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Abstract

We characterize the exact lumpability of nonlinear differential equa-
tions on smooth manifolds. We derive necessary and sufficient condi-
tions for lumpability and express them from four different perspec-
tives, thus simplifying and generalizing various results from the liter-
ature that exist for Euclidean spaces. The conditions are formulated
in terms of the differential of the lumping map, its Lie derivative, and
their respective kernels. Two examples are discussed to illustrate the
theory.
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1 Introduction

Dimensional reduction is an important aspect in the study of smooth dynam-
ical systems and in particular in modeling by ordinary differential equations
(ODEs). Often a reduction can elucidate key mechanisms, reveal conserved
quantities, make the problem computationally tractable, or rid it from re-
dundancies. A dimensional reduction by which micro state variables are
aggregated into macro state variables also goes by the name of lumping.
Starting from a micro state dynamics, this aggregation induces a lumped
dynamics on the macro state space. Whenever a non-trivial lumping, one
that is neither the identity nor maps to a single point, confers the defining
property to the induced dynamics, one calls the dynamics exactly lumpable
and the map an exact lumping.

Our aim in this paper is to provide necessary and sufficient conditions for
exact lumpability of smooth dynamics generated by a system of ODEs on
smooth manifolds. To be more precise, letX and Y be two smooth manifolds
of dimension n and m, respectively, with 0 < m < n. Let πX : TX → X
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and πY : TY → Y be their tangent bundles, whose fibres we take as spaces
of derivations, and let v be an element of the smooth sections Γ∞(X,TX)
of TX over X, i.e. smooth maps from X to TX satisfying πX ◦ v = idX ,
the identity map on X. The integral curves x(t) of v satisfy the equation

d

dt
x(t) = v(x(t)) . (1)

On a local coordinate patch U ⊆ X we can write (1) as ẋi = vi(x) so
that we recover an ODE on that patch. Consider a smooth surjective map
π : X → Y and let y = π(x). Since dim(Y ) < dim(X), the mapping π
is many-to-one, and hence is called a lumping. The question is whether
there exists a smooth dynamics on Y that is generated by another system
of ODEs, say,

d

dt
y(t) = ṽ(y(t)) (2)

for some smooth vector field ṽ on Y . If that is the case, we say that (1) is
exactly lumpable for the map π.

In this paper we take the lumping to be a smooth and surjective map π :
X → Y and for simplicity restrict ourselves to maps where the preimages are
connected. In general one may want to allow for a broader class of lumpings
where Y need not have a manifold structure. A natural extension would
be to take Y and eventually X to be stratified spaces and π a morphism
of stratified spaces. These spaces naturally occur for instance when the
lumping is the quotient map of a proper Lie group action. In the following
presentation, however, we will constrain ourselves to smooth manifolds.

The reduction of the state space dimension has been studied for Markov
chains by Burke and Rosenblatt [1–3] in the 1960s. Kemeny and Snell [4]
have studied its variants and called them weak and strong lumpability. Many
conditions have been found, mostly in terms of linear algebra, for various
forms of Markov lumpability [4–12]. Since Markov chains are character-
ized by linear transition kernels, most of these conditions carry over di-
rectly to the case of linear difference and differential equations. In 1969 Kuo
and Wei studied exact [13] and approximate lumpability [14] in the context
of monomolecular reaction systems, which are systems of linear first order
ODEs of the form ẋ = Ax. They gave two equivalent conditions for exact
lumpability in terms of the commutativity of the lumping map with the flow
or with the matrix A respectively. Luckyanov [15] and Iwasa [16] studied
exact lumpability in the context of ecological modelling and derived further
conditions in terms of the Jacobian of the induced vector field and the pseu-
doinverse of the lumping map. Iwasa only considered those maps that have
a non-degenerate differential, i.e., only submersions. The program was then
continued by Li and Rabitz et al. who wrote a series of papers successively
generalizing the setting, but remaining in the Euclidean realm. They first
constrain the analysis to linear lumping maps [17], where they offer for the
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first time two construction methods in terms of matrix decompositions of
the vector field Jacobian. These methods together with the observability
concept [18] from control theory were employed to arrive at a scheme for
approximate lumpings with linear maps [19]. They extended their analysis
further to exact nonlinear lumpings of general nonlinear but differentiable
dynamics [20], providing a set of necessary and sufficient conditions, ex-
tending and refining those obtained by Kuo, Wei, Luckyanov and Iwasa. By
considering the spaces that are left invariant by the Jacobian of the vector
field, they open up a new fruitful perspective, namely the tangent space dis-
tribution viewpoint in disguise. Finding lumpings reduces to finding those
subspaces. They offer three methods to construct lumpings: Either one finds
by an ingenious guess a constraint that is satisfied by some lumping, and
this very lumping is then found by an iterative procedure starting from the
constraint. Or alternatively, one has to find a set of generalized eigenfunc-
tions to the differential operator given by the vector field of the dynamics
when viewed as a derivation. This is as hard a task as finding the set of first
integrals. Eventually they also discuss a Lie algebra method, which works
in the case where symmetries are present. In each case it is not possible to
construct all possible lumpings for a given dynamics. It is also still an open
question to determine whether there even exist non-trivial lumpings.

The connection to control theory has been made explicit in [21]. Coxson
notices that exact lumpability is an extreme case of non-observability, where
the lumping map is viewed as the observable. She specifies another necce-
sary and sufficient condition by stating that the rank of the observability
matrix ought to be that of the lumping map itself. The geometric theory of
nonlinear control is outlined in [22]. There, Isidori employs the concept of
an exterior differential system [23], though not stated explicitly, in combina-
tion with Frobenius Theorem to arrive at a condition of observability for a
control system. He makes use of the Lie derivative of the exterior derivative
of the lumping, which is analogous to our concept for the Lie derivative of
the differential.

In this paper we tie together all these strands into one geometric theory
of exact lumpability. The conditions obtained by Iwasa, Luckyanov, Coxson,
Li, Rabitz and Toth are contained in this framework. Instead of considering
the distribution spanned by the differential of the lumping map, as is done
in [20] although not explicitly, we consider the vertical distribution which is
defined by the kernel of the differential. We state the mathematical setting
in Section 2, where we introduce the relevant objects. In Section 3 we define
the notion of exact smooth lumpability and provide four propositions that
characterize it. Based on these characterizations, we provide in Section 4 a
method for the construction of lumpings and subsequently study two exam-
ples, checking for their lumpability in terms of the necessary and sufficient
conditions derived in Section 3.
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2 Preliminaries

The differential of π at point x is a R-linear map Dπx : TxX → Tπ(x)Y . For
wx ∈ TxX the vector Dπxwx can be defined via its action as a derivation
Dπxwx[f ] = wx[f ◦ π], where the argument of the derivation, a smooth
and compact test function f ∈ C∞0 (X,R), stands in square brackets. The
lumping is a submersion whenever Dπx is surjective with constant rank for
all x ∈ X. The vector bundle over X whose fibers at x are Tπ(x)Y is called
the pullback bundle π∗TY and a section is called a vector field along π. As
a tangent bundle homomorphism Dπ : TX → TY is a map whose action
on w ∈ TX is given by (x,wx) 7→ (π(x), Dπxwx). As a map on smooth
sections, Dπ : Γ∞(X,TX) → Γ∞(X,π∗TY ) is a C∞-linear map, taking
the vector field w to a vector field along π that lives on X and not on Y .
One can only define a vector field w̃ on Y when there is a unique vector
Dπxw(x) for all x ∈ π−1(y) and all y ∈ Y . Whenever this holds true, w̃ and
w are called π-related. It is easy to check [24] that w and w̃ are π-related
if and only if w[f ◦ π] = w̃[f ] ◦ π for test functions f . If θ : X → X ′ is
a diffeomorphism, where X ′ is some manifold of equal dimension, then all
sections on X are θ-related to a unique section on X ′, since there is a one-to-
one correspondence. We use the notation θ∗ : Γ∞(X,TX) → Γ∞(X ′, TX ′)
to denote the pushforward of vector fields from X to θ-related vector fields
on X ′.

Let w be a vector field on X with local flow θt. The Lie derivative Lwv
of v along w is defined by

Lwv :=
d

dt

∣∣∣
t=0

(θ−t)∗(v ◦ θt) , (3)

which is again a smooth vector field on X and can be shown to be equivalent
to the commutator

[
w, v

]
. The Lie derivative of a real-valued function g

along w is Lwg = w[g].
Given a linear map L : TxX → V into a vector space V and a diffeomor-

phism θ : X → X ′, there exists an induced linear map θ]L : Tx′X
′ → V of

L: (
θ]L
)
x′

:= L ◦
(
Dθ−1

)
x′
. (4)

It is clearly again linear since the differential (Dθ−1)x′ is linear and linearity
is preserved under composition. Analogously to the Lie derivative of sections
on the tangent bundle, we define the Lie derivative of the differential Dπ , a
section on the vector bundle Hom(TX, π∗TY ) over X, given here pointwise
as

(LwDπ )x :=
d

dt

∣∣∣
t=0

((
θ−t
)
]
Dπθt(x)

)
x
. (5)

However, (5) is a C∞-linear map from TX to π∗TY . In order to write down
the component form of (5), we choose a coordinate chart ψ : U ⊆ X → Rn
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with indices labelled by i, j and a chart ψ̃ : V ⊆ Y → Rm whose indices are
labelled by a, b. We invoke the definition of LwDπ to obtain

(LwDπ )ai = lim
ε→0

1

ε

[∑
j

(∂πa
∂xj
◦ θε
)∂θjε
∂xi
− ∂πa

∂xj
δji

]

= lim
ε→0

1

ε

[(∂πa
∂xj
◦ (id +εw +O(ε2)

)) ∂

∂xi

(
idj +εwj +O(ε2)

)
− ∂πa

∂xi

]
= lim

ε→0

1

ε

[
ε
∑
j

(
wj

∂2πa

∂xi∂xj
+
∂πa

∂xj
∂vj

∂xi

)
+O(ε2)

]
=
∑
j

∂

∂xi

(
wj
∂πa

∂xj

)
.

We can use the action of the Lie derivative on differentials and on vector
fields to also define its action on sections of the pullback bundle π∗TY , such
that Leibniz’s rule holds:

Lw(Dπ v) := (LwDπ )v +DπLwv . (6)

We then get the following identity, spelled out in local coordinates,(
Lw(Dπ v)

)a
=
∑
jk

wj
∂

∂xj

(∂πa
∂xk

vk
)

=
(
(LvDπ)w

)a
.

Next we introduce the central object of this paper. Following [25], a
(singular tangent space) distribution S is a choice of a subspace Sx ⊆ TxX
of the tangent space at each point x ∈ X, so S =

⊔
x∈X Sx, where

⊔
denotes

the disjoint union. A priori this choice need not be continuous in x or be of
constant dimension. S is said to be a smooth distribution if each subspace Sx
is given by the span of locally defined smooth vector fields at x. Smoothness
of S does not entail that the distribution is regular, i.e. that it has constant
dimension.

The distribution kerDπ =
⊔
x∈X kerDπx can be shown to be smooth.

This follows from the existence of a smooth local coframe (c.f. [24]) spanned
by m smooth 1-forms (dπ1, . . . , dπm) that annihilate kerDπ . The distri-
bution kerDπ has constant dimension m if and only if π is a submersion.
The distribution kerLvDπ =

⊔
x∈X kerLvDπx can be shown to be smooth

in much the same way. This time the annihilating m smooth 1-form fields
are (dσ1, . . . , dσm) where σa = 〈dπa, v〉 is a smooth function on X and
〈·, ·〉 : T ∗X × TX → R is the natural pairing of tangent and co-tangent
vectors.

3 Characterization of Lumpability

In this section, through a sequence of propositions, we shall derive conditions
for exact lumpability from four perspectives. We start by giving a precise
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definition of lumpability.

Definition 1 (Exact Smooth Lumpability). The system

ẋ = v(x) (7)

is called exactly smoothly lumpable (henceforth exactly lumpable) for π iff
there exists a smooth vector field ṽ ∈ Γ∞(Y, TY ) such that the dynamics of
y = π(x) is governed by

ẏ = ṽ(y), (8)

where x satisfies (7).

The Picard-Lindelöf Theorem guarantees a unique solution of (7) for
sufficiently small times, but it may cease to exist at some point. Let Tx ⊆ R
be the times for which a solution with initial point x exists. We introduce
TX := {(Tx, x) : x ∈ X} and define the flow Φ : TX ⊆ R ×X → X by the
map (t, x(0)) 7→ x(t). Given the flow Φ, we denote by Φx : Tx → X the
integral curves with starting point x, and by Φt : Xt → X the flow map
parametrized by time, with Xt := {x ∈ X : t ∈ Tx} being the domain of
definition.

Formally, equation (7) should be understood as the pushforward of the
unit section ∂

∂t on Tx by the integral curve Φx : Tx → X:

d

dt

∣∣∣
t
Φx :=

(
DΦx

)
t

∂

∂t
= v(Φx(t)), (9)

and likewise for (8). Given v and ṽ, both curves Φx and Φ̃π(x) are guaranteed

to exist at least for small times Tx and T̃y respectively. There is no apriori
connection between those times; however, we will see later that Proposition
2 relates them.

Proposition 1. The system ẋ = v(x) is exactly lumpable for π iff there
exists a smooth vector field ṽ ∈ Γ∞(Y, TY ) such that

Dπxv(x) = ṽ(π(x)) (10)

for all x ∈ X.

Proof. Consider the time derivatives of π ◦ Φx and Φ̃π(x):

d

dt

∣∣∣
t
π ◦ Φx = D(π ◦ Φx)t

∂

∂t
= Dπ Φx(t)(DΦx)t

∂

∂t
= DπΦx(t)v(Φx(t)),

(11)

d

dt

∣∣∣
t

Φ̃π(x) =
(
DΦ̃π(x)

)
t

∂

∂t
= ṽ(Φ̃π(x)(t)), (12)

and take t = 0, where the equality π(x) = π ◦ Φx(0) = Φ̃π(x)(0) holds. By
the definition of exact lumpability we know that π(x) is governed by ṽ; in
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other words, ṽ(π(x))
!

= d
dt |0 π ◦ Φx = Dπxv(x), where the latter equality

comes from (11). Conversely if we assume condition (10) for all x, then (11)
equals (12) for t = 0. Thus the infinitesimal dynamics of π ◦Φx is governed
by ṽ(π(x)), which is the definition of exact lumpability.

Remark 1. Alternatively, we can say that ẋ = v(x) is exactly lumpable for
π iff there exists a smooth vector field ṽ ∈ Γ∞(Y, TY ) such that ṽ and v are
π-related, i.e. v[f ◦ π] = ṽ[f ] ◦ π for any smooth and compact test function
f .

Proposition 2. The system ẋ = v(x) is exactly lumpable for π iff for all
y ∈ Y the time domain T̃y = Tx is independent of the choice x ∈ π−1(y),

and there is a smooth map Φ̃ : T̃Y → Y such that

Φ̃t ◦ π(x) = π ◦ Φt(x) (13)

for all x ∈ X and all times t ∈ T̃π(x).

Proof. One implication is obtained by taking time derivatives on both sides
of (13) at t = 0, which gives rise to (10) and by Proposition 1 implies exact
lumpability.

For the other direction we consider the curve Θ̃x = π ◦ Φx : Tx → Y
with Θ̃x(0) = π(x) = y. From the condition (10) for exact lumpability we
see that ṽ(π ◦ Φx(t)) = Dπ Φx(t)v(Φx(t)) = d

dt

(
π ◦ Φx

)
(t), so ṽ is tangent to

Θ̃x(t) for all times t ∈ Tx. Thus Θ̃x is an integral curve of the vector field ṽ
going through y. For ṽ there exists already an integral curve Φ̃y, which by
uniqueness must coincide with Θ̃x, and so we have Φ̃π(x)(t) = π ◦ Φx(t) for
all t ∈ Tx. In terms of flow maps this is equivalent to (13). This argument
is independent of the choice of x ∈ π−1(y); so the domain of definition has
to be T̃y = Tx for all x ∈ π−1(y).

Remark 2. The rankDπ : X → N is to be understood as an allocation of
the rankDπx ∈ N for every point x ∈ X. So, if π is a submersion then
rankDπ ≡ m, but otherwise not. Propositions 1 and 2 can be cast into
commuting diagrams:

Y Y

XX

Φ̃t

Φt

ππ

Y TY

TXX

ṽ

v

Dππ

The left one says that Φ̃t ◦ π = π ◦Φt for all times of definition t. The right
one reads ṽ(π(x)) = Dπxv(x) for all x ∈ X.

Proposition 3. The system ẋ = v(x) is exactly lumpable for π iff kerDπ
is invariant under Lv, or equivalently, kerDπ ⊆ kerLvDπ.
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Proof. First we show that kerDπ is invariant under Lv iff kerDπ ⊆ kerLvDπ .
Recall from the Leibniz’s rule (6) that(

LvDπ
)
w = Lv

(
Dπw

)
−DπLvw . (14)

Take w ∈ kerDπ. If kerDπ is invariant under Lv, then the right hand side
of (14) vanishes and w ∈ kerLvDπ . Conversely, if w ∈ kerLvDπ , then by
(14) the Lie derivative Lvw is again in kerDπ , since w ∈ kerDπ .

Second, we show that exact lumpability implies the invariance of kerDπ
under Lv. By exact lumpability we know from (10) that there is a vector
field ṽ such that v[f ◦ π] = ṽ[f ] ◦ π for any test function f ∈ C∞(Y,R).
Therefore,(

DπLvw
)
[f ] = Dπ

[
v, w

]
[f ] = v[w[f ◦ π]]− w[v[f ◦ π]] (15)

= v[w[f ◦ π]]− w[ṽ[f ] ◦ π]

⇔
(
DπLvw

)
[f ] = v[Dπw[f ]]−Dπw[ṽ[f ]] (16)

and thus w ∈ kerDπ implies Lvw ∈ kerDπ .
Third, we show that the condition kerDπ ⊆ kerLvDπ implies exact

lumpability. We want to define the vector field ṽ as a smooth function
of y such that ṽπ(x) = Dπxv(x) for all x ∈ X. This would imply exact
lumpability due to (10). We first note that ṽ is well defined because π is
surjective and smooth and Dπxv(x) is constant along the connected fibers
π−1(y). The latter can be seen by considering a vector field w ∈ kerDπ
and its local flow Θ. We fix local coordinate patches ψ̃ : V ⊆ Y → Rm and
ψ : U ⊂ X → Rn, with ψ̃a(y) = ya, ψ̃a ◦ π = πa, and ψi(x) = xi. Now Dπ v
does not change along the flow:

∂

∂t
(Dπ av ◦Θx)t=0 =

∑
ij

(
∂

∂xi

(
∂πa

∂xj
vj
))(

∂Θi
x

∂t

)
t=0

=
∑
i

(LvDπ )aiw
i = 0 ,

since w ∈ kerDπ implies w ∈ kerLvDπ by assumption.
It remains to show that ṽ is a smooth function of y. This is the case if

for any smooth curve γ̃y : (−ε, ε) → Y the composition ṽ ◦ γ̃y is a smooth
function in time. But any such curve can be viewed as the composition of
π with a curve γx : (−ε, ε) → X, where π(x) = y. Since for any γx the
equality ṽ ◦ π ◦ γx = Dπ v ◦ γx holds, and since the right hand side is a
composition of smooth functions and is thus also smooth, it follows that ṽ
must be smooth.

Proposition 4. A distribution Ω is invariant under Lv (i.e. w ∈ Ω ⇒
Lvw ∈ Ω) iff it is invariant under the corresponding flow φt (i.e. DφtΩx =
Ωφt(x) for all x ∈ X).
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Proof. This can be seen by considering w ∈ Ω, σ ∈ Ω⊥ and the pairing
〈σ(x), Dφ−tw(φt(x))〉. For t = 0 we have 〈σ(x), w(x)〉 = 0 by definition.
Upon taking time derivatives we get

d

dt

∣∣∣
0

〈
σ(x), Dφ−tw(φt(x))

〉
=
〈
σ(x),

d

dt

∣∣∣
0
Dφ−tw(φt(x))

〉
=
〈
σ(x),Lvw(x)

〉
.

Hence w ∈ Ω⇒ Lvw ∈ Ω implies and is implied by Dφ−tw(φt(x)) ∈ Ωx for
all t and x. Upon multiplying by Dφt the latter becomes w(φt(x)) ∈ DφtΩx.
The above argument can be repeated for −v, with −Lvw(x) = L−vw(x) =
d
dt

∣∣∣
0
Dφtw(φ−t(x)), implying this time Dφtw(φ−t(x)) ∈ Ωx. By taking x →

φt(x) this becomes Dφtw(x) ∈ Ωφt(x). In summary, w ∈ Ω ⇒ Lvw ∈ Ω is
equivalent to DφtΩx = Ωφt(x) for all x and t in the domain of definition.

We make the connection to control theory by introducing the 2-observability
map:

O2 :=

(
Dπ
LvDπ

)
: TX → π∗TY ⊕ π∗TY , (17)

given locally by

(x;w) 7→
(
π(x); (Dπxw,LvDπxw)

)
.

The n-observability map On : TX →
⊕n π∗TY is defined analogously with

higher-order Lie derivatives. In the linear case, where ẋ = v(x) = Ax

and y = π(x) = Cx, we have O2 =

(
C
CA

)
; furthermore, On is just the

standard observability matrix

On =


C
CA

...
CAn−1

 (18)

familiar from linear control theory [26], where the system is called observable
if rankOn = n. We will show that a system is exactly lumpable iff rankO2 =
rankDπ .

Proposition 5. The system ẋ = v(x) is exactly lumpable for π iff rankO2 =
rankDπ , or equivalently, iff locally on each coordinate patch,

(
LvDπ

)a ∈
span(Dπ1, . . . , Dπm) for all a with 1 ≤ a ≤ m.

Proof. First, we fix coordinate patches ψ̃ : V ⊆ Y → Rm and ψ : U ⊂ X →
Rn with ψ̃a(y) = ya and ψi(x) = xi. Note that in local coordinates the
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2-observability map is given by the 2m× n matrix

O2 =



Dπ1

...
Dπm

LvDπ1

...
LvDπm


=



∂π1

∂x1
· · · ∂π1

∂xn
...

. . .
...

∂πm

∂x1
· · · ∂π1

∂xn
∂
∂x1

(∑
j v

j ∂π1

∂xj

)
· · · ∂

∂xn

(∑
j v

j ∂π1

∂xj

)
...

. . .
...

∂
∂x1

(∑
j v

j ∂πm

∂xj

)
· · · ∂

∂xn

(∑
j v

j ∂πm

∂xj

)


. (19)

The first m rows of O2 have rankDπ by construction. So, every further row
LvDπ a needs to be a C∞-linear combination of rows Dπ b, and hence lies in
spanC∞(Dπ1, . . . , Dπm). Likewise, if LvDπ a lie in spanC∞(Dπ1, . . . , Dπm),
then rankO2 = rankDπ .

It remains to show the equivalence of the span-condition and exact
lumpability. The easy direction follows by writing the span-condition

LvDπa =
∑
b

φabDπ
b (20)

with smooth coefficient functions φab . Now taking w ∈ kerDπ implies w ∈
kerLvDπ and, by Proposition 3, yields exact lumpability. On the other
hand, if the system is exactly lumpable, then by Proposition 1 we have
Dπav(x) = ṽa(π(x)) for all x. Taking partial derivatives in the xi-direction
on both sides gives∑

b

∂ṽa

∂yb
∂πb

∂xi
=

∂

∂xi
(ṽa ◦ π) =

∂

∂xi
(Dπ v)a =

∑
j

∂

∂xi

(
vj
∂πa

∂xj

)
. (21)

The rightmost expression is the local coordinate form of (LvDπ)ai and the
leftmost side can be read as the linear combination of Dπb with coefficients
∂ṽa

∂yb
, which are smooth because ṽ is smooth. In this way, the span-condition

(20) follows.

Remark 3. If v and π are linear and X and Y are both Euclidean spaces,
then the conditions reduce to the ones known for linear ODEs [13, 27].

In closing this section, we discuss the relation of lumpability to the sym-
metries of the system. We shall show that the action of a Lie group that
leaves the vector field invariant results in an exact lumping; however, the
converse is not true.

Let G be a finite Lie Group with Lie Algebra g. We denote by A :
G × X → X a smooth action (left or right action) on X and by a : g →
Γ∞(X,TX) the corresponding action of the Lie Algebra into the smooth
vector fields on X. The action on the whole algebra is a smooth distribution
a(g), because it is by definition spanned by smooth vector fields.

10



Proposition 6. Let A be a proper and free G-action on X and suppose v
satisfies the condition

Lva(g) ⊆ a(g). (22)

Then the system ẋ = v(x) is exactly lumpable for the quotient map π : X →
X/G.

Proof. Given a proper G-action, X can be decomposed into smooth sub-
manifolds, called orbit types, that share the same stabiliser group up to
conjugacy. The orbit space X/G inherits a decomposition into the quotients
of orbit types, which are again smooth submanifolds and form the strata of
a Whitney-stratification [28]. If the group also acts freely, then all orbits
are of the same orbit type and the quotient has a natural smooth manifold
structure. The quotient map is a submersion [24] onto the orbit space. the
tangent space to any orbit is spanned by a(g) and mapped to zero by Dπ.
Condition (22) then implies that kerDπ is invariant under Lv, which, by
Proposition 3, implies exact lumpability.

Remark 4. Requiring that the vector field be invariant under the symmetry,
namely that Lva(g) = 0, is a special case of, and thus stronger than, the
condition (22).

Remark 5. The converse statement to Proposition 6 is not true. Given a
vector field v and a lumping π, the level sets need not be orbits of a Lie group
action. This can already be seen for very simple vector fields: For instance,
if one considers the zero vector field, then π can be chosen arbitrarily, and
thus in such a way that level sets cannot ever come from the action of the
same group.

4 Construction of Lumping and Examples

4.1 Construction of lumping maps

We now briefly consider the problem of finding a lumping map π under
which the system is exactly lumpable.

By virtue of Proposition 5, LvDπa has to be a C∞-combination of the
(Dπb)mb=1 on each coordinate patch. To formalize the condition of linear
dependence, consider the vector bundle whose fibers consist of the exte-
rior algebra Λ(T ∗xX). The algebra should be over the linear maps TxX →
Tπb(x)R ∼= R, which is isomorphic to T ∗xX. So, the condition for exact
lumpability becomes

Ωa := Dπ1 ∧ · · · ∧Dπm ∧ LvDπa = 0, ∀a , (23)

which is a system of second order PDEs for π. Solving (23) analytically is
in general not easy but may be possible in specific cases; see Section 4.2

11



for an example. Alternatively, (23) may be approximated or numerically
investigated, which will not be pursued in the present paper.

For maps π : Rn → R, the condition (23) reads

0 = Ωij =
∑
k

∂π

∂xi
∂

∂xj

(
∂π

∂xk
vk
)
−
∑
k

∂π

∂xj
∂

∂xi

(
∂π

∂xk
vk
)
, ∀i, j . (24)

One can also phrase (24) as a variational problem, which has the additional
advantage that constraints can be added via the Lagrange multiplier for-
malism. We first introduce the variables γi = ∂π

∂xi
and their derivatives

γij = ∂γi
∂xj

= ∂2π
∂xj∂xi

. The Lagrangian L =
∑

ij Ω2
ij is a non-negative function

of γi and γij . Depending on v it will also have an explicit x-dependence.
Hence, the variational problem consists of finding γ such that the integral

I =

∫
U⊆X

L dx

is minimal over some region U ⊆ X.
In the remainder of the paper, we discuss two examples and study them

in terms of the neccessary and sufficient conditions derived in Propositions
1-3 and 5.

4.2 Lotka-Volterra type dynamics

Consider the set of scalar ODEs defined on Rn by

ẋi = xi

(
1−

n∑
j=1

ajxj

)
= vi(x), i = 1, . . . , n, (25)

for some set of real coefficients ai which are not all zero. The system (25)
can exhibit non-trivial behaviour, such as limit cycles, yet we will see that
the aggregated description in terms of a weighted average of the system
variables satisfies a simple first order ODE.

We first demonstrate that our conditions apply. Plugging (25) into con-
dition (24) gives

0
!

= Ωij = (γiaj − γjai)
∑
k

γkxk +
∑
k

vk(γiγkj − γjγki) . (26)

One sees immediately that γi = ∂π
∂xi

= ai is a solution. Integrating, we find
the lumpings πc : Rn → R given by πc(x) =

∑
j ajxj + c. Exact lumpability

can then be checked for π = π0 using the characterizations presented in this
paper, as follows.

First, we can find a vector field ṽ, namely ṽ(y) = y(1− y), such that

Dπxv(x) =
∑
i

∂π

∂xi
vi(x) =

∑
i

aixi

(
1−

∑
j

ajxj

)
= ṽ(π(x))

12



for all x ∈ Rn, as required by Proposition 1.
Second, we consider kerDπ =

{
ξ :
∑

i aiξi = 0
}

. In explicit terms we
can pick an aj 6= 0 so that

kerDπ = spanR





aj
0
...
a1
...
0
0


,



0
aj
...
a2
...
0
0


, . . . ,



0
...
aj
aj−1

...
0
0


,



0
0
...

aj+1

aj
...
0


, . . . ,



0
0
...
an
...
0
aj




.

This is a fixed n− 1 dimensional linear subspace independent of x. We take
ξ ∈ kerDπ and compute its Lie derivative as(

Lvξ
)
i

=
∑
j

(
vj
∂ξi
∂xj
− ξj

∂vi
∂xj

)
= −

(
1−

∑
j

ajxj

)
ξi ,

where we have used the condition
∑

j ajξj = 0. This shows that the Lie
derivative of a vector in the kernel is proportional to itself and thus again
in the kernel, as required by Proposition 3.

Finally, we compute LvDπ as

(LvDπ )i =
(

1− 2
∑
j

ajxj

)
ai =

(
1− 2

∑
j

ajxj

)
Dπi , (27)

which is proportional to Dπ and thus belongs to its span. Furthermore, it
has the same kernel as Dπ unless

∑
j ajxj = 1

2 , when its null space is all
of Rn. So, in both cases kerDπ ⊆ kerLvDπ , as required by Proposition
5. Hence, the system (25) is exactly lumpable for the map π given by
π(x) =

∑
j ajxj . The geometry of the lumping is illustrated in Figure 1.

4.3 Two-dimensional system with cubic nonlinearity

The next example we consider is a two-dimensional nonlinear equation given
by

ẋ1 = 4x1x
2
2 + x3

1 = v1(x)
ẋ2 = −2x2

1x2 + x3
2 = v2(x)

. (28)

Consider the nonlinear lumping π : R2 → R≥0 given by

π(x) = x2
1 + x2

2 ,

which maps a point x to its squared distance from the origin. That π is
an exact lumping can also be checked by the condition (24). Note that
R≥0 is a manifold with boundary and thus admits a stratification, but does

13



Figure 1: The vector field for the Lotka-Volterra system (25) for three vari-
ables. The colored planes are the level sets of π(x) =

∑
j xj for values

π = −1,−1
2 , 0,

1
2 , 1 and 3

2 .

not technically have a smooth manifold structure. However, by subtracting
the boundary stratum {0} we are back to the manifold scenario, and π is
a submersion. Exact lumpability can be checked as before: We can find
a vector field ṽ, namely ṽ(y) = 2y2, such that Dπxv(x) = 2(x2

1 + x2
2)2 =

ṽ(π(x)). The null space, which now depends on the point x, is given by

kerDπ = spanR

{(
x2

−x1

)}
and is invariant under the Lie derivative

Lvξ = 3(x2
1 − x2

2)ξ ,

where ξ is in kerDπ . In particular, for x1 = ±x2 we have Lvξ = 0. The Lie
derivative of the differential

(LvDπ)i = 4(x2
1 + x2

2)Dπi

is proportional to itself and therefore is in the span of Dπ . Anything that is
annihilated by Dπ is also annihilated by LvDπ . Hence, the system (28) is
exactly lumpable for π. The geometry of the lumping is illustrated in Figure
2.

Acknowledgement. The research leading to these results has received
funding from the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 318723 (MATHEMACS).
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Figure 2: The vector field for the cubic system (28). The circles are the
contours of π(x) = x2

1 + x2
2 for values π = 1

2 , 1, 2 and 3.
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