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Abstract: Study of traffic flow dynamics has attracted considerable attention for decades. One way
to thoroughly understand traffic flow is to study how each vehicle in traffic interacts with each other,
through drivers’ acceleration/deceleration decisions. Such decisions are strongly influenced by reaction
delays of drivers, which arise naturally due to drivers’ physiology, perception, and motor programming.
In this article, we consider how the memory of drivers, modeled here with distributed delays, affects
the decision making process in a car following scenario, in which each driver aims to keep a fixed
time-headway with respect to the preceding vehicle. Taking a frequency domain analysis, we reveal the
effects of the parameters of the driver memory model on the asymptotic stability features of the arising
inter-vehicle spacing propagation dynamics.
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1. INTRODUCTION

The dynamics of traffic flow behavior has attracted considerable
attention in research communities since the 1930s (Helbing,
2001), with the aim to understand the root causes of traffic
jam formations and accidents, and thereby to optimize vehicle
flow in cities while preventing congestion, improve signaliza-
tion to effectively channel traffic flow, reduce accidents and
thus casualties, and reduce congestion to ultimately minimize
emissions and detriments to environment (Treiber and Kesting,
2013). For this objective, physicists and engineers developed
numerous mathematical models to model traffic flow from var-
ious perspectives, primarily from macroscopic and microscopic
points-of-views. While macroscopic models capture features
such as density and flow rate, microscopic models focus mainly
on the characteristics of individual vehicle dynamics and their
collective behavior.

The presence of human drivers makes the traffic flow dy-
namics complicated. While human drivers have exceptional
sensory and decision making capabilities, they also have low
bandwidths, can be easily challenged in their decisions when
faced with complex scenarios, and cannot execute their decision
rapidly due to their physiology, which impose reaction delays
(Chandler et al., 1958; Green, 2000). The effects of delays have
been recognized in this context, and broadly studied especially
by incorporating the delay parameter conveniently within mi-
croscopic models (Helbing, 2001; Sipahi and Niculescu, 2010).
In this direction, many studies focus on a discrete-delay model,
with delay τ > 0, where human decisions are formed based on
a stimulus that occurred at a point of time in the past at time
t − τ . These studies also investigated the strategy of multiple
vehicle following and analyzed extensively linear and nonlinear

microscopic models by way of simulations and/or analytical
tools, to explain traffic flow patterns, including jam formations.
See (Bando and Hasebe, 1998; Helbing, 2001; Orosz et al.,
2004; Orosz and Stepan, 2004; Treiber et al., 2006; Sipahi and
Niculescu, 2006a) and the references therein.

One of the main objectives in the cited references is to investi-
gate how humans with their decisions may maintain asymptotic
stability (AS) in the vehicle formations despite their delayed
reactions. Technically speaking, AS refers to exponential decay
of the response of the system states (velocity and position of
vehicles) in time against impulsive perturbations. Despite the
simplicity of the mathematical models, assessment of AS is not
a trivial task in the presence of delays. This is mainly because
the arising mathematics with delays becomes infinite dimen-
sional requiring nontrivial developments for the analysis of and
synthesis for dynamical systems affected by delays (Stépán,
1989).

This article is inspired by a mathematical model based on
Pipes’s work (Pipes, 1953), which has attracted further attention
in the literature due to its simplicity, as well as its validity in
matching experiments performed with human drivers (Bose and
Ioannou, 2003). This model assumes that vehicles follow each
other on a single-lane as drivers in each vehicle aim to maintain
zero relative velocity with respect to the preceding vehicle by
applying a force input to the vehicle. The driver’s reactions are
however time delayed, and hence every decision is formulated
based on what has happened at time t − τ . This model has
been studied by considering both constant-headway/velocity
control, see e.g. (Helbing, 2001; Bando and Hasebe, 1998),
and constant time-headway control decisions of human drivers
(Bose and Ioannou, 2003), including (Sipahi and Niculescu,



2006c,b,a, 2008; Sipahi et al., 2009). Moreover, the authors
expanded this model for the fixed-headway control strategy by
incorporating drivers’ memory effects modeled by distributed
delays (Sipahi et al., 2007). Such models are able to capture
continuous experience of driving, and are hence expressed as a
collection of infinitely many stimuli distributed over the history
with a finite horizon.

A natural next research problem is to then investigate how
constant time-headway driving strategy coupled with drivers’
memory effects together affect AS properties of Pipes’s model.
This article is focused on these analyses, and their parametric
study. Consistent with the previous studies cited above, here
we shall focus on time-invariant models and on the fate of the
equilibrium dynamics of traffic flow through linear analysis.
To answer these non-trivial questions regarding AS, the well-
known frequency-sweeping technique (Chen and Latchman,
1995; Sipahi et al., 2011) will be adopted. 
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Fig. 1. Platoon of vehicles, inspired from (Bose and Ioannou,
2003).

To the best of our knowledge, the above described analysis
including constant-time headway driving strategy and driver
memory effects has not been studied in the open literature.
Mathematical modeling and the preliminaries are presented in
Section II. Analysis of AS is performed in Section III along
with illustrative examples and discussions. Conclusions end the
article in Section IV.

2. MATHEMATICAL MODELING

Mathematical modeling and the pertaining discussions in this
section are borrowed/inspired from Bando and Hasebe (1998);
Bose and Ioannou (2003); Sipahi and Niculescu (2006a), how-
ever, the model is extended based on our main interest in study-
ing the effects of driver memory in connection with constant
time-headway driving strategy. As motivated in the previous
section, here we start with Pipes model
v̇k(t) = αk(vk+1(t− τk)− vk(t− τk)), k = 1, . . . , n, (1)

where vk is the velocity of the kth vehicle, see Fig 1, τk > 0 is
the constant delay, n is the number of vehicles and the weight-
ing αk > 0 can be seen as a measure of driver aggressiveness
per unit mass. The above differential equation describes that
driver k aims to vanish the velocity error vk+1(t) − vk(t) by
penalizing it using the gain αk. Furthermore, since a driver’s
sensing and decision execution are not instantaneous, decisions
performed at time t are based on the velocity error sensed with a
delay τk. This model, which is a continuous-time deterministic
microscopic car following model, considers that vehicles travel
on a single-lane with the aim to keep their velocities constant,
without changing lanes.

By incorporating a general memory effect, fk, into the system
(1), we arrive at the following model:

v̇k(t) = αk

∫ ∞
0

fk(r)(vk+1(t− r)− vk(t− r))dr, (2)

where we assume that the delay kernel f(r) is a measurable
function of exponential order, with r in the units of time. When
f(r) is a Dirac delta function, one recovers from (2) the discrete
delay model in (1).

In this article, the delay kernel is taken as a normalized uniform
distribution function, given by,

fk(r) =

{
1/τk,mw τk,dt < r < τk,dt + τk,mw
0 otherwise (3)

where τk,dt is the elapsed dead time before any incoming
stimulus can be perceived by the driver, and τk,mw is the
memory window size of driver k. This model can be seen as
an average of the information available in the memory.

Letting next Vk(s) and Fk(s) be the Laplace transforms of
vk and fk, respectively, with s being the Laplace variable,
and combining (2) and (3) in Laplace domain, one obtains the
following transfer functionGk(s) between the velocities of two
consecutive vehicles,

Gk(s) =
Vk(s)

Vk+1(s)
=

αkFk(s)

s+ αkFk(s)
, (4)

which was studied by the authors for its stability properties
(Sipahi et al., 2007). Specifically, in the cited work, the delay
kernel was taken to be identical for all the drivers, that is,
f(r) = fk(r), τdt = τk,dt, τmw = τk,mw, and with the
knowledge of

F (s) =
e−sτdt(1− e−sτmw)

sτmw
, (5)

the characteristic equation of the system was studied for linear
stability of traffic flow with vehicles configured in both a chain
and ring configuration.

2.1 Spacing Dynamics with Constant-Time Headway

Constant-time headway strategy considers that driver k aims to
perform control to maintain a constant headway with respect to
the preceding vehicle by an amount that is proportional to the
speed of the vehicle vk and elapsed time hk > 0. Under this
definition, the headway expression is formulated as,

δk(t) = xk+1(t)− xk(t)− lk −∆k − hkvk(t),

where vehicle length lk and minimum safe headway ∆k do not
contribute to AS analysis as they are constants. Considering this
driving strategy along with the model in (2), headway propa-
gation dynamics between consecutive pairs of vehicles can be
studied. Letting Dk(s) be the Laplace transform of δk(t), it is
then possible to extract the transfer function Dk(s)/Dk+1(s),
following (Bose and Ioannou, 2003), as

Dk(s)

Dk+1(s)
= Ĝk(s) =

1−Gk − shkGk
1−Gk+1 − shk+1Gk+1

Gk+1, (6)

where Gk(s) is given in (4).

2.2 Preliminaries for Analyzing Asymptotic Stability (AS)

Analysis of AS requires the study of the characteristic roots of
the system, which are the zeros of the characteristic function
Ψ(s). In the case when Ψ(s) represents a retarded-type time-
delay system, then it is known that the supremum of the real
part of these roots, also known as spectral abscissa function, ex-
hibits continuity with respect to system parameters and delays



(Datko, 1985). Hence, the stability of a retarded-type system
is determined by its point spectrum, and similar to ordinary
differential equations, a loss or acquisition of the exponential
stability of the trivial solution of such systems is associated with
the characteristic roots on the imaginary axis, s = jω (Michiels
and Niculescu, 2007; Gu and Niculescu, 2003).

In other words, for retarded-type systems, the change of stabil-
ity is possible only by a root jω “crossing” the imaginary axis
of the complex plane as a parameter of interest, e.g., the delay,
changes. System and/or delay parameters that correspond to all
such crossings will then partition the parameter space into re-
gions characterized by two properties: (i) the number of strictly
unstable roots of Ψ(s) = 0 is constant for all the parameters
located inside a region, and (ii) for each parameter value on the
boundary of such regions, there exists at least one characteristic
root located on the imaginary axis. The regions corresponding
to the case when there are no unstable roots define the stability
regions. These are the fundamental steps behind root continuity
arguments (Datko, 1985) and τ -decomposition/D-subdivision
theorems (Neimark, 1949).

In addition to the above principles, for neutral-type systems,
stability is determined not only by the point spectrum similar to
retarded-type systems, but also by the essential spectrum. Es-
sential spectrum is associated with a particular delay-difference
equation, whose stability is necessary for the neutral-type sys-
tem to exhibit stability. Stability of this spectrum can be lost
under infinitesimally small delays even if the spectrum exhibits
stability for zero delays. This feature of the spectrum is related
to small-delay stabilizability condition, as extensively studied
(Hale and Verduyn Lunel, 1993; Avellar and Hale, 1980).

3. MAIN RESULTS

Here a frequency sweeping framework inspired from (Chen and
Latchman, 1995) is adopted to AS analysis of the dynamics
at hand. This framework allows to develop certain geometric
arguments in the interpretation of AS, leading to a practical
stability analysis method, while also laying out the connections
to prior work for comparison purposes. Specifically, we investi-
gate how AS is affected in the delay parameter, and how driver
aggressiveness influence AS.

3.1 Interconnection Schemes

Recall that detection of imaginary zeros s = jω of the charac-
teristic function Ψ is the starting point of the stability analysis.
Here, Ψ is found from the denominator of (6), and its root at
s = 0 is a removable singularity, and hence will be neglected
Sipahi et al. (2007). This root is related to the translational
dynamics of the chain of vehicles as a rigid body. Accordingly,
Ψ is given for each k as
Ψk = (s+αkF (s))(s+αk+1F (s))(1−αk+1hk+1F (s)), (7)

which, after simplifications, suggests that the linear stability
analysis of the entire chain of vehicles requires the stability
analysis of the following interconnection schemes for all k:

Interconnection scheme 1 is associated with the stability of
each vehicle affected by decisions made by the drivers under
the proposed memory model:

Pk(s) ·Q(s) = −1, k = 1, . . . , n, (8)
where

Pk(s) = αk
e−sτdt

s
, Q(s) =

1− e−sτmw

sτmw
. (9)

Interconnection scheme 2 is associated with the stability of
the dynamics arising as per constant-time headway driving
strategy, and affected by a driver’s memory:

Rk ·Q(s) = 1, k = 1, . . . , n, (10)
where Rk is given by

Rk = αkhke
−sτdt . (11)

Here, we remark that the stability properties of Interconnection
scheme 1 was studied in (Sipahi et al., 2007), while the stabil-
ity of the second interconnection needs to be developed. For
this development, we shall take advantage of the similarities
between the two schemes, as explained next.

3.2 Detecting the Stability Switching Curves

In principle, the settings that partition the parameter space into
stable and unstable regions will be detected by implement-
ing a frequency sweeping technique on both interconnection
schemes, at the stability switching of system’s characteristic
roots s = jω. The advantage in formulating the stability prob-
lem through such interconnections is also beneficial, since the
effects of αk and/or τdt can be decoupled from the operator
Q(s), which is only a parameter of memory window size.

Analysis of Interconnection scheme 1: If/when the stability
of interconnection scheme 1 is lost, the following must hold as
per the above discussions:

Pk(jω) ·Q(jω) = −1. (12)
Remark 1. (Sipahi et al. (2007)). The zeros of the characteris-
tic function Ψk = Pk · Q + 1 obtained from (12) exhibit
continuity with respect to delay parameters including around
the origin of the parameter space. The spectrum of this inter-
connection hence resembles that of retarded-type time-delay
systems (Stépán, 1989).

One can next develop the magnitude and argument conditions
on (12), to construct an approach to compute the parameter
settings on αk, τdt and τmw such that the system can be in
transition from stability to instability; see details in (Sipahi
et al., 2007). To summarize, notice that the magnitude condition
can be developed independent of τdt,

|Pk(jω)|2|Q(jω)|2 = 1⇒ α2
k

ω2

sin2(u)

u2
= 1, (13)

where u = τmwω/2, which is non-negative without loss of
generality. From the above equation, given αk, one can sweep
u, solve ω next, and then find τmw = 2u/ω.

One next uses the identity ∠(1−e−jωτmw) = tan−1(cot(u)) =
π/2 − u to formulate the phase condition on (12), to then
express dead-time delay as

τdt =
1

ω

(
∠(1− cos(u) + j sin(u)) + 2π`

)
, ` ∈ Z,

⇒ τdt =
1

ω

(
π/2− u+ 2π`

)
, (14)

Since u and ω are known, τdt can be computed.

Following the above line of logic, one simply needs to sweep
u, and compute all the parameters of interest that will form
the boundaries dividing the parameter space into stable and
unstable regions.



Property 1. (Sipahi et al. (2007)). There exists only one stabil-
ity region in τdt − τmw space for a fixed k, and this region
is connected to the origin of this space. Since the origin is
included in all the stability regions for all k, the existence of
a common stability region is guaranteed.

Analysis of Interconnection scheme 2: The approach devel-
oped above can be adapted to this interconnection scheme as
follows. Firstly, if a stability switching occurs, then the follow-
ing equation must hold as per the magnitude condition:

|Rk ·Q(jω)| = 1⇒ (αkhk)2
sin2(u)

u2
= 1. (15)

Lemma 1. The interconnection scheme does not exhibit imag-
inary axis crossings independent of memory dead-time and
memory window size if and only if |Rk| = αkhk < 1.
Proof 1. It follows from the fact that |Q(jω)|2 < 1, ∀u ∈ R
and hence when |Rk| < 1, the interconnection scheme does not
have a solution. This is true for all delays since the magnitude
condition is independent of memory dead-time τdt and memory
window size τmw.

In the case when |Rk| ≥ 1, the following developments will
be needed. Let |Rk| ≥ 1 be given. Then, from (15), at least one
solution to u always exists. Define the set of such solutions with

U = {u1, . . . , uµ},
where µ is the number of solutions, and for each u = up ∈ U ,
one organizes (10) as follows

e−jωτdt =
jωτmw

αkhk(1− e−jωτmw)
. (16)

Different from the interconnection scheme 1, in the above
equation on the right hand side, we have an s = jω term
instead of s2 = −ω2 term in the numerator, and an additional
hk term in the denominator. The discrepancy due to the s term
will reduce phase by π/2 yielding

τdt =
1

ω
(−u+ 2π`) , (17)

where it is assumed that ω > 0 without loss of generality,
and since τmw, hk and αk are positive real quantities, these
parameters do not appear in the above equation.

3.3 Stability Analysis

Readers are referred to (Sipahi et al., 2007) for detailed discus-
sions on the stability analysis of interconnection scheme 1. For
interconnection scheme 2, different from the interconnection
scheme 1, this analysis requires several non-trivial steps, as
detailed next.

Notice that, since ω does not appear in (15) as a free parameter,
in contrast to (13), the solution of ω in cannot be directly
obtained. This prompts the observation that a solution to τdt
can always be obtained for any ω. Indeed, from (17), it is easy
to show that a feasible and finite u ∈ U for any choice of ω will
correspond to a delay value τdt. Indeed, in the extreme case
when ω is indefinitely large, ω → ∞, an infinite number of
imaginary axis crossings can exist for τdt → 0+.

The above observation indicates that the spectrum of the dy-
namics in interconnection scheme 2 may have characteristically
different behavior, resembling that of “neutral class” time-delay
systems (Hale and Verduyn Lunel, 1993). In such systems, the

stability of the dynamics is not only determined by the point
spectrum but also by the essential spectrum of the system, as
explained in Section 2.2.

Notice that the dynamics associated with interconnection
scheme 2 does not fit to the standard neutral-class systems, yet
the above observations show evidence that this dynamics can
exhibit a spectrum similar to neutral-type time-delay systems.
To obtain further perspective on this, and to find out any such
similarity, let us investigate the interconnection for τmw → 0+.
In this case, we have

lim
τmw→0+

((1− e−sτmw)/τmw) ≈ s, (18)

and hence the characteristic equation is approximated as

Ψ̃k = s(1− αkhke−sτdt) = 0, (19)
which now fits to a standard neutral-type time-delay system. In
this case, stability of the essential spectrum is determined by
the following difference equation,

D = 1− αkhke−sτdt = 0, (20)
which is known to be stable for τdt ≥ 0 if and only if |αkhk| <
1, and unstable for τdt > 0 if |αkhk| ≥ 1 (Hale and Verduyn
Lunel, 1993).

Finally, one can study the stability of the interconnection
around the origin of the delay parameter space, taking also the
limit h→ 0+. In this case, using

lim
τdt→0+

(
e−sτdt

)
≈ 1− sτdt, (21)

modifies (20) as
Ψ̃k = s− αkhk(1− sτdt)s = 0. (22)

The above approximated characteristic equation indicates that a
pole at s = 0 will always exist for small delays, and moreover,
another pole will arise at

s→ αkhk − 1

αkhkτdt
, (23)

which destabilizes the interconnection with a pole at s = 0
when αkhk = 1, and with an unbounded unstable pole |s| →
∞ when αkhk > 1.

In view of the above findings, the stability analysis of intercon-
nection scheme 2 can be summarized as follows:

a) For |Rk| = αkhk < 1, the interconnection does not
possess any roots on the imaginary axis as per Lemma 1,
and since it maintains its stability for infinitesimally small
delays, it remains stable for all delays.

b) For |Rk| = αkhk ≥ 1, the interconnection is unstable
for all delays. This is due to the fact that the essential
spectrum of the interconnection for small delays behaves
analogous to neutral-type time-delay systems, causing the
system to always remain unstable.

Remark 2. Notice that due to the formulation of memory ef-
fects, one has the delay terms as coefficients in the arising char-
acteristic equation. Such a formulation is rather non-standard
as majority of the existing stability analysis techniques focused
on characteristic equations in which delays appear only in expo-
nential functions (Sipahi et al., 2011). One key difference here
is that when the delay appears only in exponential functions,
the solutions of the critical delays can be generated following a
periodicity rule, that is, if τ is a root of the characteristic equa-
tion at s = jω, then τ` = τ + 2π`/ω are also solutions, since
e−jτω = e−jτ`ω . Nevertheless, when the delay appears also as
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Fig. 2. Interconnection scheme 1: Points on the stability switch-
ing curves for αk = 0.5 (thick blue), αk = 1 (thin red),
and αk = 2 (thicker black). Stability region is bordered by
these curves as well as the τdt and τmw axes.

a coefficient in the characteristic equation, as is the case with
τmw here, then the periodicity property is lost along the axis
of τmw , and hence a specific approach must be developed to
address the arising stability problem. See for example (Kokame
et al., 2001; Beretta and Kuang, 2002; Qiao and Sipahi, 2014)
for studies where delay appears explicitly as a parameter in the
characteristic equation.

3.4 Illustrative Examples

Stability of Interconnection Scheme 1: Stability of this inter-
connection follows from (Sipahi et al., 2007). For complete-
ness, the results of the stability analysis are presented. For this,
three cases are considered with αk = 0.5, αk = 1, and αk = 2,
where the latter case is borrowed from the cited study for easy
comparison. Following the discussions from Subsection 3.2, we
first compute the points on the stability switching boundaries
by sweeping the scaled frequency parameter u. These points
lie on some curves that encapsulate the stability region together
with the axes of the delay parameters, τdt and τmw, as shown in
Figure 2. From the cited study, we know that the stability region
presented in this figure is the only one and there exists no other
stable regions in the parameter space.

Stability of Interconnection Scheme 2: In order to be con-
sistent, here we take αk = 1, and present two cases, one
in which the stability of interconnection is always guaranteed
(|Rk| < 1), and the other where it is unstable (|Rk| ≥ 1) for
any delays. To support the results, spectrum of the case studies
is also provided with the help of QPMR toolbox (Vyhlı́dal and
Zı́tek, 2009). For the stable case, we pick hk = 0.5, and for
the unstable case we have hk = 2. In both cases, we let the
memory window size be τmw = 0.001 and memory dead time
τdt = 0.3. QPMR toolbox reveals Figures 3-4 for these cases,
and the results are consistent with the predictions.

Discussions: Several key messages are obtained from the
above results. When a driver is more aggressive with larger
αk, then to be able to accommodate stability, the size of the
memory window and dead time shrinks. In some sense, to
maintain stability, relatively more aggressive drivers should rely
on only more recent historical events, but not too outdated
events. Conversely, a less aggressive driver can take benefit
of rich information available in a much wider memory even
if the events are relatively more outdated. Furthermore, since
αkhk must remain less than one for the interconnection scheme
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Fig. 3. The spectrum of interconnection scheme 2 for τmw =
0.001, τdt = 0.3, and |Rk| = αkhk = 0.5. As expected,
the spectrum of the dynamics exhibits stable behavior, ex-
cept the invariant zero root. Computation: QPMR toolbox.
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Fig. 4. The spectrum of interconnection scheme 2 for τmw =
0.001, τdt = 0.3, and |Rk| = αkhk = 2. As expected, the
spectrum of the dynamics exhibits a neutral-type behavior
with a chain of poles arranged alongside the imaginary
axis. Computation: QPMR toolbox.

2 to be stable, larger αk in aggressive driving strongly limits
the largest time-headway hk that can be selected without losing
stability. At high cruising speeds, such a driving strategy could
be dangerous since the headway between two vehicles would
not be large enough to prevent a possible collision.

4. CONCLUSIONS

Linear stability of a class of microscopic car following dynam-
ics with human memory effects is studied in this paper. The
analysis is based on two dynamical systems represented by
unique interconnection schemes, one of which exhibits inter-
esting properties in its spectrum, similar to neutral-type time
delay systems. A frequency domain technique is adapted here
to perform the analysis, by which the parametric settings of the
driver memory model and driving strategy are laid out.
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