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Abstract

We study the regularity properties of the lumping problem for differential equations in Banach
spaces, namely the projection of dynamics by a reduction operator onto a reduced state space
in which a self-contained dynamical description exists. We study dynamics generated by a
nonlinear operator F and a linear and bounded reduction operator M . We first show, using
quotient space methods, that the reduced operator is C1, provided that F itself is C1 in the
original state space. We further prove that a particular lumping relation holds between the
Fréchet differentials of F and the reduced operator. In this way, by smoothness, the linearization
principle applies and it is possible to use results from linear theory to study the local behavior
of the system.
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1. Introduction

Consider the differential equation defined on a Banach space X,{
ẋ(t) = F (x(t))
x(0) = x0,

(1)

with F : D(F ) ⊆ X → X. We assume that the dynamics (1) is well defined, in the sense that
for every x0 ∈ D(F ) there exists a unique solution. In addition, consider a linear bounded map
M : X → Y , where Y is another Banach space. We view the operator M as a reduction of the
state space: it is surjective but not an isomorphism. The question of interest is whether the
variable y = Mx also satisfies a well-posed and self-contained linear dynamics on Y , say

ẏ(t) = F̂ y(t), y = Mx,

for some F̂ . If this is the case, then we refer to M as a reduction or lumping operator.
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Roncoroni)
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Definition 1. The system (1) is said to be exactly lumpable by the operator M if there exists

an operator F̂ : Y → Y such that the following diagram commutes

Y Y

X X

F̂

F

M M

(2)

that is,
MF = F̂M. (3)

The term lumping originates from chemical reaction systems, where the aim is to aggregate
all the species involved in the reaction into a few groups, called lumps of chemical reagents
[18, 17, 16, 12]. A similar concept of aggregation of states has been used in the theory of Markov
chains, where the question is whether the newly-formed aggregates also admit a Markovian
description for the state transitions [9, 11, 6]. In [10, 14] lumpability was studied in the context
of ecological modelling. There is also a connection to control theory, given in [8]. Diagram 2,
however, is more general, as the operator M can also represent other types of reduction, for
example projections or averages. It can also be seen as describing a multi-level system, whose
dynamics is described by F at the micro level and by F̂ at the macro level. The notion of
lumping is also related to the conjugacy : two systems are conjugate if M is not only surjective
but also invertible. However, conjugacy implies that the orbits of the original systems are
mapped homeomorphically into orbits of the new system; so there is no reduction of dynamics.
More closely related, but also less well studied, is the concept of semi-conjugacy [5, 4], where
the assumption of the invertibility of M is relaxed, although in this case the interpretation of
Diagram 2 is different: In the context of semi-conjugacy both operators F and F̂ are given and
the problem is showing the existence of a surjection M , while in the case of lumping one starts
from a given M and asks whether an F̂ exists so that Diagram 2 commutes.

Previous work on lumpability in infinite dimensional spaces was carried out for bounded
operators by Coxson [8], and by Rózsa and Tóth in the context of Hilbert spaces [15]. In
particular, the analysis in [8] requires the existence of a continuous pseudoinverse of the lumping
operator (see Definition 5 below). However, as will be detailed in Section 2, the existence of a
pseudoinverse requires some restrictive hypotheses on M ; specifically, a topological complement
for ker(M) is assumed to exist. In [2], the present authors have used a different method that
does not resort to pseudoinverses, analyzed the lumpability of linear systems in general Banach
spaces, and further extended the results to unbounded operators. For the case when the original
dynamics is well-posed, in the sense of the Hille and Yosida Theorem, i.e., when F is the
infinitesimal generator of a C0-semigroup of linear operators {T (t)}t≥0, conditions have been

derived conditions for the reduced operator F̂ to exist and to generate again a C0-semigroup on
the reduced state space [2]. In particular, a necessary and sufficient condition for lumpability
turns out to be the invariance of ker(M) under the whole semigroup, that is

ker(M) ⊆ ker(MT (t)), t ≥ 0.
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Since the semigroup of solutions is in general not known a priori, necessary and sufficient
conditions for lumpability are also given directly on the infinitesimal generator [2] (see Theorem
4 in the next section).

Lumpability of nonlinear systems presents further challenges. For semigroups of nonlinear
operators, the differentiability of t 7→ T (t)x is not automatically guaranteed even if x belongs
to the domain of the infinitesimal generator. The aim of the present paper is to obtain some
regularity properties of the nonlinear reduced map. A particular outcome is the justification of
the linearization principle in a neighborhood of a given point. In this way, we locally obtain a
lumping of linear systems, for which lumpability has been studied, as mentioned in the above
paragraph [8, 15, 2]. In particular, we show that if F is sufficiently smooth, the reduced operator

F̂ is Fréchet differentiable on Y ; in fact, it is a C1 operator. We further prove that a lumping
relation similar to (3) holds for the differentials of F̂ and F respectively. By the smoothness
of the reduced map, one can then approximate the behaviour of the reduced system locally
via linearization, and then study the lumping between the two differential operators, which are
indeed linear and bounded. On the other hand, some other properties such as contractivity are
not necessarily preserved after lumping (see Remark 2).

It is not hard to see that a necessary and sufficient condition for the reduced operator F̂ to
be well-defined is that for all x1, x2 ∈ D(F ),

Mx1 = Mx2 ⇒ MF (x1) = MF (x2). (4)

In this case we say that F preserves the fibers of M , in the sense of level sets: if two points
belong to the same level set of M , then also their images through F belong to the same level
set. We can then define F̂ by

F̂ (y) := MF (x), y = Mx. (5)

By (4), if Mx1 = Mx2, then also MF (x1) = MF (x2), and definition (5) is well-posed.

Since F̂ is defined as an operator on Y , proving its smoothness without making use of a
pseudoinverse operator for M is non-trivial. Indeed, if a pseudoinverse M exists (i.e. ker(M)

is complemented), then one can write F̂ (y) := MF (My). In this case the smoothness of F̂
follows from the boundedness of M and M . But if ker(M) is not complemented in X, then we

are not able to express x in terms of the reduced variable y. To prove the regularity of F̂ we
will exploit the properties of some particular operators on quotient Banach spaces.

In the following, it will be a standing assumption that F (0) = 0. In this way, F̂ (0) = 0 and
0 is an equilibrium point for both the original and the reduced system. In the next section we
recall some basic definitions about differentiability in Banach spaces and strongly continuous
semigroups of operators (for more details on nonlinear functional analysis, we refer to [3]). The
main regularity results are presented in Section 3. We state the implications for linearization
and local behavior in Section 4 and conclude with an example in Section 5.

2. Preliminaries

In this section we review some background results from functional analysis, starting with
differentiability concepts in Banach spaces.
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Definition 2. Let X and Y be two Banach spaces. A function F : X → Y is said to be
Gâteaux differentiable at a point x ∈ X if the following limit exists for every h ∈ X:

d

dt
(F (x+ th))|t=0

= lim
t→0

F (x+ th)− F (x)

t
=: DFx(h)

and, for x fixed, DFx is a bounded linear operator on X.

The Gâteaux differential is a generalization of the classical directional derivative (with the
additional condition that the directional derivative be a linear operator acting on the directions).
A stronger notion of derivative is obtained if it is required that the convergence in the above
limit is uniform in h, when h belongs to the unit ball of X.

Definition 3. A function F : X → Y is said to be Fréchet differentiable at x ∈ X if there
exists a linear and bounded operator Dx ∈ B(X,Y ) such that

lim
h→0

F (x+ h)− F (x)−Dx(h)

‖h‖
,

or equivalently,
F (x+ h) = F (x) + Dxh+ o(‖h‖). (6)

In particular, (6) implies the possibility of approximating F by its linearization in a neigh-
borhood of a point at which it is Fréchet differentiable. If F is Fréchet differentiable, then it is
also Gâteaux differentiable and the two differentials coincide: Dx(h) = DFx(h) for all h ∈ X.
For this reason we will always use the notation DFx for the derivative of a Fréchet differen-
tiable function at the point x. If A is a linear operator then its Fréchet differential clearly
coincides with A itself. Furthermore, the following criteria can be used to verify the Fréchet
differentiability of a function.

Proposition 1. If F : X → Y is Gâteaux differentiable in x ∈ X and the Gâteaux derivative
DF is continuous from X to B(X,Y ), then F is also Fréchet differentiable (and, in this case,
it is said to be a C1 function).

Most existing works on lumpability rely on pseudoinverses of operators, whose existence is
related to topologically complemented subspaces. We briefly recall the relevant notions.

Definition 4 (Complemented subspace). A closed subspace X1 of a Banach space X is said
to be complemented in X if and only if there exists a closed subspace X2 such that

X = X1 ⊕X2,

where X1 ⊕X2 denotes the topological direct sum of X1 and X2. In this case, X2 is called a
topological complement for X2.

It can be shown that every finite dimensional subspace has a topological complement. Fur-
thermore, if H is a Hilbert space, then every closed subspace Y ⊂ H is complemented. Indeed,
the orthogonal complement Y ⊥ (i.e. 〈y, y⊥〉 = 0 for every y ∈ Y, y⊥ ∈ Y ⊥) is a closed subspace
of H and we have H = Y ⊕ Y ⊥. A famous theorem due to Lindenstrauss and Tzafriri asserts
that the converse is true as well [13]. More precisely, if (X, ‖ · ‖) is a Banach space such that
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every closed subspace is complemented, then ‖ · ‖ is induced by a scalar product, i.e. (X, ‖ · ‖)
is a Hilbert space. A known example of a non-complemented subspace in a Banach space is
c0(Z) ⊂ l∞(Z), i.e., the closed subspace of null sequences in the Banach space of the bounded
sequences.

Definition 5 (Pseudoinverse). A pseudoinverse of A ∈ B(X,Y ) is any operator A ∈ B(Y,X)
such that AAA = A.

Proposition 2. Let A be a linear operator between Banach spaces. Then the following are
equivalent:

(i) A admits a bounded pseudoinverse A : Y → X;

(ii) ker(A) and ran(A) are complemented subspaces in X and Y respectively;

(iii) there exist continuous projections P and Q such that ran(P ) = ker(A) and ran(Q) =
ran(A) respectively.

Clearly, not every linear and bounded operator has a pseudoinverse (see [1] for details
about this problem); therefore, a more general method is needed for the analysis of lumping in
Banach spaces. The approach taken in [2] uses the concept of strongly continuous semigroups
to overcome the restrictions of pseudoinverses: Let X be a Banach space. A one-parameter
family of bounded operators {T (t)}t≥0 in B(X) is called a strongly continuous semigroup if

1. T (0) = I,

2. T (t+ s) = T (t)T (s) ∀t, s ≥ 0,

3. The map t 7→ T (t)x ∈ X is continuous for every x ∈ X.

The last property is called strong continuity as it corresponds to the continuity of the map
t 7→ T (t) ∈ B(X) when B(X) is endowed with the strong operator topology, (i.e., Tn → T iff
limn→+∞‖Tnx− Tx‖ = 0, ∀x ∈ X).

The generator of a strongly continuous semigroup {T (t)}t≥0 is the closed and densely defined
operator A : D(A) ⊂ X → X defined by Ax = limh→0+

1
h (T (h)x− x) on the domain

D(A) =

{
x ∈ X : lim

h→0+

1

h
(T (h)x− x) ∈ X

}
.

If the generator is a bounded operator, i.e. D(A) = X, then the semigroup is said to be
uniformly continuous. A strongly continuous semigroup T (t) is characterized by a real number
ω(T ) called the growth bound of the semigroup, defined as

ω(T ) = inf
{
ω0 ∈ R : ∃C > 0 with ||T (t)|| ≤ Ceω0t ∀t > 0

}
.

The growth bound is linked to the spectral properties of the generator A; in fact, it can be
shown that supλ∈σ(A){Re(λ)} ≤ ω(T ), where σ(A) denotes the spectrum of A.

Theorem 3. The dynamics associated with a linear operator A is well posed if and only if A
is the generator of a strongly continuous semigroup {T (t)}t≥0 on X, and in that case for every
u0 ∈ D(A) the unique classical solution is given by t 7→ T (t)u0.
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The next result gives the necessary and sufficient conditions for lumpability of linear systems
from the point of view of the infinitesimal generator.

Theorem 4 ([2]). The system associated with A is exactly lumpable by the linear, bounded and
surjective operator M : X → Y if and only if the following two conditions hold:

1. A (Ker(M) ∩D(A)) ⊂ Ker(M);

2. there exists λ > ω such that (λI −A) is surjective from Ker(M) ∩D(A) to Ker(M).

We note that these linear results are still useful in the nonlinear case, because if the nonlinear
map F is differentiable, then its differential is a linear and bounded operator. In particular, it
generates a uniformly continuous semigroup on X.

3. Regularity of the operator F̂

We now turn to the question of which regularity properties of the nonlinear function F are
preserved by lumping. We first prove that continuity is maintained.

Proposition 5. Let F : X → X be an everywhere-defined map from a Banach space X to
itself satisfying condition (4). If F is continuous, then the map F̂ : Y → Y defined in (5) is
also continuous.

Proof. Let A ⊂ Y be an open set. We will show that F̂−1(A ) is also an open set in Y . To
this end, we write

M−1F̂−1(A ) = (F̂ ◦M)−1(A ) = (MF )−1(A ).

Since M is linear and bounded and F is continuous, (MF )−1(A ) is an open set in X, so that

M−1F̂−1(A ) is open. Given that M is surjective, we obtain

M(M−1F̂−1(A )) = F̂−1(A ),

which is an open set in Y because M is an open map by the Banach-Schauder Theorem (i.e.,
it maps open sets into open sets).

Remark 1. Note that the proposition above holds also in the case the domain D(F ) of F is a
proper subset of X. In this case F is continuous if and only if, for any open set A ∩X, F−1(A )
is open with respect to the subspace topology induced by X on D(F ), (i.e it can be written as
B ∩D(F ) for some open set B in X). Using the notation as above,

(MF )−1(A ) = D(F ) ∩B, B open in X.

Then,
M(M−1F̂−1(A )) = M(D(F ) ∩B) ⊂MD(F ) ∩D ,

where D is the open set M(B). But since MF is continuous, M(D(F ) ∩ B) is open in Y :
writing it as M(D(F )∩B)∩D , it is clear that it is open with respect to the subspace topology.

It follows that F̂−1(A ) is also open with respect to the subspace topology on D(F̂ ).
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In the following, we make use of two particular operators defined on the quotient Banach
space X

ker(M) . First, we consider the following diagram

X Y

X
Ker(M)

M

M̃π

(7)

Define the operator M̃ : X
Ker(M) → Y by M̃ [x] := M(x). This definition is well posed, in the

sense that it does not depend on the choice of the particular element in the equivalence class.
Furthermore, since [x] = [x−m] ∀m ∈ ker(M),

‖M̃ [x]‖ = inf
m∈ker(M)

‖M̃ [x−m]‖ = inf
m∈ker(M)

‖M(x−m)‖

≤ inf
m∈ker(M)

‖M‖ ‖x−m‖ = ‖M‖ ‖[x]‖,

which shows that M̃ is bounded. Moreover, M̃ is a bijective operator between Banach spaces.
By the Banach-Shauder Theorem, being an open bijection, M̃ is also an homeomorphism. In
particular, M̃−1 is a bounded operator on Y .

Next, we look at the diagram

X Y

X
Ker(M)

MF

M̃Fπ

(8)

where the operator M̃F : X
Ker(M) → Y is defined by

M̃F [x] := MF (x). (9)

This operator is well defined even if F is nonlinear, provided that it satisfies condition (4). In

particular, if F is linear and bounded, M̃F is itself a linear and bounded operator [2]. These
two operators will be fundamental in the proof of the next results.

Recall that an operator F is Lipschitz continuous if there exists a constant K ∈ R+ such
that ‖F (x1)− F (x2)‖ ≤ K‖x1 − x2‖ for every x1, x2 ∈ X. In particular, if ‖F (x1)− F (x2)‖ ≤
‖x1 − x2‖ ∀x1, x2 ∈ X, then F is called contractive.

Proposition 6. Let F : X → X be an everywhere-defined map from a Banach space X to itself
satisfying condition (4). If F is Lipschitz continuous, then the map F̂ : Y → Y defined as in
(5) is also Lipschitz continuous.
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Proof. Consider Diagram 8. Since F preserves the fibers of M , the map M̃F given in (9) is
well defined. For any two elements [x1], [x2] ∈ X

Ker(M) , we have

‖M̃F ([x1])− M̃F ([x2])‖ = inf
m∈Ker(M)

‖M̃F ([x1 −m])− M̃F ([x2])‖

= inf
m∈Ker(M)

‖MF (x1 −m)−MF (x2)‖ ≤ inf
m∈Ker(M)

‖M‖ ‖F (x1 −m)− F (x2)‖

≤ inf
m∈Ker(M)

K ‖M‖ ‖(x1 −m)− x2‖ = K ‖M‖ ‖[x1]− [x2]‖.

Thus M̃F is Lipschitz with Lipschitz constant K ‖M‖. Now, if y1 = Mx1 and y2 = Mx2 are
points in Y , then

‖F̂ (y1)− F̂ (y2)‖ = ‖MF (x1)−MF (x2)‖ = ‖M̃F ([x1])− M̃F ([x2])‖

≤ K ‖M‖ ‖[x1]− [x2]‖ = K ‖M‖ ‖M̃−1y1 − M̃−1y2‖

≤ K ‖M‖ ‖M̃−1‖ ‖y1 − y2‖,

i.e. F̂ is Lipschitz continuous with Lipschitz constant equal to K ‖M‖ ‖M̃−1‖.

Remark 2 (Contractivity). Observe that, by definition of M̃ and of the equivalence class [x],

‖M̃‖ = sup
‖[x]‖≤1

‖M̃ [x]‖ = sup
‖[x]‖≤1

inf
m∈Ker(M)

‖M(x−m)‖

≤ sup
‖[x]‖≤1

inf
m∈Ker(M)

‖M‖ ‖x−m‖ ≤ sup
‖[x]‖≤1

‖M‖‖[x]‖ ≤ ‖M‖.

On the other hand, since the quotient map π is a contraction operator, one can write

‖M‖ = sup
‖x‖≤1

‖Mx‖ = sup
‖x‖≤1

‖M̃ [x]‖

≤ sup
‖x‖≤1

‖M̃‖ ‖π(x)‖ ≤ sup
‖x‖≤1

‖M̃‖‖(x)‖ ≤ ‖M̃‖.

Thus ‖M‖ = ‖M̃‖. Let K̂ denote the Lipschitz constant of F̂ . Then K̂ = K ‖M‖ ‖M̃−1‖ =

K ‖M̃‖ ‖M̃−1‖. Since in general ‖M̃−1‖ ‖M̃‖ ≥ 1, we have K̂ ≥ K. Therefore F̂ need not be
a contractive operator even if K < 1, unless additional conditions are imposed on the lumping
operator M , such as ‖M‖‖M̃−1‖ = 1.

We next prove that the function F̂ preserves the smoothness of F under suitable hypotheses.
First, suppose that F is Gâteaux differentiable on the whole X, with DFx denoting the Gâteaux
derivative at the point x ∈ X. We then claim that F̂ is also Gâteaux differentiable on Y . Indeed,
if y = Mx and z = Mh,

lim
t→0

F̂ (y + tz)− F̂ (y)

t
= lim
t→0

MF (x+ th)−MF (x)

t

= M

(
lim
t→0

F (x+ th)− F (x)

t

)
= MDFx(h).

8



Hence the Gâteaux derivative of F̂ can be defined as

DF̂y(z) := MDFx(h),

for every y = Mx and z = Mh. If y is fixed, then DF̂y is a linear and bounded operator from
Y to itself.

Proposition 7. Suppose that F is an everywhere-defined operator on X satisfying condition
(4). Assume further that F is C1, i.e. DF is a continuous operator from X to B(X). Then

the reduced operator F̂ defined in (5) is also C1 on Y .

Proof. In the following we will use the notation A for a linear operator, to distinguish from the
nonlinear function F . Consider the following subspace of B(X):

B̃(X) := {A ∈ B(X) such that ker(M) ⊂ ker(MA)}.

This is the space of all linear and bounded operators A such that the reduced operator Ây :=
MAx, y = Mx is well-defined and belongs to B(Y ) (see [2]). It is easy to verify that B̃(X) is
a linear space containing 0 and the identity map I. Moreover, it is a closed subspace of B(X).

Indeed, given An such that An → A in B(X), An ∈ B̃(X), and x1, x2 such that Mx1 = Mx2,
we have

‖MAx1 −MAx2‖ ≤ ‖MAx1 −MAnx1‖+ ‖MAnx1 −MAnx2‖+ ‖MAnx2 −MAx2‖
= ‖MAx1 −MAnx1‖+ ‖MAnx2 −MAx2‖,

because MAnx1 = MAnx2 for all n ∈ N. Letting n→ +∞, we obtain ‖MAx1 −MAx2‖ = 0.

Hence, MAx1 = MAx2, i.e., A ∈ B̃(X). Now define the following linear operator between
Banach spaces:

M : B̃(X)→ B(Y ), M (A) := Â,

where Ây = MAx for all y = Mx ∈ Y . We will first prove that this operator is continuous,
and then show the continuity of DF̂ by the continuity of M .

Consider Diagram 8 and the operator M̃A[x] := MAx from X
ker(M) to Y , which is well

defined, linear, and bounded. Suppose that An → A in B(X). Then,

‖M̃An[x]− M̃A[x]‖ = ‖MAn(x−m)− M̃A(x−m)‖

= inf
m∈ker(M)

‖MAn(x−m)− M̃A(x−m)‖

≤ inf
m∈ker(M)

‖MAn −MA‖‖x−m‖ = ‖MAn −MA‖‖[x]‖,

so that
sup
‖[x]‖≤1

‖M̃An[x]− M̃A[x]‖ ≤ ‖MAn −MA‖.

Letting n → +∞, we obtain sup‖[x]‖≤1‖M̃An[x] − M̃A[x]‖ → 0. Now, using the properties of

9



the operator M̃ (see Diagram 7),

‖MAn −MA‖B(Y ) = sup
‖y‖≤1

‖Ân − Â‖ = sup
‖y‖≤1

‖MAnx−MAx‖

= sup
‖y‖≤1

‖M̃An[x]− M̃A[x]‖ ≤ sup
‖y‖≤1

‖M̃An − M̃A‖‖M̃−1y‖

≤ sup
‖y‖≤1

‖M̃An − M̃A‖‖M̃−1‖‖y‖ ≤ ‖M̃An − M̃A‖‖M̃−1‖.

Since the norm ‖M̃An − M̃A‖ (which is the operator norm in B( X
ker(M) , Y ) tends to zero for

n→ +∞, we have that MAn converges to MA in B(Y ). This implies that M is a linear and
bounded operator from B(X) to B(Y ).

Now, we know that F̂ is at least Gâteaux differentiable with Gâteaux derivative DF̂y(z) =
MDFx(h), for every y = Mx and z = Mh. Furthermore, DF is also the Fréchet differential of
F because F is C1. By definition it is easily seen that

DF̂ ◦M = MDF

as operators from X to B(Y ). To show that DF̂ is continuous from Y to B(Y ), we take an
open set A ⊂ B(Y ) and write

M−1(DF̂−1)(A ) = (DF̂ ◦M)(A )−1 = (MDF )−1(A ),

which is an open set in X because M and DF are continuous. Since M is surjective and open,

DF̂−1(A ) = MM−1(DF̂−1)(A ) = M(MDF )−1(A ),

which is an open set in Y . By the continuity of the map y 7→ DF̂y, it follows that F̂ is C1 and

DF̂ is its Fréchet differential.

Remark 3. Note that Proposition 7 still holds if F is defined on a proper subset D(F ) ⊂ X,
provided that F is C1 on its domain. Indeed, even in this case DFx is a bounded operator on
X for x ∈ D(F ). We have DF̂ ◦M = MDF as operators from D(F ) to B(Y ). In this case, for

every open set A ⊂ B(Y ), DF̂−1(A ) is open with respect to the subspace topology on D(F̂ ).

Thus, F̂ is C1 on MD(F ).

4. Linearization and local lumping

We consider an application of the results obtained in the previous section about regularity
of the reduced map. Consider a point x0 ∈ X in which F is C1, and the ball Bα(x0) centered
in x0 with ray α > 0. Denote y0 := Mx0. Since M is an open map, the following property is
well known: For every α > 0 there exists β > 0 such that

Bβ(Mx0) ⊂MBα(x0).
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In other words, for α fixed, one can find β > 0 such that all the points y ∈ Bβ(y0) can be
written as y = Mx, with x ∈ Bα(x0). By virtue of Proposition 7, one can write the following

linearization for the reduced operator F̂ :

F̂ (y0 + y) = F̂ (y0) +DF̂y0y + o(‖y‖),

that is,
F̂ (y0 + y) = F̂ (y0) +MDF̂x0

x+ o(‖y‖).

Now take x0 = 0. Since 0 is an equilibrium for the system by standing assumption, the
linearization around 0 becomes

F̂ (y) = MDF0x+ o(‖y‖). (10)

Choose α� 1, and γ > 0 such that

γ < β, γ � 1.

For all y ∈ Bβ(0), F̂ can be approximated by MDF0 using (10).
We have proved in the previous section that the lumping relation holds between DF and

DF̂ :
DF̂0(y) = MDF0(x),

and ker(M) is DF0-invariant. Hence, looking at F and F̂ in Bα(0) ⊂ X and Bγ(0) ⊂ Y
respectively, we are dealing with the lumping of linear operators. In particular, it has been
proved that stability of equilibria is preserved by lumping [16, 15]. Note that both DF0 and

DF̂0 generate well-posed dynamics since they are linear and bounded operators. Denote by
T (t) and T̂ (t), respectively, the uniformly continuous semigroups generated by DF0 and DF̂0.
It is proved in [2] that ker(M) is T (t)-invariant and the lumping relation

MT (t) = T̂ (t)M

holds on X. In particular, the growth bound ω̂ of the semigroup T̂ (t) is always less or equal
than the growth bound ω of T (t) [15], and, by boundedness of the operators involved,

sup
λ∈σ(Â)

{Re(λ)} = ω(T̂ ) ≤ sup
λ∈σ(A)

{Re(λ)} = ω(T ).

It is well known that a semigroup T (t) is exponentially stable if and only if ω < 0.
Using the linearized stability theorem in Banach spaces (see, e.g., [7]), one can study the local

stability of the zero equilibrium for the nonlinear system associated with F̂ by looking at the
growth bound of the semigroup generated by DF̂0 (which is indeed linear). By the lumping we
obtained, this growth bound can be estimated by the growth bound of the semigroup generated
by DF0. In particular, if 0 is exponentially stable for the system associated with DF0, then it
is locally exponentially stable for the nonlinear system associated with F̂ .

11



5. An example with a nonlinear composition operator

Consider the Banach space X := B(R) of continuous, bounded, real-valued functions from
R to itself with the supremum norm, ‖f‖ = supx∈R |f(x)|. Define the following composition
operator:

F (f)(x) := φ(f(x)), (11)

where φ : R → R is a C2 function. Since f is bounded and φ is smooth, the operator F
is continuous from X to itself. We will show that F is Fréchet differentiable with Fréchet
differential DF : X → B(X), defined as

DFf [h](x) := φ′(f(x))h(x), ∀f, h ∈ X, x ∈ R.

Since φ is C2, we can write:

φ(x+ y) = φ(x) + φ′(x)y +O(y2).

Then,

lim
t→0

(
sup
x∈R

∣∣∣∣F (f + th)(x)− F (f)(x)

t
− φ′(f(x))h(x)

∣∣∣∣)
= lim
t→0

(
sup
x∈R

1

t

∣∣φ(f(x)) + φ′(f(x))th(x) +O(t2h(x)2)− φ(f(x))− tφ′(f(x))h(x)
∣∣)

≤ lim
t→0

C t‖h‖2 = 0.

It follows that φ′(f(x))h(x) is the Gâteaux differential of F evaluated at f and acting in the
direction h. It is also the Fréchet differential since

lim
h→0

‖F (f + h)− F (f)− φ′(f)h‖
‖h‖

≤ lim
h→0

C‖h‖2

‖h‖
= 0.

Moreover, F is C1, because the map X 3 f → DFf ∈ B(X) is continuous.
Now, given a set of points y1, . . . , yn in R, consider the following lumping operator

Mf =

 f(y1)
...

f(yn)

 , M : X → Rn.

The operator F preserves the fibers of M since g(y1)
...

g(yn)

 =

 f(y1)
...

f(yn)

 ⇒

 φ(g(y1))
...

φ(g(yn))

 =

 φ(f(y1))
...

φ(f(yn))

 .

Therefore the reduced operator F̂ exists and is well defined. Applying the foregoing theory,
we can linearize the lumped system without calculating F̂ explicitly. Indeed, by Proposition 7,
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we know that the reduced operator is C1 and the following lumping relation holds between the
Fréchet differentials:

DF̂g(z) = MDFf (h), ∀ g = Mf, z = Mh.

Thus DF̂g acts as

DF̂g(z) = Mφ′(f(x))h(x) =

 φ′(f(y1))h(y1)
...

φ′(f(yn))h(yn)

 ,

where

g =

 f(y1)
...

f(yn)

 , z =

 h(y1)
...

h(yn)

 .

For a vector v = (v1, . . . , vn) ∈ Rn, DF̂v is the n× n diagonal matrix given by

DF̂v :=


φ′(v1) 0 . . . 0

0 φ′(v2) . . . 0
...

...
. . .

...
0 0 . . . φ′(vn)

 .

This finite-dimensional operator represents the linearization of the reduced system associated
to F̂ .

Note that in this particular example one can verify the smoothness of F̂ by explicit calcu-
lation. Indeed, it is easy to see that

F̂


 v1

...
vn


 =

 φ(v1)
...
φ(vn)

 ,

and its regularity can be deduced from the regularity of φ. Howewer, in general F̂ is defined by
formula (5) only in an implicit way. Since we don’t have an inverse map to obtain the original

state variable from the lumped variable, there may be cases where F̂ is difficult to compute. In
such situations, the results of this paper help deduce and exploit the smoothness of the reduced
dynamics without computing it directly.
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