to other 2-dimensional planes, as well as balls in m-dimensional affine planes. We then
introduce the notation B,(p, ) for B,.(p) N (p + m) and C,(p, ) for B,(p,7) + 7+. e; will
denote the unit vectors in the standard basis, 7o the (oriented) plane R? x {0} and 7, the
2-vector e; A ey orienting it. Given an m-dimensional plane 7, we denote by p, and p: the
orthogonal projections onto, respectively, 7 and its orthogonal complement 7+. For what
concerns integral currents we use the definitions and the notation of [16]. Since 7 is used
recurrently for 2-dimensional planes, the 2-dimensional area of the unit circle in R? will be
denoted by ws.

By [11, Lemma 1.1} in case (b) we can assume, without loss of generality, that the
ambient manifold ¥ coincides with the euclidean space R?*". In the rest of the paper we
will therefore always make the following

Assumption 1.1. T is an integral current of dimension 2 with bounded support and it
satisfies one of the three conditions (a), (b) or (c) in Definition 0.1. Moreover
e In case (a), ¥ C R?*™" is a C*° submanifold of dimension 2 + 7 = 2 +n — [, which
is the graph of an entire function ¥ : R?*? — R! and satisfies the bounds

||D\If||0 S Co and A := HAEHO S Co, (].1)

where ¢y is a positive (small) dimensional constant and &y €]0, 1].
e In case (b) we assume that 3 = R*™ and that the semicalibrating form w is C%#°.
e In case (¢) we assume that T is supported in X = 0Bg(py) for some py with
Ipo] = R, so that 0 € 9Bg(py). We assume also that To0Bgr(pg) is R*™~! (namely
po = (0,...,0,%[po|) and we let ¥ : R*™"1 — R be a smooth extension to the
whole space of the function which describes ¥ in Bo(0). We assume then that (1.1)
holds, which is equivalent to the requirement that R~! be sufficiently small.

In addition, since the conclusion of Theorem 0.2 is local, by [12, Proposition 0.4] we can
also assume to be always in the following situation.

Assumption 1.2. In addition to Assumption 1.1 we assume the following:
(1) 8TLCQ(O, 7T0) = 0;
(ii)) 0 € spt(T) and the tangent cone at 0 is given by O(T,0) [mo] where ©(T,0) €
N\ {0};
(iii) 7T is irreducible in any neighborhood U of 0 in the following sense: it is not possible
to find S, Z non-zero integer rectifiable currents in U with 0S = 0Z = 0 (in U),
T =S+ Z and spt(S) Nspt(Z) = {0}.

In order to justify point (iii), observe that we can argue as in the proof of [12, Theorem
3.1]: assuming that in a certain neighborhood U there is a decomposition 7' = S + Z as
above, it follows from [12, Proposition 2.2] that both S and Z fall in one of the classes
of Definition 0.1. In turn this implies that ©(S,0),0(Z,0) € N\ {0} and thus ©(S,0) <
©(T,0). We can then replace T with either S or Z. Let T} = S and argue similarly if it
is not irreducibile: obviously we can apply the argument above one more time and find a
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T, which satisfies all the requirements and has 0 < O(73,0) < O(71,0). This process must
stop after at most N = ©(T,0) steps: the final current is then necessarily irreducible.

1.2. Branching model. We next introduce an object which will play a key role in the rest
of our work, because it is the basic local model of the singular behavior of a 2-dimensional
area minimizing current: for each positive natural number @ we will denote by B¢ , the
flat Riemann surface which is a disk with a conical singularity, in the origin, of angle 27(Q)
and radius p > 0. More precisely we have

Definition 1.3. B, is topologically an open 2-dimensional disk, which we identify with
the topological space {(z,w) € C?: w? = z,|z| < p}. For each (z,wy) # 0 in By, we
consider the connected component ®(zg, wy) of By, N {(z,w) : |z — 20| < |20|/2} which
contains (zp, wp). We then consider the smooth manifold given by the atlas

{(Q(Z7w))7 (I1>x2)) : (Z7w) S %Qﬁ \ {0}} )

where (x1,x5) is the function which gives the real and imaginary part of the first complex
coordinate of a generic point of By ,. On such smooth manifold we consider the following
flat Riemannian metric: on each ®(z,w) with the chart (z1,z3) the metric tensor is the
usual euclidean one dx? + dz3. Such metric will be called the canonical flat metric and
denoted by eg.

When @) = 1 we can extend smoothly the metric tensor to the origin and we obtain
the usual euclidean 2-dimensional disk. For ¢ > 1 the metric tensor does not extend
smoothly to 0, but we can nonetheless complete the induced geodesic distance on B¢ , in
a neighborhood of 0: for (z,w) # 0 the distance to the origin will then correspond to |z|.
The resulting metric space is a well-known object in the literature, namely a flat Riemann
surface with an isolated conical singularity at the origin (see for instance [19]). Note that
for each zp and 0 < r < min{|zg|, p — |20|} the set B, N{|z — 20| < r} consists then of )
nonintersecting 2-dimensional disks, each of which is a geodesic ball of B¢, with radius
r and center (zp,w;) for some w; € C with wZQ = zp. We then denote each of them by
B,(20,w;) and treat it as a standard disk in the euclidean 2-dimensional plane (which is
correct from the metric point of view). We use however the same notation for the distance
disk B,(0), namely for the set {(z,w) : |z| < r}, although the latter is not isometric to
the standard euclidean disk. Since this might be create some ambiguity, we will use the
specification R? D B,.(0) when referring to the standard disk in R?.

1.3. Admissible Q-branchings. When one of (or both) the parameters () and p are clear
from the context, the corresponding subscript (or both) will be omitted. We will always
treat each point of B as an element of C?, mostly using z and w for the horizontal and
vertical complex coordinates. Often C will be identified with R? and thus the coordinate z
will be treated as a two-dimensional real vector, avoiding the more cumbersome notation

(21, 22).

Definition 1.4 (Q-branchings). Let a €]0,1[, b > 1, @ € N\ {0} and n € N\ {0}. An
admissible a-smooth and b-separated Q-branching in R*™ (shortly a Q-branching) is the
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graph
Gr(u) = {(2,u(z,w)) : (2,w) € Bga,} C R*™" (1.2)

of a map u : By o, — R" satistying the following assumptions. For some constants C; > 0
we have

e u is continuous, u € C** on B, \ {0} and u(0) = 0;

o [Diu(z,w)] < Cils| 7 (2, w) £ 0 and j € {0,1,2,3};

o [D3ulq B, (sw) < Cilz| 72 for every (z,w) # 0 with |z| = 2r;

e If @ > 1, then there is a positive constant ¢, €]0, 1[ such that

min{|u(z,w) — u(z,w')| : w # w'} > 4ey|z|®  for all (z,w) # 0. (1.3)

The map ®(z,w) = (z,u(z,w)) will be called the graphical parametrization of the Q-
branching.

Any @Q-branching as in the Definition above is an immersed disk in R?*" and can be given
a natural structure as integer rectifiable current, which will be denoted by G,. For @) =1
a map u as in Definition 1.4 is a (single valued) C** map u : R? D B,,(0) — R". Although
the term branching is not appropriate in this case, the advantage of our setup is that ) = 1
will not be a special case in the induction statement of Theorem 1.8 below. Observe that
for @ > 1 the map u can be thought as a Q-valued map u : R? D By, (0) — Ag(R™), setting
u(z) = 30 wnen [ul(z,wi)] for 2 # 0 and w(0) = Q[0]. The notation Gr(u) and G, is
then coherent with the corresponding objects defined in [6] for general @-valued maps.

1.4. The inductive statement. Before coming to the key inductive statement, we need
to introduce some more terminology.

Definition 1.5 (Horned Neighborhood). Let Gr(u) be a b-separated @-branching. For
every a > b we define the horned neighborhood V. of Gr(u) to be

Vo= {(z,y) € R x R" : I(x,w) € By, with |y — u(z,w)| < cs|z|*}, (1.4)
where ¢ is the constant in (1.3).

Definition 1.6 (Excess). Given an m-dimensional current 7" in R™*" with finite mass, its
excess in the ball B, (z) and in the cylinder C,(p, 7’) with respect to the m-plane 7 are

E(T,B,(p), ) = (2w, ™) / ()|T“ — 72d|T| (1.5)
B.(p

(T, Cy(p, 7)) = (2w 1) / 7 — #2d|T]. (1.6)
CT(pvﬂ-/)

For cylinders we omit the third entry when 7 = 7/, i.e. E(T,C,.(p, 7)) := E(T,C,.(p,7), 7).
In order to define the spherical excess we consider T" as in Assumption 1.1 and we say that
7 optimizes the excess of T in a ball B, (z) if

e In case (b)
E(T,B,(x)) := mTin E(T,B,(z),7) = E(T,B,(x), 7); (1.7)
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e In case (a) and (¢) # C 7,2 and
E(T,B,(z)) := m%nz E(T,B,(z),7) = E(T,B,(x), 7). (1.8)

TClg
Note in particular that, in case (a) and (c¢), E(T, B,(z)) differs from the quantity defined
in [9, Definition 1.1], where, although X does not coincide with the ambient euclidean space,
7 is allowed to vary among all planes, as in case (b). Thus a notation more consistent with
that of [9] would be, in case (a) and (c), E*(T, B,(z)). However, the difference is a minor
one and we prefer to keep our notation simpler.
Our main induction assumption is then the following

Assumption 1.7 (Inductive Assumption). T"is as in Assumption 1.1 and 1.2. For some
constants () € N\ {0} and 0 < a < 2—1@ there is an a-admissible @-branching Gr(u) with
u:Bgo — R" such that

(Sep) If Q > 1, u is b-separated for some b > 1; a choice of some b > 1 is fixed also in the
case Q = 1, although in this case the separation condition is empty.

(Hor) spt(7") C V., U {0} for some a > b;

(Dec) There exist v > 0 and a C; > 0 with the following property. Let p = (x¢,y0) €
spt(T') N C 5(0) and 4d := |zo| > 0, let V' be the connected component of V, , N
{(z,y) : | — x¢| < d} containing p and let w(p) be the plane tangent to Gr(u) at
the only point of the form (zg, u(zo, w;)) which is contained in V. Then

E(TLV,B,(p),w(p)) < C}d*20®> Vo e [3dV2 d] . (1.9)

The main inductive step is then the following theorem, where we denote by 7,,, the
rescaled current (v, )37, through the map ¢, ,(q) := (¢ — p)/r.

Theorem 1.8 (Inductive statement). Let T be as in Assumption 1.7 for some Q = Q.
Then,

(a) either T is, in a neighborhood of 0, a Q multiple of a Q-branching Gr(v);

(b) or there arer > 0 and Q, > Qo such that Ty, satisfies Assumption 1.7 with Q = Q.

Theorem 0.2 follows then easily from Theorem 1.8 and [12].

1.5. Proof of Theorem 0.2. As already mentioned, without loss of generality we can
assume that Assumption 1.1 holds, cf. [12, Lemma 1.1] (the bounds on A and ¥ can be
achieved by a simple scaling argument). Fix now a point p in spt(7’) \ spt(97"). Our aim
is to show that 7" is regular in a punctured neighborhood of p. Without loss of generality
we can assume that p is the origin. Upon suitably decomposing 7" in some neighborhood
of 0 we can easily assume that (I) in Assumption 1.7 holds, cf. the argument of Step 4
in the proof of [12, Theorem 3.1]. Thus, upon suitably rescaling and rotating 7" we can
assume that 7 is the unique tangent cone to 7" at 0, cf. [12, Theorem 3.1]. In fact, by
[12, Theorem 3.1] T satisfies Assumption 1.7 with Q = 1: it suffices to chose u = 0 as
admissible smooth branching. If T" were not regular in any punctured neighborhood of 0,
we could then apply Theorem 1.8 inductively to find a sequence of rescalings Tp ,, with
p; 4+ 0 which satisfy Assumption 1.7 with Q= Q; for some strictly increasing sequence of



BRANCHED CENTER MANIFOLD 7

integers. It is however elementary that the density ©(0,7") bounds @; from above, which
is a contradiction.

2. THE BRANCHED CENTER MANIFOLD

2.1. The overall approach to Theorem 1.8. From now on we fix 7" satisfying Assump-
tion 1.7. Observe that, without loss of generality, we are always free to rescale homothet-
ically our current T" with a factor larger than 1 and ignore whatever portion falls outside
C2(0). We will do this several times, with factors which will be assumed to be sufficiently
large. Hence, if we can prove that something holds in a sufficiently small neighborhood
of 0, then we can assume, withouth loss of generality, that it holds on C,. For this rea-
son we can assume that the constants C; in Definition 1.4 and Assumption 1.7 are as
small as we want. In turns this implies that there is a well-defined orthogonal projection
P:V,.NC;— Gr(u) N Cy, which is a C** map.

By the constancy theorem, (Py(T'L.C;))L Cy/, coincides with the current QG,L Cy /o
(again, we are assuming C; in Definition 1.4 sufficiently small), where @ € Z. If ) were
0, condition (Dec) in Assumption 1.7 and a simple covering argument would imply that
|T)|(C1/2(0)) < CoC?, where Cj is a geometric constant. In particular, when C; is suffi-
ciently small, this would violate, by the monotonicity formula, the assumption 0 € spt(7).
Thus @ # 0. On the other hand condition (Dec) in Assumption 1.7 implies also that @
must be positive (again, provided C; is smaller than a geometric constant).

Now, recall from [12, Theorem 3.1] that the density O(p,T) is a positive integer at
any p € spt(7T') \ spt(9T"). Moreover, the rescaled currents Ty, converge to ©(0,T") [mo].
It is easy to see that the rescaled currents (G,)o, converge to Q [m] and that (PyT),
converges to ©(0,T) [mo]. We then conclude that ©(0,T) = QQ.

We summarize these conclusions in the following lemma, where we also claim an addi-
tional important bound on the density of T" outside 0, which will be proved later.

Lemma 2.1. Let T and u be as in Assumption 1.7 for some Q and sufficiently small C;.
Then the nearest point projection P : V, . N Cy — Gr(u) is a well-defined C*>* map. In
addition there is Q € N\ {0} such that ©(0,T) = QQ and the unique tangent cone to T at
0 is QQ [mo]. Finally, after possibly rescaling T, ©(p, T) < Q for every p € Cy \ {0} and,
for every x € B5(0), each connected component of ({x} x R") NV, , contains at least one
point of spt(T).

Since we will assume during the rest of the paper that the above discussion applies, we
summarize the relevant conclusions in the following

Assumption 2.2. T satisfies Assumption 1.7 for some Q and with C; sufficiently small.
@ > 11is an integer, ©(0,7) = QQ and O(p,T) < Q for all p € Cy \ {0}.
The overall plan to prove Theorem 1.8 is then the following;:
(CM) We construct first a branched center manifold, i.e. a second admissible smooth
branching ¢ on By, and a corresponding (-valued map N defined on the normal

bundle of Gr(¢), which approximates 7" with a very high degree of accuracy (in
particular more accurately than u) and whose average n o N is very small;
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(BU) Assuming that alternative (a) in Theorem 1.8 does not hold, we study the asymp-
totic behavior of N around 0 and use it to build a new admissible smooth branching
v on some By 5 where k > 2 is a factor of Q: this map will then be the one sought
in alternative (b) of Theorem 1.8 and a suitable rescaling of 7" will lie in a horned
neighborhood of its graph.

The first part of the program is the one achieved in this paper, whereas the second part
will be completed in [10]: in the latter paper we then give the proof of Theorem 1.8. Note
that, when @ = 1, from (BU) we will conclude that alternative (a) necessarily holds: this
will be a simple corollary of the general case, but we observe that it could also be proved
resorting to the classical Allard’s regularity theorem.

2.2. Smallness condition. In several occasions we will need that the ambient manifold
3] is suitably flat and that the excess of the current T' is suitably small. This can, however,
be easily achieved after scaling. More precisely we have the following

Lemma 2.3. Let T be as in the Assumptions 1.7. After possibly rescaling, rotating and
modifying ¥ outside Cq(0) we can assume that, in case (a) and (c¢) of Definition 0.1,

i) ¥ is a complete submanifold o ;
i) X ¢ [ b ifold of R*™
(ii) ToX = R*™ x {0} and, Vp € X, X is the graph of a C*>* map V¥, : T, — (T,%)*.

Under these assumptions, we denote by ¢ and my the following quantities

c = sup{||DV,||c2= : p € X} in the cases (a) and (c) of Definition 0.1 (2.1)

¢ = ||dw| o0 in case (b) of Definition 0.1 (2.2)
my ‘= max{c2,E(T, C277T0)7Ci276§ ) (23)

where C; and c,s are the constants appearing in Definition 1.4 and Assumption 1.7. Then,
for any €5 > 0, after possibly rescaling the current by a large factor, we can assume

my < 9. (24)
We postpone the proof of this (simple) technical lemma to a later section.

2.3. Conformal parametrization. In order to carry on the plan outlined in the previous
subsection, it is convenient to use parametrizations of ()-branchings which are not graphical
but instead satisfy a suitable conformality property. To simplify our notation, the map ¥,
will be simply denoted by W.

If we remove the origin, any admissible ()-branching is a Riemannian submanifold of
R2*7\ {0}: this gives a Riemannian tensor g := ®% (where e denotes the euclidean metric
on R**™) on the punctured disk Bg o, \ {0}. Note that in (z, w) the difference between the
metric tensor g and the canonical flat metric eg can be estimated by (a constant times)
|z]?*: thus, as it happens for the canonical flat metric eg, when @ > 1 it is not possible
to extend the metric g to the origin. However, using well-known arguments in differential
geometry, we can find a conformal map from B, onto a neighborhood of 0 which maps
the conical singularity of By, in the conical singularity of the ()-branching. In fact, we
need the following accurate estimates for such a map.
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Proposition 2.4 (Conformal parametrization). Given an admissible b-separated c-smooth
Q-branching Gr(u) with a < 1/(2Q) there exist a constant Co(Q, ) > 0, a radius r > 0
and functions ¥: By, — Gr(u) and X\: Bg, — Ry such that

(i) W is a homeomorphism of B, with a neighborhood of 0 in Gr(u);
(i) ¥ € C**(Bg., \ {0}), with the estimates

|D'(®(z,w) — (2,0))| <CoCilz|" T forl1=0,...,3, 2#0, (2.5)
[D*W], B, 2y <CoCil2] 72 forz#0 and r = |z|/2; (2.6)

(iii) ¥ is a conformal map with conformal factor X\, namely, if we denote by e the
ambient euclidean metric in R*™ and by eq the canonical euclidean metric of B .,

g:=Pe = \eg on Bg, \ {0}. (2.7)
(iv) The conformal factor \ satisfies
|IDY(\ = 1)(z,w)| <CoCi|z**7t for1=0,1,...,2
[D*Na.B, (s.0) <CoCil2]*2 for z 40 and r =1z|/2. (2.9)
A proof of Proposition 2.4 is given in Appendix B.

Definition 2.5. A map W as in Proposition 2.4 will be called a conformal parametrization
of an admissible @)-branching.

2.4. The center manifold and the approximation. We are finally ready to state the
main theorem of this note.

Theorem 2.6 (Center Manifold Approximation). Let T' be as in Assumptions 1.7 and
2.2. Then there exist n9,7%0,70,C > 0, b > 1, an admissible b-separated ~yo-smooth Q-
branching M, a corresponding conformal parametrization W : By, — M and a Q-valued
map N : B o — Ag(R*™™) with the following properties:

(i) QQ = O(T,0) and

ID(®(z,w) — (2,0))| <Cm|z™ (2.10)
|D*® (2, w)| + |27 D*® (2, w)| < Cmy*|z[7; (2.11)

in particular, if we denote by Apq the second fundamental form of M\ {0},
A (2, w)] + |21 DarAm (¥ (2, w))| < Oz

(il) Ai(z,w) is orthogonal to the tangent plane, at ¥(z,w), to M.

(ili) If we define S := Ty,,, then spt(S) N Cy \ {0} is contained in a suitable horned
neighborhood of the Q-branching, where the orthogonal projection P onto it is well-
defined. Moreover, for every r €]0, 1] we have

12

B, |lo + sup p—P(p)| < Cmy'r' 2. (2.12)

pEspt(S)NP~1(¥(B;))
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(iv) If we define
D(r):= [ |DAJ> and H(r):= / 7,
By 0Br

TH(1)

t2—0

F(r) =

dt and A(r):=D(r)+F(r),
0
then the following estimates hold for every r €0, 1]:

Lip(A(15,) <Cmin{A™(r), miPr™} 2.13)
i /B 12170 0 (2, w)| <C A™(r) D(r) + CF(r). (2.14)
(v) Finally, if we st
£l w) = 30 T8 w) + Al ]

then
IS = T4 (P~ (®(B,))) <CA™(r)D(r) + CF(r). (2.15)

The rest of this note is dedicated to prove the above theorem. We first outline how the
center manifold is constructed. We then construct an approximating map N taking values
on its normal bundle. Finally we change coordinates using a conformal parametrization ¥
and prove the above theorem for the map A’ = N o W,

3. CENTER MANIFOLD: THE CONSTRUCTION ALGORITHM

3.1. Choice of some parameters and smallness of some other constants. As in [§]
the construction of the center manifold involves several parameters. We start by choosing
three of them which will appear as exponents of (two) lenghtscales in several estimates.

Assumption 3.1. Let T be as in Assumptions 1.7 and 2.2 and in particular recall the
exponents @, b, a and ~y defined therein. We choose the positive exponents 7y, 2 and d; (in
the given order) so that

Yo < min{vy, &, a — b, b — b;r—l, log, g} (3.1)
B < min{eg, 2, ¢ — 1,8 Foey b> (1 + ) (3.2)
Br—200 > 2 fy(2—201) — 26, > 2B (3.3)

(where f3y is the constant of [11, Theorem 1.5] and in this paper we assume it is smaller
than 1/2)

Having fixed 79, B2 and 0; we introduce five further parameters: My, Ny, C,, C}, and
g9. We will impose several inequalities upon them, but following a very precise hierarchy;,
which ensures that all the conditions required in the remaining statements can be met.
We will use the term “geometric” when such conditions depend only upon 7, n, @, Q, Yo, B2
and &1, whereas we keep track of their dependence on My, Ny, C, and C}, using the notation
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C = C(My),C(My, Np) and so on. ey is always the last parameter to be chosen: it will be
small depending upon all the other constants, but constants will never depend upon it.

Assumption 3.2 (Hierarchy of the parameters). In all the statements of the paper

o My > 4 is larger than a geometric constant and Ny is a natural number larger than
C'(My); one such condition is recurrent and we state it here:

V2M 210N < 1, (3.4)

o C, is larger than C(M,, Ny);
e (), is larger than C(My, Ny, Ce);
e £, > 0 is smaller than ¢(M,, Ny, Ce, Cp,) > 0.

3.2. Whitney decomposition of B, ,. From now on we will use B for B 5, since the
positive natural number (@ is fixed for the rest of the paper. In this section we decompose
B\ {0} in a suitable way. More precisely, a closed subset L of B will be called a dyadic
square if it is a connected component of B N (H x C) for some euclidean dyadic square
H = [ay, a1 + 20] X [ag, as + 2] C R* = C with

e (=277 7€N,j7>2 and ac 27772

e HC[-1,1]?and 0 ¢ H.
Observe that L is truly a square, both from the topological and the metric point of view.
2( is the sidelength of both H and L. Note that B N (H x C) consists then of @ distinct
squares Li,...,Lg. zg := a+ (¢,{) is the center of the square H. Each L lying over H
will then contain a point (zg,wy ), which is the center of L. Depending upon the context
we will then use z, rather than zy for the first (complex) component of the center of L.

The family of all dyadic squares of 25 defined above will be denoted by ¥. We next

consider, for 7 € N, the dyadic closed annuli

Aj =80 (([-27,27]A\] 27127771 ) x C).

Each dyadic square L of 9B is then contained in exactly one annulus A; and we define
d(L) := 27771, Moreover (L) = 2797% for some k > 2. We then denote by €*7 the
family of those dyadic squares L such that L C A; and (L) = 2797%. Observe that,
for each j > 1,k > 2, €I is a covering of A; and that two elements of ¢*J can only
intersect at their boundaries. Moreover, any element of €*7 can intersect at most 8 other
elements of €*7. Finally, we set €* := > €*J. Observe now that €* covers a punctured
neighborhood of 0 and that if L € €%, then

e L intesects at most 9 other elements J € €*;
e If LNJ #D, then £(J)/2 < ¢(L) < 2¢(L) and LN J is either a vertex or a side of
the smallest among the two.

More in general if the intersection of two distinct elements L and J in ¢ = J, €* has
nonempty interior, then one is contained in the other: if L C J we then say that L is a
descendant of J and J an ancestor of L. If in addition ¢(L) = ¢(.J)/2, then we say that L
is a son of J and J is the father of L. When L and J intersect only at their boundaries,
we then say that L and J are adjacent.
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Next, for each dyadic square L we set 71, := v/2Myl(L). Note that, by our choice of N,
we have that:

if L € €% and k > Ny, then CG4TL(ZL) C Cai-j \C2—2—j. (35)

In particular V,,, N Cegy,, (21) consists of () connected components and we can select the
one containing (zp, u(zr,wr)), which we will denote by V. We will then denote by T, the
current T V. According to Lemma 2.1, V, N {z.} x R™ contains at least one point of
spt(7T): we select any such point and denote it by p; = (z1,yr). Correspondingly we will
denote by By, the ball By, (pr)-

Definition 3.3. The height of a current S in a set £ with respect to a plane 7 is given by

h(S, E, ) := sup{|py (p — ¢)| : p,q € spt(S) N E}. (3.6)
If E = C,(p,m) we will then set h(S,C,(p,7)) := h(S,C,(p,n),n). If E = B,(p), T
is as in Assumption 1.1 and p € ¥ (in the cases (a) and (c) of Definition 0.1), then
h(T,B,(p)) := h(T,B,(p), ™) where 7 gives the minimal height among all 7 for which
E(T,B,(p),m) = E(T,B,(p)) (and such that 7 C T,¥ in case (a) and (c) of Definition
0.1). Moreover, for such 7 we say that it optimizes the excess and the height in B,.(p).

We are now ready to define the dyadic decomposition of 9 \ 0.

Definition 3.4 (Refining procedure). We build inductively the families of squares .7, # =
W, U W, U W, and their subfamilies .7* = . N €*, 9% = . N €% and so on. First
of all, we set .#* = #* = () for k < N,. For k > N, we use a double induction. Having
defined .7, #'* for all k' < k and .7%3" /%" for all j' < j, we pick all squares L of €7
which do not have any ancestor already assigned to # and we proceed as follows.

EX) We assign L to #ki if
(EX) g .

E(T;,Br) > Comgd (L) 2H201¢( )%=, (3.7)
(HT) We assign L to #;" if we have not assigned it to #; and
h(T,,By) > Cumy/"d(L) P2 0(L)" P2, (3.8)

(NN) We assign L to #,J if we have not assigned it to #,U %}, and it intersects a square
J already assigned to # with ¢(J) = 2¢((L).
(S) We assign L to .7 if none of the above occurs.

We finally set

r=(-L1xR)ns\ (JL={yu () U L (3.9)

Lew k>No Le.sk

Proposition 3.5 (Whitney decomposition). Let T', 4o, B2 and 4 be as in the Assumptions
1.7, 2.2 and 3.1. If My > C, Ny > C(M,), C.,Cy, > C(My, Ny) (for suitably large
constants) and €5 is sufficiently small then:
(i) 6(L) < 27Ntz | VL e S UW;
(i) #* =0 for all k < Ny + 6;
(iii) T is a closed set and sep(T, L) := inf{|z — 2| :x € T,2' € L} > 20(L) VL € #'.
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Moreover, the following estimates hold with C' = C(My, Ny, Ce, C):

E(T;,B;) < Comgd(J)20~ 2200 J)2720 v Je.7, (3.10)
h(T;,B,) < Cpmy d(J)/P24(J) P VJe.s, (3.11)
E(Ty,By) < Cmyd(H)?0 220 ({220 VYHew, (3.12)
h(Ty,By) < Cmy"d(H)"/~P2((H)"*P VHeW . (3.13)

3.3. Approximating functions and construction algorithm. We will see below that
in (a suitable portion of) each By, the current 77, can be approximated efficiently with a
graph of a Lipschitz multiple-valued map. The average of the sheets of this approximating
map will then be used as a local model for the center manifold.

Definition 3.6 (m-approximations). Let L € . U# and 7 be a 2-dimensional plane. If
Tp1 Csap, (pr, m) fulfills the assumptions of [11, Theorem 1.5] in the cylinder Css,, (pr, 7),
then the resulting map f : Bs,, (pr,m) — Ag(nt) given by [11, Theorem 1.5] is a -
approzimation of Ty, in Csg,., (pr, ).

As in [8], we wish to find a suitable smoothing of the average of the m-approximation
n o f. However the smoothing procedure is more complicated in the case (b) of Definition
0.1: rather than smoothing by convolution, we need to solve a suitable elliptic system of
partial differential equations. This approach can in fact be used in cases (a) and (c) as well.
In several instances regarding case (a) and (c¢) we will have to manipulate maps defined
on some affine space ¢ + m and taking value on 7', where ¢ € ¥ and # C T,X. In such
cases it is convenient to introduce the following conventions: the maps will be regarded as
maps defined on 7 (requiring a simple translation by ¢), the space 7+ will be decomposed
into s := m- N T, and its orthogonal complement 7,3+ and we will regard ¥, as a map
defined on 7 x s and taking values in 7,%+. Similarly, elements of 7+ will be decomposed
as (§,n) € s x T, X+

Lemma 3.7. Let the assumptions of Proposition 3.5 hold and assume C, > C* and C} >
C*C, for a suitably large C*(My, Ny). For each L € # U . we choose a plane w which
optimizes the excess and the height in Br. For any choice of the other parameters, if €5
is sufficiently small, then T\ Cso,, (pr, 7L) Satisfies the assumptions of [11, Theorem 1.5]
forany Le W U.7.

Definition 3.8 (Smoothing). Let L and 7, be as in Lemma 3.7 and denote by fr
the corresponding 7r-approximation. In case of Definition 0.1 (a)&(c) we let f(z) :=
> [[prLg(fi)]] be the projection of fr on the tangent 7}, 3, whereas in the other case
(Definition 0.1(b)) we set f = f. We let hy be a solution (provided it exists) of

gLiLL = QL

i i (3.14)

hLlaBSTL(pL)TrL) =Tmno fL )
where . is a suitable second order linear elliptic operator with constant coefficients and
Z, a suitable affine map: the precise expressions for &7 and .%; depend on a careful
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Taylor expansion of the first variations formulae and are given in Proposition 6.4. We then
set hy(x) := (hp(z),V,, (2, h(z)) in case (a) and (¢) and hp(x) = hi(z) in case (b). The
map hy, is the tilted interpolating function relative to L.

In what follows we will deal with graphs of multivalued functions f in several system
of coordinates. These objects can be naturally seen as currents G (see [6]) and in this
respect we will use extensively the notation and results of [6] (therefore Gr(f) will denote
the “set-theoretic” graph).

Lemma 3.9. Let the assumptions of Proposition 3.5 hold and assume C, > C* and C}, >
C*C, (where C* is the constant of Lemma 3.7). For any choice of the other parameters, if eo
is sufficiently small the following holds. For any L € W U.7, there is a unique solution hy,
of (3.14) and there is a smooth gr, : By, (21, ™) — 73 such that G,, = Gy, Cy,, (p1, ),
where hy, is the tilted interpolating function of Definition 3.8. Using the charts introduced
in Definition 1.3, the map gr, will be considered as defined on the ball By,, (21, wr) C B.

The center manifold is defined by gluing together the maps g;..

Definition 3.10 (Interpolating functions). The map g, in Lemma 3.7 will be called the
17 17

L-interpolating function. Fix next a 9 € C;X’([—E, 6™ [0, 1]) which is nonnegative and

is identically 1 on [—1,1]™. For each k let 2% .= % U Uf:NO #' and for L € 2% define

I((z,w)) := 19(?3) Set

;U

pj = Lier 10 on {(z,w) € B:ze[-1,12\{0}} (3.15)
ZLEWJ’ UL

and extend the map to 0 defining ¢;(0) = 0. In case (b) of Definition 0.1 we set ¢; := ¢;.

In cases (a) and (c) we let ¢;(z,w) be the first 7 components of ¢;(z,w) and define

wi(z,w) = (gbj(z, w), ¥(z, gbj(z,w))). ¢; will be called the glued interpolation at step j.

We now come to the first main theorem, which yields the surface which we call “branched
center manifold” (again notice that for Q = 1 there is certainly no branching, since the
surface is a classical C™® graph, but we keep nonetheless the same terminology). In the
statement we will need to “enlarge” slightly dyadic squares: given L € % let H be the
dyadic square of R* = C so that L is a connected component of B N (H x C). Given
V20 < |zz| = |zm|, we let H' be the closed euclidean square of R? which has the same
center as H and sides of length 20, parallel to the coordinate axes. The square L' concentric
to L and with sidelength 2¢(L’) = 20 is then defined to be that connected component of
B N (H' x C) which contains L.

Theorem 3.11. Under the same assumptions of Lemma 3.7, the following holds provided
€9 15 sufficiently small.
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(i) For k:= B2/4 and C = C(My, Ny, C,, Cy) we have (for all j)

lp;(z,w)| < Cmy|z| 7" for all (z,w) (3.16)
D' (z,w)] < Cmy?lz|"T0 forl=1,...,3 and (z,w) # 0 (3.17)
[D3p;] 4,5 < Cy*2% . (3.18)

(ii) The sequence p; stabilizes on every square L € W : more precisely, if L € #'* and H
is the square concentric to L with ¢(H) = %E(L), then @ = @; on H for every j, k >
i+2. Moreover there is an admissible smooth branching ¢ : BN ([—1,1]*xC) — R
such that pr — @ uniformly on B N ([—1,1]* x C) and in C*(A;) for every j > 0.

(iii) For some constant C' = C(My, Ny, Ce, Cy,) and for o' == b+ vy > b we have

[u(z,w) = @(z,w)| < Cmy*[2|" (3.19)

Definition 3.12 (Center manifold, Whitney regions). The manifold M := Gr(¢), where
¢ is as in Theorem 3.11, is called a branched center manifold for T relative to G,. It
is convenient to introduce the map ® : B N ([—1,1]? x C) — R*™ given by ®(z,w) =
(z,¢(z,w)). If we neglect the origin, ® is then a classical (C®) parametrization of M.
®(T") will be called the contact set. Moreover, to each L € # we associate a Whitney
region L on M as follows:

(WR) £ := ®(H N ([-1,1]* x C)), where H is the square concentric to L with {(H) =
(L),
16

4. THE NORMAL APPROXIMATION

In what follows we assume that the conclusions of Theorem 3.11 apply and denote by
M the corresponding center manifold. For any Borel set V C M we will denote by |V] its
H?-measure and will write [, f for the integral of f with respect to H*. B.(¢) denotes the
geodesic balls in M. Moreover, we refer to [6] for all the relevant notation pertaining to
the differentiation of (multiple valued) maps defined on M, induced currents, differential
geometric tensors and so on.

We next define the open set

(V) Vi={(z,y) e RZx R": z € [-1,1]? and |p(x,w) — y| < c,|z|"/2}.
V is clearly an horned neighborhood of the graph of ¢. By (1.3), Assumption 1.7 and
Theorem 3.11 it is clear that the following corollary holds
Corollary 4.1. Under the hypotheses of Theorem 3.11, there is r > 0 such that

(i) For every x € R? with 0 < |z| = 2p < 2r, the set C,(z) N'V consists of Q distinct
connected components and spt(T) N Cs,. C V.
(ii) There is a well-defined nearest point projection p : VN Cy. — Gr(p), which is a
C?* map.
(iii) For every L € W with d(L) < 2r and every q € L we have

spt((T,p, ®(q))) C {y € R*™ + [®(q) —y| < Cmé“d(L)””/%ﬁw(L)lwz}_
(iV) <T7 p7p> =Q ﬂp]] for every p € <I)(I‘) N C,, \ {0}
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The main goal of this paper is to couple the branched center manifold of Theorem 3.11
with a good map defined on M and taking values in its normal bundle, which approximates
accurately T" in a neighborhood of the origin.

Definition 4.2 (M-normal approximation). Let r be as in Corollary 4.1 and define
(U) U:=p (Cq NBy).
An M-normal approzimation of T is given by a pair (K, F') such that
(A1) F: Cy, N M — Ap(U) is Lipschitz and takes the form F(z) = ) . [z + N;(x)],
with N;(z) L T, M and = + N;(z) € ¥ for every x and 1.
(A2) K C M is closed, contains ®(I' N Cy,) and TrLp ' (K) =TLp ! (K).

The map N =Y, [N:] : M N Cq — Ag(R**™) is the normal part of F.

In the definition above it is not required that the map F approximates efficiently the
current outside the set ®(I'). However, all the maps constructed in this paper and used
in the subsequent note [9] will approximate 7" with a high degree of accuracy in each
Whitney region: such estimates are detailed in the next theorem. In order to simplify the
notation, we will use | N|y||co (or || N|y|lo) to denote the number sup, ., G(N(z),Q [0]) =

supgey [N ()]

Theorem 4.3 (Local estimates for the M-normal approximation). Let r be as in Corollary
4.1 and U as in Definition 4.2. Then there is an M-normal approzimation (IC,F) such
that the following estimates hold on every Whitney region L associated to L € W with
d(L) <r:

Lip(N|) < Cmld(L)?» ¢(L)%°  and ||[N|zllco < Cmy d(L)PP20(L) P2, (4.1)
[L\K]+ | Tr = T|[(p71(£)) < Cmg™ d(L) 5025200 () 2050200 - (4.9)
/ |IDN|? < C'myy d(L)*0~ 21200 p(L)4 =20 (4.3)
c
Moreover, for every Borel V C L, we have

/ InoN| < C’mod(L)Q(l-i-ﬁo)vo—?—ﬁz g(L>5+B2/4
%

s omif A [ G(V.QIeN). (49
%

The constant C = C(My, Ny, C., C) does not depend on e.

4.1. Separation and splitting. We conclude this section with two theorems which allow
us to estimate the sidelengths of the squares of type #}, and #,. The squares in #,, do
not enjoy similar bounds, but they can be partitioned in families, each of which consists
of squares sufficiently close to an element of 7.

Proposition 4.4 (Separation). There is a dimensional constant C* > 0 with the following
property. Assume the hypotheses of Theorem 4.3, and in addition C} > C*C,. If gq is
sufficiently small, then the following conclusions hold for every L € W}, with (L) <r :
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(S1) ©(T1,p) < Q —1 for every p € Bug,, (L)
(S2) LN H =0 for every H € #;, with {(H) < 3((L).

(33) G(N(2),Qno N()]) > 2Cumy* A(L)*~B4(L) P Vi € ®(Bayyy (21, wr)).
A simple corollary of the previous proposition is the following.

Corollary 4.5 (Domains of influence). For any H € #,, there is a chain L = Lg, ..., L, =
H such that

(a) Lo € #e. and Ly, € W, forallk>()

(b) Ly N Ly # 0 and ((Ly) = “E=1 for all k > 0.

In particular H C By 51 (21, wr).
We use this last corollary to partition #,.

Definition 4.6 (Domains of influence). We first fix an ordering of the squares in %, as
{J:}ien so that their sidelengths do not increase. Then H € #;, belongs to #,(Jy) (the
domain of influence of .Jy) if there is a chain as in Corollary 4.5 with Ly = Jy. Inductively,
W, (J,) is the set of squares H € #;,\ U<, #,,(J;) for which there is a chain as in Corollary
4.5 with Ly = J,.

Proposition 4.7 (Splitting). There are positive constants Cy,Co(My), 7(My, No, Ce) such
that, if My > Cy, Ce > Co(M,y), if the hypotheses of Theorem 4.3 hold and e5 is cho-
sen sufficiently small, then the following holds. If L € W, with d(L) < 7, ¢ € B with
dist(L,q) < 4v/2¢(L) and 2 := ®(Byrs(q)), then:

Comg d(L)207 21200 p(LY=200 < ¢(L)?E(T}, BL) < C / IDN|?, (4.5)
Q

/yDNF < CUL)’E(T,B;) < CU(L /|N|2 (4.6)
where C'= C(My, Ny, Ce, Cy).

5. CENTER MANIFOLD CONSTRUCTION

5.1. Technical preliminaries. In this section we prove the two technical Lemmas 2.1
and 2.3.

Proof of Lemma 2.1. Consider zy € mo with 2p = |z, a smooth C? function ¢ : B,(zg) —
R™ and the open set V, := {(z,y) : * € B,j2(x0), |y — ¢(x)| < 0}. Recall that there
is a geometric constant C' such that, if o < C/||D?¢||p, (), then for each p € V, there
is a unique nearest point P(p) € Gr(¢) (which defines a C' map P : V, = Gr(¢)). In
particular, if |[D?| g, () < Cp®~!, the existence of such point is guaranteed under the
assumption that o < cp!™® (where c is a, possibly small but positive, constant). Consider
now an admissible smooth branching u : 85 — R". If Q) = 1, the above discussion shows
easily the existence of a well defined C' map P : V,, N Cy — Gr(u), provided r is
sufficiently small. If Q > 1, the same conclusion holds under the assumption that w is
b-separated and a > b > 1. Indeed consider p = (2,y) € V,, and (z,w;) € B¢ such
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that |y — u(z,w;)| < ¢4|z|*. The assumptions of being well-separated implies easily that
lp — u(¢,w)| > ¢5]z|” whenever ¢ &€ By,j/2(z, w;) and thus we can argue locally on the sheet
Gr(u|3|z\/2(szi))'

Next, up to rescaling we can assume that P is well-defined on V,, , N C,. The discussion
before Lemma 2.1 applies now verbatim and we conclude that the unique tangent cone at
0 is QQ [mo].-

To reach the other two conclusions of the Lemma we argue by contradiction: if they
were wrong, then we would find a sequence of points {z} C Bz(0) \ {0} converging to 0
for which one of the following two conditions hold:

e cither {z;} x R™ contains a point py € spt(7) with O(pg,T) > @ + 1 (recall that
the density of T is an integer at every point, cf. [12]);
e or one connected component Q of ({z;} x R")NV,, does not intersect spt(7").

Set 2ry, := |z;| and consider the connected component Vy, of V,, ,NC,, (z;) which contains
pr (in the first case) or  (in the second). Let Sy := TpL Vy, and let qx = (z, u(xy, wy))
be such that g, € Vj. Finally set Z := (Sk)g.,r.. Observe that spt(Z) is contained in
a neighborhood of height C’r,‘z_l of myp and we therefore conclude that Zj converges to a
current Z which is an integer multiple of [B;(0)]. On the other hand, since

(P3Sk) L Cy, 2(wr) = QG Cyy ja(x1) NV,

for k large enough, we conclude that Z = @ [B1(0)]. Now, either spt(Zx) N ({0} x R™)
contains a point g of multiplicity 41 or it is empty. By the constancy theorem (pr,)sZx =
Qr [B1(0)] for some integer Q) and, since (pr,)sZr — (Px,)1Z, for k large enough we would
have (P, )32k = Q [B1(0)]. This is then incompatible with the emptyness of spt(Z;) N
({0} x R™) = () because @ > 1. As for the other alternative, we must have, by the almost
minimality of Zj (see [12])

lim sup || Zx [[(B1y2- g (@) < lim [|Z,[|(B1/2(0)) = Fews

k—o0 k—o0
Since @ — 0, the almost monotonicity formula (see [12]) would imply ©(gx, Zx) < Q +
o(1). O

Proof of Lemma 2.5. Since QQ [mo] is tangent to T at 0, we obviously must have Ty D
7o and thus TpX = R*™ x {0} can be achieved suitably rotating the coordinates. To
achieve the other two conclusions we scale ¥ and intersect it with C4(0,75%) to reach that
¥ N Cy(0,TpY) is the graph of some ¥ with very small C®° norm. We can then extend
U outside By(0,TpX) without increasing the C*° norm by more than a factor: this gives
(i) and (ii) and also shows that ¢ can be assumed smaller than £, in case (a) and (c) of
Definition 0.1. For the details we refer the reader to the proof of [8, Lemma 1.5]. The rest
of the Lemma is a simple scaling argument. U

5.2. Proof of Proposition 3.5. In this section we prove several estimates on the excess,
height and tilting of planes 7y in the cubes L € # U.%. Proposition 3.5 will then be a
simple corollary of these more general statements.
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Proposition 5.1 (Tilting of optimal planes). Let T be as in Assumptions 1.7 and 2.2 and
assume the various parameters satisfy Assumption 3.1. If Ce,Cy > C(My, Ny) and €5 is
sufficiently small then:

(i) The conclusions (i), (ii) and (iii) of Proposition 3.5 hold.

(ii) By € By C Byry/10(pr) and Ty =T L Vy for all H/ L € W U.% with H C L;
Moreover, if H/L € # U and either H C L or HNL # () and @ <U(H) <{(L), then
the following holds, for C' = C(My, Ny, C,) and C = C (Mg, Ny, Ce, Cy,):

(iii) d(L)/2 < d(H) < 2d( ) (and (L) = d(H) when H C L);

(iv) |mg — 7| < Cmo d(L)yomtrone(L)t=o,

(v) | = mo| < Cmygd(H)*;

(vi) B(Tw, Csor, (P, 70)) < Cmy*d(H)™2(H) and spt(Tu) N Caoryy (i, M0) C Bu;
(vil) h(Ty, Cser, (pr, 7)) < C 1/4d(L)”°/2_52€(L)1+52 and spt(Tr) N Cser, (pr, 7)) C

B;.
In particular, the estimates (3.12) and (3.13) hold.

The proof of the proposition will use repeatedly a few elementary observations concerning
the excess and the height, which we collect in the following lemma.

Lemma 5.2. If T is as in Proposition 5.1 there is a geometric constant Cy with the
following properties. Assume the points p,q belong to spt(T) N C s, B.(p) C B,(q) C Cy
and v > p/4. Then, if e3 < Cyt

(1 ( ( )) S CU minT E(T7 BP(Q)7 T) + C()mop2,'

)
(i) E(T,B,(p)) < CoE(T,B,(q)) + Comqor?;
(i) |x — [ < C[B(T, B, (p), ) + B(T, By(q).7)];
(iv) h(T, F,7) < h(T,F,7) + Co|m — 7|diam(spt(T) N F) for any set F';
(v) h(T,C,.(0,7)) < Com, it 4 Co|m — mo|r whenever |7 — mo| < Cyt and r < 7/4.

Proof. Recall that, by Lemma A.1 and Allard’s monotonicity formula (which can be applied
by [12, Proposition 1.2]), we have

3w
7202 < ||T|(B,(p)) < Cop”. (5.1)

(i) is trivial in (b) of Definition 0.1, since E(7,B,(¢)) = min, E(T,B,(¢q), 7). In the cases
(a) and (c) recall that
E(T,B,(q)) = min E(T,B,(q), 7).

TCTyE

Let now 7 be such that E(7,B,(¢), ) = min, E(T,B,(¢),7) =: E. Then, by the Cheby-
shev inequality there is a point ¢’ € B,(¢) Nspt(T’) such that

1T(¢) — 7> < @t poop
|T][(By(q))

Observe that T(¢' ) is the orienting 2-vector of some space £ C Ty ¥ and that
TyS = T, < CollAsaf? < Comop®.
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Thus there is a 2-plane 7 C 7,3 such that |7 — 7|* < CoE + Comyp?®. Hence
E(T,B,(p)) < E(T,B,(q),7) < Co(E + Comop®)||T||(B,(q))/(wap®) < CoF + Comop® .

Keeping the notation of the argument above, in the case (b) of Definition 0.1 statement
(ii) follows from the simple observation

E(T,B,(p)) < E(T,B,(p),) < 4°E(T, B,(q),7) = 16E(T, B,(q)).

In the cases (a) and (c) of Definition 0.1 we combine the same idea with (i).
(iii) is a simple consequence of

2 2 _'_7—1_»2 7 )2
= < /B (=7 =TT
" Co(B(T.B,(q), m) + B(T, B,(g).7)) . (5.2)

and E(T",B,(q), 7) < 16E(T,B,(p), 7). Next, for p,q € spt(T’) N F' we compute

px(p = a)l < |p7 (0 = @) + |(pr = Pr)(p — )| < W(T, F.7) + Clw — 7llp — gl
Taking the supremum over p,q € F Nspt(T') we reach (iv).

We finally argue for (v). Fix r < 7/8, m with |7 — 7| < Cy' and the cylinder C :=
C.(0,7). Observe that, by Assumption 1.7, for every p = (z,y) € spt(T) N (R? x R") we
have |y| < 5;/2|:v|1+°‘ < el’|z|"t 0. Tt follows easily that, for a sufficiently small 5 and a
sufficiently large Cj, this implies that spt(7) N C C Cg,/7(0, 7). Hence, h(T,C,m) <
h(T, Cg,7(0,m)) < C’Omé/zrlﬂo. As a consequence diam(7' N C) < Cyr and (v) follows
from (iv). O

Proof of Proposition 5.1. In this proof we will use the following convention: geometric
constants will be denoted by Cj or ¢y, constants depending upon My, Ny, C, will be denoted
by C or ¢ and constants depending upon M, Ny, C. and C} will be denoted by C or c.
Next observe that the second inclusion in (ii) is in fact correct for any cube L € €7 with
Jj > Ny, provided Ny is chosen sufficiently large compared to My. Similarly (iii) holds for
Ny larger than a geometric constant.

Proof of (i), (ii) and (iii) in Proposition 3.5. The conclusion (i) is obvious since
indeed it also holds for every L € ¢™°. (iii) is a simple consequence of the fact that, because
of (NN) in the refining procedure, given any pair H, L € % with nonempty intersection,
T0(H) < ¢(L) < 20(H). Consider now any L € 47 with Ny < j < Ny + 6. Observe first
that C(Ny)~'d(L) < ¢(L) < d(L). We thus can use (1.9) to estimate

E(T., By, 7(p)) < C(My, No)mod(L)*0—2+21p(1)2=201
By Lemma 5.2(i) we conclude
E(T;,Br) < C(My, No)mod(L)>°=212000(L)?>72 4 O(My)ml(L)? .

Hence, for C, sufficiently large, condition (EX) of Definition 3.4 cannot be a reason to stop
the refinining procedure of any cube L € 47 when Ny < j < Ny + 6.
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Recall next the chosen plane 7, such that E(7;,, By, n;) = E(T1,B.) and h(7,,B.) =
h(Ty, B, 7). By Lemma 5.2(iii) we easily conclude that

71, — m(p)] < C(My, No)CLlmy”d(L)™ .

On the other hand |7(p) — 7| < Co[Du] d(L)* < C’Omé/Qd(L)”’O and thus

0.0,Boya(r)
Imp — mo| < C(Mo, No) CPmy*d(L)° VL e ™. (5.3)
Setting p := (2v/2 + 1/10)d(L) we have
B, C Cawy/10(pr, m) C C,(0, ) .
Note that p < (2v/2 + 75)3 < 2 and we can apply Lemma 5.2(v) to conclude

h(T, By, m) < h(T, C,(0,m), m) < Comy d(L) . (5.4)

In particular diamspt(7') N Br) < d(L), provided e5 is small enough. We can therefore
apply Lemma 5.2(iv) and use (5.3) and (5.4) to infer

h(T;, By) < Omy*d(L)' ™ < Cmy*d(L) P 0(L) "+

Thus, choosing C}, large depending upon My, Ny and C., we conclude that condition (HT)
in Definition 3.4 cannot be a reason to stop the refining procedure of a cube L € ¢7 when
No <j < No+6.

This means that: for k = Ny and j = 0 all cubes of €0 are assigned to .# and refined
at the subsequent step (the condition (NN) is empty here). But then the same happens
for k = Ny and j = 1, since # 0 is empty. Proceeding inductively we conclude this for
every j and thus obtain that # 0 is empty. We now repeat the argument with wNo+lJ
to conclude that #No*! is also empty. Proceeding for other 5 steps we conclude then that
(ii) holds.

Proof of (ii)-(iv)-(v)-(vi)-(vii) when H C L. The proof is by induction over i, where
H € ¢*. We thus prove first the claims when ¢ = Ny. Under this assumption H = L and
hence (iv) is trivial. The second inclusion in (ii) has already been proved above and the
remaining assertions of (ii) are obvious because H = L. (v) has been shown above, cf. (5.3).
The first conclusion in (vi) follows easily, since h(7Ty, Csgpy (Pr, m0)) < Cgm(l)/ *d(H)*0 by
Lemma 5.2(v) and ¢(H) > d(H)/C(Ny). The inclusion in (vi) follows then trivially from
this bound when my < &9 is small enough, because py € spt(Ty). As for (vii), recall
that L = H in our case. First observe that |mg — mo| < CoCed(L)", simply by (5.3)
(assuming C, > C(My, Ny)). Thus we can apply Lemma 5.2(iv)&(v): since d(L) and
¢(L) are comparable up to a constant C'(Ny), we conclude that h(Ty, Cse,, (pr, 7r)) <
Cm(l)/ "d(L)*~=B2g(L)*+P2. As we already argued for (vi), the inclusion is a consequence of
the bound.

We now pass to the inductive step. Thus fix some H,;,; € .1 U # ! and consider a
chain H;1; C H; C ... C Hy, with H; € " for | <i. We wish to prove all the conclusions
(ii)-(iv)-(v)-(vi)-(vii) when H = H,,y and L = H; for some j < i+ 1, recalling that, by
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inductive assumption, all the statements hold when H = Hy and L = H; for | < k < 1.
Note also that d(Hy) = d(H;y1) for all k.

With regard to (ii), it is enough to prove that By, , C By, and Vg,,, C Vp,. Note
that |z, — 2m,,,| < 2v2((H;) (recall the notation py = (zg,ym)). In particular no-
tice that C,,  (pm..i,7m0) C Cypp (Pr, ). Recall the open sets Vi, and Vi, , de-
fined in Section 3.2. Since H; and H;i; are nearby cubes in B, it is clear that py, , =
(2H,4 1 w(2H,, 1, WH,,, ) and py, = (2m,, w(2H,, wy,)) must be in the same connected com-
ponent of V,,, N C,, (pm,, 7). It then follows that Vi,,, C Vp,. In particular py,,, €
spt(Ty,) and (vi) applied to H = H; implies then that |py,,, —pu,| < 2(\/§+C’mé/4)€(Hi+1).
In particular, assuming that e, < ¢ for some positive constant ¢ = ¢(My, Ny, Ce, Cy,), we
conclude |py,,, — pm| < 3V2((H;) and Bp,,, C By, follows from the fact that M, is
assumed larger than a suitable geometric constant.

We now come to (iv). Notice next that H;,; is a son of H; and thus H; cannot belong
to #: it must therefore belong to .. Hence, from the inclusion By,,, C By, from the

identity Th,,, = Th,LBp,,, and from Lemma 5.2(ii) we easily infer that
E(Ty,,.,Bu,.,) < CoE(Th,, By,) + Comol(Hi1)* < Cmgd(Hi1)?0 220 0(Hip)* 0
We thus have, from Lemma 5.2(iii),
’ﬂ-H'L _ 7THH_1| < Cﬂméﬁd(HHl)7071+61£(Hi+1>1761 )

On the other hand, since d(H;) = d(H,) for every [ > j, by the same argument with [ in
place of © we also get

Tr, — T, | < Cmyg d(Hipy) 0™ 0 0(Hyy )00

Summing the latter estimates for [ between ¢ and j, we easily reach (iv) for H = H;;; and
As for (v), note that it holds for Hy, and moreover we just proved (iv) for H = H,;
and L = Hy,, and thus, by triangular inequality, we get (v) (with a constant independent
of the index 1!).
As for (vi), note first that Cseryy, | (P41, T0) C Cseryy, (P, T0) C B, (the latter because
(vi) holds for H = H; by inductive hypothesis). Thus we can apply Lemma 5.2(iv) to
conclude

h(THi+17 (3367"11%Jrl (pHi+1 ) 7T0)) < Ch(THM BHz) + CU|7TH1' - 7T0| dlam(spt(THl) N BHz) .

On the other hand we already noticed that H; € .. Taking into account (v) we then
conclude the inequality of (vi) for H = H;,; and, as already noticed in other cases, the
inclusion follows from the estimate and pg,,, € Bg,,, Nspt(Tq,,,).

We finally come to (vii). Fix H = H;,. First we prove it for L = Hy,. Observe
that by the bound on |7y — 7|, we can bound h(THNO, Cg6THNO (pHNO,WH)) with the same

i1

argument used for h(Tuy , Casryy, (PHy,> THy,))- As already argued several times, we
0

then conclude the inclusion 0367-HN (pHNO,WH) C Bp,,- We now argue inductively on j:
0

assuming that we know (vii) for H and L = H;, we now wish to conclude it for L = Hj;.
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Notice that Cgﬁmj+1 (PH; 1> TH) C C367~H]. (pH;, 7r). Then the inductive assumption gives
C36rHj+1 (PH,;.1, ) C By, and recalling that Ty,,, = Ty, By,,, and that H; € ., we
can use Lemma 5.2(iv) to bound

h(THj_H, C367’Hj+1 (pH].+1,7TH>> < h(TH] > BH]) + CO|7TH - 7THj |diam(spt(THj) N BHJ) .

However, having already shown (iv), this easily shows the bound in (vii). The inclusion
then follows with the usual argument used above.

Proof of (3.12) and (3.13). Fix H € # and let L be its father. Having shown (ii), we
know that By € Br. We then use d(L) = d(H), (L) < 2¢(H) to estimate

E(TL7 BL) S Cem0d<L)27072+261€(L)2,261
and Lemma 5.2(i) to conclude (3.12) as follows

E(TH7 BH) SC@E(TH, BH, 7TL) + CmoT% S CE(TL, BL) —+ émoé(L)2
Sémod(L)?yO—Q—i-Z&l K(L)2—261

Next, we use Lemma 5.2, (iv) and
h(T,,BL) < Chmy d(L) "% 4(L)+5
to conclude (3.13).

Proof of (iv) and (vii) when H and L are neighbors. Without loss of generality
assume ((L) > ((H). If L ¢ €™, then let J be the father of L. Observe that |zg —
250, |z — 27| < 2v/2¢(J). On the other hand, observe that py,p; are both elements of
Cser, (ps, mo) (provided My is larger than a geometric constant). Thus, by (vi) (applied
to J), for e, sufficiently small we easily conclude |py — psl, |pr — ps| < 3v/2¢6(J). Since
(L), ((H) < {(J)/2, again assuming that M, is larger than a geometric constant we have
the inclusion By UB; C B. It is also easy to see that Vy UV C V ;. Now, we can use
(3.10), (3.12), (iii) and Lemma 5.2(ii) to achieve

_ 1/ B _
TH — ; — ~ i .
| 7], | — 7wy < Cmy*d(J)e= 1o ()=

Next we use again (iii), the triangle inequality and ¢(H) < ¢(L) < ¢(J) < 4¢(H) to show
(iv). The case L € €™ can be handled similarly, just using a ball concentric to By, and
slightly larger so to include By: the excess and the height in this ball is then estimated
with the same argument used for estimating them in By.

As for (vii) we fix a chain of ancestors L = L;, L;_1,...,L;,...... , Ln, and, as in the
proof of (vii) for the case H C L, we argue inductively over i. The argument is precisely
the same and can be applied because, using (iv) for H and L and for L; and L;,;, we can
sum the corresponding estimate to show that

|’/TH — 7TLz‘| S Cmé/zd(Li)7°_1+51K(Li)l_‘sl ) O
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6. mT-APPROXIMATIONS AND ELLIPTIC REGULARIZATIONS

In this section we introduce the m-approximations and define the corresponding elliptic
regularizations of their averages, which in turn will be the building blocks of the center
manifold. We begin with the following:

Proposition 6.1. Assume the hypotheses and the conclusions of Proposition 5.1 apply
and let €5 be sufficiently small. If H/L € # U.¥% and either H C L or HNL # () and
ML < ¢(H) < (L), then

(pWH)ﬁ<TLLC32TL (pL7 7TH)) = Q [[B32rL (p7rH (pL)7 71—H)]] s
0Ty Csyp (pr,7H) = 0.

Moreover
E(TL, CgQTL <pL7 7TH)) S C’mod(L)QWO*%%lK(L)Q*%l (63)
and hence [11, Theorem 1.5] applies to the current Ti L Csap, (pr, 7H) in Csar, (Pr, TH).

Proof. (6.2) is rather straightforward: by the height estimate in Proposition 5.1 we conclude
easily spt(77) N Csar, (pr, 7)) C Cserp (PL, m0). On the other hand by definition of T, =
TV and by Assumption 1.7, we have spt(017) C 0Ceur, (P, m0), implying spt(977) N
Cser, (pr, m0) = 0 and thus also spt(97TL) N Csay, (pr, 7)) = 0.

In order to prove (6.1) we argue as follows. First consider the chain of ancestors
of Li=L = L; C Ljy C ... C Ly, = J, where J € ™. We first show that
(Pro)t(LyL Cser, (ps, ™)) = Q [Bser, (2, m)]. This is done in the following way: con-
sider that Gr(u) N Ceay, (ps, o) is the graph of a C function v with [|v]jc1e < Comy”.
Define the function v,(z) := tv(z) and let p; be the orthogonal projection onto Gr(v;),
which is well-defined on V; provided my is sufficiently small (the smallness being inde-
pendent of J). The currents S; := (py)s(TsL Cear, (ps, m0)) are easily seen to coincide with
Q1G,L Csg,, (27, m) for some integers @); in the cylinder Csg,, (ps, m) by the constancy
theorem. On the other hand such currents vary continuously and thus the integer ); must
be constant. This implies that g = @)1 = Q). On the other hand py = p,, and we have
thus proved our claim.

Observe that (pr,)s(TLL Cser, (pL, m0)) = Q [Bser, (21, m0)]| because Ty L Casg,, (pr, m0) =
Ty Cser, (pr, ™). Choose next a continuous path of planes m; which connects 7y and 7g
and satisfies the bound |m; — mo| < Cy|my — mo| for some geometric constant Cy. We then
look at Z; = (px,)s(11L Cser, (pr, ™)) and conclude, similarly to the previous paragraph,
that ((pﬂH)ﬁ(TLLCSGTL (pLa'/TO)>)LC32rL (pLﬂTH) =Q [[B3er(P7rH (pL)a'/TH>]]- On the other
hand since (7L Csgr, (pr,m0)))Csor, (P, ) = TrL Csor, (pr, 7g), this concludes the
proof of (6.1).

Now, by Proposition 5.1(iv)&(vii)

E(TL, CgQrL (pL, 7TH)) S CE(TL, BL) + é’ﬂL - 7T'H|2 S Cymod(L)QW072+26lK(L)Ziwl S Cmo
and in order to apply [11, Theorem 1.5] we just need to choose e4 sufficiently small. O

We next generalize slightly the terminology of Section 3.2.
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Definition 6.2. Let H and L be as in Proposition 6.1. After applying [11, Theorem 1.5]
to Tp L Csap, (pr, m) in the cylinder Css,, (pr, 7)) we denote by fry the corresponding
mg-approximation. However, rather then defining fg on the disk Bg,, (pr,7m), by ap-
plying a translation we assume that the domain of fgy is the disk Bs,, (prr, 7r) where
PHL = P+ Pry (pr —pu). Note in particular that C,(pyr, 7y) equals C,.(pr, ), whereas
Bgy, (prr, ) C pu + 7y and py € Bg,, (pur, mH).

Observe that frr = fr.

6.1. First variations. The next proposition is the core in the construction of the center
manifold and it is the main reason behind the C®7% estimate for the glued interpolation.
It is also the place where our proof differs most from that of [8].

Definition 6.3. Let [ and L be as in Proposition 6.1. In the cases (a) and (c) of Definition
0.1 we denote by g the orthogonal complement in 7, > of 7y and we denote by fr, the

map P, © fHL-

In what follows we will consider elliptic systems of the following form. Given a vector
valued map v : pyg + mg D 2 — sy and after introducing an orthonormal system of

coordinates z!, 22 on my and y', ..., y" on sy, the system is given by the i equations
Av® + (L) 050" + (Lo)iv" = (Ly)f (v — an)' + (La)* | (6.4)
=:é;2(v) —h

where we follow Einstein’s summation convention and the tensors L; have constant coeffi-
cients. After introducing the operator .Z(v) = Av+ & (v) we summarize the corresponding
elliptic system (6.4) as

L) =F. (6.5)
We then have a corresponding weak formulation for W12 solutions of (6.5), namely v is a
weak solution in a domain D if the integral

(0,¢) = /(Dv D4 (F — EW)-0) (6.6)
vanishes for smooth test functions ¢ with compact support in D.

Proposition 6.4. Let H and L be as in Proposition 6.1 (including the possibility that
H=1L) and let fyy, fur and s be as in Definition 6.2 and Definition 6.3. Then, there
exist tensors with constant coefficients Ly, ..., Ly and a constant C' = C (Mg, Ny, Ce, Cy),
with the following properties:
(i) The tensors depend upon H and ¥ (in the cases (a) and (c) of Definition 0.1) or
w (in case (b) of Definition 0.1) and |Ly| + |Lo| + |Ls| 4+ |La| < Cmy”.
(i) If Iy, Ly and Fy are defined through (6.4), (6.5) and (6.6), then

Fu(mo fur, ) < Cmygd(L)21+o0=2=570% Dl (6.7)

for all ¢ € CX°(Bs,, (puL, TH), %H).
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Proof. Set for simplicity m = 7y, s := sy v =rr, p = pur, f = fur, B = Bs,(p,7) and
T="1T;.

Cases (a) and (b) of Definition 0.1. The proof is very similar to the one of [8, Proposi-
tion 5.2]. Nevertheless, for the sake of completeness, we give here all the details. We fix
a system of coordinates (z,y,w) € ™ X s x (T,,X)* so that py = (0,0,0). We drop the
subscript py for the map ¥,,,. Recall that

U(0,0)=0, D¥(0,0)=0 and [|D¥]c2e < Cmy>.

Let ¢ € Cu(Bg,(p,7), ) be a test function. We consider the vector field y : ¥ — R
given by x(¢q) = (0,{(x), Dy¥(z,y) - ((x)) for every ¢ = (z,y, ¥(x,y)) € X. Note that x is
tangent to 3. Therefore we infer that 67'(y) = 0 and

9GS001 < 196,00 ~ 0TI <€ [ DNl dGy =T (69
8r\P,T
Observe also that |x| < C|¢| and |Dx| < C|(|+C|D¢| < C|D(|. Set E := E(T, Csa-(p, 7r))
By Proposition 5.1, Css,.(p,7) C By . Thus, by (6.3) and 5.1(vii) we have
E <Cmod(H)? 20 (L 51 W(T, Cap(p,m) < Conff'd(L)™>0(1)1#% . (6.9)
Recall that, by [11, Theorem 1.5] we have

IDf| < CEP + Cmyr < Cmf d(L)0=2+20080 o (2-201) (6.10)
If| < Ch(T, Csar(p, 7)) + (B + rmy*)r < Cmy/* d(L) P P2r 152, (6.11)
/ [DfIP < CrPE < Cmg (L) p4m20, (6.12)
and ’
B\ K| < Cm(l)—i-ﬁo d(L)(“‘30)(270‘2+251)r2+(1+50)(2_251), (6.13)

2 < Cm(l)—i—ﬁo d(L)(1+50)(Z’Yo—2+251)r2+(1+50)(2—251)

Y

(6.14)

7o) = 1B = 5 |

where K C B is the set
B\ K = p, ((spt(T)Aspt(Gy)) N Cs,, (pr, ™)) - (6.15)
Writing f = >, [f;] and f =Y, [fi], since Gr(f) C , we have f = >, [(fi, ¥(z, f;))]-

From [6, Theorem 4.1] we can infer that

0G(x / Z V(z, fl €+£Dyyqj(xa fi)-Df:) - €+py\lf(x,ﬁ) . Dxé“)
(B) ©)
:<Dx\11(x,ﬁ')+Dy‘1’($»ﬁ)'Dﬁ'> +/ > D¢:Dfi+Err,  (6.16)
NN J i 2
(D) (B) N .

-~

(F)
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where the error term Err in (6.16) satisfies the inequality

En| < C / DDA < 1DCI | DA / DfJ?
S C||D€||Omé+50 d(L)(1—‘,—60)(270—2—}—261)T4—2(51+ﬁg(2—2(51) . (617)

The integral (F) in (6.16) is Q [, D¢ : D(n o f). We therefore expand the product in the
other integral and estimate all terms separately, using the Taylor expansion

D¥(z,y) = D,D¥(0,0) - + D,DW(0,0) - y + O(my (2] + |y|*))
so that

[DU(x, fi)| < Cmyr
D\I/(l‘, ﬁ) - _Da;_D\]:I(O7 O) - _|_ O(m(l)/2+1/4d([/, 0)70/2—62r1+52)7
D*W(x, fi)| < Oy and D*W(x, fi) = D*¥(0,0) + O(my’r).

We compute as follows:
[ X0 = [ S 0n0.0-0: D fy+0(mor [ 1)

— /Q(ny\IJ(0,0) () : (D ¥(0,0) - ) (6.18)
+O<m0 d(L,0)™/ 7’1%2/](]).

The integral in (6.18) has the form [ L,px - (. Next, we estimate
[ (@ ®+m): )+ (5): ()
_ O<m(1)+50d(L>50(2’70—2+251)T1+50(2—251) / |C’> (6.19)

and

/Z(C«) . (E) _ O<m(1)+ﬁod(L)BO(270—2+251)r2+60(2—261) / |DC|> (6.20)

%
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Finally we compute
[ 0= [ S (090,00 .0 D)
40 (my (L)oo / D)
=Q [(D.¥(0.0)- ) D.¢): (D ¥(0.0) )
+0(mqa(Lyo2 / D).
Integrating by parts in the last integral we reach

/Z(C) (D) = /LCDQJ -+ O(mo d(L,())‘Yo/2*52r2+52 / ’DC‘) ) (6.21)

Set next Lz := Lp+ Lep. Clearly Ly is a quadratic function of D?¥(0,0), i.e. a quadratic
function of the tensor Ay at the point py. From (6.8), (6.17), (6.18) — (6.21), we infer
(6.7) and (i). Indeed we have to compare the following three types of errors

£ = m(1)+60d(L)(1+Bo)(270—2+251)T4—251+50(2—251) (6.22)
& = mé—i—ﬁod(L)BO(270—24—261)7,4-&-,30(2—251) (6.23)
Ey 1= mgd(L) "2 Pt (6.24)

with myd(L)20+50010=2=Fp4+082 Tt i5 easy to see that if

=201 + Bo(2 —201) — B2 >0 (6.25)
then
£ <& < mé+ﬁod(L)(1+Bo)(270—2+261)—251+Bo(2—251)—62r4+62
< méwo(1(L)2(1+60)7°_2_527“‘”52 (6.26)
Therefore
1, &, E3 < mygd(L)21HF00=2=Fy 4482 (6.27)

To conclude the proof we observe that, by the bound on FE,

[ IDXdIGs 71 < CIDAMTLC — Gy) < Gl DG or? B (5 -+ mor?) < 8.
Csr(p,m

Case (c) of Definition 0.1. Fix coordinates (z,y) € R*xR" such that py = (0,0). Consider
the vector field x(z,y) := (0,((z)) for some ( as in the statement. Recalling [12] we infer

0G¢(x) = 0T (x) + Errg = T'(dw Jx) + Errg = G¢(dw Jx) + Errg + Erry
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with
|Errg + Erry| = [6T(x) — 0G4 (x)| + |T(dw 1x) — G¢(dw 1x)|
< C (1Dl + lldw Ixllo) 11T = G4 (Cse (p, 7))
< C(IID¢llo + lIllo) £ (£ +1* mg)
< C|IDC [l it d(H) 024200 (150) . 2+(2=25) (1+60), (6.28)

From [6, Theorem 4.1]

2Gy(x Q/D no f): D¢ + Erry
with
Eina| <C [ 1DC]IDS < CDCJoB" 2
< C||DC||o mi TP d(H)Zr0=2+200)(450) (. 24(2-261)(1+50)

Next we proceed to expand Gy(dw Jx). To this aim we write

n

dw(z,y) = Z ai(z,y) dy' A dot A do? + Z Z b j (2, y) dy' A dy* A da?

=1 71=1,2 I<k
+ Z awj(z,y) dy' A dy® A dy’ (6.29)
I<k<j

and get

dw_1x = Zalfldaj A dx? —1—221)1“(0@ A da? + Z ar; CtdyF Ady’ . (6.30)

=1,2 I<k l<k<]

- \ J/ /

~~

w(l) w(2) w(3)

We consider separately G ;(w®), G;(w®?), G;(w®). We start with the latter
G(w®) < Clldwllo HCHO/ [Df* < Cmg d(H)* 0720 2720 Do, (6.31)
B

Next

ZZ/C’ (o ) 22— ol i) ) o

<k 1=1
O k (@] k
—Q;;/C <b k(0 O)a(an)—blk,l(O,O)a(%Tf)> dz + Errs,

= /LlD(nof) - ¢ + Erry (6.32)
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with
[Errs| < Cllcllo || D(dw)llo / (r|Df| + 1 |DS)) do
B

< C||D¢llo mg (r + osc(f) + h(T, Cg, (0, W))) 3 FPo
< CIDC|lo m(l)-i-ﬁo At(2-261) B0 d(H)(270_2+251)50 (6.33)
and L; : R™?2 — R" given by
LA ¢ = QZ (blkg((), 0) Ak1 — b1 (0,0) Ak2) VA= (Ak])j 1,2 e R™,

=
Finally

Q
(1) ZZ () ay(z, fi(x)) do
[ =1

=@ /Cl (a;(0,0) + D,a;(0,0) -z + D al(O 0)-(nof))dr+ Erry,

I
\

(L2 (77 @) f) + L3 T+ L4) : C + EI‘I‘4 (634)

where Ly : R* — R”, Ly : R?> =+ R" L, € R" are given by

da

Lgv-el:— a;(00) v VoeR, Vi=1,...,n (6.35)
8al :
ng-el:— 8J<OO) w YweR" Vi=1,...,n (6.36)
L4-el =aq(0,0) VIi=1,...,n (6.37)
and arguing as above

|Erra| < Cl¢]lo [D(dw)]ao/ (r'Fe 4+ | f[*%0) da < C||D¢||o mro r* 0. (6.38)

B

In order to deduce (6.7) we need to compare
|Exro + Erry + Erro| < [|DC[lo€1 < [ DE|Jomod (L) 0025245
& = Omé%O d(H)(QVo 2+261)fo . 4+(2-261) 80
Ea5 = C'mi d(H)>02H201 5-20
&y = Cmygyrtte

with mod(L)2(0+60)10=2=B2p4482 = Ag before, if (6.25) holds, then & < &. Moreover, since
Ey < r*P2 to conclude (6.7) it is enough to observe that if

1> Bo(2 — 26y) (6.39)
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then 0 > 2v9 — 2425 > (290 —2+261)(1+ Fp) and 5 —20; > 2+ (2 —261)(1+ Fp), so that

d(H)Q’yo—Q—f—Q(Sl ,,,,5—261 < d(H)(270_2+261)(1+/30) T2+(2—251)(1+ﬁ0)
that is 52,5&4 S 51. O

6.2. Tilted interpolating functions, L' and L>* estimates. In this subsection we
generalize the definition of the tilted interpolating functions h;. More precisely we consider

Definition 6.5. Let H and L be as in Proposition 6.1, assume that the conclusions of
Proposition 6.4 applies and let £y and .# 5 be the corresponding operator and map as given
by Proposition 6.4 in combination with (6.4), (6.5) and (6.6). Let fg be as in Definition
6.2, s and frz, be as in Definition 6.3 and fix coordinates (z,y,2) € my X sz x T, 5+
as in the proof of Proposition 6.4. We then let hy be the solution of

gHBHL = yH

_ _ (6.40)
hHL‘aBsrL (prLTH) mo fur.

In case (b) of Definition 0.1 we then define hpyy = hyr, whereas in the other cases we
deﬁne hHL(l’) = (hHL(JI), \IIPH(.%‘, hHL(fI}»)

In order to show that the maps hy, are well defined, we need to show that there is a
solution of the system (6.40).

Lemma 6.6. Under the assumptions of Definition 6.5, if €5 is sufficiently small, then the
elliptic system
Lyv=F
(6.41)
U|8BSTL(pHLa7rH) =9
has a unique solution for every F € W2 and every g € WY2(Bs,, (pur,7r)). Observe
moreover that || Dv|| > < Corp(I|F |2 +my” llgllz2) + Col| DgllL> whenever F e L2.

Proof. As for the first assertion, it suffices to show the Lemma for ¢ = 0, since we can define
w = v — g and solve Ly (w) = F + Lx(g) . Setting B = Bs,, (puL, 7n), the existence and
uniqueness for the latter case reduces, by Lax-Milgram, to the coercivity of the suitable
quadatic form 2(v,v) on Wy*(B). The latter follows easily from

Q(w,w) = /(|Dw|2 —LiDw-w—Lyw-w)

Ly |

L |
= ||Dw||2L2(B) Ty ||Dw||2L2(B) “\ 9 + |Lo| HWH%%B)-

Since rp, < 1, by the Poincaré inequality [Jw||7, < Co|[Dw||7, for every w € Wy *(B). The

coercivity follows then from |Lq| + |Ly| < C"m(l)/ * < (ey, where the constant C' depends
only upon My, Ny, C, and C},. In particular we can assume the coercivity factor to be %
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On the other hand, multiplying the equation by w and integrating by parts we easily
see (using the coercwlty) that

/ Dul < / (IDw||Dg| + |Fljwl) + Cmi: / (Igllew| + [wl|Dgl)

2 7"% 2 27 2 2 m02
<; [ 1Dl + % [1F2 4 20 [P [(Dgl + mrtlgP).
Y Ty

where v is any fixed positive number and C' does not depend upon it.
We choose vy smaller than a geometric constant, so that we can use the Poincaré in-
equality to absorb the terms [ |w|? on the right hand side. We then conclude the desired

estimate ||Dw|z2 < C(|Dgllzz + my rillgllzz + rol|Fillz2). Since v = w + g, we then
conclude || Dv||z2 < C(|Dgllr2 + my rollglle + Croll Fillze) - O
Observe that hgg = hy. We next record three fundamental estimates, which regard,

respectively, the L> norms of derivatives of solutions of £y (v) = F, the L>* norm of
hir —no fur, and the L' norm of hyp —mo fur.

Proposition 6.7. Let H and L be as in Proposition 6.4 and assume the conclusions in
there apply. Then the followmg estimates hold for a constant C' = C(mg, Ny, Ce, Cy,) for

B = By, (pHL;ﬂ'H) and B := B, (pHLﬂTH)
|her —m o furllp g < Crmod(L)* 002752 ()5 + (6.42)
1haz — 10 furll oo < Cmod(L) (+Bo)0-2-F2 (13482 4 Oy 0(L)? . (6.43)

Moreover, if Ly is the operator of Proposition 6.4, r a positive number no larger than 1
and v a solution of Ly(v) = F in Bs,(q,7x), then

Co
lollz=Bor @y < S5 1001 Bor @) + Cr|| F|| oo (85, (q.m)) (6.44)
and, forl € N
l Co 2 : j—1 j
1D 0| 86 (0mm)) < g lvller s (qmmy + CF > PN DIF|| e qrayy, (6.45)

5=0
where the latter constants depend also upon .

Proof. Proof of (6.44). The estimate will be proved for a linear constant coefficient
operator of the form . = A+ L; - D + Ly when L; and Ly are sufficiently small. We can
then assume 75 = R? and ¢ = 0. Besides, if we define u(x) := v(rx) we seee that u just
satisfies Au + rL; - Du + 1%Ly - v = 0 and thus, without loss of generality, we can assume
r = 1. We thus set B = Bg(0) C R%

We recall the following interpolation estimate on the ball of radius 1, see [13, Theorem
1]. For 0 < j < m and l < a <1 we have, for a constant Cy = Cy(m, 7, q,7),

1D ull o5,y < ClID™ullf

Ls(B1) HUHLQ(Bl + C |ull L)) (6.46)
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where
%I%—l—a(%—%)—l—(l—a)%.

We apply the estimate (6.46) for j =1, m =2, ¢ =1and p = s = 2, a = 2/3 and use
Young’s inequality and a simple scaling argument to achieve the inequality

| Dull 28, )y < CopllD*ullr2(8, () + Cop™ [|ull L8, @) - (6.47)
Moreover, by Sobolev embedding;:

[l 228, @) < Copll Dullr2(s, () + Cop™ ullpr(s, @) - (6.48)

Next, recall the standard L? esimates for second order derivatives of solutions of the Laplace
equations: if By,(x) C B, then

| D?ull2(5, ) < Coll Aullr2(sy, ) + Cop™ [[ull L (Bay (e - (6.49)

Now, recall that Au = —L; - Du — Ly - u + F. Using the fact that |L;| 4 |Ly| < C’omé/Q,
we can combine all the inequalities above to conclude

P6||D2UH%2(B,,(I)) < COP6m0||D2U||2L2(sz(x)) + COHUH%l(BS) + COHFH%OO(BS) : (6.50)
Define next
S = sup{p’[|D*ul| 25, (a)) * Bopw) C Bs} (6.51)
and let p and & be such that By,(§) C Bs and

93||D2u”L2(BQ(§)) (6.52)

S
> —.
-2
We can cover B, () with Ny balls Bys(z;) with z; € B,
constant. We then can apply (6.50) to conclude that

(€), where Nj is only a geometric

S o _ _
= < CoNomy"S + CoNol[ull1(5,) + CoNoll | o<, -

Therefore, when m(l)/ ? is smaller than a geometric constant we conclude S < Cl|u| L1(Bg) T

Col|F'|| Lo (Bg)- By definition of S, we have reached the estimate
P 1D%ull 28, () < Collullii(ss) + Coll Fllze(n) ~ whenever By(z) C Bs.

Of course, with a simple covering argument, this implies

1 D?ull r2(8s) < Collullp(sg) + Coll Fll e (sy) - (6.53)
Next, again using the interpolation inequality (6.47) we get

[1Dull2s5) < Collullzr(s) + Coll F'l| oo (55) -
So, by Sobolev embedding

[ DullLa(Bs) < CollDullwrz(sg) < Collull sy + Col | Fl| Lo (ss) -

Again using interpolation and Sobolev we finally achieve

|1l 2o (Bs) < Collullwrassy < Collullpiss) + Coll F|| Lo (Bs) -
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Proof of (6.45). As in the previous step, we can, without loss of generality, assume
r = 1. Note that a byproduct of the argument given above is also the estimate

[ Dull 1155y < CollullLr(my) + Col [ F'll Lo (5s) -
In fact, by a simple covering and scaling argument one can easily see that
1Dull 1,y < Colr)ullzacon + ColIFlliemy  for every 7 < 8.

We can then differentiate the equation and use the proof of the previous paragraph to show

|Dulli(z,) < Colo. )| Dullis(s) + Colo. )| DF | 1=a.) -
Again, arguing as above, a byproduct of the proof is also the estimate

1D%ull11(8,) < Colo, ) Dl iz, + Colo, T IDF 1=,
This can be applied inductively to get estimates for all higher derivatives.

Proof of (6.42). Let B := Bs,, (pur, 7). We use the coordinates introduced in the
proof of Proposition 6.4. We set w := hgyr — n o fgr and observe that

Lw=Fy —Luymo fur)

wlap =0

Next, for 1 < p < oo, we define the continuous (by Calderon-Zygmund theory) linear
operator T : LP(B) — W,*(B) N W?*P(B) by T(g) = v where

—AY=g¢g inB

=0 on 0B.

Applying the Sobolev embedding W3(B) < C°(B) to the derivative of ¢ € W23 N W, "
we conclude that

ID¢ — FDClo < Corp||D?¢|| 1 -

On the other hand, by interpolation and Poincaré we conclude

g
IDC]zs < IICI2IDX L < o

rr 2 rr 2
i < g llCllze + 521Dz < Cosl| Delle + 521Dl

for every positive €. Choosing the latter accordingly we achieve ||D(¢||zs < Corp||D*C|| s
and thus || D¢l < Corr||D*C||s.
We now use these bounds in (6.7) to get

2
1-3

/B(Dw : D¢ — Ly Dw-¢ —Lyw - )| < Cmygd(L)2FA0r0=2=5 1482 1 75 || D2¢ || 5.
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Then, we can estimate the L**-norm of w as follows:

oo = s [wh== sw [waT(n)
B B

||h||L3(B):1 ||h||L3(B):1

< sup /Dw~DT(h)
sy=L/B

Il

< Cmy d(ZL)Q(lJ“BO)"YO_Q_B2 7“?6272/3 sup HDQT(h)HL:a
HhHL3<B):1

+  sup /B(—LlDw-T(h)—LQw-T(h)).

HhHLiS(B):l
Recalling the Calderon-Zygmund estimates we have
ID*T(h)||zs < Collhl|Ls

IDT(h)||Ls < Corpl|hl|Ls
1T (1) |zs < Corillhllzs -

Integrating by parts we then achieve

]| oo ) < Cmg d(L)2AFHAN0=202 50 4 gy / w - (L DT (h) — LT (h))
||h||L3(B):1 B

< Cmg d(L)* 00278 T2 Ol e i -

Therefore, if mé/ ? is sufficiently small, that is ¢ is sufficiently small, we deduce that

|w|[z: < C’TQL/BHwHLs/Z(B) < Cmy dis‘c(H)Q(H&))W’Z’B2 r?ﬁg.

Proof of (6.43). The estimate follows easily from (6.42) and (6.44), recalling that
| Zullo < Cmy”. m

7. MAIN ESTIMATES ON THE INTERPOLATING FUNCTIONS

In this section we adopt the terminology of the previous subsection and we show that

Proposition 7.1. Assume the conclusions of Proposition 6.1 applies, let k := P21 and
assume e9 1s sufficiently small, depending upon the other parameters. Then there exists
a constant C' = C(My, Ny, C,, Cy,) such that for any cube H € W U .7, the following

conclusions hold.

(i) Lemma 3.9 applies and thus gy is well-defined.
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(ii) The following estimates hold:
1hsr = P,y (D) 00 (B, (prrmrn)) < Cmy d(H) =2 0(H )+ (7.1)
lgrllco < Cmygd(H)* " (7.2)
|Dgullco + A(H)||D2gullco + A(H)?| D3gullox < Crgd(H)™ (73)
lgsr — w(za, wi)|leo < Cmy d(H)"0(H) + e,d(H)" (7.4)
7 = T g (@) Gan| < Cm*d(HY P~ 00 (H )= Va € Bupy (2, w) . (7.5)
(i) If Le # U, LNH #( and ¢((H) < {(L) < 20(H), then
HDlgL _pl gHHCO (Boy (szs)) < Cm1/2 d( ) (1+B0)v0—B2— 2£( )3+m—l Vi=0,...,3.
(7.6)

(iv) If Le UW and d(H) < d(L) < 2d(H), then

|D3gH(zH,wH) D gL(zL,wL)| < C’ml/2 (I—I)2(1+50)'YO’BQ’2 d((zg,wn), (zp,wr))", (7.7)

where d(-,-) denotes the distance in *B.

7.1. Proof of (i) and (ii) in Proposition 7.1. We start by fixing H,L,J so that
H e U, L is an ancestor of H (possibly H itself) and J is the father of L. We
denote by B’ the ball Bs,, (pus, ), by B the ball Bs,, (pur, ), by C' the cylinder
Cs,, (ps,my) and by C the cylinder Cs,, (pr, mr). Observe that B C B’ (this just requires
M, sufficiently large, given the estimate |p; — pr| < 2v/2¢(J)) and thus C C C'. Next, set
E = E(Ty,Cso, (pr, 7)) and E' := E(T;, Csa,,(ps, 7)) and recalling Proposition 5.1
we record

B <Cm0d( )270 2+261€(L)2_251 < Cmod(H)Qwo—2+261E(J)2—261 ( )
B SC’mod( )270 2+251€( )2 261 < C’mod(H)QVO_zH‘slE(J)Z_% ( )
h(T,C) <Cmy*d(L)"~20(L)"*P2 < Cmy d(H) "> P20(J) +P2 (7.10)
h(T,C') <Cmy*d(J) " %0(J)H% < Cmy d(H) P %0(J) 6 (7.11)

Next let K be the projection of Gr(fyr) N Gr(frs) onto pyp + 7. Since T;L By = Ty,
we can estimate

B\ K| < H*(Gr(fr) \ spt(T1)) + H*(Gr(fas) \ spt(T7))
and recalling the estimates of [11, Theorem 1.5] we achieve
B\ K| < Cor3(B™(E + Comor}) + E™(E' + Comor])) < Cmg P d(H )02 ()1

In particular K is certainly nonempty, provided e, is small enough. Using the estimates of
[11, Theorem 1.5] on the oscillation of fy and fg; to conclude that

Ino fur =m0 frslli=s < Cmg d(H)"20(1) .
Set therefore ¢ :==no fyr — no fus and conclude that
HC”Ll < H77 o fHL —no fHJHLOO 5 |B \ K| < Cm 1+ﬂo+1/4d(H)vo/2—52+2(1+50)’70—2€(J)5+52 ]
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If we define ¢ := hyp — hyy we can use (6.42) of Proposition 6.7 and the triangular
inequality to infer

1€l 21imy < Cmod(H)2(1+ﬁ0)’vo*2*525((])51%32 .
In turn, again by Proposition 6.7, this time using the fact that Zy¢ = 0 and (6.45), we
infer

ID' (R, = Pl oy < Crmod(H)2(H000=2=02g( )30
< Cmypd(H)2WHPon0=2=F2p( Jy3+2n=L for | = 0,1,2,3,4, (7.12)

where B = Bg,, (prr, mr). Interpolating we get easily also
[D*(hi — hus)]g e p < Crgd(H)? 002702 ( ) (7.13)

In case (b) of Definition 0.1 we have hyy = hyr and hyy = hyy. In case (a) and (c),
using the system of coordinates introduced in the proof of Proposition 6.4 we have

hip(x) = (harp(2), Uy, (2, hire(2)))

hiy () = (hi (), Wpy (2, by (1))
and we use the chain rule and the regularity of ¥, to achieve the corresponding estimates
1D (har = has)ll oy < Cmmugd(H)?HHP00=20(J)y32570 for [ = 0,1,2,3. (7.14)
[D*(hir — hus)]g e p < Cmgd(H ) HHPI0=22520( 1) (7.15)

Fix now a chain of cubes H = H; C H;_y C ... C Hy, =: L, where each H;_; is the
father of H;. Summing the estimates above and using the fact that ¢(H;) = 277 and
((H) < d(H)=d(Hy,), we infer

ID! (harr, — hr )| oy < C A(H )PP+ for [ =0,1,2,3 (7.16)
[D*(hur, — by 5 < C d(H )0 fatn=2, (7.17)

where B = Béyy; (pr, mir). Observe that, assuming that we have fixed coordinates so that
pg = (0,0,0) we also know, arguing as in the proof of Proposition 6.4, that, if we set

B := Bg,, (puL,7H), then
I 0 Frslioe(z) < g d(H)' 2
In particular, applying (6.44) of Proposition 6.7, we conclude
Pl cogsy < Cmyg d(H) .
Recalling the height estimate (and taking into account that py = 0 € spt(7")) we have
I o full < Crmgd(H)" 2P 0(H)

and thus 1
1m0 full L (Bsy, a ) < Cmy/"d(H) " =% 0(H)*

Using (6.42) we conclude
||BH||L1(Ber (prr ) < Cm(l)/4d(H>70/2—,32€(H)3+,32
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and with the help of (6.44) we achieve
Vol 2 oy ) < Criag*ACH) ™22 (H) 2 (7.18)

Using the estimates upon W,, and the fact that ¥, (0) = 0, DV, (0) = 0 we easily
conclude

Rl o= (Bor,y (prromrr) < Creg " d(H) P2 0(H ) P2 (7.19)

which in fact is (7.1).
We next estimate the derivatives of hyy. Let E := E(Ty, Css,, (pr, 7r)) and recall the
discussion above and the estimates of [11, Theorem 1.5] to conclude that

/ |DfHL’2 < COT%E < Omod(H>27072+261£(L)4—261 ) (7_20)
B

We thus conclude that ||D17<3fHL||L2(B) < Cmy*d(H) =1+ ¢(H)>% . We can now use the
Lemma 6.6 to estimate |[Dhyy| 2 < Cmyd(H) 91 ¢(H)2= and thus || Dhy|n <
Cmy*d(H) =19 ((H)3=% If we differentiate the equation defining hy, we then find
ZLu0ihiy, = (Ls);
and we can thus apply (6.44) of Proposition 6.7, with v = Dhy, to conclude that
1D Rl (e, < Crag*d(H)O T 0(L270 ! < Cmg*d(H) 07 for 1=1,2,3,4,
(7.21)
where we used that, for the starting cubes L = Hy,, d(H) = d(L) < C(My)l(L).
Arguing as above we achieve a similar estimate for hy;. We observe however that the

condition DV, (0,0) = 0 plays an important role (assuming to have moved the origin so
that it coincides with pg). For instance we have

DhHL = (D;LHL, Dm\IIpH (IL‘, BHL(x)) + quij(% ;LHL(ZL‘))D;LHL([L’)) .
Thus we can easily estimate
|Dhyp(z)] < Cmy*d(H)° + | DV, (z, hyp(z))]. (7.22)

Now, the second summand in (7.22) is estimated with || D2W,, |[¢((H) < Cmg*d(H), pre-
cisely because DV, (0,0) = 0.

It follows by (7.14), (7.15), (7.21) and the triangular inequality that we have the uniform
estimates

| Dhut|| oy + A(H)|| Dbl cogmy + A(H)?| DPh || cn sy < Cmgd(H)™ (7.23)

Recall now that, by Proposition 5.1 we have |7y — mo| < C’?”nl/2 d(H
fore apply [8, Lemma B.1] to the rescaling kg (z) := d(H) 'hy(d(H)z
existence of the interpolating functions gy and that the estimates (7.
comibining (7.1) with [8, Lemma B.1] we also get

gz — P, (i)l co < Cmg*d(H)™20(H) . (7.24)

). We can there-
) and conclude the
3) hold. Moreover,
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On the other hand pn,(py) = 2y and since py € spt(Ty) UV, 4, we conclude immediately
Py, (pr) — u(zr, wy)| < ¢d(H)*. Combining this last estimate with (7.24) we conclude
(7.4).

Finally, recall that, if £ := E(T, Csa,,, (pu, 7r)), then

/ |Dful” < Cmod(H)270*2+2526(H)47251 ,
BSTH(pHJrH)
from which clearly we get
/ |D"7 © ]CH|2 < Cmod(H)QVO_Q‘*‘%lK(H)4—251 ‘
Bsyy; (PH,7H)
By the last estimate in Lemma 6.6, we deduce

/ |Dhy|? < Cmygd(H)?0 21200 p(F)4=200
B8TH(pH77TH)

Thus we conclude the existence of a point p such that
|Dhy (p)| < Cmy?d(H )~ g(H) =0 (7.25)

Assume now to be in the case (a) or (c) of Definition 0.1 and shift the origin so that it
coincides with pg. Given the bound on D?hy we then conclude

| DRy (0)] < Cmyg?d(H) 0 0 p(H)

and, since DU, (0) = 0, we also have |[Dhy(0)] < Cm*d(H) =49 ¢(H)'=% . Hence
using the bound on || D*hy||o, we finally conclude |[Dhy(q)| < Cmny>d(H )0~ 1+01 ()1 =%
for all ¢’s in the domain of hy. This implies the estimate

|TthH - 7TH| S Cmé/Qd(H)’m_l—i_(sle(H)l_al Vp € Gl"(hH) N CﬁTH (pH, 7TH) .

Since however Gr(gy) C Gr(hy) N Cg,,y (P, 7), we then conclude (7.5). The same
conclusion for case (b) in Definition 0.1 follows directly from (7.25).

7.2. Proof of (iii) and (iv). We observe first that (iv) is a rather simple consequence of
(iii). Indeed fix H and L as in the statements and consider H = H; C H;_1 C ... C Hy,
and L = L; C Lj_; C ... C Ly, so that H; is the father of H;y; and L; is the father of
L;1. We distinguish two cases:

(A) If Hy, N Ly, # 0, we let g be the smallest index so that H;, N L;, # 0;
(B) Hy, N L, = 0.

In case (A) observe that max{((H,,), (L)} < d((zm,wn), (21, wr)) := d. On the other
hand, recalling that d(H;) = d(H), d(L;) = d(L) and d(L) < 2d(H), by (iii) with [ = 3 we
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have
i—1
|D39H(ZH’ wH) B DggHz‘o (ZHio » WH;, )| < Z |D39Hz (szy sz) - D39Hl+1 (ZH1+1a le+1)|
I=io
i—1
Scm[l)/zd(H>2(1+/30)'YO*/5272£(Hio)n Z 9lio—l)x < Cm(l)/2d(H)2(1+,30)’Yofﬂ272dn
I=io
-1
|D39L<ZL’ wL) B D3gLi0 (ZLiO » WLy, )| < Z |D3ng (ZLH sz) - D39L1+1 (ZL1+1 ) leJrl)‘
=19
j—1
SCm(l)/zd(L>2(1+50)’Yo—52—2€<Li0)f-s Z oio—D)k < C«m(l)/zd(H)2(1+60)yo_,32_2d,§

l=ig

’Dgng'o (sz‘O’sz‘o) - DggHio (ZHio’wHi0)| < Cmé/2d(Hio)2(1+50)707ﬁ272€(Hi0)K
Smé/Qd(H>2(1+50)W0*52*2dﬂ _

The triangle inequality implies then the desired estimate.
In case (B) we first notice that by the very same argument we have the estimates

|D%gu (211, wir) — DPgry (2, Wiy, )| < Cmyd(H)2(+o)vo=B2=2 s
|D?gr (20, wL) = DPgry, (2Ly,, Wiy, )| < Cmny*d(H )2 H8o0=82-2g

Next we find a chain of cubes Hy, = Jy, J1,...,JJy = Ly,, all distinct and belonging to
SNo 5o that

o d(H) < d(J) < d(L) < 24(H);

o Jl N Jl+1 7é @ and thus E(HNO) S E(Jl) S E(LNO);

e N is smaller than a constant C'(Ny, Q).

Using again (iii) and arguing as above we conclude

’DSQHNO (ZHNO ) wHNO) - DggLNO (ZLNO » WLy, )|
N
S Z |D39Jz (sza le) - DSQJ[—l (ZJ1—1 ) sz_1)| < CNm(l)/zd(H)2(1+60)%_ﬁ2_2dm :
=1

Again, using the triangular inequality we conclude (iv).

We now come to (iii). Fix therefore two cubes H and L as in the statement and set
r :=rr. Observe that, by (i) and [8, Lemma C.2], it suffices to show that ||gg — g1/ 11(5) <
Cmy*d(H)™~20(H)>**. where B = B,(z1,m). Consider now the two corresponding
tilted interpolating functions, namely h; and hy. Given the estimate upon h; proved
in the previous paragraph, we can find a function hr B (prr,me) — w4 such that
Gj, = G, L Cs(pr,ma) (in this paragraph = will always denote the riparametrization
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on 7p). Obviously G; | C,(zr,m) = Gy,. We can therefore apply [8, Lemma B.1] to
conclude that

g — grllery < Cllha — hell Ly Bs,pmm)) -
Consider next the tilted interpolating function hgy and observe that, by (7.12) and the
usual estimates on ¥, we know

Ve = har|| o s, pu ) < Cmé/Qd(H)Q(”ﬁo)%—ﬂ2—2g(H)5+ﬂz ‘
Hence, since By > k, we are reduced to show
B — hill 2By ) < Oy *d(H)20+50010=02=2p(prys+s (7.26)

In turn, consider the mwg-approximating function fg; and the 7 -approximating function
frr = fr. In the myg X 2y X TI,HEL coordinates we set

fHL(:C) = (p%H (77 © fHL(x))v ‘IJPH (LE, Py (77 © fHL(x))))
and recall that, by Proposition 6.7, we have
s, — fHL“Ll(BSTL(PHLJrH)) < Cm(l)/zd<L)2(1+,80)70—62—2€<L)5+62 ' (7.27)
Similarly, in the 77, x s, x T}, ¥+ coordinates we set

fL(2) = (Poy (1 0 fL(2)), Up, (2, Doy (M © [L(2))))

and get
|hr, — fLHLl(BsTL ormn)) < C«m(l)/2d(L)2(1+ﬁo)70—Bz—QE(L)5+,32 ‘

Next we denote by f;, the map f7, : Bey, (prr, 7i) — 73 such that G, = Gi, L Cer,, (pr, )
and we use again [8, Lemma B.1] to infer

H]AzL - fLHLl(BGTL(PHLJTH)) < CHhL - fL”Ll(BBrL(;DL,ﬂ'L) < Cmé)hd(L)2(1+B0)wiﬁ272€<[’)5+ﬁ2 :
(7.28)
In view of (7.27) and (7.28), (7.26) is then reduced to

117, — L1l LB, (ramrr)y < O *d(H)2HEN0=5 =20 (FryT4s. (7.29)

Consider now the map fL : B, (prr, mr) — Ag(mg;) such that GfL =Gy, LCq, (pr, mH).

Let A and A be the projections on py + 7y = pyr + my of the Borel sets Gr(fyr)) \spt(T)
and Gr(fr) \ spt(7) € Gr(fr) \ spt(7). We know that

AU A <[|Gyy,, = TI(Csp, (pry 7)) + |Gy, — TN[(Csyy (pry 7))
<Cm 1+50d(H) (14+Bo)vo— 26( )

On the other hand, it is not difficult to see, thanks to the height bound, that ||n o fy —
N0 flle < Cm 1/4 d(H)*~=P20(H)*P2. We thus conclude that

Imo fur—mo fLHLl(BaTL(pHLﬂrH)) < Cmy*d(H)2(HPono=F=2p( F)5+h2
Define in the my x 3y x T,,3+ coordinates the function

8() = (P (1 © f1(2)), Wy (2, Doy (1 © i (2)))).
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We can thus conclude that

157 — gHLI(BGTL(pHLJTL)) < Cm(l)/zd(L)2(1+Bo)vo—ﬁ2—2€(L)5+/52 ' (7.30)
Thus, (7.29) is now reduced to
18 = £2l23(81, (s < Crgd(H)Y04 800022 i, (731)

Denoting by An the distance |ry — 7|, by B the ball Be:, (pur, 7)) and by B the ball
Bs,, (pL, ), we then have, by [8, Lemma 5.6]

e = fuls oy < Colose (f2) 4 ra) [ 1D+ 21Dy [+ A1)

Recall that DV, (p;) = 0 and thus HD\prLHéO(B) < Comyr?. Recalling the estimate on

|7y — 71| and upon the Dirichlet energy of fr, we then conclude
/ IDfLP 4+ (1D, (20 5) + An?) < Cmgd(L)* 220 ((H)**1

On the other hand
OSsC (fL) + TLAI] S Om(l)/4d(H)vo/2—52€(H)1+ﬂ2 .

Thus (7.31) follows by our choice of the various parameters, in particular fo—26; > #2/1 = K.

8. PROOF OF THEOREM 3.11

8.1. Proof of (i). As in all the proofs so far, we will use Cj for geometric constants and
C for constants which depend upon My, Ny, C. and Cj,. Define xg := 05/(3 20 V1) for
each H € 277 (cf. Definition 3.10) and observe that

Z xu =1 on A, Vk € N and x|
Hewi
Fixany H € 27 and let k be such that H C Ay,. Set 27(H) :={L € &7 : LNH # 0}\{H}
for each H € 2. By construction 1¢(L) < ¢(H) < 2{(L) and 27%~1 < d(L) < 27!
for every L € Z7(H). Moreover the cardinality of £7(H) is at most 12. Fix a point
p = (z,w) € H and observe that C;'27% < |2| < Cy27*. From (7.2) of Proposition 7.1 we
then conclude

o < Col(H)™ Vie{0,1,2,3,4}. (8.1)

852, w)] < Cmg"d(H)! 7 < O]+
Recall now that ¥(0) = 0, D¥(0) = 0 and ||D*¥||co < C’m(l]/Q. Considering that
0i(z,w) = (@;(z,w), ¥(z,9;(z,w))) (8.2)

(where @;(z,w) is the vector consisting of the first n components of ¢;(z,w)), we easily
conclude

sz w)] < Omg' |2 4 C| DT colof* < Oz
This gives (3.16) and the continuity of ¢;, since by definition ¢;(0,0) = 0.
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For (z,w) € H we next write
2izw) = (g + Y ga)Ew) =gn@)+ D (00— gmxe (zw),  (83)
Lei(H) Lei(H)

because H does not meet the support of 9, for any L € 27 which does not meet H. Using
the Leibniz rule, (8.1) and the estimates of Proposition 7.1, for [ € {1,2,3} we get

ID'@jllcoi < 1D gullco +Co Y Y llgr — gallesn (L)
0<i<I Le 73 (H)

SOmB/Qd(H)Vo+1—Z + Cvm(l]/Qd(H)Z(l-&-ﬁo)vo—&—? Z g(H>3+52—i€(H)i—l

0<i<i

Scm(l)/2d(H)’Yo+l—l .

Again using the formula (8.2) and the estimate ||¥||gs0 < my” (together with DW(0) = 0
and U(0) = 0) we easily reach (3.17). With an argument entirely similar we obtain
[D3¢)] i < Cmy*d(H) 72, (8.4)
Thus, pick any two points (z,w), (2'w’) € Ay. If they belong to the same cube H € 97
with H C Ay, then
D%p;(2,w) = Dy, )| <Cmg*d(H)*d((2', ), (2, w))"
<Cmg*2%d((< 0'), (z,w))" . (8.5)
If they do not belong to the same cube, then let H, L € 2?7 be two cubes contained in
Ay, such that (z,w) € H and (2/,w') € L. Next observe that, by our choice of the cut-off
functions 9, ¢; = gu in a neighborhood of (zy,wy) and ¢; = g in a neighborhood of
(z1,wr). We can then estimate, using Proposition 7.1(iv) and (8.4)
|D°p;(z,w) = DPp;(2,w')| < [D%pj(2,w) — Dgp (21, wi)|
+ |DPgir (2, wa) — DPgr(zp, wi)| + | Dz, wi) — DPpi (2, w'))|
<Cmy*d(H)™ (((H)" + d((znr, i), (22, w1))" + €(L)"))
<Omgd(H) 2d((z,w), (<, )" < Cmg "2 d((2',w), (z,w))". (8.6)
From (8.5) and (8.6) we conclude (3.18) and thus the proof of Theorem 3.11(i).

8.2. Proof of (ii). The first statement is an obvious consequence of the construction
algorithm: indeed note that, if i, j, k, L and H are as in the statement then 27(L) = 92*(L)
and moreover x; = 0 on H for any J € 27\ 2I(L) and for any J € 2%\ Z2*(L). Then
it turns out that ¢; = ¢ on H, which in turn obviously implies that ¢; and ¢, coincide
on H.

As for the second statement, if we can show that there is a uniform limit ¢ for ¢;, the
C3 convergence and the regularity of ¢ will follow from the estimates of point (i). Fix a
point (z,w) # 0 and let H € &7 which contains it. If H € #" and i < j — 2, then ¢4
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and $; coincide on it. Otherwise we can assume that H € €7~' U %7. In this case we can
estimate

(2, w) = (2, wr)| < Cm*d(H)“(H) < G277

A similar estimate holds for ¢, 1: notice that we can choose L € £7%! such that (z,w) € L
and L is either H or a son of H. Moreover, we can estimate

i1z, w) — @iz, w)| < C277

Next, recall that ¢;(zy,wny) = gu(zm,wy) and that (2, wr) = gr(z,wr). Since
moreover L = H or L is a son of H, by Proposition 7.1 we achieve

0541 (20, we) — @i (2, wa)| < Col| Dgallcol(H) + Cllgr — grlloo < €27
Summarizing, we conclude that
l@jr1 = @jllee < C277.

The latter estimate gives that ¢; is a Cauchy sequence in C° and thus that it converges
uniformly to some ¢.

8.3. Proof of (iii). Observe first that, if (z,w) does not belong to some H € #', then
p(z,w) is necessarily a point in the support of 7" and we can estimate

(2, w) — ulz, w)| < ez (8.7)
In fact, in this case for every j > N there is H; € .7 such that (z,w) € H;. Observe
that o;(zm;, wn,;) = gu,(2m,, wn,;) and that
]liglo (d((zH]’ ij)? <Z>w)) + ‘gHj (ija ij) - 90<Z7 ’LU)’) =0.

But we also have

]li)rg) ‘(ZHj%gHj (ZHjﬂ ng)) - ij‘ =0.
On the other hand, since

|ij - (ZHj,U(ZH]-,wH].))| S CS|ZHj|a7

we then conclude (8.7) taking the limit in j — oo.
From now on we therefore assume that (z,w) € H for some H € #'.

Step 1. In this step we show that
((H) < Cod(H)O+D/2 (8.8)

In fact we claim that this is the case for any H € # . First of all we observe that it
suffices to show it for H € #, U #},: given indeed any H € #;,, we find a chain of cubes
H=H, H_.,...,H; with the properties that

o Hy, N Hyyy # 0

[} g(Hk) = 2£(Hk+1);

e HieW, forany |l > i+ 1and H; € #. UW,,.
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It is easy to see that, provided Nj is larger than a geometric constant, 1d(H) < d(H;) <
2d(H). Since ((H) < L0(H;), it suffices to show ((H;) < Cod(H;)bHD/2,
Next, assume H € #.. Then we know that

E(Ty,By) > Comod(H)20 220 0(H)?>20 > Comy*d(H)?° 2(H)?.  (8.9)

Now recall that d = |zx| < 2v/2d(H). Moreover, if ry were larger than 1d®+V/2 then by
(1.9) there would be a 7 such that (recall that C? < my)

E(Ty, By, m) < mod(H)> 2%, .
By Lemma 5.2(i), we then would have
E(Ty,By) < mod(H)*2r%, + Comgrs, < O(Mo)mod(H)*°2((H)? (8.10)

(recall that vy < 7). Thus we conclude that (8.10) contradicts (8.9), provided C. > C(M,).
It remains to show (8.8) when H € #}. Assume therefore that ri > 1d®+D/2. Notice
that we know

E(TH, BH, 7TH) :E<TH, BH) S C’mod(H)2772€(H)2 (811)
whete the constant C' does not depend on H. We thus conclude from Lemma 5.2 that
m— 7| < Cmyd(H)" (H) . (8.12)

We next wish to estimate h(Ty, By, 7). 7 is tangent to G, at qy := (zy,u(zy,wy)). For
simplicity shift the coordinates so that ¢y = 0 and recall that |py| = |pg — qu| < cs|d|*
Fix a point p € By Nspt(Ty) and recall that there is a point p’ in Gr(u) N Vg such that

lp—7p| < 2“m(1)/2d“, since |px, (p')| > 2. Obviously |px(p')| < 2ry and since 7 is tangent
to Gr(u) at 0, we have the estimate

Pr ()] < Comy“d*[pa () < Cn*d(H)*0(H)’.
We can therefore estimate
P (p)| < Cmgd(H)* M (H) + Cmgd(H)".
This implies the estimate
h(Ty, By, 7) < Cmy*d(H)* Y0(H)? + Cmy *d(H)" . (8.13)
Using now Lemma 5.2 and (8.12) we then estimate
h(Ty,By) < Cm*d(H)* YU(H)? + Cmy*d(H)* + Cm?d(H) " Y(H)?,  (8.14)

where C' depends upon M, Ny and C., but not upon C,.
On the other hand, since H € #},, we then have

h(Ty,By) > Comy d(H) 0~ P20(H)'* P2 (8.15)

By our choice of the exponents it is obvious that the first and third summand in (8.14) are
smaller than a fraction (say 1) of Crymy *d(H )0 =P20(H)"*%  provided that Cj, is chosen
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large enough. Recalling that we are assuming ¢(H) > Cd(H)+Y/2, to achieve the same
conclusion with the second summand we need
1+b

T(1+52)_52+70<a-

However, since a > b, the latter inequality is implied by (3.2), and we reach a contradiction.

Step 2. Recall that we have fixed (z,w) € H with H € # and that our aim is
to establish (3.19). From the previous step we know that /(H) < Cz|**®/2 and that
d(H) < Cylz|. Assume H € #7 and pick any k > j + 2. By Theorem 3.11(ii), we know
that ¢ = ¢, on H. Recalling the arguments above (in particular (7.6)), we also have

les=gulles < Y lgn—gulles < Cmg*d(HY 0> P2 0(H)** < Omy*dro> Gt/
Le?k(H)

Since 70 — 2+ (3+ k) (b+1)/2 > 79 + 32 — 1 > 79 + b, it suffices then to show that
lu(z,w) — gu(z,w)| < Cmy*|2|". (8.16)

We next consider both u and gy as two functions defined on 7y and having defined the
ball B := B,,,(zu, ™), our goal is indeed to show that

lu — gulloos) < Cmy*d(H)Y .

Recall next that the graph of gy is indeed a subset of the graph of the tilted interpolating
function hy. If v : B, (py,7) — 73 is the function which gives the graph of u in the
system of coordinates mg x 7#] and we set B' := Bg,,, (pm, mr ), we then claim that it suffices
to show

o = hirllosy < Cmygd(H)™ . (8.17)
In fact let p = (¢, gu(¢)) € mo x mg- and let w € mgbe such that p = (w, hy(w)) € Ty X TF.
Consider also ¢ = (¢,u(z)) and ¢’ = (w,v(w)) and let ¢’ € m such that ¢ = (¢, u(")).
Let T be the triangle with vertices ¢, p and ¢’. The angle 6, at p can be assumed to be
small, because |y — mp| < C’m(lf. On the other hand the angle 6, in ¢ is close to 7, since
the Lipschitz constant of u is small. Thus the angle 0, is also close to 5. From the sinus
theorem applied to the triangle 7 we then conclude

() = gar(O)] = p — g = S0y, _ g1y (8.18)

sin @
By choosing £, small we then reach
lu = grllcosy < 2[lv = hullcos) -

As usual, we assume now to have shifted the origin so that py = 0. Recall that ¥, (0) =0
and DV, (0) =0, so that we can estimate

|he —mo fullcomy < Collher —m o fullco + C’m(l) U(H).
Using now Proposition 6.7 we then conclude

|mH—noﬁmeqgcwmaﬂywﬁaﬂf+cmﬁ%uﬁ? (8.19)
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Since ((H) < d(H)*)/2 we again see that (8.17) can be reduced to the estimate
Ino fu = vllco) < Cmy"d(H)" . (8.20)

We will in fact show such estimate in the ball B := Bs,,, (pr, 7). Consider a point
p € spt(Ty) N Cgyp, (P, 7xr) and let p = (¢,n) € m X 5. We also let ¢ be the point
(¢,u(¢)) and ¢’ = (w,v(w)) € 7y X 75, where w = py(p). The argument above can be
applied literally to the triangle T with vertices p, ¢ and ¢’ to conclude that

Ip— ¢ <2lp—q| < Cmy*d(H)".

Recall that, except for a set of points w € A of measure no larger than Cmod(H)*° 2((H)*,
the slice (T, pr,,w) coincides with the slice (G, , Pry,w). Thus on the set A we obviously
have

1m0 fu(w) = v(w)| < Cmy d(H)".
Now, for any point w & A there is a point w’ € A at distance at most d(H)*1¢(H)?. Since
both Lip(v) and Lip(n o fy) are controlled by m(l]/ ?, this gives the estimate

0 fir — vlleae) < Cmg d(H)" + CA(HY((H)*.

On the other hand, since ((H) < Cd(H)®*Y/2 and a > b + v, (recall (3.1)), we easily see
that
||77 o fu— UHCO(B/) < Cmé/Zd(H)70+b )

This completes the proof of (8.20) and hence of (3.19)

9. THE CONSTRUCTION OF THE APPROXIMATING MAP N

In this section we prove Corollary 4.1 and Theorem 4.3.

9.1. Proof of Corollary 4.1. Statement (i) is an obvious consequence of (1.3) and (3.19).
As for statement (ii), the argument is the same given in the proof of Lemma 2.1 for the
existence of the nearest point projection P : 'V, , N1 C; — Gr(u).

For what concerns (iii), let L € #, denote by pr, = (21, wr,) its center and set p := ®(q)
We start by observing that spt((T, p,p)) C spt(7;) for some ancestor J of L, given the
thickness of the horned neighborhood V and the estimates in Theorem 3.11. We next
claim that

spt({T;p,p)) C By, (p). (9.1)
Assuming this for the moment, recall that (7.6) implies immediately

e — grllcoqry < Cmy* d(H)XIHP0=52=2 p(Fy3+e < Cmyf*d(L) /2 P20(L)H+P

(where in the last inequality we have used that /(L) < d(L) and % > ). Recall also that
the graph of g, coincides with that of hy and, by (7.1),

|hr —nllco < Cm(l] 4d(L)”°/2—B2g(L)1+ﬂ2 :
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where (&,7) € 7, X 7 are the coordinates for py, cf. (7.1). Since spt(T;) N Cs,, (pr,7r) C
spt(7y) for every ancestor J of L, we must then have spt({(T,p,p)) C spt({T,p,p)) N
B,, (p) C spt(T1r) N Cs,, (pr, 7). Recalling that py € spt(7r) and that we have the bound

h(Ty, Csr, (pr, 7)) < Cmy d(L)°P20(L)'+P |
we conclude that no point of spt({T, p,p)) can be at distance larger than
my d(L) P2 0(L) P2

from the graph of hy. Putting all these estimates together, no point of spt((7,p,p))
can be at a distance larger than mé/4d(L)”’°/2_52€(L)1+52 from Gr(¢). Since for every
P € spt((T, p,p)) the point p is the closest in the graph of ¢, this completes the proof of
(iii), provided we show (9.1).

If (9.1) is false, there is a p’ € spt((T,p,p) and an ancestor J with largest sidelength
among those for which |p’ — p| > r;/2. Let 7 be the tangent to M at p and observe that
we have the estimates |1 — 7;| < Cm(l]/2 and |1 — m| < Cmy>. If J were an element of
Nothe height bound in the cylinder C, vaa(ry would imply [p" — p| < C'mé/ fplto I
J & /N0 and we let H be the father of .J, we then conclude that ¢, p,p’ € By and thus we
have |p/ — p| < Coh(T,By) < C’m(l)/4€(H)1+52. In both cases this would be incompatible
with |[p' — p| > r; =7m/2, provided ey < ¢(f2, da, My, No, Ce, Ch).

We next prove (iv). Fix a point (2, w) € B which belongs to I" and set p := (z, (2, w)) =
®(z,w). To prove our statement we claim in fact that:

Q [T, M] is the unique tangent cone to 1" at p (9.2)
spt(T) Np~'({p}) = {p} (9.3)
By construction there is an infinite chain Ly, D Lyy41 D ... D L; D ... where (z,w) €
L, € & for every i. Set m; := m,. By our construction and the estimates of the
previous sections, it is obvious that 7, — m = T,M. In fact since |, — 7, +1| <

Crng? |20+ =10(L;) 491 we easily infer

m— 7y, | < Cmy? |20t Le(L;) 0 (9.4)
On the other hand by the height and excess bounds, it is also obvious that T}, ,, converges,

in By, to @ [x]. Since r,/rL
then obvious.

Assume now that (9.3) is false and let p’ € spt((7, p,p)). Again by the width of V it
turns out that p' € spt(Tr,, ). Let j be the integer such that 27771|2| < |p —p/| < 277]2].
By the height bound in Cy,(0, ) it follows that, if €5 is sufficiently small, then certainly
Jj > Ny + 2. This means that there is an L; such that p’ € By, and obviously ¢(L;) <
Clz[277. Recall that spt(7r,, ) N Bz, C spt(Tz,) On the other hand, by (9.4), we have

=2 and pr, — p (in fact |®(z,w) — pri| < C27%), (9.2) is

i+1

lp— 1| < (1+Clry, — 7))h(Ty,, BL,) < Cmy d(L;) P2 0(L;)+P < Cmy* |22 .
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Since the constant C' depends upon the parameters C},, C,., My and Ny, but not upon &5,
the latter bound contradicts |p — p/| > 2777!|z| provided &, is chosen sufficiently small.

9.2. Proof of Theorem 4.3: Part I. We set F(p) = Q [p] for p € ®(T"). For every L €
#7 consider the 7y -approximating function fr, : Cs,, (pr,7) — Ag(7i) of Definition 3.6
and K C Bs,, (pr,mr) the projection on pr + m of spt(7r) N Gr(fr). In particular we
have Gy, |, = Tp (K x 77;). We then denote by Z(L) the portions of the supports of
Ty, and Gr(fy) which differ:

P(L) == (spt(Tr) U Gr(f)) N [(Bsry (pr, 7)) \ K1) x 7] -
Observe that, by [11, Theorem 1.5] and our choice of the parameters, we have, for £ :=
E(T[n C327“L (pL; ﬂ-L))v

H™(D(L)) < CE™(E + ¢(L)*mg)l(L)?
< Cm(l)Jr,Bod(L)(1+ﬁ0)(2'yof2+261)g(L)2+(1+BO)(27251) ) (95)

Let £ be the Whitney region in Definition 3.12 and set £’ := ®(J) where J is the cube

concentric to L with ¢(J) = §¢(L). Observe that the graphical structure of ®, our choice

of the constants and condition (NN) ensure that
LNH=0 <+ LnH =0 VHLew, (9.6)
eI)NL' =0 VLew. (9.7)

We then apply [6, Theorem 5.1] to the map fr, the plane 7 and the (appropriate portion
of the) center manifold M as a graph over 7, to obtain maps Fj : L' — Ag(U), Np :
L — Ag(R™™) with the following poperties:

o Fu(p) =22 [p + (Nw)i(p)],

o (Np)i(p) L TyM for every p € L

e and Gy, L(p~' (L)) = Tr, L(p~ (L))
For each L consider the set #/(L) of elements in #  which have a nonempty intersection
with L. We then define the set K in the following way:

K=mMnC)\ (U (en U p@an)). (9.8)

Mew (L)

In other words K is obtained from M by removing in each £’ those points = for which
there is a neighboring cube M such that the slice of Tp,, at x (relative to the projection
p) does not coincide with the slice of T'. Observe that, by (9.7), K contains necessarily T".
Moreover, recall that Lip(p) < C, that the cardinality of # (L) is bounded by a geometric
constant and that each element of #'(L) has side-length at most twice that of L. Thus
(9.5) implies

L\K[<|E\K[< > > |Tul(2(H))
Mew (L) Hew (M)
Scmé‘i‘ﬁo d(L)(l-l-,Bo)(2’)/0—2+251)E(L)2+(1+,80)(2—261) ) (99)
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By (9.6), if J and L are such that J' N L' # (), then J € #'(L) and therefore F, = F; on
KN (J'NL). We can therefore define a unique map on K by simply setting F'(p) = Fp(p)
if p e KN L. Notice that Tp = TLp~(K), which implies two facts. First, by Corollary
4.1(iii) we also have that N(p) := >, [Fi(p) — p] enjoys the bound

||N|£OIC||CO < Om(1)4d(L)70/2—,32 E(L)1+52_
Secondly,

(A VAVOIESS S HTHH H))

Mew (L) HeW (M
Scm(l)Jrﬁod(L)(HBo)(?% 2+261)5(L)2+(1+Bo)(2—251) ' (9.10)

Finally, notice that, by the C? estimate on ¢ and (7.5), M is given on C,, (pr, 1) as the
graph of a map @' : B, (pr,71) — 7 with ||D¢/||co < Cmy*d(H) =1+ ¢(H)1 =% and
D2 ||co < Cmy*d(H) . Hence, the Lipschitz constant of N, can be estimated using
[6, Theorem 5.1] as

Lip(N7) < C (1D%¢'lco [ Nllew + D@ eo + Lip(f1)) < C (mo (L) (L))" ,
(9.11)
so that our map has the Lipschitz bound of (4.1). We next extend F' and N to the whole
center manifold and conclude (4.2) from (9.10) and (9.9). The extension is achieved in
three steps:

e we first extend the map F to a map F' taking values in Ag(V);

e we then modify F to achieve the form F(z) = >l + N;(z)] with N;(z) L T,M
for every x;

e in the cases (a) and (c) of Definition 0.1 we finally modify F to reach the desired
extension F'(z) = ), [z + N;(z)], with N;(z) L T, M and z + N;(z) € X for every
x.

First extension. We use on M the coordinates induced by its graphical structure,
i.e. we work with variables in flat domains. Note that the domain parameterizing the
Whitney region for L € # is then the cube concentric to L and with side-length 11¢(L).
The multivalued map N is extended to a multivalued N inductively to appropriate neigh-
borhoods of the skeleta of the Whitney decomposition (a similar argument has been used
in [5, Section 1.2.2]). The extension of F' will obviously be F'(z) = > .[x + N;(x)]. The
neighborhoods of the skeleta are defined in this way:

(1) if p belongs to the O-skeleton, we let L € # be (one of ) the smallest cubes containing
it and define U? := By1)16(p);

(2) if 0 = [p,q] C L is the edge of a cube and L € # is (one of) the smallest cube
intersecting o, we then define U? to be the neighborhood of size i% of o minus

the closure of the unions of the U"’s, where r runs in the 0-skeleton.

Denote by U the closure of the union of all these neighborhoods and let {V;} be the
connected components of the complement. For each V; there is a L; € # such that
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Vi C L;. Moreover, V; has distance col(L) from OL;, where ¢ is a geometric constant.
It is also clear that if 7 and o are two distinct facets of the same cube L with the same
dimension, then the distance between any pair of points z,y with x € U™ and y € U? is
at least col(L). In Figure 1 the various domains are shown in a piece of a 2-dimensional
decomposition.

/ 3 [ ) [ \
/ 1\ / 1\

v Ur, U

= Vl 4 ¥ /
e

\1 gy L 1y

F1GURE 1. The sets U?, U? and V;.

At a first step we extend N to a new map N separately on each UP, where p are the
points in the 0-skeleton. In particular, fix p € L and let St(p) be the union of all cubes
which contain p. Observe that the Lipschitz constant of N|inqgq(p) is smaller than

C (mod(L)° ((L)")*

and that

IN| < Cm*d(L)"=P20(L) P2
We can therefore extend the map N|xnsip) to UP U (K N St(p)) at the price of slightly
enlarging this Lipschitz constant and this height bound, using [5, Theorem 1.7]. Being the
U? disjoint, the resulting map, for which we use the symbol N, is well-defined.

It is obvious that this map has the desired height bound in each Whitney region. We
therefore want to estimate its Lipschitz constant. Consider L € # and H concentric to L
with side-length ¢(H) = L¢(L). Let z,y € H. If z,y € U? U (K N St(p)) for some p, then
there is nothing to check. If x € UP and y € UY with p # ¢, observe however that this
would imply that p, ¢ are both vertices of L. Given that L \ K has much smaller measure
than L there is at least one point z € L N /C. It is then obvious that

G(N(z), N(y)) < G(N(2), N(2)) + G(N(2), N(y)) < C (mod(L)™ €(L)°)* £(L),

and, since |z — y| > col(L), the desired bound readily follows. Observe moreover that, if
x is in the closure of some U, then we can extend the map continuously to it. By the
properties of the Whitney decomposition it follows that the union of the closures of the U?
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and of K is closed and thus, w.l.o.g., we can assume that the domain of this new N is in
fact closed.

We can repeat this procedure with the edges of the skeleta, that is in the argument
above we simply replace points p with 1-dimensional faces o, defining St(o) as the union
of the cubes which contain o. In the final step we then extend over the domains V;’s: this
time St(V;) will be defined as the union of the cubes which intersect the cube L; D V;. The
correct height and Lipschitz bounds follow from the same arguments. Since the algorithm
is applied 3 times, the original constants have been enlarged by a geometric factor.

Second extension. For each z € M let p*(z,-) : R™™ — R™*" be the orthogonal
projection on (T, M)+ and set N(z) = 32, [p*(z, Ni(z))]. Obviously |N(z)| < |N(x)], so
the L*° bound is trivial. We now want to show the estimate on the Lipschitz constant. To
this aim, fix two points p, ¢ in the same Whitney region associated to L and parameterize
the corresponding geodesic segment o C M by arc-length v : [0, d(p, q)] — o, where d(p, q)
denotes the geodesic distance on M. Use [5, Proposition 1.2] to select @ Lipschitz functions
N!: o — U such that N|, = > [N!] and Lip(N/) < Lip(N). Fix a frame vy, ..., v, on the
normal bundle of £ C M with the property that ||v;||coz) < C||Depllco < C’?ﬂ(l)/Qd(L)”f0
and || Dv;l|coz) < C||[D?*@llco < my”d(L)*! (which is possible by [6, Appendix A], indeed
we do this in M\ {0}, where our manifold is C3). We have N(y(t)) = 32,[Ni(t)], where

Nit) = [ (v(1)) - Nj(v()] v (7(t))-
Hence we can estimate
dN;
dt

< O [IDv;[[[INf | eo + Lip(N))] < C (g d(L)® £(L)*)™ .
J
Integrating this inequality we find
Q
G(N(p), N(q)) <> INi(d(p, q)) — Ni(0)| < C (mod(L)* £(L)*)™ d(p,q) .
i=1

Since d(p, q) is comparable to |p — ¢|, we achieve the desired Lipschitz bound.

Third extension and conclusion. We still need to modify the map N in the cases (a)
and (c) of Definition 0.1. For each x € M C X consider the orthogonal complement sz, of
T, M in T, 3. Let T be the fiber bundle J,. {0} #% and observe that, by the regularity
of both M \ {0} and X, there is a C*7 trivialization (argue as in [6, Appendix A]). It is
then obvious that there is a C% map Z : T — R™™ with the following property: for
each (z,v), ¢ := x + Z(x,v) is the only point in 3 which is orthogonal to 7, M and such
that p,., (¢ —x) = v. Let us denote by Q(z, q) the map Z(x, p,.,(¢)). This map extends to
a C%° map to the origin with the estimates

1Dz, q)] < Cm*la°™" Vo e B\ {0} Vgwith ¢ <1 (9.12)
ID2Q(z,q)] < Cmyla)°™2 Ve B\ {0} Vgwith |¢| <1 (9.13)
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We then set N(z) = > [E(x ,p%z( Ni(z)))]. Obviously, N(z) = N(z) = 0 for z € K,
simply because in this case = + N;(z) = « belongs to X.
In order to show the Lipschitz bound, notice that, by the regularity of 3,

[z, q) — Qa,p)| < Clg—pl. (9.14)

Moreover, since Q(z,0) = 0 for every z € M C 3, we have D,Q(z,0) = 0. We therefore
conclude that |D,Q(z, q)] < Cmg’|z[°|q| and hence that

9z, q) — Qy, q)] < Cmy° |z qlly — |- (9.15)

Thus, fix two points z, y in any Whitney region £ and let us assume that G (N(z),N(y))? =
S, [Ni(x) — Ny(y)|* (which can be achieved by a simple relabeling). We then conclude

G(N(x),N(y)* <2 Z [, Ni(x)) = Q(z, Ny(y)) +2 Z [, Niy)) — 2y, Ni(y)

SCm?anmm>>+cm%2§]N )P la — yl?

< C (mo (L) €(L)°)* | — (9.16)
+ Cm0d<L)2%—2+w0—262€(L)2+262 |z — y|2
< C (mod(L)" L))" |z —yl*, (9.17)

which proves the desired Lipschitz bound. Finally, using the fact that Q(z,0) = 0, we have
|Q(z,v)| < Clv| and the L bound readily follows.

9.3. Proof of Theorem 4.3, Part II. In this section we show the estimates (4.3) and
(4.4). We start with the first one. Fix a Whitney region £ and a corresponding square
L € W. First consider the cylinder C := Csg,, (pr,7), the interpolating function g, and

the tilted interpolating function h;. Denote by M the unit m-vector orienting 7'M and
by 7 the one orienting T'Gy, = T'G,,. Recalling that g;, and ¢ coincide in a neighborhood
of (zp,wr) of L, by Theorem 3.11 we have

sup |7(21, gr(2,wr)) — M(p)| < C||D*pl|eo (L) < Cmy*d(L) " ¢(L).
peEMNC

On the other hand recalling (7.5) in Proposition 7.1, we have
|71 — 7z, g (20, wr))| < Cmg*d(L)0~ (L)
This in turn implies that

sup |M — 7| < Cmy2d(L)°~ o g(L) -, (9.18)
CnM
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Therefore, we can estimate
| (e K@) T )
p~1(L)

<C IT(x) — M(p(2))]* d||T|(x) + Cmg P d(L)*+Fn0=2¢(L)*
p~ (L)

< 1T () — 7> d||T||(z) + Crned(L, 0)20-2F201 (L)% (9.19)
p~1(L)

Since p~'(£) Nspt(T) C C, the integral in (9.19) is bounded by C¢(L)*E(T}, C, 7). By
[6, Proposition 3.4] we then conclude

e <c / o B @) = MG AT @) + CllArlEncy i JLG
< Cmo d )270 24201 é( )4 201 + Cmo d(L)Q'yO—QE(L)4+262 7
where we have used || Al|co(cy\Carrya) < Cmy*dist(L,0)~!. This shows (4.3).

We finally come to (4.4). First observe that, by (4.1) and (4.2),
/ [n o N| < Cmy"d(L)"*77¢(L) | L\ K|
L\K
S Cmé+ﬁ0+1/4d(L)(1+ﬁ0)(2’yo—2+2(51)+(’70/2—,32)€(L)3+ﬂ2+(1+60)(2—2(51) . (920)
Fix now p € K. Recalling that Fi.(p) = >_; [p + N;(p)] is given by [6, Theorem 5.1] applied

to the map fr, we can use [6, Theorem 5.1(5.4)] to conclude

o Np(p)| < Clno fu(pr,(p) — P, (p)| + CLip(Ng| ) [T,M — | [NL| (p)

(9.18) N
< Clno fu(pr,(p) — Pr, ()]

+ Cmé/2+ﬁo d(L>50(27072+251)+’yofl+51 g(L)1751+50(27251) (921)
- [G(NL(p), Q [m o Nr(p)]) + Qlm o Ni|(p)] -

With a slight abuse of notation denote by p,, the orthogonal projection onto p; + 7y,
(rather than onto 7; alternatively we could shift the origin so that p, = 0). For &9
sufficiently small (depending only on (s, v2, My, Ny, Ce, C}), we then conclude that

moNi(p)| < Clno fu(pr, () — Pri(p)|

+ Oy "0 d (L)@ 200070 (L) Im0 RGN (p), Q [ o Ni(p)])
(9.22)

Let next ¢’ : p + 7, — 77 such that G, = M. Applying [8, Lemma B.1] we conclude
that

/ 10 f1(Pry (7)) — Pyt (9)] < / im0 fo() — @' (@)] < Cllgz — @llcom(L)?
KNy Py (KNV)
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where H is a cube concentric to L with side-length ¢(H) = 2¢(L). Next assume L € #7

and let k& > j + 2. Consider the subset 2*(L) of all cubes in 2% which intersect L and
recall that ¢ coincides with the map ¢, on H (recall Definition 3.10 and Theorem 3.11).
Thus we can estimate

le —gclloan <C D> g = gLllei s, pomo
ek (L)

< Cmygd(L,0)20F5000=2=p([y5+r (9.23)
where in the last inequality we used (7.6). We then conclude
lp = grlleray < Crmodist(L, 0)20HHr0=27Fg( )5+
and (4.4) follows integrating (9.22) over ¥V N K and using (9.20).

10. SEPARATION AND SPLITTING BEFORE TILTING
10.1. Vertical separation. In this section we prove Proposition 4.4 and Corollary 4.5.

Proof of Proposition 4.4. Let J be the father of L. By Lemma 3.7 and Proposition 3.5,
Theorem A.2 can be applied to the cylinder C := Csg,.,(ps, 7s). Moreover, |p; — pr| <
Col(J), where Cj is a geometric constant, and r; = 2ry. Thus, if M, is larger than a
geometric constant, we have B, C Csy,,(ps, ms). Denote by qr, q; the projections Pri
and Prt respectively. Since L € #},, there are two points p1, ps € spt(77) N By, such that

la(pr — p)| = Cumny" d(L)*/*~20(L) %
On the other hand, recalling Proposition 5.1, |r; — 7| < Cd(L)~101¢(L)1=% where C
depends upon all the parameters except C}, and 5. Thus,
a7 (pr — p2)| > lar(pr — p2)| = Colmr — 7sllp1 — p2
> Cpmg 'd(L)2 %2 0(L)P2 — Cmy*d(L) =140 g(L)> %
> Cpmy*d(L) =% (L) — Cmy*d(L) =02 4(L)' "+

where Cj is a geometric constant and C' a constant which does not depend on Cj, and es.
Hence, if &5 is sufficiently small, we actually conclude

15 o

[9s(p1 — p2)| > 1—60hm(1>401(L)W Prfg(L) (10.1)
Set E := E(T;,Cse,(ps,7s)) and apply Theorem A.2 to T; and C: the union of the
corresponding “stripes” S; contain the set spt(7) N Csg,,(1-cp12i(10g ) (P, T5)), Where C
is a geometric constant. We can therefore assume that they contain spt(77,)NCsy,, (ps, 7).
The width of these stripes is bounded as follows:

sup {|qJ(m —y)|x,y € Sj} < CyE'r; <Oy C’el/4m(1)/4d(L)(270_2“51)/46([/)1+(2_251)/4
< 00061/4mé/4d(L)70/2*ﬂ2 g(L)lJrﬁz
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where Cj is a geometric constant. So, if C* is chosen large enough, we actually conclude
that p; and py must belong to two different stripes, say S; and S,. By Theorem A.2(iii)
we conclude that all points in Csy,, (ps, 7s) have density © strictly smaller than ¢ — 1
(because in our case we know that © is everywhere integer-valued), thereby implying (S1).
Moreover, by choosing C* appropriately, we achieve that

7 1
las(z —y)| > gChm0/4 A(L)" P2 p(L)HP2 Yo e S,y € S,. (10.2)

Assume next there is H € #;, with ((H) < 1((L) and H N L # (. From our construc-
tion it follows that ¢(H) = L¢(L), d(H) < 2d(L), By C Csy,,(ps,7s) and |7y — m;] <

-2
C_"ln(l)/2 d(L)0~-1+o1¢(H)1=%  with C which does not depend upon Cj, and 5. Hence choosing
£, sufficiently small we conclude

D, (o )| > Cmi d(L) ™ (L)
> 2(2) " Cum gy ey
> gohmg/“ d(H)"Pg(H)*P Yo eSi,yes,, (10.3)
where the latter inequality holds because vy < log, g. Now, recalling Proposition 5.1,

if 31 is sufficiently small, Csa,,, (pm, 7)) Nspt(Ty) C By and spt(7;) N By C spt(Thy).
Moreover, by Theorem A.2(ii) ,

(pTrJ)ﬁ<TJ L(Sj N CSQT’H(pHvﬂ-J))) = Qj [[B32TH(pH77TJ)]] for ] = 1727 Qj Z 1.

A simple argument already used several other times allows to conclude that indeed

(P )t (T L(S; N Caappy (P, 7H))) = Qj [Bszry (P, 7)) for j=1,2, Q; > 1.

Thus, By Nspt(Ty) must necessarily contain two points z,y with
5)
|p7r;1 (z —y)| > Zchm(l)/4 d(H)W/Q—ﬁ?K(H)l"'B?_

But then the refining in H should have stopped because of condition (HT) and so H cannot
belong to #,.

Coming to (S3), set  := ®(Byy1)((21,wr)) and observe that py(TL(p~'(2) N'S;)) =
Q; [©]. Thus, for each p € KN, the support of p+ N(p) must contain at least one point
p+ Ni(p) € Sy and at least one point p + No(p) € So. Now,

7 1/a Y0 /2—
[N1(p) = Nolp)] > SChmy" (L)L) — (L) TM —myl . (104)

Recalling, however, Proposition 7.1 and that M and Gr(g;) coincide on a nonempty
open set, we easily conclude that (see for instance the proof of (4.3)) |T,M — 7| <
Cmy*d(L)0~19¢(L) =% and, via (10.4),

G(N(), Qo N)) > 5INi(p) ~ Nap)] > SCumy/“d(L) "= e(L) +%
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Next observe that, by the property of the Whitney decomposition, any cube touching
Buyr)((21,wr)) has sidelength at most 4¢(L). Thus

0\ K| < Cmé+50d(L)(1+50)(2’70*2+251)E(L)2+(1+50)(2*251) )

So, for every point p € () there exists ¢ € K N which has geodesic distance to p at
most Cry*"""” q(L)(A+B0)00=1+81) ¢(L)y(1+8)(1=61)  Given the Lipschitz bound for N and
the choice B < 1, we then easily conclude (S3):

3 1/a Yo /2—

G(N(9).Q[n o N(@)]) > Crmy" d(L)2e(L)" 5
_ Cm(l)/%wo/?d(L)(3f30/2+1)vo—ﬁz oL+
1 1
ZZ Ch,mo/4 d(L)W/%Bgf(L)HBz 7

where again we need g9 < ¢(5s, 9, My, N, Ce, Cy) for a sufficiently small c. O

Proof of Corollary 4.5. The proof is straightforward. Consider any H € #,7. By definition
it has a nonempty intersection with some cube J € #7~!: this cube cannot belong to #, by
Proposition 4.4. Tt is then either an element of #; or an element H; | € #,7~*. Proceeding
inductively, we then find a chain H = H;, H;_4,..., H; =: L, where H;N H;_, # () for every
I, Hy € # for every | > i and L = H; € #. Observe also that

Jj—1 0o B
g — 2] < Jom - ag,, | S V20L)Y 27 <2v20(L).
=i =0

It then follows easily that H C By 1) (L) O

10.2. Unique continuation for Dir-minimizers. We recall for completeness the fol-
lowing two Propositions, whose proof can be found in [8].

Lemma 10.1 (Unique continuation for Dir-minimizers). Let m,n € N\ {0} be fized. For
every n € (0,1) and ¢ > 0, there exists v > 0 with the following property. If w : R™ D
By, — Ag(R") is Dir-minimizing, Dir(w, B,) > ¢ and Dir(w, By,) = 1, then

Dir(w, Bs(q)) >~ for every By(q) C Bo, with s > nr.
In the sequel we fix A > 0 such that
(1+N)* <2, (10.5)

Proposition 10.2 (Decay estimate for Dir-minimizers). Let m,n € N\ {0}. For every
n > 0, there is v > 0 with the following property. Let w : R™ D By, — Ag(R™) be
Dir-minimizing in every €Y CC By, such that

/ G(Dw,Q[D(now)(0)])* > 2%~ 2Dir(w, By,). (10.6)
Biayr
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Then, if we set w =), [w; —now], it holds

1
v Dir(w, Biayr) < Dir(@, Bagayr) < —/ |w|* V Bs(q) C By, with s >nr.
s(q

v
(10.7)

10.3. Splitting before tilting: Proof of Proposition 4.7. As customary we use the
convention that constants denoted by C depend upon all the parameters but 5, whereas
constants denoted by Cj depend only upon n,n and Q).

Given L € #J, let us consider its ancestors H € /71 and J € .#77% which exists
thanks to Proposition 3.5. Set ¢ = ¢(L), # = wy and C := Cg,,(ps,7), and let f :
Bs,(pr s, m) — Ag(mt) be the m-approximation of Definition 3.6, which is the result of [11,
Theorem 1.5] applied to Csa,, (ps, 7) (recall that Proposition 5.1 ensures the applicability
of [11, Theorem 1.5] in the latter cylinder).

The following are simple consequences of Proposition 5.1:

E := E(Ty, Csay,(ps, 7)) < Oy d(L)021200 g27200 (10.8)
h(T;,C,my) < Cmy d(L) =P+, (10.9)
¢ Comg d(L)207 2202720 < . (10.10)

where (10.10) follows from By, C C, L € #; and r/r, = 275 1In particular the positive
constants ¢ and C' do not depend on 5. We divide the proof of Proposition 4.7 in three
steps.

Step 1: decay estimate for f. Let 2p := 64ry — Qm(l)/‘ld(L)”o/%B?E”B?: since
pr € spt(T7), it follows from (10.9) that, upon having chosen C appropriately, spt(7;) N
Coy(pu,m) C spt(Ty) N By C C. Observe in particular that C' does not depend on e,
although it depends upon the other parameters. Thus, setting B = Bs,(pu, ), using the
Taylor expansion in [6, Corollary 3.3] and the estimates in [11, Theorem 1.5], we get

Dir(B, f) < 2|B| E(TJ, CZp(pHa ’/T)) + Cm(l)-i-ﬁo d(L)(1+,30)(270—2-&-251)€2+(1+,30)(2—261)
< 2wy (20)*B(Ty, Byy) + Cm P (L) 1500 (2r0=24200) g2+ (1+60)(2=20) — (10.11)
Recall that |pg —pur| < |py —pL| < Col(H), where Cj is a geometric constant (cf. Propo-

sition 5.1), and set o := 64ry + CU(H) = 32ry + C¢(H). If X is as in (10.5) and M, is
sufficiently large (thus fixing a lower bound for M, which depends only on ;) we reach

I A A _
o< <§ + Z) 64ry < (1 + 5) p+ Cmé/‘*d([,)wu/zfﬁz (B2

In particular, choosing &9 sufficiently small we get o < (1 —l-/\)_,o and B, C Cpyn,(pr, m) =:
C'. Define B' = B(yn,(pu,m). Set A := {5, D(no f), A: my — 7f the linear map
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x+— A-x and 7 for the plane corresponding to G z. Using [6, Theorem 3.5, we estimate
% / G(Df,Q [[A]]>2 > |B/| E(Ty, C, 7) — Cmé+ﬁod([/)(1+50)(2%_2+261)€2+(1+50)(2_251)
B/

> |B'|E(Ty, By, 7) — Cmé’LBOd(L)(1“30)(2"/0_2+251)£2+(1+ﬁ0)(2_251>
> wy((1+ N)p)2E(Ty, BL) — Cm 7 d(L)1+50)(200=24201) p2+(1450)(2-201) (10.12)
Next, considering that By D By and that, by L € #,
E(T1,By1) > Cumg d(L)270 24201 p2-201
we conclude from (10.11) and (10.12) that
Dir(B, f) < 2w (2p)*(1 + Cmy")E(Ty, By) . (10.13)

GDL.QIAI > 2u(L+ Np)*(1 - Cmf)E(Ty, By). (1014)

Step 2: harmonic approximation. From now on, to simplify our notation, we use
By(y) in place of Bs(y,m) (and recall that 7 = 7). Consistently with [12, 11, 7] we
introduce the parameter €2, which equals

e A =||As||co in case (a) of Definition 0.1;
e max{||dw||co, ||As|lco} in case (b);
e CoR™! in case (c).

From (10.10) we infer that, for any 35 > 0, if 7 is chosen sufficiently small, we have
8ryQ < CULYMY” < 35 CPmy> A(L)° (L) 0 < eqn B, (10.15)

because ¢(L) < d(L) < 7. Therefore, for every positive 7, we can apply [7, Theorem
1.6] (in case (a) of Definition 0.1) and [11, Theorem 4.2] (in the cases (b) and (c) of
Definition 0.1) to the cylinder C and achieve a map w : Bs,,(pgs, ) — Ag(mt) of the
form w = (u, ¥(y,u)) (in fact w = w in case (b) of definition 0.1) for a Dir-minimizer u
and such that

(8711)‘2/ G(f,w)? +/ (|IDf| — |Dw|)* < 7 E (87)2, (10.16)
Bsr; (paJ) Bsr; (pHJ)
/B IDtmo f) = Dimow* <78 (1) (10.17)

In the cases (a) and (c) of Definition 0.1, by the chain rule we have D(¥(y,u(y))) =
> [D2¥(y, ui(y)) + Dy (y, u;(y)) - Duj(y)], so that

[ par < Como [ Dul+ Comapt,
B142)(pH)

B(142),(pH)

where Cj is a geometric constant. Consider now A= fB, D(now), and observe that, since
D (nou) = mo Du is harmonic, we have D (nou)(pg) = f5 moDu, where B' = B110),(pn)-



60 CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

We can use (10.16) and (10.17), together with (10.14) to infer, for e5 small enough,
/ G(Du,Q[Dmou)@)])” > / G(Dw, Q[A])" — Comp’
!/ B/

Z/ G(Df, Q[[A]])Q — Comyp* — CoiiEp?
B/

>2uwy((1 4+ N)p)?(1 — Cmy)E(Ty, BL) — Comgp* — ConEp*. (10.18)
Analogously, using (10.13) and (10.16), we easily deduce

/ |Dul? < 2ws(2p)*(1 + my°)E(Ty, By) + Comop® + ConEp? (10.19)
BQp(pH)

Now recall that, since d(L) = d(H) =d(J), and L € #,,

E(Tr,Byr) > Comod(L)*°02F2004(L)* 72" > 220 2E(Ty, By)
and combining this with (10.19) and (10.18) we achieve

/ G(Du, Q[D(nou)(x)])’ > (2 — Cmy?) / | Duf* = Comop* — ConEp®.
B/

B2p (pH)
(10.20)
To estimate the last two errors in terms of the energy of u we use again L € #; to conclude

(10.14)
E,O2 S O()E(TL,BL> S CO |Du|2+00m0p4+CoﬁEp2
B/

so that, for 77 < 1/2c, we have

Ep* < Cy [ |Dul* + Comygp*. (10.21)
B/
Next, using once again, L € #, and this last inequality,
Cho? (10.14)
Comop* < —2q(L)> 202 E(T;,B,) < = [ |Dff
Ce Ce Jp
< = D — —nEp* < — D —
<C B/I ul et B < g B/I ul g mors
which for C, bigger than a geometrical constant implies
C
Comop* < =2 [ |Dul?. (10.22)
Ce Jp

We can therefore combine (10.20) with (10.21) and (10.22) to achieve

C
[ apuepmen@l) z (20 - 3 - omi—cu) [ |puP.
Bi4x)p(pH) e Bap(pm)
(10.23)

It is crucial that the constant C', although depending upon fs, d2, My, Ny, C. and C},, does
not depend on 7 and &5, whereas Cj depends only upon @),n and n. So, if C. is chosen
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sufficiently large, depending only upon A (and hence upon 4;), we can require that 22014 —
g—z > 2391/4=4We then require 77 and &5 to be sufficiently small so that 23/4=4 — C'm° —
Cn > 2074,

We can now apply Lemma 10.1 and Proposition 10.2 to v and conclude

¢! | Duf” < / G(Du,Q[D(now)])* < Ce? G(u,Q[nou])?,
B(142),() Bys(q)

Bys(q)

for any ball Bys(q) = Bes(q,m) C Bsy,(prs,m), where C depends upon ¢; and M,.
In particular, being these constants independent of e, and C., we can use the previous
estimates and reabsorb error terms (possibly choosing 5 even smaller and C, larger) to
conclude

mod(L)0 2201 4201 < G2 E(T,B;) < (7/ G(Df,Q[D(mo f)])?
By/s(q)

< ¢ / a(f.Qno 117 (10.24)
By/s(q)

where C, C' and C' are constants which depend upon &;, My and C., but not on es.

Step 3: Estimate for the M-normal approximation. We next complete the proof
showing (4.5) and (4.6). Now, consider any ball By/4(g, m) with dist(L, q) < 4v/2 ¢ and let
Q= ®(By4(q, m)). Recall that 7 = 7y and by a slight abuse of notation let p, be the
projection onto py +m. Observe that p,(£2) must contain a ball By/s(¢’, 7), because of the
estimates on ¢ and |my — 7|, and in turn it must be contained in B, (p, 7).

Let ¢’ : Bs,(pgs,m™) — 7+ be such that G, = [M]LCs,,(ps,7) and ®'(z) =
(z,4'(2)). Since D(no f)(z) =no Df(z) for a.e. z, we obviously have

/ G(DF.Q[D(no f)])? < / G(DL.QIDLT?.  (10.25)
Bys(q',m) Bys(q',m)

Let now df be the orienting tangent 2-vector to Gy and 7 the one to M. For a.e. z we
have the inequality

Co Y 1Gs(f3(2) = T(¢'(2))]* = G(Df(2), Q[Dg'(2)])*.
J
for some geometric costant Cy, because |éf(fj(z)) — 7(¢'(2))| < my°. Therefore
]{3 " )Q(nyQ[[DSO']])Q <C (G 1(2) = (@ (Pry ()Pl G ()
0/s(q' ™

CZ/S (q/,ﬂ')

<C TL(2) = 7(@i(Prg (2)) AN TLI(2)
Cl/S(qlaﬂ—)
+ Cmé+ﬁod<L)(1+50)(2’Yo—2+252)g2+(2—252)(1+50) ) (10_26)
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Now, thanks to the height bound and to the fact that |7 — mg| < Cmy d(L)/~'¢ in the
cylinder C = Cys(¢’, mrr), we have the inequality

p(2) = @' (pa(2))| < Cmy T Pd(L)e= P2 Yz espt(T)NC.
Using the estimate | D2¢’ (p,(2))| < Cmy/ d(L)*/2~1 (which is valid for any z € spt(T)NC)
we then easily conclude from (10.26) that
f anrQIpely
BZ/S(q/Jr)
C _ IT2(2) = 7(p(2))Pd|I T (2) + Crmg ™ (L) 20 42

=C ][ Tr(z) — 7(p(2))Pd]| Te|(2) + Cmg FPd(L) 20220 220

where we used (4. )
Since, on the region where we are interested, namely 2, we have the bounds |[DN| <

Cmd(L)Pov, N| < Cm*d(L)* 220482 and ||Ap|? < Cmod(L)™~2, applying now
[6, Proposition 3.4] we conclude

fo o ) )P @) <01+ Omia(Ly) [ DN
o

+Cm 1+1/2 (L)270*2*2ﬁ2€2+252 _
Thus, putting all these estimates together we achieve

mo d(L)27072+251£2—262 < C(l + C’mgﬁod(L)m‘)Bo)][ |DN|2 + C’m(l)JrﬁOd(L)270*2+251€2’252 .
Q

(10.27)
Since the constant C' might depend on the various other parameters but not on &5, we
conclude that for a sufficiently small e, we have

mgd(L)207 2202720 < C][ IDN|?. (10.28)
Q

But E(T,Br) < Cmyyd(L)?0=2+201¢2-2%2 and thus (4.5) follows.

We finally show (4.6). Observe that p~'(2) Nspt(T) D Cys(¢’, m) Nspt(7L) and, for an
appropriate geometric constant Cj, €2 cannot intersect a Whitney region £’ corresponding
to an L' with (L") > Col(L) or d(L') > 2d(L). In particular, Theorem 4.3 implies that

ITp = Tll(pH(2)) + [T — Gfll(pH(2)) < Ot (L) HH)Cr0-2420) 2(1450)C-23)

(10.29)
Let now F’ be the map such that T L(p~'(R2)) = G;L(p () and let N’ be the cor-
responding normal part, i.e. F'(z) = ) . [x + N/(z)]. The region over which F' and F’
differ is contained in the projection onto © of (Im(F) \ spt(7)) U (Im(F") \ spt(7")) and
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therefore its H™ measure is bounded as in (10.29). Recalling the height bound on N and
[, we easily conclude |[N|+ |[N'| < C’mé/4d(L)”°/2*52€1+52, which in turn implies

/|N‘2 > / |N'|? _C’m(1)+1/4+ﬁod(L>(1+50)(2’Y072+261)+’70*2,32€4+2ﬁ2+(2*251)(1+50)_ (10.30)
Q Q
On the other hand, applying [6, Theorem 5.1 (5.3)], we conclude

V(@) 2 ——=G(f(). Q¢ (2)]) = (f(2),@Ine f()D),

1.
20 INe]

which in turn implies

my d(L)270—2+261 62_262 (10524) CE—Z/

BZ/S(qlzﬂ-)

G(£,Qno f1)? < Cr /Q NP (10.31)

For ey sufficiently small, (10.30) and (10.31) lead to the second inequality of (4.6), while
the first one comes from Theorem 4.3 and E(T,By) > C.myg d(L)*0~2+20142-202,

11. PROOF OF THEOREM 2.6

We are now ready to define the relevant objects of Theorem 2.6. The center manifold
M is given by Theorem 3.11: the fact that M is a b-separated admissible Q-branching is
a simple consequence of the estimates in Theorem 3.11. We then apply Proposition 2.4 to
find the map ¥ which is a conformal parametrization of M in a neighborhood of 0 and,
after a suitable scaling, we assume that it is defined on B4 ,. Secondly we consider the
normal approximation N of the current 7" on M constructed in Theorem 4.3. The relation
QQ = O(T,0) is obvious from the construction. Again, after scaling, we assume that:

e The radius ry of Theorem 2.6 is 4;
e U(B) C C3(0);
Rather than call the rescaled current S, as it is done in the statement of Theorem 2.6, we
keep denoting it by T
The maps A’ and F are then defined as

A (z,w) :=N(¥(z,w)) = Z [N:(®(z,w))] (11.1)

Fz,w) = Z [¥(z,w) + Ni(z,w)] = Z [@(z,w) + N;(®(z,w))] . (11.2)

By the estimate (3.17) it follows immediately that

A (G O+ ¢ DMmAMC, €] < Cmyg (¢!

at any point p = (¢,£) € M with ¢ € R?\ 0. On the other hand by (2.5), if we set
(¢,€) := ¥(z,w), then we have

2] = Cmg* 250 <[] < |z] + Cmy'|2) 0 (11.3)

and thus the estimates in (i) follow. By construction A ;(z,w) = N;(¥(z,w)) is orthogonal
to T (.M, which shows (ii).
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The fact that T is contained in a horned neighborhood of M where the prejection p
is well defined is a consequence of Corollary 4.1. Moreover, by (11.3) we can assume
W(B,(0)) C Cy, (this is true for a sufficiently small » and hence, after scaling, we can
assume it holds for any r < 1). On the other hand, consider a cube L of % which
intersects Bs,/2(0). By construction its sidelength is necessarily smaller than r. Thus
(2.12) is a simple consequence of (4.1).

We are left to show the three estimates claimed in point (iv) of Theorem 2.6: the rest
of the section is devoted to this task.

11.1. The special covering. First of all consider the set ¥(B,(0)) and let B, C B be
defined by
B, :={(z,w) € B:P®(z,w) € ¥(B,(0))}. (11.4)
Observe that, by the estimates on W, the following two facts are obvious for r small:
(gl) B, is star-shaped with respect to the origin, more precisely if ¢ = (z,w) € 0B,,
then the geodesic segment ¢ in B joining (0,0) and ¢ is contained in B,;
(g2) If ¢ denotes the point on ¢ at distance %, the disk B, /4(q) is contained in B,.

We next select an (at most countable) family of triples {(L;, B}, U;)};en of subsets of B
with the following properties:
(c1) The L;’s are distinct cubes of the Whitney decomposition with L; € #, U #}, and
L;j C Boryeury);
(¢2) Bj = Buwyu(zj, w;) C B, are disjoint balls such that |z, — z;| < 74(L;);
(c3) Uj is the union of an at most countable family of cubes #(L;) C # where H C
Bsogz;)(21,;, wr,) for every H € #'(L;) and U;# (L;) consists of all cubes in %’
which intersect B,; in particular

B.crulJu;. (11.5)
j
To this aim we start by selecting all the cubes L € #, U #}, such that either LN B, # ()
or there exists H € #,, in the domain of influence of L with H N B, # (), and we denote
the collection of such cubes by #(r). Observe that, {(L) < Co2~or and thus, provided
Ny is chosen sufficiently large, we can assume that the ratio K(T—L) is smaller than any fixed
geometric constant. Moreover, by Corollary 4.5, it is obvious that L C Ba,y6(z;)-
The triples above are then chosen according to the following procedure:

o We start selecting recursively {L;} C #/(r). Ly is a cube with the largest sidelength
in % (r). Having chosen {Ly,...,L;} we select L;i1 as a cube with the largest
sidelength among those L € %/ (r) such that Biser) (21, wr) N Biser,) (20, wr,) = 0
for all + < j.

e For every L; we use the geometric properties (gl) and (g2) to choose a ball B;
as in (c2): for instance we consider z; := %<|2LJ| - %5&3.) and let (z;,w;) be
the unique point of B that belongs to the connected component of B N (B, x
C) that contains (z,,wr;). The B;’s are disjoint because they are contained in
Biser;) (21, wr,);
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e For what concerns U;, we need to define #'(L;); consider then H € # such that
HNB, #0:
(a) If H € #. N\ W}, then H € # (r) and we select the L; with largest sidelength
such that Bl5£(Lj)(ZLj7ij> N Bl5g(H)(ZH, wH) 75 @;
(b) If H € #;,, then H belongs to the domain of influence #;,(L) of some L € # (r);
we then select the L; with largest sidelength such that B154(Lj)(zLj,ij) N

Bisecry (21, wr) # 0.

11.2. Estimates on U/; and A. Let U; = ®(U;) and B, := ®(B;) and set, for notational
convenience, d; := d(L;) and ¢; := ¢(L;). As a simple consequence of Theorem 4.3 we
deduce the following estimates for every j € N:

/u Ino N| < Cmy d§70*2+25070*52 £?+f32/4 + Cm(l)/2+ﬁo d}/O*l €;+ﬁ2 / IN| (11.6)
J J
/ IDN|* < Cmyg d3707 2720 g2, (11.7)
Uj
INlleogy + sup |p—p(p)| < Cmy*d* 20, (11.8)
pEspt(T)Np~L(U;)
Lip(Ny,) < C (mod €)™, (11.9)
IT = Tpll(p~' (1)) < Crngt™ dji 0220 frfmiz=2o) (11.10)

Indeed, observe that d(H) < d; < 2d(H) for every H € # (L;) and 3 sy L(H)? < C3,
because all H € % (J;) are disjoint and contained in a ball of radius comparable to ¢;. This
in turn implies that 3 5o ;) ((H)**e < C€?+5, because ((H) < {; for any H € # (L), and
(11.6) - (11.10) follows easily because the exponents 5+ 35 /4, 4—24; and 24 (14 /) (2—26;)
are all larger than 2.

Next we claim the following inequality for every t > 0, where 7(¢) and C(t) are suitable
positive functions,

sup (mygd; £;)" < C(t) A" (r), (11.11)
J

Indeed, using Propositions 4.4 and 4.7 we have

Oem0d§70_2+251€§251§0/ IDN|)? if L; € #;, (11.12)
Bj

CZmy* 0% (1725 < C/B IN|? if Ly e #. (11.13)

On the other hand, since the B; are disjoint and contained in B, = ¥(B,),

> [ ioxp< [ pap= [ o
j B, B B



66 CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

by conformality of ¥ and

S [wes [ vpse [
= B B, B,

by the Lipschitz regularity of . Thus (11.11) follows easily by suitably choosing C'(t) and
n(t).

Observe therefore that (2.13) is an obvious consequence of (11.11), (11.9) and the uniform
bound on |DW|.

11.3. Proof of (2.14). First of all observe that, by the bounds on ¥,
[ 1P tino e < € /B [ o N(C.E)]
On the other hand, since U; C Bsgy,(2L,,wr;) and - < |zr,| < 2dj, we compute
/ |z o N(z,w)| < C’Zd}’o*l / |no N(z,w)l.
B, r U,
Now considering that d?70_3+25 00— €?+Bz/ ' < d;’m—2 E;H% ? (recall 2035 < Boyo), we have
[Pt N w)

(11.6) N
< Y (mo AP0 20 4 O/ P et / —|Z||1_|% )
U;

J/

jEN

TV
=A

We treat the second term in the summand above via Young’s inequality inequality;

A <2 ( 1/24fo d’Yo 1 €2+ﬁ2 |N|
w21 [P

<2 m(1)+250 d?vo—Q K;H-?ﬂz +C /

U IZIHO

J

where in the second line we have used Cauchy-Schwartz and |U;| < C¢3. Summarizing,

’ 2

N
mgc)/ 1z po N(z,w)| < C E (m(l)-i-no d?70—2 g;4,+2ﬂz +C / | ||2_70> . (11.14)
Br : u. |?
J J

Moreover, observe that, if L; € #},, then by (11.13) and L < |z| < 2dy,
|N °

20—2 HA+2 1/
mo dj"’0 €j+ b < C’mo/ T
u, =[P~

(11.15)
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while, if L; € #,, using (11.12) and (11.11), we deduce, for a suitable choice of 7,
my " A0 < Cmpe 652/ IDN|* < C A(r)™ / IDN|?. (11.16)
U; U;
Using (11.14), (11.15) and (11.16) and the properties of ¥ we conclude

2
mgo/B |z[° " Hn o Al(z,w)| < CA(r)*D(r) + C’/B M

B
However the later integral is precisely
"H(t)

g t20 '

This shows (2.14).

11.4. Proof of (2.15). Observe that Tp = T4. Thus using (11.10) we have
(11.10)
I7 = To (7 (R(B,)) < C Y mg*h dpe> o) fremsoniin),
jEN
Now, if L; € #¢, then using (11.11) with a suitable n, we have

mé—l—ﬁo d§270—2+251)(1+50) €?+(2_261)(1+50) < (mo djv_o é}o)ﬁo (mo d?w0—2+251 €§—251>

SCA"(T)/ IDN2.
Uj

On the other hand, if L; € %}, then by our choice of the constants,

m(lJ-I—Bo d(270—2+251)(1+/30) €2+(2—251)(1+Bo) _ (1)+ﬁo d§270—2+261)(1+Bo)gj—251+60(2—251)—2,326?—&-252

j j m

< m[l)/2+f30 d?’Yo/Bo m5/2d}0—252+70—2£?+2/32
2
< m(l)/2+,30 d?’yoﬁo /u ‘Nl

|22
J

where we used that —2d; 4 3y(2 —2071) — 28, > 0. Summing both contributions and arguing
as in the previous paragraph we conclude the proof of (2.15).

APPENDIX A. DENSITY AND HEIGHT BOUND

In this appendix we record two estimates which are standard for area minimizing currents
and can be extended with routine arguments to the three cases of Definition 0.1. Both
statements are valid for general m without additional efforts and we therefore do not
restrict to m = 2 here. Consistently with [12, 6] we introduce the parameter €2, which
equals

e A = ||As||co in case (a) of Definition 0.1;

o max{||dw||co, |[As|/co} in case (b);
e CoR™! in case (c).
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Lemma A.1. There is a positive geometric constant c(m,n) with the following property.
If T is a current as in Definition 0.1, where Q < c¢(m,n), then

ITN(By(2)) = win(O(T,p) = 1)p™ = winip™  Vp €spt(T),Vr € dist(p,0U).  (A.1)

Proof. By [12, Proposition 1.2] ||T']| is an integral varifold with bounded mean curvature
in the sense of Allard, where C'(2 bounds the mean curvature for some geometric constant
C. Tt follows from Allard’s monotonicity formula that e“*"||T||(B,(z)) is monotone non-
decreasing in 7, from which the first inequality in (A.1) follows. The second inequality is
implied by ©(T,p) > 1 for every p € spt(T): this holds because the density is an upper
semicontinuous function which takes integer values || T||-almost everywhere. O

For the proof of the next statement we refer to [8, Theorem A.1]: in that theorem 7'
satisfies the stronger assumption of being area minimizing (thus covering only case (a) of
Definition 0.1), but a close inspection of the proof given in [8] shows that the only property
of area minimizing currents relevant to the arguments is the validity of the density lower

bound (A.1).

Theorem A.2. Let QQ, m and n be positive integers. Then there are ¢ > 0,¢ > 0 and C
geometric constants with the following property. Assume that mo = R™ x {0} C R™" and
that:

(h1) T s an integer rectifiable m-dimensional current as in Definition 0.1 with U =
C.(zg) and Q < ¢;

(h2) 0T LC,(x0) =0, (Pr )y T'LCr(z0) = Q [Br(Pro(20))] and E := E(R, C,(x)) < €.
aThen there are k € N, points {y1,...,yx} C R™" and positive integers Q1, ..., Qr such
that:

(i) having set o := CE'*™, the open sets S; := R™ x (y;+] — ro,ro[") are pairwise
disjoint and spt(T') N Cra—o|10g £)) (T0) C U;S;;
(1) (Pro)t[TL(Cr1—o|10g ) (0) N'Si)] = Qi [Br(i—o|10g 1) (Pro (o), m0)] Vi € {1,... ,k}.

(ili) for every p € spt(T) N Cr1—oj10g £)) (Z0) we have O(T, p) < max{Q;} + 3.

APPENDIX B. PROOF OF PROPOSITION 2.4

In order to prove the Proposition we recall the following classical fact about the existence
of conformal coordinates. As in the rest of the paper, e denotes the standard euclidean
metric.

Lemma B.1. For every k € N and «, 5 €]0, 1] there are positive constants Cy and ¢y with
the following properties. Let g be a C*® Riemannian metric on the unit disk By C R? with
lg — ellco.a < cog. Then there exists an orientation preserving diffeomorphism A : Q — Bs
and a positive function X\ : 2 — R such that

(i) Afg = de;

(i) [[A = Idflcra + A = Lcow < Collg — ellcoe;

(i) [A = Idflgrers + A = 1lcrs < Collg = ellns



BRANCHED CENTER MANIFOLD 69

Although the statement above is a well-known fact (and it follows, for instance, from the
treatment of the problem given in [17, Addendum 1 to Chapter 9]), we have not been able

to find a classical reference for it. However a complete proof can be found in the Appendix
of [?].

Proof of Proposition 2.4. After rescaling we can assume that p > 2¢. We fix @ and drop
subscripts in B¢ 2. Observe also that, if we rescale by a large factor R, the constants C; in
Definition 1.4 can then replaced by the constants C; R™. Hence, without loss of generality
we can assume that C; is sufficiently small.

Let @ : 8 — R""2 be the graphical parametrization of the branching and recall that
g = ®e. Fix a point (29, wg) € B\ {0}, let r := |2|/2 and observe that on B,(zo,wp) we
can use z as a chart and compute the metric tensor explicitely as

Gij(z,w) = ;5 + Oiu(z, w)Oju(z, w) =: 6;; + 0yj -
It then follows easily that
|Dio(2)| <CoC?z|**7  for j €{0,1,2} (B.1)
[DQO']%BT(meO) SC()CET’OZ_Q . (B2)
Step 1. Next consider the map W: C = R? D By — B defined by W(z) = (29, 2).
We set
g=Wig=(®oW)e.
We then infer that (following Einstein’s convention on repeated indices)
gij (Z) = Q2’Z‘2Q_26ij + Ukl(ZQ>6inajWk s
and we set
7(2) = (Q*[**7) ().
We then easily see that

7(2) = e < Colz| PP DW(2) Plo(29)] < CoCF |24

Differentiating the identity which defines 7 we also get
[D7(2)] <Colz|" 9" VIDW (2) P (29)| + Colz| "2 |D*W (2)|| DW () |0 (27|

+ Colz|" 9P| DW (2) | Do (29)]| 2|7

<CHO2 |21
Analogous computations lead then to the estimates
|DI (1 — e)|(2) <CoC?|2[? 92 for j € {0,1,2}

[DQT]Q,BS(Z) <CC?|zPRa2e for s = |z]/2. (B.4)

—
©
w

N

Interpolating between the C! and the C° bound, we easily conclude that
[7)20a,B2\8, < CoCY -

Note in particular that 7 (unlike g) can be extended to a nondegenerate C%?® metric to
the origin.
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Since C; can be assumed sufficiently small, we can apply Lemma B.1 to find an orienta-
tion preserving diffeomorphism A: Q — By and a function A :  — R™ such that

A7 =MXe (B.5)
HA — Id”cl,QQa + Hj\ — 1H00,2Qa SCOCz . (B6)

Observe that, without loss of generality, we can assume that 0 € ©Q and A(0) = 0. In
particular (B.6) implies that, for C; suitably small, B; C Q and hence we will regard A
and A as defined on B;. Next divide A by A(0)"? and keep, by abuse of notation, the
same symbols for the resulting map and the resulting conformal factor in (B.5). After this
normalization we achieve that A(0) = 1 and that the estimates (B.6) still hold with a larger
Cy. Moreover, A(0) = 1 implies that DA(0) € SO(2): composing A with an appropriate
rotation we can then assume that DA(0) is the identity. This implies that

IA(z) — 1] <CoCyz]* (B.7)
|DI(A(2) — 2)| CoC;|z|' T for j € {0,1}. (B.8)

Step 2. We next wish to estimates the higher derivatives of both A and X. We adopt
the following procedure. We fix a point p # 0 and let r := |p|/2. We then apply a simple
scaling argument to rescale B,(p) to a ball of radius 2 so that we can apply Lemma B.1.
If we rescale back to B,(p) it is then easy to see that we find maps A, : ©, — B,(p),
Ap 1 @ — RT with the properties properties:

Ag’?’ =\,9 (B.9)
1A, — 1d||cr20 + [|Ap — 1||co2ea <CoC; (B.10)
(A, —1d]3.0 + [\ — 120 SCoCyr?@e—27e (B.11)

Note that =:= Ao A I Moreover, its domain is a disk of radius r. Since

sup |0,(2(z) — 2)| < CyrQe ,

we easily conclude the higher derivative estimates
|0F(E — 2)|| < CoCyr?@a—F for k € {1,2,3,4},
which, by holomorphicity, are actually estimates on the full derivatives. Since A = Z o A,
we then easily conclude that
|DITIA(2)] + | DI (A(2) — 1)] <CoCilz)*@*~ for j € {0, 1,2} (B.12)
[D*Ala.B,(2) + [D*Na.p, () <CoCir?do—272 for r = |2]/2 > 0. (B.13)
Finally notice that
(Afg) (2) = Q@*|A(2) P92 A(2)e - (B.14)
Step 3. We are finally ready to define ¥ := & o W o A o WL, First of all observe that

AW )P

(Fe)(z,w) = (W) Ag) (2, w) ZP27e AW (z,w))eq =t Az, w)eq -
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Since [W~1(z,w)| = |2|"/€, we can also estimate

AW (2, w))|92 AW (2,w))|97% — [2]>%/9
’Z‘Q—Q/Q |Z|2—2/Q

<CoCHW ™ (z,w) P2 + Colz| 19 (JAW ! (2, w))| = [W ™ (z,w)])
<CoC?| 2| + CoC? 2| YW L (2, w) |12 < CyC2 2|

Az, w) = 1] < AW (z,w)) = 1]+ C

Similarly

[DA(z,w)| <Col DACW (=, w))||z|1+c Pl AW (=, w)) 2

(W=1(z,w)[?9—2
AW
SCOCi2|Z|2a—1+CO‘ ‘ "
and observe that
A(W)| DA(W) AW w1
p— — Id) DWW
‘ (W1 IAW-H[[W= W3

<Co| DWHWH ™ (|IDAW ™) — Id| + [WH (JA(W™) — (W)
<CoCF[ DWW HPee=2,
Recalling that [DW ! (z,w)| < |2|V97, W™ (2, w)| = |2|"/?, we conclude
|IDA(z,w)| < CoC?z** 1.

The estimates on the second derivative and its Holder norm follow from similar computa-
tions. )
We now come to the estimates on ¥. Let A := W o Ao W™ Fix (z9,wp) # 0, let

r = |20|/2 and use z as a local chart. It will then suffice to show that
|DI(A(2) — 2)| <CoCylz)* Tt for j € {0,1,2,3} (B.15)
[D*A o, B, (z0.00) <CoCilz|7>. (B.16)

On the other hand since A(0,0) = (0,0), it actually suffces to show the first estimate for
7 =1 to obtain it in the case j = 0.
We start computing the first derivatives:

DA = DW(Ao W HDA(W HDW 1.
Recalling that DW(W 1) DW ! = Id, we estimate
[DA(2) — 1d| <[DW(A(W™'(2))) = DW(W ™ (2))[[ DA(W ™ (2))|[ DW ' (2)]
+[DW (W (2))|[ DAW™(2)) — 1| DW ™ (2)]
<Co|WH(2)| P AW H(2)) = W (z)[|2V/9
<+ CoOF W1 (2)[7H[W () @0 /O
<CoC?W1(2)| Q20 | V@71 1 CyC2| 2% < CoC2|2)*.
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Similar computations give the estimates on the higher derivatives. O
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