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Abstract

We develope a new and general notion of parametric measure models and statistical models
on an arbitrary sample space Ω. This is given by a diffferentiable map from the parameter
manifold M into the set of finite measures or probability measures on Ω, respectively, which
is differentiable when regarded as a map into the Banach space of all signed measures on Ω.
Furthermore, we also give a rigorous definition of roots of measures and give a natural definition
of the Fisher metric and the Amari-Chentsov tensor as the pullback of tensors defined on the
space of roots of measures. We show that many features such as the preservation of this tensor
under sufficient statistics and the monotonicity formula hold even in this very general set-up.

MSC2010: 53C99, 62B05
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1 Introduction

Information geometry is concerned with the use of differential geometric methods in probability
theory. An important object of investigation are families of probability measures or, more generally,
of finite measures on a given sample space Ω which depend differentiably on a finite number of
parameters. Associated to such a family there are two symmetric tensors on the parameter space
M . The first is a quadratic form (i.e., a Riemannian metric), called the Fisher metric gF , and the
second is a 3-tensor, called the Amari-Chentsov tensor T. The Fisher metric was first suggested
by Rao [19], followed by Jeffreys [12], Efron [11] and then systematically developed by Chentsov
and Morozova [8], [9] and [16]; the Amari-Chentsov tensor and its significance was discovered by
Amari [1], [2] and Chentsov [10].
These tensors are of interest from the differential geometric point of view as they do not depend
on the particular choice of parametrization of the family, but they are also natural objects from
the point of view of statistics, as they are unchanged under sufficient statistics and are in fact
characterized by this property; this was shown in the case of finite sample spaces by Chentsov in [9]
and more recently for general sample spaces in [5]. In fact, Chentsov not only showed the invariance
of these tensors under sufficient statistics, but also under what he called congruent embeddings of
probability measures. These are Markov kernels between finite sample spaces which are right
inverses of a statistic. We use this property to give a precise definition of congruent embeddings
between arbitrary sample spaces (cf. Definition 3.1). As it turns out, every Markov kernel induces
a congruent embedding in this sense, but there are congruent embeddings which are not induced
by Markov kernels, cf. Theorem 3.1.
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The main conceptual difficulty in the investigation of families of probability measures is the lack
of a canonical manifold structure on the spacesM(Ω) and P(Ω) of finite measures and probability
measures on Ω. If Ω is finite, then this issue is not a problem, as in this case a measure is given by
finitely many parameters, allowing to identify M(Ω) with the positive orthant in R|Ω| and P(Ω)
with the intersection of this orthant with an affine hyperplane in R|Ω|, so that both are (finite
dimensional) manifolds in a canonical way. But this is no longer true if Ω is infinite.
Attempts have been made to provide P(Ω) and M(Ω) with a Banach manifold structure. For
instance, Pistone and Sempi [18] equipped these spaces with a topology, the so-called e-topology.
With this, P(Ω) and M(Ω) become Banach manifolds and have many remarkable features, see
e.g. [7], [17]. On the other hand, the e-topology is very strong in the sense that many families of
measures on Ω fail to be continuous w.r.t. the e-topology, so it cannot be applied as widely as one
would wish.
Another approach was recently pursued by Bauer, Bruveris and Michor [6] under the assumption
that Ω is a manifold. In this case, the space of smooth densities also carries a natural topology, and
they were able to show that the invariance under diffeomorphisms already suffices to characterize
the Fisher metric of a family of such densities.
In [5], the authors of the present article proposed to define parametrized measure models as a family
given as

p(ξ) = p(ω; ξ)µ. (1.1)

for some reference measure µ and a positive function p on Ω×M which is differentiable in ξ ∈M ,
an idea which closely follows the notion of Amari [1]. While this embraces many interesting families
of measures, it is still restricted as it heavily depends on the choice of the reference measure µ which
is a priori not naturally given.
It is the aim of the present article to provide a yet more general definition of parametrized measure
models which embraces all of the aforementioned definitions, but is more general and more natural
than these at the same time. Namely, in this article we define parametrized measure models and
statistical models, respectively, as families (p(ξ))ξ∈M which are given by a map p from M toM(Ω)
and P(Ω), respectively, which is differentiable when regarded as a map between the (finite or infinite
dimensional) manifold M and the Banach space S(Ω) of finite signed measures on Ω, since evidently
P(Ω) andM(Ω) are subsets of S(Ω). That is, the geometric structure onM(Ω) and P(Ω) is given
by the inclusions P(Ω) ↪→M(Ω) ↪→ S(Ω).
If the model is given as in the definition from [5] by (1.1), then we say that it is given by a regular
density function. We shall show that most of the statements shown in [5] for parametrized measure
models or statistical models with a regular density function also hold without this assumption.
As it turns out, neither the Fisher metric nor the Amari-Chentsov tensor may be regarded as
pull-backs of a tensor on S(Ω) via the map p. In order to overcome this problem, let us for the
moment assume that the family is given by a regular density function as in (1.1). In this case, the
definitions of gF and TAC can be rewritten as

gF (V,W ) =

∫
Ω
∂V log p(ω; ξ) ∂W log p(ω; ξ) dp(ξ),

= 4

∫
Ω
∂V
√
p(ω; ξ) ∂W

√
p(ω; ξ) dµ (1.2)

= 4

∫
Ω
d
(
∂V
√
p(ξ) ∂W

√
p(ξ)

)
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and

TAC(V,W,U) =

∫
Ω
∂V log p(ω; ξ) ∂W log p(ω; ξ) ∂U log p(ω; ξ) dp(ξ)

= 27

∫
Ω
∂V

3
√
p(ω; ξ) ∂W

3
√
p(ω; ξ) ∂U

3
√
p(ω; ξ) dµ (1.3)

= 27

∫
Ω
d
(
∂V

3
√
p(ξ) ∂W

3
√
p(ξ) ∂U

3
√
p(ξ)

)
.

Of course, the last lines in (1.2) and (1.3) do not make sense a priori, as it is not clear what a
root of a measure should be, but this is precisely the way we shall make use of this. Namely, for
r ∈ (0, 1] we define the space Sr(Ω) of r-th powers of a measure, which has Mr(Ω) and Pr(Ω) as
subsets. Again, Sr(Ω) is a Banach space and S1(Ω) = S(Ω). Furthermore, there is a bounded
bilinear multiplication map

· : Sr(Ω)× Ss(Ω) −→ Sr+s(Ω),

for r, s, r + s ∈ (0, 1] as well as differentiable maps taking the (signed) k-th power,

πk, π̂k : Sr(Ω) −→ Skr(Ω)

for r, kr ∈ (0, 1]. That is, one can work with these objects in a very suggestive way.
We call a parametrized measure model p : M → M(Ω) k-integrable, if the map p1/k : M →
M1/k(Ω) ⊂ S1/k(Ω) is (formally) differentiable. This notion of k-integrability turns out to be
equivalent to that given in [5] for models with a regular density function. On S1/n(Ω) we define
the canonical n-tensor as

LnΩ(ν1, . . . , νn) := nn
∫

Ω
d(ν1 · · · νn).

Then by (1.2) and (1.3) the Fisher metric and the Amari-Chentsov tensor are given as the pull-backs

gF = (p1/2)∗(L2
Ω) and TAC = (p1/3)∗(L3

Ω),

if the model is k-integrable for k ≥ 2 or k ≥ 3, respectively. That is, these tensors may be defined
as pullbacks of objects which are naturally defined in terms of Ω only.
We also discuss the behaviour of the Fisher metric under statistics. For this, let κ : Ω → Ω′ be
measurable and κ∗ : S(Ω) → S(Ω′) be the push-forward of (signed) measures. This is a bounded
linear map which maps M(Ω) to M(Ω′) and P(Ω) to P(Ω′), respectively. In particular, given a
parametrized measure model p : M →M(Ω), it induces a map p′ := κ∗p. We then show that this
process preserves k-integrability, i.e., if p is k-integrable, then so is p′ (cf. Theorem 5.1). Moreover,
we show that in this generality the monotonicity formula holds (Theorem 5.2):

gF (V, V ) ≥ g′
F

(V, V ), (1.4)

where gF and g′F denote the Fisher metrics of p and p′, respectively, and where V ∈ TM . Moreover,
if p(ξ) has a regular density function p, then equality holds for all V iff κ is a sufficient statistic
for the model. In fact, we show (1.4) even in the case where κ is replaced by any Markov kernel
K : Ω→ P(Ω′).
While the monotonicity formula has been known in special cases, e.g. if one of Ω,Ω′ is finite, or if
both are manifolds and κ is differentiable, our approach shows that (1.4) holds without any further
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assumption on the model whatsoever. In particular, it is also valid for rather peculiar statistics as
e.g. Example 3.2.

This paper is structured as follows. In Section 2 we give the formal definition of the spaces of
powers of measures, setting up the formalism needed later on. In Section 3 we provide a precise
definition of congruent embeddings for arbitrary sample spaces Ω and discuss their relations with
Markov kernels and the existence of transverse measures. In the following Section 4 we establish
the notion of k-integrability, which is applied in the final Section 5 to the discussion of sufficient
statistics and the proof of the monotonicity formula.

Acknowledgements. This work was mainly carried out at the Max Planck Institute for Mathe-
matics in the Sciences in Leipzig, and we are grateful for the excellent working conditions provided
at that institution. H.V. Lê is partially supported by Grant RVO:67985840. J. Jost acknowledges
support from the ERC Advanced Grant FP7-267087.

2 The spaces of measures and their powers

2.1 The space of (signed) finite measures

Let (Ω,Σ) be a measurable space, that is an arbitrary set Ω together with a sigma algebra Σ of
subsets of Ω. Regarding the sigma algebra Σ on Ω as fixed, we let

P(Ω) := {µ : µ a probability measure on Ω}
M(Ω) := {µ : µ a finite measure on Ω}
S(Ω) := {µ : µ a signed finite measure on Ω}

S0(Ω) := {µ ∈ S(Ω) :

∫
Ω
dµ = 0}.

Clearly, P(Ω) ⊂ M(Ω) ⊂ S(Ω), and S0(Ω),S(Ω) are real vector spaces. In fact, both S0(Ω) and
S(Ω) are Banach spaces whose norm is given by the total variation of a signed measure, defined as

‖µ‖TV := sup

n∑
i=1

|µ(Ai)|

where the supremum is taken over all finite partitions Ω = A1∪̇ . . . ∪̇An with disjoint sets Ai ∈ Σ.
By the Jordan decomposition theorem, each measure µ ∈ S(Ω) can be decomposed uniquely as

µ = µ+ − µ− with µ± ∈M(Ω), µ+ ⊥ µ−. (2.1)

Thus, if we define
|µ| := µ+ + µ− ∈M(Ω),

then (2.1) implies
|µ(A)| ≤ |µ|(A) for all µ ∈ S(Ω) and A ∈ Σ, (2.2)

so that
‖µ‖TV = ‖ |µ| ‖TV = |µ|(Ω).
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In particular,
P(Ω) = {µ ∈M(Ω) : ‖µ‖TV = 1}.

Moreover, fixing a measure µ0 ∈M(Ω), we let

P(Ω, µ0) := {µ ∈ P(Ω) : µ is dominated by µ0}
M(Ω, µ0) := {µ ∈M(Ω) : µ is dominated by µ0} (2.3)

S(Ω, µ0) := {µ ∈ S(Ω) : µ is dominated by µ0}
S0(Ω, µ0) := S(Ω, µ0) ∩ S0(Ω),

where we say that µ0 dominates µ if every µ0-null set is also a |µ|-null set. We may canonically
identify S(Ω, µ0) with L1(Ω, µ0) by the correspondence

ıcan : L1(Ω, µ0) −→ S(Ω, µ0), φ 7−→ φ µ0.

By the Radon-Nikodým theorem, this is an isomorphism whose inverse is given by the Radon-
Nikodým derivative µ 7→ dµ

dµ0
. Observe that ıcan is an isomorphism of Banach spaces, since evidently

‖φ‖L1(Ω,µ0) =

∫
Ω
|φ| dµ0 = ‖φ µ0‖TV .

2.2 Differential maps between Banach manifolds and tangent spaces

In this section, we shall recall some basic notions of maps between Banach manifolds. For simplicity,
we shall restrict ourselves to maps between open subsets of Banach spaces, even though this notion
can be generalized to general Banach manifolds, see e.g. [13].
Let V and W be Banach spaces and U ⊂ V an open subset. A map φ : U → W is called
differentiable at x ∈ U , if there is a bounded linear operator dxφ ∈ Lin(V,W ) such that

lim
h→0

‖φ(x+ h)− φ(x)− dxφ(h)‖W
‖h‖V

= 0. (2.4)

In this case, dxφ is called the (total) differential of φ at x. Moreover, φ is called continuously
differentiable or shortly a C1-map, if it is differentiable at every x ∈ U , and the map dφ : U →
Lin(V,W ), x 7→ dxφ is continuous. Furthermore, a differentiable map c : (−ε, ε) → W is called a
curve in W.

Definition 2.1. Let X ⊂ V be an arbitrary subset and let x0 ∈ X. Then v ∈ V is called a tangent
vector of X at x0, if there is a curve c : (−ε, ε)→ X ⊂ V such that c(0) = x0 and ċ(0) := d0c(1) = v.
The set of all tangent vectors at x0 is called the tangent space of X at x0 and is denoted by Tx0X.
We also let

TX :=
⋃̇

x0∈X
Tx0X ⊂ X × V ⊂ V × V,

equipped with the induced topology.

For instance, if X = U ⊂ V is an open set, then Tx0U = V for all x0 and hence, TU = U × V .
Indeed, the curve c(t) = x0 + tv ∈ U for small |t| satisfies the properties required in the definition.
While reparametrization of c implies that Tx0X is invariant under scalar multiplication, this set
fails to be a linear subspace in general; if X ⊂ V is a submanifold, however, then Tx0X coincides
with the standard notion of the tangent space of a (Banach) manifold, justifying our notation.
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If U ⊂ V is open and φ : U → W is a C1-map whose image is contained in X ⊂ W , then
dx0φ(V ) ⊂ Tφ(x0)X, whence φ induces a continuous map

dφ : TU = U × V −→ TX, (u, v) 7−→ duφ(v).

Proposition 2.1. Let V = S(Ω) be the Banach space of signed measures on Ω. Then the tangent
spaces of M(Ω) and P(Ω) are

TM(Ω) :=
⋃̇

µ∈M(Ω)
S(Ω, µ) ⊂M(Ω)× S(Ω)

and

TP(Ω) :=
⋃̇

µ∈P(Ω)
S0(Ω, µ) ⊂ P(Ω)× S(Ω).

Remark 2.1. This result is not obvious, because, in the case of an infinite sample space, P(Ω)
and M(Ω) are not Banach submanifolds of S(Ω). Our proof will handle a more general situation,
as needed in Proposition 2.2 below.

To prove Proposition 2.1, we first show the following simple

Lemma 2.1. Let {νn : n ∈ N} ⊂ S(Ω) be a countable family of measures. Then there is a
measure µ0 ∈M(Ω) dominating νn for all n.

Proof. We assume w.l.o.g. that νn 6= 0 for all n and define

µ0 :=
∞∑
n=1

1

2n‖νn‖TV
|νn|.

Since ‖νn‖TV = |νn|(Ω), it follows that this sum converges, so that µ0 ∈ M(Ω) is well defined.
Moreover, if µ0(A) = 0, then |νn|(A) = 0 for all n, showing that µ0 dominates all νn as claimed.

Proof of Proposition 2.1. Given ν ∈ Tµ0M(Ω) ⊂ S(Ω), let (µt)t∈(−ε,ε) be a curve in M(Ω) with
µ̇0 = ν. Pick two sequences t±n → 0, t+n > 0, t−n < 0, and let µ̂0 ∈ M(Ω) be a measure which
dominates the measures µt±n , µ0 and ν. This measure exists by Lemma 2.1. Thus, there are

functions φ0, φ
′
0, φ
±
n ∈ L1(Ω, µ̂0) such that

µt±n = φ±n µ̂0, µ0 = φ0µ̂0, ν = φ′0µ̂0.

By hypothesis, φ±n , φ0 ≥ 0. Adapting the definition of a C1-map in (2.4), the differential quotient
(t±n )−1(µt±n − µ0) = (t±n )−1(φ±n − φ0)µ̂0 converges in S(Ω) to ν = φ′0µ̂0, whence

φ±n − φ0

t±n

n→∞−−−→ φ′0

in L1(Ω, µ̂0). After passing to subsequences this implies pointwise convergence µ̂0-a.e.

If φ0(ω) = 0, then φ+n (ω)−φ0(ω)

t+n
≥ 0 while φ−n (ω)−φ0(ω)

t−n
≤ 0. Thus, if both converge to φ′0(ω), then

φ′0(ω) = 0. That is: on φ−1
0 (0) we have φ′0 = 0 µ̂0-a.e., showing that ν = φ′0µ̂0 is dominated by

µ0 = φ0µ̂0 and hence ν ∈ S(Ω, µ0). Thus, Tµ0M(Ω) ⊂ S(Ω, µ0).
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Conversely, given ν = φµ0 ∈ S(Ω, µ0), define µt := (1 + tφ)+µ0 ∈M(Ω, µ0). Then

‖µt − µ0 − tν‖TV
|t|

=
‖((1 + tφ)+ − 1− tφ)µ0‖TV

|t|

=
‖(1 + tφ)−‖1

|t|

≤ ‖(|t|−1 − |φ|)−‖1
t→0−−→ 0,

using the monotone convergence theorem in the last step. Thus, ν is the derivative of (µt)t∈(−ε,ε),
showing that ν ∈ Tµ0M(Ω) as claimed.
To show the statement for P(Ω), let (µt)t∈(−ε,ε) be a curve in P(Ω) with µ̇0 = ν. Then as µt is a
probability measure for all t, we conclude∣∣∣∣∫

Ω
dν

∣∣∣∣ =

∣∣∣∣∫
Ω

1

t
d(µt − µ0 − tν)

∣∣∣∣ ≤ ‖µt − µ0 − tν‖TV
|t|

t→0−−→ 0,

so that ν ∈ S0(Ω). Since P(Ω) ⊂M(Ω), it follows that Tµ0P(Ω) ⊂ Tµ0M(Ω) ∩ S0(Ω) = S0(Ω, µ0)
for all µ0 ∈ P(Ω).
Conversely, given ν = φµ0 ∈ S0(Ω, µ0), define the curve λt := µt‖µt‖−1

TV ∈ P(Ω) with µt =
(1 + tφ)+µ0 as before, so that λ0 = µ0. We set

c±t :=

∫
Ω

(1 + tφ)± dµ0 ≥ 0,

so that c+
t = ‖µt‖TV . Moreover,

c+
t − c

−
t =

∫
Ω

(1 + tφ) dµ0 = 1 =⇒ ‖µt‖TV = 1 + c−t ≥ 1,

as µ0 ∈ P(Ω) and φµ0 ∈ S0(Ω, µ). Thus,

‖λt − λ0 − tν‖TV =

∫
Ω

∣∣∣∣(1 + tφ)+

‖µt‖TV
− 1− tφ

∣∣∣∣ dµ0

=

∫
Ω

∣∣∣∣− c−t
‖µt‖TV

(1 + tφ)+ + (1 + tφ)−

∣∣∣∣ dµ0

=
c−t

‖µt‖TV

∫
Ω

(1 + tφ)+dµ0︸ ︷︷ ︸
=c+t =‖µt‖TV

+

∫
Ω

(1 + tφ)− dµ0︸ ︷︷ ︸
=c−t

= 2c−t .

But as shown above, limt→0
c−t
|t| = 0, whence ν = λ̇(0) and ν ∈ Tµ0P(Ω).

2.3 Powers of densities

Let us now give the formal definition of roots of measures. On the set M(Ω) we define the
preordering µ1 ≤ µ2 if µ2 dominates µ1. Then (M(Ω),≤) is a directed set, meaning that for any
pair µ1, µ2 ∈ M(Ω) there is a µ0 ∈ M(Ω) dominating both of them (use e.g. µ0 := µ1 + µ2, but
observe that by Lemma 2.1, this even holds for countable families of measures).
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For fixed r ∈ (0, 1] and measures µ1 ≤ µ2 on Ω we define the linear embedding

ıµ1µ2 : L1/r(Ω, µ1) −→ L1/r(Ω, µ2), φ 7−→ φ

(
dµ1

dµ2

)r
.

Observe that

‖ıµ1µ2(φ)‖1/r =

∣∣∣∣∫
Ω
|ıµ1µ2(φ)|1/r dµ2

∣∣∣∣r =

∣∣∣∣∫
Ω
|φ|1/r dµ1

dµ2
dµ2

∣∣∣∣r (2.5)

=

∣∣∣∣∫
Ω
|φ|1/r dµ1

∣∣∣∣r = ‖φ‖1/r,

so that ıµ1µ2 is an isometry. Moreover, we have evidently ıµ1µ2ı
µ2
µ3 = ıµ1µ3 whenever µ1 ≤ µ2 ≤ µ3. Then

we define the space of r-th roots of measures on Ω to be the directed limit over the directed set
(M(Ω),≤)

Sr(Ω) := lim
−→

L1/r(Ω, µ). (2.6)

Let us give a more concrete definition of Sr(Ω). On the disjoint union of the spaces L1/r(Ω, µ) for
µ ∈M(Ω) we define the equivalence relation

L1/r(Ω, µ1) 3 φ ∼ ψ ∈ L1/r(Ω, µ2) ⇐⇒ ıµ1µ0(φ) = ıµ2µ0(ψ)

⇐⇒ φ

(
dµ1

dµ0

)r
= ψ

(
dµ2

dµ0

)r
for some µ0 ≥ µ1, µ2. Then Sr(Ω) is the set of all equivalence classes of this relation.
If we denote the equivalence class of φ ∈ L1/r(Ω, µ) by φµr, then the equivalence relation yields

µr1 =

(
dµ1

dµ2

)r
µr2 (2.7)

whenever µ1 ≤ µ2, justifying this notation. In fact, from this description in the case r = 1 we see
that

S1(Ω) = S(Ω).

Observe that by (2.5) ‖φ‖1/r is constant on equivalence classes, whence there is a norm on Sr(Ω),
also denoted by ‖.‖1/r, for which the inclusions

L1/r(Ω, µ) −→ Sr(Ω), φ 7−→ φµr

are isometries. For r = 1, we have ‖.‖1 = ‖.‖TV . Thus,

‖φµr‖1/r = ‖φ‖1/r =
∣∣∫

Ω |φ|
1/r dµ

∣∣r for 0 < r ≤ 1 (2.8)

Note that the equivalence relation also preserves nonnegativity of functions, whence we may define
the subsets

Mr(Ω) := {φµr : µ ∈M(Ω), φ ≥ 0}

Pr(Ω) := {φµr : µ ∈ P(Ω), φ ≥ 0, ‖φ‖1/r = 1}.
(2.9)
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In analogy to (2.3) we define for a fixed measure µ0 ∈M(Ω) and r ∈ (0, 1] the spaces

Sr(Ω, µ0) := {φµr0 : φ ∈ L1/r(Ω, µ0)}
Mr(Ω, µ0) := {φµr0 : φ ∈ L1/r(Ω, µ0), φ ≥ 0}
Pr(Ω, µ0) := {φµr0 : φ ∈ L1/r(Ω, µ0), φ ≥ 0, ‖φ‖1/r = 1}

Sr0(Ω, µ0) :=

{
φµr0 : φ ∈ L1/r(Ω, µ0),

∫
Ω
φ dµ = 0

}
.

The elements of Pr(Ω, µ0),Mr(Ω, µ0),Sr(Ω, µ0) are said to be dominated by µr0.
From Lemma 2.1, we can now conclude the following statement:

Any sequence in Sr(Ω) is contained in Sr(Ω, µ0) for some µ0 ∈M(Ω).

In particular, any Cauchy sequence in Sr(Ω) is a Cauchy sequence in Sr(Ω, µ0) ∼= L1/r(Ω, µ0) for
some µ0 and hence convergent. Thus, (Sr(Ω), ‖.‖1/r) is a Banach space.
In analogy to Proposition 2.1, we can also determine the tangent spaces of the subsets Pr(Ω) ⊂
Mr(Ω) ⊂ Sr(Ω). The proof of the statement is identical to that of Proposition 2.1 and whence is
omitted.

Proposition 2.2. For each µ ∈ M(Ω) (µ ∈ P(Ω), respectively), the tangent spaces of Pr(Ω) ⊂
Mr(Ω) ⊂ Sr(Ω) at µr are given as

TµrMr(Ω) := Sr(Ω, µ) ⊂ Sr(Ω)

and

TµrPr(Ω) := Sr0(Ω, µ) ⊂ Sr(Ω).

The product of powers of measures can now be defined for all r, s ∈ (0, 1] with r + s ≤ 1 and for
measures φµr ∈ Sr(Ω, µ) and ψµs ∈ Ss(Ω, µ):

(φµr) · (ψµs) := φψµr+s.

By definition φ ∈ L1/r(Ω, µ) and ψ ∈ L1/s(Ω, µ), whence Hölder’s inequality implies that
‖φψ‖1/(r+s) ≤ ‖φ‖1/r‖ψ‖1/s < ∞, so that φψ ∈ L1/(r+s)(Ω, µ) and hence, φψµr+s ∈ Sr+s(Ω, µ).
Since by (2.7) this definition of the product is independent of the choice of representative µ, it
follows that it induces a bilinear product

· : Sr(Ω)× Ss(Ω) −→ Sr+s(Ω), where r, s, r + s ∈ (0, 1], (2.10)

satisfying the Hölder inequality

‖νr · νs‖1/(r+s) ≤ ‖νr‖1/r‖νs‖1/s,

so that the product in (2.10) is a bounded bilinear map.

Definition 2.2. (Canonical pairing)
For r ∈ (0, 1] we define the pairing

(.; .) : Sr(Ω)× S1−r(Ω) −→ R, (ν1; ν2) :=

∫
Ω
d(ν1 · ν2). (2.11)
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It is straightforward to verify that this pairing is non-degenerate in the sense that

(νr; .) = 0⇐⇒ νr = 0. (2.12)

Besides multiplication of roots of measures, we also wish to take their powers. Here, we have two
possibilities to deal with signs. For 0 < k ≤ r−1 and νr = φµr ∈ Sr(Ω) we define

|νr|k := |φ|kµrk and ν̃kr := sign (φ)|φ|kµrk.

Since φ ∈ L1/r(Ω, µ), it follows that |φ|k ∈ Lk/r(Ω, µ), so that |νr|k, ν̃kr ∈ Srk(Ω). By (2.7) these
powers are well defined, independent of the choice of the measure µ, and, moreover,

‖ |νr|k ‖1/(rk) = ‖ν̃kr ‖1/(rk) = ‖νr‖k1/r. (2.13)

Proposition 2.3. Let r ∈ (0, 1] and 0 < k ≤ 1/r, and consider the maps

πk, π̃k : Sr(Ω) −→ Srk(Ω),
πk(ν) := |ν|k

π̃k(ν) := ν̃k.

Then πk, π̃k are continuous maps. Moreover, for 1 < k ≤ 1/r they are C1-maps between Banach
spaces, and their derivatives are given as

dνr π̃
k(ρr) = k |νr|k−1 · ρr and dνrπ

k(ρr) = k ν̃k−1
r · ρr. (2.14)

Observe that for k = 1, π1(νr) = |νr| fails to be C1, whereas π̃1(νr) = νr, so that π̃1 is the identity
and hence a C1-map.

Proof. Let us first assume that 0 < k ≤ 1. We assert that in this case, there are constants
Ck, C̃k > 0 such that for all x, y ∈ R∣∣|x+ y|k − |x|k

∣∣ ≤ Ck|y|k
and ∣∣sign (x+ y)|x+ y|k − sign (x)|x|k

∣∣ ≤ C̃k|y|k. (2.15)

Namely, by homogeneity it suffices to show this for y = 1, and since the functions

x 7−→ |x+ 1|k − |x|k and x 7−→ sign (x+ 1)|x+ 1|k − sign (x)|x|k

are continuous and have finite limits for x→ ±∞, it follows that they are bounded, showing (2.15).
Let ν1, ν2 ∈ Sr(Ω), and choose µ0 ∈ M(Ω) such that ν1, ν2 ∈ Sr(Ω, µ0), i.e., νi = φiµ

r
0 with

φi ∈ L1/r(Ω, µ0). Then

‖πk(ν1 + ν2)− πk(ν1)‖1/(rk) = ‖|φ1 + φ2|k − |φ1|k‖1/(rk)

≤ Ck‖ |φ2|k‖1/rk by (2.15)

= Ck‖ν2‖k1/r by (2.13),

so that lim‖ν2‖1/r→0 ‖πk(ν1 + ν2) − πk(ν1)‖1/(rk) = 0, showing the continuity of πk for 0 < k ≤ 1.

The continuity of π̃k follows analogously.
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Now let us assume that 1 < k ≤ 1/r. In this case, the functions

x 7−→ |x|k and x 7−→ sign (x)|x|k

with x ∈ R are C1-maps with respective derivatives

x 7−→ k sign (x)|x|k−1 and x 7−→ k|x|k−1.

Thus, if we pick νi = φiµ
r
0 as above, then by the mean value theorem we have

πk(ν1 + ν2)− πk(ν1) = (|φ1 + φ2|k − |φ1|k)µrk0
= k sign (φ1 + ηφ2)|φ1 + ηφ2|k−1φ2µ

rk
0

= k sign (φ1 + ηφ2)|φ1 + ηφ2|k−1µ
r(k−1)
0 · ν2

for some function η : Ω→ (0, 1). If we let νη := ηφ2µ
r
0, then ‖νη‖1/r ≤ ‖ν2‖1/r, and we get

πk(ν1 + ν2)− πk(ν1) = kπ̃k−1(ν1 + νη) · ν2.

With the definition of dν1 π̃
k from (2.14) we have

‖πk(ν1 + ν2)− πk(ν1) − dν1π
k(ν2)‖1/(rk)

= ‖k(π̃k−1(ν1 + νη)− π̃k−1(ν1)) · ν2‖1/(rk)

≤ k‖π̃k−1(ν1 + νη)− π̃k−1(ν1)‖1/(r(k−1))‖ν2‖1/r

and hence,

‖πk(ν1 + ν2)− πk(ν1)− dν1πk(ν2)‖ 1
rk

‖ν2‖ 1
r

≤ k‖π̃k−1(ν1 + νη)− π̃k−1(ν1)‖ 1
r(k−1)

.

Thus, the differentiability of πk will follow if

‖π̃k−1(ν1 + νη)− π̃k−1(ν1)‖1/(r(k−1))

‖ν2‖1/r→0
−−−−−−−→ 0,

and because of ‖νη‖1/r ≤ ‖ν2‖1/r, this is the case if π̃k−1 is continuous.

Analogously, one shows that π̃k is differentiable if πk−1 is continuous.
Since we already know continuity of πk and π̃k for 0 < k ≤ 1, and since C1-maps are continuous,
the claim now follows by induction on dke.

Thus, (2.14) implies that the differentials of πk and π̃k (which coincide on Pr(Ω) andMr(Ω)) yield
continuous maps

dπk = dπ̃k :
TPr(Ω) −→ TPrk(Ω)

TMr(Ω) −→ TMrk(Ω)
, (µ, ρ) 7−→ kµrk−r · ρ.
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3 Congruent embeddings

3.1 Statistics and congruent embeddings

Given two measurable sets (Ω,Σ) and (Ω′,Σ′), a measurable map

κ : Ω −→ Ω′

will be called a statistic. If µ is a (signed) measure on (Ω,Σ), it then induces a (signed) measure
κ∗µ on (Ω′,Σ′), via

κ∗µ(A) := µ(κ−1A),

which is called the push-forward of µ by κ. Note that

κ∗ : S(Ω) −→ S(Ω′) (3.1)

is a bounded linear map. Indeed, the norm on both spaces is given by the total variation, and we
have for any partition Ω′ = A′1∪̇ . . . ∪̇A′n∑∣∣κ∗µ(A′i)

∣∣ =
∑∣∣µ(κ−1A′i)

∣∣ ≤ ‖µ‖TV ,
whence ‖κ∗µ‖TV ≤ ‖µ‖TV . Moreover, κ∗ is monotone, i.e., it maps nonnegative measures to
nonnegative measures, and for these, the total variation is preserved:

‖κ∗µ‖TV = ‖µ‖TV for all µ ∈M(Ω).

In particular, κ∗ maps probability measures to probability measures, i.e.,

κ∗(P(Ω)) ⊂ P(Ω′).

We also define the pull-back of a measurable function φ′ : Ω′ → R as

κ∗(φ′) := φ ◦ κ.

With this, for subsets A′, B′ ⊂ Ω′ and A := κ−1(A′), B := κ−1(B′) ⊂ Ω we have∫
B′
d(κ∗(κ

∗(χA′) µ)) =

∫
B
κ∗(χA′) dµ =

∫
A∩B

dµ

=

∫
A′∩B′

dκ∗(µ) =

∫
B′
χA′ dκ∗(µ),

since κ∗(χA′) = χA. Thus, κ∗(κ
∗(χA′)µ) = χA′κ∗(µ). By linearity, this equation holds when

replacing χA′ by a step function on Ω′, whence by the density of step functions in L1(Ω′, µ′) we
obtain

κ∗(κ
∗(φ′) µ) = φ′ κ∗(µ) for all φ′ ∈ L1(Ω′, κ∗(µ)). (3.2)

Recall thatM(Ω) and S(Ω) denote the spaces of all (signed) measures on Ω, whereasM(Ω, µ) and
S(Ω, µ) denote the subspaces of the (signed) measures on Ω which are dominated by µ.

Definition 3.1. (Congruent embedding)
Let κ : Ω → Ω′ be a statistic and µ′ ∈ M(Ω′). A κ-congruent embedding is a bounded linear map
K∗ : S(Ω′, µ′)→ S(Ω) such that
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1. K∗ is monotone, i.e., it maps nonnegative measures to nonnegative measures, or shortly:
K∗(M(Ω′, µ′)) ⊂M(Ω).

2. κ∗(K∗(ν
′)) = ν ′ for all ν ′ ∈ S(Ω′, µ′).

Furthermore, the image of a κ-congruent embedding K∗ in S(Ω) is called a κ-congruent subspace
of S(Ω).

Example 3.1. Let κ : Ω → Ω′ be a statistic, let µ ∈ M(Ω) and µ′ := κ∗(µ) ∈ M(Ω′). Then the
map

Kµ : S(Ω′, µ′) −→ S(Ω, µ) ⊂ S(Ω), φ′µ′ 7−→ κ∗(φ′)µ (3.3)

for all φ′ ∈ L1(Ω′, µ′) is a κ-congruent embedding, since

κ∗(Kµ(φ′µ′)) = κ∗(κ
∗(φ′)µ) = φ′κ∗(µ) = φ′µ′

by (3.2).

We shall now see that the above example exhausts all possibilities of congruent embeddings.

Proposition 3.1. Let κ : Ω→ Ω′ be a statistic, let K∗ : S(Ω′, µ′)→ S(Ω) for some µ′ ∈M(Ω′) be
a κ-congruent embedding, and let µ := K∗(µ

′) ∈M(Ω).
Then K∗ = Kµ with the map Kµ given in (3.3).

Proof. We have to show that K∗(φ
′µ) = κ∗(φ′)µ for all φ′ ∈ L1(Ω′, µ′). By continuity, it suffices to

show this for step functions, as these are dense in L1(Ω′, µ′), whence by linearity, we have to show
that for all A′ ⊂ Ω′, A := κ−1(A′) ⊂ Ω

K∗(χA′µ
′) = χAµ. (3.4)

Let A′1 := A′ and A′2 = Ω′\A′, and let Ai := κ−1(A′i). We define the measures µ′i := χA′iµ
′ ∈M(Ω′),

and µi := K∗(µ
′
i) ∈M(Ω). Since µ′1 + µ′2 = µ′, it follows that µ1 + µ2 = µ by the linearity of K∗.

Taking indices mod 2, and using κ∗(µi) = κ∗(K∗(µ
′
i)) = µ′i by the κ-congruency of K∗, note that

µi(Ai+1) = µi(κ
−1(A′i+1)) = κ∗(µi)(A

′
i+1) = µ′i(A

′
i+1) = 0.

Thus, for any measurable B ⊂ Ω we have

µ1(B) = µ1(B ∩A1) since µ1(B ∩A2) ≤ µ1(A2) = 0
= µ1(B ∩A1) + µ2(B ∩A1) since µ2(B ∩A1) ≤ µ2(A1) = 0
= µ(B ∩A1) since µ = µ1 + µ2

= (χAµ)(B) since A1 = A.

That is, χAµ = µ1 = K∗(µ
′
1) = K∗(χA′µ

′), so that (3.4) follows.

As a consequence, any κ-congruent subspace of S(Ω) must be of the form

Cκ,µ := {κ∗(φ′)µ : φ′ ∈ L1(Ω′, κ∗(µ))} (3.5)

for some µ ∈M(Ω).
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3.2 Markov kernels and Markov morphisms

Definition 3.2. (Markov kernel and Markov morphism, cf. [8], [15])
A Markov kernel between two measurable spaces (Ω1,Σ1) and (Ω2,Σ2) is a map K : Ω1 → P(Ω2),
associating to each ω1 ∈ Ω1 a probability measure on Ω2 such that for each fixed measurable
A2 ⊂ Ω2 the map

Ω1 −→ [0, 1], ω1 7−→ K(ω1;A2) := K(ω1)(A2)

is measurable. The Markov morphism induced by K is the linear map

K∗ : S(Ω1) −→ S(Ω2), K(µ1;A2) = K∗(µ1)(A2) :=

∫
Ω1

K(ω1;A2) dµ1(ω1). (3.6)

Since K(ω1) ∈ P(Ω2), it follows that K(ω1; Ω2) = 1 and hence (3.6) implies that K∗(µ1)(Ω2) =
µ1(Ω1). Thus,

‖K∗(µ1)‖TV = ‖µ1‖TV for all µ1 ∈M(Ω1). (3.7)

In particular, a Markov morphism maps probability measures to probability measures. For a general
measure µ1 ∈ S(Ω1), (2.2) implies that |K∗(µ1;A2)| ≤ K∗(|µ1|;A2) for all A2 ∈ Σ2 and hence,

‖K∗(µ1)‖TV ≤ ‖K∗(|µ1|)‖TV = ‖µ1‖TV for all µ1 ∈ S(Ω1),

so that K∗ : S(Ω1)→ S(Ω2) is a bounded linear map.
Observe that we can recover the Markov kernel K from K∗ using the relation

K(ω1) = K∗(δ
ω1) for all ω1 ∈ Ω1,

where δω1 denotes the Dirac measure supported at ω1 ∈ Ω1.

Remark 3.1. From (3.6) it is immediate that K∗ preserves dominance of measures, i.e., if µ1

dominates µ′1, then K∗(µ1) dominates K∗(µ
′
1). Thus, for each µ1 ∈M(Ω1) there is a restriction

K∗ : S(Ω1, µ1) −→ S(Ω2, µ2),

where µ2 := K∗(µ1).

Definition 3.3. (Composition of Markov kernels)
Let (Ωi,Σi), i = 1, 2, 3 be measurable spaces, and let Ki : Ωi → P(Ωi+1) for i = 1, 2 be Markov
kernels. The composition of K1 and K2 is the Markov kernel

K2K1 : Ω1 −→ P(Ω3), ω 7−→ (K2)∗(K1(ω)).

Since ‖(K2)∗(K1(ω))‖TV = ‖K1(ω)‖TV = 1 by (3.7), (K2)∗(K1(ω)) is a probability measure, hence
this composition yields indeed a Markov kernel. Moreover, it is straightforward to verify that this
composition is associative, and for the induced Markov morphism we have

(K2K1)∗ = (K2)∗(K1)∗. (3.8)

Markov kernels are generalizations of statistics. In fact, a statistic κ : Ω → Ω′ induces a Markov
kernel by

Kκ(ω) := δκ(ω), so that Kκ(ω;A′) := χκ−1(A′)(ω).

In this case, the Markov morphism induced by Kκ is the map κ∗ : S(Ω) → S(Ω′) from (3.1). We
shall write the Markov kernel Kκ also as κ if there is no danger of confusion.

14



Definition 3.4. (Congruent Markov kernels)
A Markov kernel K : Ω′ → P(Ω) is called κ-congruent for a statistic κ : Ω→ Ω′ if

κ∗(K(ω′)) = δω
′

for all ω′ ∈ Ω′, (3.9)

or, equivalently,
(KκK)∗ = IdS(Ω′) : S(Ω′) −→ S(Ω′).

In this case, we also call the induced Markov morphism K∗ : S(Ω′)→ S(Ω) κ-congruent.

In order to relate the notions of κ-congruent Markov morphism and κ-congruent embeddings from
Definition 3.1, we need the notion of κ-transverse measures.

Definition 3.5. (Transverse measures)
Let κ : Ω→ Ω′ be a statistic. A measure µ ∈M(Ω) is said to admit κ-transverse measures if there
are measures µ⊥ω′ on κ−1(ω′) such that for all φ ∈ L1(Ω, µ)∫

Ω
φ dµ =

∫
Ω′

(∫
κ−1(ω′)

φ dµ⊥ω′

)
dµ′(ω′), (3.10)

where µ′ := κ∗(µ). In particular, the function

Ω′ −→ R̂, ω′ 7−→
∫
κ−1(ω′)

φ dµ⊥ω′

is measurable for all φ ∈ L1(Ω, µ).

Observe that the choice of κ-transverse measures µ⊥ω′ is not unique, but rather, one can change
these measures for all ω′ in a µ′-null set.

Proposition 3.2. Let κ : Ω→ Ω′ be a statistic and µ ∈M(Ω) a measure which admits κ-transverse
measures {µ⊥ω′ : ω′ ∈ Ω′}. Then µ⊥ω′ is a probability measure for almost every ω′ ∈ Ω′ and hence,
we may assume w.l.o.g. that µ⊥ω′ ∈ P(κ−1(ω′)) for all ω′ ∈ Ω′.

Proof. Given ε > 0, define A′ε := {ω′ ∈ Ω′ : µ⊥ω′(κ
−1(ω′)) ≥ 1 + ε}. Then for φ := χκ−1(A′ε)

the
two sides of equation (3.10) read ∫

Ω
χκ−1(A′ε)

dµ = µ(κ−1(A′ε)) = µ′(A′ε)∫
Ω′

(∫
κ−1(ω′)

χκ−1(Aε) dµ
⊥
ω′

)
dµ′(ω′) =

∫
A′ε

(∫
κ−1(ω′)

dµ⊥ω′

)
dµ′(ω′)

=

∫
A′ε

µ⊥ω′(κ
−1(ω′)) dµ′(ω′)

≥ (1 + ε)µ′(A′ε).

Thus, (3.10) implies
µ′(A′ε) ≥ (1 + ε)µ′(A′ε),
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and hence, µ′(A′ε) = 0 for all ε > 0. Thus,

µ′({ω′ ∈ Ω′ : µ⊥ω′(κ
−1(ω′)) > 1}) = µ′

( ∞⋃
n=1

A′1/n

)
≤
∞∑
n=1

µ′(A′1/n) = 0,

whence {ω′ ∈ Ω′ : µ⊥ω′(κ
−1(ω′)) > 1} is a µ′-null set. Analogously, {ω′ ∈ Ω′ : µ⊥ω′(κ

−1(ω′)) < 1}
is a µ′-null set, that is, µ⊥ω′ ∈ P(κ−1(ω′)) and hence ‖µ⊥ω′‖TV = 1 for µ′-a.e. µ′ ∈ Ω′.
Thus, if we replace µ⊥ω′ by µ̃⊥ω′ := ‖µ⊥ω′‖

−1
TV µ

⊥
ω′ , then µ̃⊥ω′ ∈ P(κ−1(ω′)) for all ω′ ∈ Ω′, and since

µ̃⊥ω′ = µ⊥ω′ for µ′-a.e. ω′ ∈ Ω′, it follows that (3.10) holds when replacing µ⊥ω′ by µ̃⊥ω′ .

We are now ready to relate the notions of κ-congruent embeddings and κ-congruent Markov kernels.

Theorem 3.1. Let κ : Ω→ Ω′ be a statistic and µ′ ∈M(Ω′) be a measure.

1. If K : Ω′ → P(Ω) is a κ-congruent Markov kernel, then the restriction of K∗ to S(Ω′, µ′) ⊂
S(Ω′) is a κ-congruent embedding and hence, for φ′ ∈ L1(Ω′, µ′) we have

K∗(φ
′µ′) = κ∗(φ′)K∗(µ

′).

2. Conversely, if K∗ : S(Ω′, µ′) → S(Ω) is a κ-congruent embedding, then the following are
equivalent.

(a) K∗ is the restriction of a κ-congruent Markov morphism to S(Ω′, µ′) ⊂ S(Ω′).

(b) µ := K∗(µ
′) ∈ S(Ω) admits κ-transverse measures.

Theorem 3.1 implies that the two notions of congruency are equivalent for large classes of statistics
κ, since the existence of transversal measures is guaranteed under rather mild hypotheses, e.g. if
one of Ω,Ω′ is a finite set, or if Ω,Ω′ are differentiable manifolds equipped with a Borel measure µ
and κ is a differentiable map.
However, there are examples of statistics and measures which do not admit κ-transverse measures,
cf. Example 3.2 below.

Proof. The first statement follows directly from (KκK)∗ = (Kκ)∗K∗ = κ∗K∗ by (3.8) and Propo-
sition 3.1.
For the second, suppose that K∗ : S(Ω′, µ′) → S(Ω) is a κ-congruent embedding. Then K∗ = Kµ

given in (3.3) for the measure µ := K∗(µ
′) by Proposition 3.1.

If we assume that K∗ is the restriction of a κ-congruent Markov morphism induced by the κ-
congruent Markov kernel K : Ω′ → P(Ω), then we define the measures

µ⊥ω′ := K(ω′)|κ−1(ω) ∈M(κ−1(ω′)).

Note that for ω′ ∈ Ω′

K(ω′; Ω\κ−1(ω′)) =

∫
Ω\κ−1(ω′)

dK(ω′) =

∫
Ω′\ω′

dκ∗(K(ω′))

(3.9)
=

∫
Ω′\ω′

dδω
′

= 0.
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That is, K(ω′) is supported on κ−1(ω′) and hence, for an arbitrary set A ⊂ Ω we have

K(ω′;A) = K(ω′;A ∩ κ−1(ω′)) = µ⊥ω′(A ∩ κ−1(ω′)) =

∫
κ−1(ω′)

χA dµ
⊥
ω′ .

Substituting this into the definition of K∗ we obtain for a subset A ⊂ Ω∫
Ω
χA dµ = µ(A) = K∗(µ

′;A)
(3.6)
=

∫
Ω′
K(ω′;A) dµ′(ω′)

=

∫
Ω′

(∫
κ−1(ω′)

χA dµ
⊥
ω′

)
dµ′(ω′),

showing that (3.10) holds for φ = χA. But then, by linearity (3.10) holds for any step function φ,
and since these are dense in L1(Ω, µ), it follows that (3.10) holds for all φ, so that the measures
µ⊥ω′ defined above yield indeed κ-transverse measures of µ.
Conversely, suppose that µ := K∗(µ

′) admits κ-transverse measures µ⊥ω′ , and by Proposition 3.2 we
may assume w.l.o.g. that µ⊥ω′ ∈ P(κ−1(ω′)). Then we define the map

K : Ω′ −→ P(Ω), K(ω′;A) := µ⊥ω′(A ∩ κ−1(ω′)) =

∫
κ−1(ω′)

χA dµ
⊥
ω′ .

Since for fixed A ⊂ Ω the map ω′ 7→
∫
κ−1(ω′) χA dµ

⊥
ω′ is measurable by the definition of transversal

measures, K is indeed a Markov kernel. Moreover, for A′ ⊂ Ω′

κ∗(K(ω′))(A′) = K(ω′;κ−1(A′)) = µ⊥ω′(κ
−1(A′) ∩ κ−1(ω′)) = χA′(ω

′),

so that κ∗K(ω′) = δω
′

for all ω′ ∈ Ω′, whence K is κ-congruent. Moreover, for any φ′ ∈ L1(Ω′, µ′)
and A ⊂ Ω we have

Kµ(φ′µ′)(A)
(3.3)
= κ∗(φ′)µ(A) =

∫
Ω
χAκ

∗(φ′) dµ

(3.10)
=

∫
Ω′

(∫
κ−1(ω′)

χAκ
∗(φ′) dµ⊥ω′

)
dµ′(ω′)

=

∫
Ω′

(∫
κ−1(ω′)

χA dµ
⊥
ω′

)
φ′(ω′) dµ′(ω′)

=

∫
Ω′
K(ω′;A) d(φ′µ′)(ω′)

(3.6)
= K∗(φ

′µ′)(A).

Thus, Kµ(φ′µ′) = K∗(φ
′µ′) for all φ′ ∈ L1(Ω′, µ′) and hence, Kµ(ν) = K∗(ν) for all ν ∈ S(Ω′, µ′).

That is, the given congruent embedding Kµ coincides with the Markov morphism K∗ induced by
K, and this completes the proof.

Now we give an example of a statistic which does not admit κ-transverse measures.

Example 3.2. Let Ω := S1 be the unit circle group in the complex plain with the 1-dimensional
Borel algebra B. Let Γ := exp(2π

√
−1Q) ⊂ S1 be the subgroup of rational rotations, and let

Ω′ := S1/Γ be the quotient space with the canonical projection κ : Ω→ Ω′. Let B′ := {A′ ⊂ Ω′ :
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κ−1(A′) ∈ B}, so that κ : Ω → Ω′ is measurable. For γ ∈ Γ, we let mγ : S1 → S1 denote the
multiplication by γ.
Let λ be the 1-dimensional Lebesgue measure on Ω and λ′ := κ∗(λ) be the induced measure on Ω′.
Suppose that λ admits κ-transverse measures (λ⊥ω′)ω′∈Ω′ . Then for each A ∈ B we have

λ(A) =

∫
Ω′

(∫
A∩κ−1(ω′)

dλ⊥ω′

)
dλ′(ω′). (3.11)

Since λ is invariant under rotations, we have on the other hand for γ ∈ Γ

λ(A) = λ(m−1
γ A) =

∫
Ω′

(∫
(m−1

γ A)∩κ−1(ω′)
dλ⊥ω′

)
dλ′(ω′)

=

∫
Ω′

(∫
A∩κ−1(ω′)

d((mγ)∗λ
⊥
ω′)

)
dλ′(ω′). (3.12)

Comparing (3.11) and (3.12) implies that ((mγ)∗λ
⊥
ω′)ω′∈Ω′ is another familiy of κ-transverse mea-

sures of λ which implies that (mγ)∗λ
⊥
ω′ = λ⊥ω′ for λ′-a.e. ω′ ∈ Ω′, and as Γ is countable, it follows

that
(mγ)∗λ

⊥
ω′ = λ⊥ω′ for all γ ∈ Γ and λ′-a.e. ω′ ∈ Ω′.

Thus, for a.e. ω′ ∈ Ω′ we have λ⊥ω′({γ · x}) = λ⊥ω′({x}), and since Γ acts transitively on κ−1(ω′), it
follows that singleton subsets have equal measure, i.e., there is a constant cω′ with

λ⊥ω′(A
′) = cω′ |A′|

for all A′ ⊂ κ−1(ω′). As κ−1(ω′) is countable and infinite, this implies that λ⊥ω′ = 0 if cω′ = 0, and
λ⊥ω′(κ

−1(ω′)) =∞ if cω′ > 0. Thus, λ⊥ω′ is not a probability measure for a.e. ω′ ∈ Ω′, contradicting
Proposition 3.2. This shows that λ does not admit κ-transverse measures.

We conclude this section by the following result (cf. [5, Theorem 4.10]).

Theorem 3.2. Any Markov kernel K = Ω → P(Ω′) can be decomposed into a statistic and a
congruent Markov kernel. That is, there is a Markov kernel Kcong : Ω→ P(Ω̂) which is congruent
w.r.t. some statistic κ1 : Ω̂→ Ω, and a statistic κ2 : Ω̂→ Ω′ such that

K = Kκ2Kcong.

Proof. Let Ω̂ := Ω × Ω′ and let κ1 : Ω̂ → Ω and κ2 : Ω̂ → Ω′ be the canonical projections. We
define the Markov kernel

Kcong : Ω −→ P(Ω̂), Kcong(ω1; Â) := K(ω1;κ2(Â ∩ ({ω1} × Ω′))),

and we assert that it is κ1-congruent. Namely,

(κ1)∗(K
cong(ω1))(A1) = Kcong(ω1;κ−1

1 (A1)) = Kcong(ω1;A1 × Ω′)

= K(ω1;κ2((A1 × Ω′) ∩ ({ω1} × Ω′)))

=

{
K(ω1; Ω′) = 1 if ω1 ∈ A1

K(ω1; ∅) = 0 if ω1 /∈ A1

= χA1(ω1),
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whence (κ1)∗(K
cong(ω1)) = δω1 as claimed. Observe that

(κ2)∗(K
cong(ω1))(A2) = Kcong(ω1;κ−1

2 (A2)) = Kcong(ω1; Ω1 ×A2)

= K(ω1;κ2((Ω1 ×A2) ∩ ({ω1} × Ω′)))

= K(ω1;κ2({ω1} ×A2))

= K(ω1;A2).

Therefore, K = Kκ2Kcong, so the claim follows.

3.3 Powers of densities and congruent embeddings

Given a statistic κ : Ω → Ω′, recall that by Proposition 3.1 any κ-congruent embedding is of the
form Kµ : S(Ω′, µ′)→ S(Ω, µ) for some µ ∈M(Ω) with µ′ := κ∗(µ), and the image of Kµ, denoted
by Cκ,µ, is called a κ-congruent subspace.
We now wish to generalize the notion of congruent embeddings and congruent subspaces to powers
of measures. Namely, for r ∈ (0, 1] we define the congruent embedding of r-th powers to be the
map

Kr
µ : Sr(Ω′, µ′) −→ Sr(Ω), φµ′

r 7−→ κ∗(φ)µr,

and denote its image by
Crκ,µ := {κ∗(φ′)µr : φ′ ∈ L1/r(Ω′, µ′)}. (3.13)

As before, we denote the spaces of the form Crκ,µ for µ ∈M(Ω) as κ-congruent subspaces. Observe
that K1

µ = Kµ and C1
κ,µ = Cκ,µ with the definitions from (3.3) and (3.5).

Since the pull-back of functions preserves products and powers, we have immediately the following
properties.

‖Kr
µ(νr)‖1/r = ‖νr‖1/r

Kr1+r2
µ (ν ′r1 · ν ′r2) = Kr2

µ (ν ′r1) ·Kr2
µ (ν ′r2)

Krα
µ (πα(ν ′r)) = πα(Kr

µ(ν ′r)) and Krα
µ (π̃α(ν ′r)) = π̃α(Kr

µ(ν ′r))

(3.14)

for r1 + r2 ≤ 1 and 0 < α < 1/r. We now show the following decomposition result.

Proposition 3.3. Let κ : Ω→ Ω′, µ ∈M(Ω) and µ′ := κ∗(µ) ∈M(Ω′) be as above. Then for the
congruent subspaces Crκ,µ, we have the decomposition

Sr(Ω, µ) = Crκ,µ ⊕
(
(C1−r
κ,µ )⊥ ∩ Sr(Ω, µ)

)
, (3.15)

where
(C1−r
κ,µ )⊥ = {νr ∈ Sr(Ω) : (νr; ρ1−r) = 0 for all ρ1−r ∈ C1−r

κ,µ }

with the pairing (.; .) from (2.11). In particular, for r = 1/2 (3.15) is an orthogonal decomposition
w.r.t. the Hilbert metric on S1/2(Ω, µ). Moreover,

(C1−r
κ,µ )⊥ ∩ Sr(Ω, µ) = {νr ∈ Sr(Ω, µ) : κ∗(ν

r · µ1−r) = 0}. (3.16)
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Proof. We begin by showing (3.16). Let νr = φµr ∈ Sr(Ω, µ) with φ ∈ L1/r(Ω, µ). Then νr ∈
(C1−r
κ,µ )⊥ if and only if for all ψ′ ∈ L1/(1−r)(Ω′, µ′) we have

0 =

∫
Ω
d
(
νr ·

(
κ∗(ψ′)µ1−r)) =

∫
Ω
φκ∗(ψ′) dµ =

∫
Ω′
dκ∗(φκ

∗(ψ′)µ)

(3.2)
=

∫
Ω′
ψ′ dκ∗(φµ).

But
∫

Ω′ ψ
′ dκ∗(φµ) = 0 for all ψ′ ∈ L1/(1−r)(Ω′, µ′) holds if and only if κ∗(φµ) = 0, which shows

(3.16) since φµ = νr · µ1−r.
The spaces on the right hand side of (3.15) are obviously contained in Sr(Ω, µ). To see that
Crκ,µ ∩ (C1−r

κ,µ )⊥ = 0, observe that for νr = κ∗(φ′)µr ∈ Crκ,µ we have

κ∗(ν
r · µ1−r) = κ∗(κ

∗(φ′)µ) = φ′µ′

by (3.2), and by (3.16) this is contained in (C1−r
κ,µ )⊥ only if φ′ = 0.

Since Kr
µ : Sr(Ω′, µ′)→ Crκ,µ is an isometry by (3.14) and Sr(Ω′, µ′) is complete, it follows that Crκ,µ

is complete and hence closed in Sr(Ω, µ). Also (C1−r
κ,µ )⊥ ⊂ Sr(Ω) is a closed subspace being the

orthogonal complement of the subspace C1−r
κ,µ . Therefore, the right hand side of (3.15) is a closed

subspace of the left, hence it suffices to show that the right hand side contains the dense subspace
{νr = φµr : φ ∈ L∞(Ω, µ)} of Sr(Ω, µ).
Thus, for such a νr = φµr ∈ Sr(Ω, µ) define φ′ ∈ L1(Ω′, µ′) by

κ∗(ν
r · µ1−r) = κ∗(φµ) = φ′µ′.

Then for A′ ⊂ Ω′ we have

|(κ∗(φµ))(A′)| =

∣∣∣∣∣
∫
κ−1(A′)

φ dµ

∣∣∣∣∣ ≤ ‖φ‖∞µ(κ−1A′) = ‖φ‖∞µ′(A′),

whence ‖φ′‖∞ ≤ ‖φ‖∞, so that φ′ is bounded as well. In particular, φ′µ′r ∈ Sr(Ω′, µ′), and we
decompose

νr = κ∗(φ′)µr︸ ︷︷ ︸
∈Crκ,µ

+(νr − κ∗(φ′)µr).

Thus, it remains to show that νr1 := νr − κ∗(φ′)µr ∈ (C1−r
κ,µ )⊥ ∩ Sr(Ω, µ). Since evidently νr1 ∈

Sr(Ω, µ), we may use (3.16) to verify this. Namely,

κ∗(ν
r
1 · µ1−r) = κ∗(ν

r · µ1−r)− κ∗(κ∗(φ′)µr · µ1−r) = φ′µ′ − φ′κ∗(µ) = 0

by (3.2) and the definition of φ′. This completes the proof.

4 Parametrized measure models and k-integrability

In this section, we shall now present our notion of a parametrized measure model.

Definition 4.1. (Parametrized measure model)
Let Ω be a measure space.
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1. A parametrized measure model is a triple (M,Ω, p) where M is a (finite or infinite dimensional)
Banach manifold and p : M →M(Ω) ⊂ S(Ω) is a C1-map in the sense explained in Section
2.2.

2. The triple (M,Ω, p) is called a statistical model if it consists only of probability measures,
i.e., such that the image of p is contained in P(Ω).

3. We call such a model dominated by µ0 if the image of p is contained in S(Ω, µ0). In this case,
we use the notation (M,Ω, µ0, p) for this model.

Remark 4.1. Evidently, for the applications we have in mind, we are interested mainly in statistical
models. However, we can take the point of view that P(Ω) is the projectivisation of P(Ω) =
P(M(Ω)\0) via rescaling. Thus, given a parametrized measure model (M,Ω, p), normalisation
yields a statistical model (M,Ω, p0) defined by

p0(ξ) :=
p(ξ)

‖p(ξ)‖TV
.

which is again a C1-map. Indeed, the map µ 7→ ‖µ‖TV onM(Ω) is a C1-map, being the restriction
of the linear (and hence continuous) map µ 7→

∫
Ω dµ on S(Ω).

Observe that while S(Ω) is a Banach space, the subsets M(Ω) and P(Ω) do not carry a canonical
manifold structure.

If a parametrized measure model (M,Ω, µ0, p) is dominated by µ0, then there is a density function
p : Ω×M → R such that

p(ξ) = p(.; ξ)µ0. (4.1)

From the context, i.e., from the number of arguments, it will be clear which map p is meant, whence
we will denote both maps by the same symbol. Evidently, we must have p(.; ξ) ∈ L1(Ω, µ0) for all
ξ. In particular, for fixed ξ, p(.; ξ) is defined only up to changes on a µ0-null set.

Definition 4.2. (Regular density function)
Let (M,Ω, µ0, p) be a parametrized measure model dominated by µ0. We say that this model has
a regular density function if the density function p : Ω ×M → R satisfying (4.1) can be chosen
such that for all V ∈ TξM the partial derivative ∂V p(.; ξ) exists and lies in L1(Ω, µ0).

Remark 4.2. The standard notion of a statistical model always assumes that it is dominated by
some measure and has a regular density function (e.g. [3, §2 , p. 25], [4, §2.1], [19], [5, Definition
2.4]). In fact, the definition of a parametrized measure model or statistical model in [5, Definition
2.4] is equivalent to a parametrized measure model or statistical model with a regular density
function in the sense of Definition 4.2.
Let us point out why the present notion is indeed more general. The formal definition of differen-
tiability of p implies that for each C1-path ξ(t) ∈ M with ξ(0) = ξ, ξ̇(0) =: V ∈ TξM , the curve
t 7→ p(.; ξ(t)) ∈ L1(Ω, µ0) is differentiable. This implies that there is a dξp(V ) ∈ L1(Ω, µ0) such
that ∥∥∥∥p(.; ξ(t))− p(.; ξ)t

− dξp(V )(.)

∥∥∥∥
1

t→0
−−−−→ 0.

If this is a pointwise convergence, then dξp(V ) = ∂V p(.; ξ) is the partial derivative and whence,
∂V p(.; ξ) lies in L1(Ω, µ0), so that the density function is regular.
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However, in general convergence in L1(Ω, µ0) does not imply pointwise convergence, whence there
are parametrized measure models in the sense of Definition 4.1 without a regular density function,
cf. Example 4.1.2below. Nevertheless, for simplicity we shall frequently use the notation ∂V p(·; ξ)
instead of dξp(V )(.), even if the density function is not regular.

By this convention, for a parametrized measure model (M,Ω, µ0, p) we can describe its derivative
in the direction of V ∈ TξM as

dξp(V ) = ∂V p(.; ξ) µ0.

Example 4.1. 1. The family of normal distributions on R

p(µ, σ) :=
1√
2πσ

exp(−(x− µ)2

2σ2
) dx

is a statistical model with regular density function on the upper half plane H = {(µ, σ) :
µ, σ ∈ R, σ > 0}.

2. To see that there are parametrized measure models without a regular density function, con-
sider the family of measures on Ω = (0, π)

p(ξ) :=


(

1 + ξ (sin2(t− 1/ξ))1/ξ2
)
dt for ξ 6= 0

dt for ξ = 0.

This model is dominated by the Lebesgue measure dt, with density function p(t; ξ) = 1 +
ξ (sin2(t − 1/ξ))1/ξ2 for ξ 6= 0, p(t; 0) = 1. Thus, the partial derivative ∂ξp does not exist at
ξ = 0, whence the density function is not regular.

On the other hand, p : R → M(Ω, dt) is differentiable in the above sense at ξ = 0 with
d0p(∂ξ) = 0, so that (M,Ω, p) is a parametrized measure model in the sense of Definition 4.1.
To see this, we calculate∥∥∥∥p(ξ)− p(0)

ξ

∥∥∥∥
1

=
∥∥∥(sin2(t− 1/ξ))1/ξ2 dt

∥∥∥
1

=

∫ π

0
(sin2(t− 1/ξ))1/ξ2 dt

=

∫ π

0
(sin2 t)1/ξ2 dt

ξ→0−−−→ 0.

which shows the claim. Here, we used the π-periodicity of the integrand for fixed ξ and
dominated convergence in the last step.

Since for a parametrized measure model (M,Ω, p) the map p is C1, it follows that its derivative
yields a continuous map between the tangent spaces

dp : TM −→ TM(Ω) =
⋃̇

µ∈M(Ω)
S(Ω, µ).

That is, for each tangent vector V ∈ TξM , its differential dξp(V ) is contained in S(Ω, p(ξ)) and
hence dominated by p(ξ).
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Definition 4.3. Let (M,Ω, p) be a parametrized measure model. Then for each tangent vector
V ∈ TξM of M , we define

∂V log p(ξ) :=
d{dξp(V )}
dp(ξ)

∈ L1(Ω, p(ξ)) (4.2)

and call this the logarithmic derivative of p at ξ in direction V .

If such a model is dominated by µ0 and has a regular density function p for which (4.1) holds, then
we can calculate the Radon-Nikodým derivative as

d{dξp(V )}
dp(ξ)

=
d{dξp(V )}

dµ0
·
(
dp(ξ)

dµ0

)−1

= ∂V p(.; ξ)(p(.; ξ))
−1 = ∂V log p(.; ξ),

where we use the convention log 0 = 0. This justifies the notation in (4.2) even for models without
a regular densitiy function.
For a parametrized measure model (M,Ω, p) and k > 1 we consider the map

p1/k := π1/k ◦ p : M −→ S1/k(Ω), ξ 7−→ p(ξ)1/k.

Since π1/k is continuous by Proposition 2.3, it follows that p1/k is continuous as well. Let us pretend
for the moment that p1/k is a C1-map, so that dξp

1/k(V ) ∈ Tp(ξ)1/kM1/k(Ω) = S1/k(Ω, p(ξ)). In

this case, because of πk ◦ π1/k = Id, we have

p = πk ◦ p1/k,

whence by the chain rule and (2.14) we have for ξ ∈M and V ∈ TξM

dξp(V ) = k p(ξ)1−1/k ·
(
dξp

1/k(V )
)
.

Thus with (4.2) this implies

dξp
1/k(V ) =

1

k
∂V log p(ξ) p1/k(ξ) ∈ S1/k(Ω, p(ξ)) (4.3)

and hence, in particular, ∂V log p(ξ) ∈ Lk(Ω, p(ξ)), and depends continuously on V ∈ TM . This
motivates the following definition.

Definition 4.4. (k-integrable parametrized measure model)
A parametrized measure model (M,Ω, p) is called k-integrable for k ≥ 1 if for all ξ ∈ M and
V ∈ TξM we have

∂V log p(ξ) =
d{dξp(V )}
dp(ξ)

∈ Lk(Ω, p(ξ)),

and moreover, the map
dp1/k : TM −→ TS1/k(Ω)

given in (4.3) is continuous. dp1/k is called the formal derivative of p1/k. Furthermore, we call the
model ∞-integrable if it is k-integrable for all k ≥ 1.
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Since p(ξ) is a finite measure, we have Lk(Ω, p(ξ)) ⊂ Ll(Ω, p(ξ)) for all 1 ≤ l ≤ k. Thus, k-
integrability implies l-integrability for all such l.

Remark 4.3. 1. By our previous discussion, a parametrized measure model (M,Ω, p) for which
p1/k is a C1-map is always k-integrable, and the derivative coincides with the formal derivative.
However, it is not clear if there are k-integrable parametrized measure models for which p1/k

is not a C1-map.

2. Observe that for parametrized measure models with a regular density function the notion of
k-integrability coincides with that given in [5, Definition 2.4].

Definition 4.5. (Canonical n-tensor)
For n ∈ N, the canonical n-tensor is the covariant n-tensor on S1/n(Ω), given by

LnΩ(ν1, . . . , νn) = nn
∫

Ω
d(ν1 · · · νn), where νi ∈ S1/n(Ω). (4.4)

For n = 2, the pairing (.; .) : S1/2(Ω)× S1/2(Ω)→ R from (2.11) satisfies

(ν1; ν2) =
1

4
L2

Ω(ν1, ν2).

Since (ν; ν) = ‖ν‖22 by (2.8), it follows:(
S1/2(Ω),

1

4
L2

Ω

)
is a Hilbert space with norm ‖.‖2.

The main purpose of defining the notion of k-integrability is that for a k-integrable model, there
is a well defined pullback of the canonical n-tensor LnΩ via the map p1/n for all n ≤ k. That is, we
define for V1, . . . , Vn ∈ TξM

τn(M,Ω,p)(V1, . . . , Vn) := LnΩ(dξp
1/n(V1), . . . , dξp

1/n(Vn))

=
∫

Ω ∂V1 log p(ξ) · · · ∂Vn log p(ξ) dp(ξ),

where the second line follows immediately from (4.3) and (4.4).

Example 4.2. 1. For n = 1, the canonical 1-form is given as

τ1
(M,Ω,p)(V ) :=

∫
Ω
∂V log p(ξ) dp(ξ) = ∂V ‖p(ξ)‖.

Thus, it vanishes if and only if ‖p(ξ)‖ is locally constant, e.g., if (M,Ω, p) is a statistical
model.

2. For n = 2, τ2
(M,Ω,p) coincides with the Fisher metric

gF (V,W )ξ :=

∫
Ω
∂V log p(ξ) ∂W log p(ξ) dp(ξ) (4.5)
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3. For n = 3, τ3
(M,Ω,p) coincides with the Amari-Chentsov 3-symmetric tensor

TAC(V,W,X)ξ :=

∫
Ω
∂V log p(ξ) ∂W log p(ξ) ∂X log p(ξ) dp(ξ).

Remark 4.4. While the Fisher metric and the Amari-Chentsov tensor give an interpretation of
τn(M,Ω,p) for n = 2, 3, we do not know of any statistical significance of τn(M,Ω,p) for n ≥ 4. However,

one might hope to get an interpretation of e.g. τ4
(M,Ω,p) as some kind of curvature tensor of a suitable

connection. Moreover, in [14, p.212] the question is posed if there are other significant tensors on
statistical manifolds, and the canonical n-tensors may be considered as natural candidates.

5 Parametrized measure models and sufficient statistics

Given a parametrized measure model (statistical model, respectively) (M,Ω, p) and a Markov
kernel K : Ω → P(Ω′) which induces the Markov morphism K∗ : M(Ω) →M(Ω′) as in (3.6), we
obtain another parametrized measure model (statistical model, respectively) (M,Ω′, p′) by defining
p′(ξ) := K∗(p(ξ)). It is the purpose of this section to investigate the relation between these two
models in more detail.

Theorem 5.1. Let (M,Ω, p), K : Ω→ P(Ω′) and (M,Ω′, p′) be as above, and suppose that (M,Ω, p)
is k-integrable for some k ≥ 1. Then the following hold.

1. (M,Ω′, p′) is also k-integrable.

2. If K is congruent w.r.t. some statistic κ : Ω′ → Ω, then

‖∂V log p(ξ)‖k = ‖∂V log p′(ξ)‖k for all V ∈ TξM.

3. If K is induced by a statistic κ : Ω→ Ω′, then(
∂V log p(ξ)− κ∗(∂V log p′(ξ))

)
· p(ξ)1/k ∈ (C1−1/k

κ,p(ξ) )⊥.

Proof. Since K∗ is the restriction of a bounded linear map, it is obvious that p′ : M → M(Ω′) is
again differentiable, and in fact,

dξp
′(V ) = K∗(dξp(V )).

for all V ∈ TξM , ξ ∈M .
Let us now assume that K is κ-congruent w.r.t. a statistic κ : Ω′ → Ω. Applying Proposition 3.1
(with Ω1 := Ω′ and Ω2 := Ω) to µ′ := p(ξ) ∈ M(Ω) and µ := K∗(µ

′) = p′(ξ) ∈ M(Ω′), it follows
that

dξp
′(V ) = K∗(dξp(V )) = K∗(∂V log p(ξ)µ′)

= κ∗(∂V log p(ξ))µ = κ∗(∂V log p(ξ))p′(ξ),

and hence, for any κ-congruent Markov morphism K, we have

∂V log p′(ξ) =
d{dξp′(V )}
dp′(ξ)

= κ∗(∂V log p(ξ)),
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Thus,

‖∂V log p′(ξ)‖kk =

∫
Ω′
|∂V log p′(ξ)|k dp′(ξ)

=

∫
Ω′
κ∗(|∂V log p(ξ)|k) dp′(ξ) =

∫
Ω
|∂V log p(ξ)|k dp(ξ)

= ‖∂V log p(ξ)‖kk,

using that κ∗(p
′(ξ)) = κ∗(K∗(p(ξ)) = p(ξ) by the κ-congruency of K, which shows the second

statement.
Next, suppose that K is induced by a statistic κ : Ω → Ω′, i.e., p′(ξ) = κ∗(p(ξ)) for all ξ ∈ M . If
(M,Ω, p) is k-integrable, then by Proposition 3.3, we may decompose

S1/k(Ω, p(ξ)) 3 ∂V log p(ξ) · p(ξ)1/k = κ∗(φ′) · p(ξ)1/k + ν1/k,

where φ′ ∈ Lk(Ω′, p′(ξ)) and ν1/k ∈ (C1−1/k
κ,p(ξ) )⊥. Thus,

dξp
′(V ) = κ∗(∂V log p(ξ) · p(ξ)) = κ∗((∂V log p(ξ) · p(ξ)1/k) · p(ξ)1−1/k)

= κ∗(κ
∗(φ′) · (p(ξ))) + κ∗(ν

1/k · p(ξ)1−1/k)︸ ︷︷ ︸
=0

= φ′p′(ξ),

using (3.2) and (3.16). That is, φ′ = ∂V log p′(ξ), and this shows the third statement.
Finally, to see the first statement, observe that by Theorem 3.2, every Markov kernel is the compo-
sition of a statistic and a congruent Markov kernel. Since from the second and the third statement
it follows that both a statistic and a congruent Markov kernel preserve k-integrability, the general
case follows.

Definition 5.1. (Sufficient statistic)
Let (M,Ω, p) be a parametrized measure model. Then κ : Ω→ Ω′ is called a sufficient statistic for
p if there is a µ ∈M(Ω) such that

p(ξ) = φ′(κ(·); ξ)µ

for some φ′(·; ξ) ∈ L1(Ω′, µ′). In this case,

p′(ξ) = κ∗p(ξ) = φ′(·; ξ)µ′,

where µ′ = κ∗(µ).

Evidently, by (3.5) this is equivalent to saying that p(ξ) ⊂ Cκ,µ for all ξ ∈ M and some fixed

measure µ ∈M(Ω). If in addition (M,Ω, p) is k-integrable, then (3.13) implies that p(ξ)1/k ∈ C1/k
κ,µ .

We now can show the following

Theorem 5.2. (Monotonicity theorem) (cf. [5], [4])
Let (M,Ω, p) be a 2-integrable parametrized measure model, let K : Ω → P(Ω′) be a Markov
kernel, so that the induced parametrized measure model (M,Ω′, p′) with p′(ξ) = K∗(p(ξ)) is also
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2-integrable by Theorem 5.1. Moreover, let g and g′ denote the Fisher metric of (M,Ω, p) and
(M,Ω′, p′), respectively. Then

g(V, V ) ≥ g′(V, V ) for all V ∈ TξM and ξ ∈M. (5.1)

Moreover, if K is induced by a statistic κ : Ω → Ω′ then equality in (5.1) holds iff ∂V log p(ξ) =
κ∗(∂V log p′(ξ)). In particular, if p(ξ) = p(·; ξ)µ0 with regular and positive density function p :
M × Ω → (0,∞), and M is connected, then equality in (5.1) holds for all V if and only if κ is a
sufficient statistic for the model (M,Ω, p).

Remark 5.1. 1. The difference g(V, V )−g′(V, V ) ≥ 0 is called the information loss of the model
(M,Ω, p) under κ. Thus, the interpretation of the monotonicity theorem is that every statistic
produces some (non-negative) information loss which vanishes if and only if this statistic is
sufficient.

2. Theorem 5.1, 2. already implies that a congruent Markov morphism preserves the Fisher
metric. Thus, due to the decomposition of Markov kernels from Theorem 3.2, it suffices to
show that statistics decrease the Fisher metric unless the statistic is sufficient.

3. Note that our approach allows to prove the monotonicity theorem with no further assumption
on the model (M,Ω, p). In order for (5.1) to hold we can even work with arbitrary Markov
kernels, not just statistics, and there is no condition on the statistic κ. In particular, we do
not need to assume that Ω is a topological space with its Borel σ-algebra, nor do we need to
assume the existence of transversal measures of the map κ which are assumptions made in the
literatur (e.g. [4, Theorem 2.1] or [5, Theorem 3.11]). In this sense, our statement generalizes
these versions of the monotonicity theorem, as it even covers a statistic as in Example 3.2.

Proof. As before, Theorem 3.2 allows us to reduce the proof of the monotonicity to the case of
congruent Markov morphisms and to Markov morphisms induced by a statistic.
Observe that by the definition of the Fisher metric in (4.5) it follows that

gF (V, V ) = ‖∂V log p(ξ)‖22, g′
F

(V, V ) = ‖∂V log p′(ξ)‖22,

where these norms are taken in L2(Ω, p(ξ) and L2(Ω′, p′(ξ)), respectively. Thus, if K is congruent
w.r.t. some statistic, then Theorem 5.1, 2. implies that gF (V, V ) = g′F (V, V ) in this case.
If K is induced by a statistic κ : Ω→ Ω′, let us use the decomposition (3.15) for r = 1/2 to write

S1/2(Ω, p(ξ)) 3 ∂V log p(ξ) = κ∗(φ′)p(ξ) + ν ∈ C1/2
κ,p(ξ) ⊕ (C1/2

κ,p(ξ))
⊥,

where the two summands are orthogonal in the Hilbert space S1/2(Ω, p(ξ)). Thus,

gF (V, V ) = ‖∂V log p(ξ)‖22 = ‖κ∗(φ′)‖22 + ‖ν‖22 ≥ ‖φ′‖22,

where the norms are taken in the Hilbert spaces L2(Ω, p(ξ)), L2(Ω′, p′(ξ)) and S1/2(Ω, p(ξ)), re-
spectively. By Theorem 5.1, 3. this implies that φ′ = ∂V log p′(ξ), so that

‖φ′‖22 = ‖∂V log p′(ξ)‖22 = g′
F

(V ;V ),

so that the estimate gF (V, V ) ≥ g′F (V ;V ) follows, with equality iff ∂V log p(ξ) = κ∗(∂V log p′(ξ)).
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If (M,Ω, p) is given by a regular positive density function p(ξ) = p(·; ξ)µ0, then log p(·; ξ) and
log p′(·; ξ) are indeed well defined differentiable functions on M × Ω and M × Ω′, respectively. In
particular, κ∗(∂V log p′(ξ)) = ∂V (log κ∗p′(ξ)), so that equality in (5.1) holds iff

∂V log
p(·; ξ)
κ∗p′(·; ξ)

= ∂V (log p(·; ξ)− (log κ∗p′(·; ξ))) = 0.

If M is connected, then this is the case for all V ∈ TM iff h(·) := p(·;ξ)
κ∗p′(·;ξ) is positive and does not

depend on ξ ∈M . Thus, setting µ̃0 := hµ0 this implies that

p(ξ) = κ∗(p′(ξ))µ̃0,

showing that this happens iff κ is a sufficient statistic for (M,Ω, p).
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