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Abstract

A divergence function defines a Riemannian metric g and dually
coupled affine connections ∇ and ∇∗ with respect to it in a mani-
fold M . When M is dually flat, that is flat with respect to ∇ and
∇∗, a canonical divergence is known, which is uniquely determined
from (M, g,∇,∇∗). We propose a natural definition of a canonical di-
vergence for a general, not necessarily flat, M by using the geodesic
integration of the inverse exponential map. The new definition of a
canonical divergence reduces to the known canonical divergence in the
case of dual flatness. Finally, we show that the integrability of the
inverse exponential map implies the geodesic projection property.

Keywords: information geometry, canonical divergence, relative en-
tropy, α-divergence, α-geodesics, duality, geodesic projection.
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1 Introduction: divergence and dual geometry

A divergence function D(p ‖ q) is a differentiable real-valued function of two
points p and q in a manifold M . It satisfies the non-negativity condition

D(p ‖ q) ≥ 0 (1)

with equality if and only if p = q. But it is not a distance and it can be an
asymmetric function of p and q. When a coordinate system ξ : p 7→ ξp =
(ξ1p , . . . , ξ

n
p ) ∈ Rn is given in M , we pose one condition that, for two nearby

points ξp and ξq = ξp + ∆ξ, D is expanded as

D(p ‖ q) =
1

2

D
gij (p) ∆ξi∆ξj +O

(
‖∆ξ‖3

)
(2)

and
D
gij (p) is a positive definite matrix. Here, the Einstein summation

convention is used, so summation is taken with respect to indices repeated
twice in a term, one as upper and the other as lower indices. Throughout
the paper, we apply this convention or explicitly use the summation sign. A

Riemannian metric
D
g=

(
D
gij

)
is defined from (2). A pair of dual affine con-

nections are also introduced from it [3]. We also use the following simplified
notations of differentiation with respect to coordinates ξp = (ξ1p , . . . , ξ

n
p ) of

p and coordinates ξq = (ξ1q , . . . , ξ
n
q ) of q in D(ξp ‖ ξq) as

∂i =
∂

∂ξip
, ∂′i =

∂

∂ξiq
. (3)

Then, the Riemannian metric is written as

D
gij (p) = −∂i∂′jD(ξp ‖ ξq)

∣∣
q=p

= ∂′i∂
′
jD(ξp ‖ ξq)

∣∣
q=p

. (4)

The two quantities

D

Γijk (p) = −∂i∂j∂′kD(ξp ‖ ξq)
∣∣
q=p

, (5)

D

Γ∗ijk (p) = −∂′i∂′j∂kD(ξp ‖ ξq)
∣∣
q=p

(6)
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give coefficients of a pair of dual affine connections [3]. They define two co-

variant derivatives
D

∇ and
D

∇∗. They are dual with respect to the Riemannian
metric, since they satisfy the duality condition [1]

X 〈Y,Z〉 =

〈
D

∇X Y,Z

〉
+

〈
Y,

D

∇∗X Z

〉
(7)

for three vector fields X,Y and Z. Here, the brackets 〈·, ·〉 denote the inner

product with respect to the metric
D
g.

The inverse problem is to find a divergence D which generates a given
geometrical structure (M, g,∇,∇∗). Matumoto [7] showed that a divergence
exists for any such manifold. However, it is not unique and there are in-
finitely many divergences that give the same geometrical structure. When
a manifold is dually flat, a canonical divergence was introduced by Amari
and Nagaoka [1], which is a Bregman divergence. Extensions of the canon-
ical divergence within conformal geometry have been studied by Kurose [5]
and Matsuzoe [6]. The canonical divergence has nice properties such as the
generalized Pythagorean theorem and geodesic projection theorem. It is an
important problem to define a canonical divergence in the general case. The
present paper gives an answer to this problem by using the inverse exponen-
tial map. This divergence coincides with the original canonical divergence
in the dually flat case.

2 A new approach to the general inverse problem

We begin with a motivation in terms of a simple example where the manifold
is Rn equipped with the standard Euclidean metric and connection (here,
the Levi-Civita connection): Let p be a fixed point in Rn, and consider the
vector field pointing to p, that is

Rn → Rn, q 7→ p− q . (8)

Obviously, the vector field (8) can be seen as the negative gradient of the
squared distance

Dp : Rn → R, q 7→ Dp(q) := D(p ‖ q) :=
1

2
‖p−q‖2 =

1

2

n∑
i=1

(pi−qi)2 ,

as potential function, that is

p− q = −gradqDp . (9)

Here, the gradient gradq is taken with respect to the canonical inner product
on Rn.
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We shall now generalise the relation (9) between the squared distance
Dp and the difference of two points p and q to the more general setting
of a differentiable manifold M . Given a fixed point p ∈ M , we want to
define a vector field q 7→ X(q, p), at least in a neighbourhood of p, that
corresponds to the difference vector filed (8). Obviously, the problem is that
the difference p − q is not naturally defined for a general manifold M . We
need an affine connection ∇ in order to have a notion of a difference. Given
such a connection ∇, for each point q ∈ M and each direction X ∈ TqM
we consider the geodesic γq,X(t), with the initial point q and the initial
velocity X, that is γq,X(0) = q and γ̇q,X(0) = X. If γq,X(t) is defineed
for all 0 ≤ t ≤ 1, the endpoint p = γq,X(1) is interpreted as the result
of a translation of the point q along a straight line in the direction of the
vector X. This straightness is expressed in terms of the local coordinates
ξ(t) := (ξ1(t), · · · , ξn(t)) := ξ(γq,X(t)) of the geodesic γq,X by the following
set of differential equations:

ξ̈i(t) + Γijk(ξ(t)) ξ̇j(t)ξ̇k(t) = 0 , i = 1, . . . , n . (10)

The translation of points along geodesics defines a map, the so-called expo-
nential map:

expq : Uq → M , X 7→ γq,X(1) , (11)

where Uq ⊆ TqM denotes the set of tangent vectors X, for which the domain
of γq,X contains the unit interval [0, 1].

Given two points p and q, one can interpret any X with expq(X) = p as a
difference vector X that translates q to p. Throughout this paper we assume
existence and uniqueness of such a difference vector, denoted by X(q, p) (see
Figure 1). This is a strong assumption, which is, however, always locally

p � q
�q,p

X(q, p)

•

•

•

•p
p

qq
MRn

(A) (B)

Figure 1: Illustration of (A) the difference vector p− q in Rn pointing from
q to p, and (B) the difference vector X(q, p) = γ̇q,p(0) as the inverse of the
exponential map in q.

satisfied. On one hand, we are mainly interested in local properties. On the
other hand, this property, although quite restrictive in the general case, will
be satisfied in our information-geometric context, where g is given by the
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Fisher metric and ∇ is given by the m- and e-connections and their convex
combinations, the α-connections.

If we attach to each point q ∈M the difference vector X(q, p), we obtain
a vector field that corresponds to the vector field (8) in Rn. In order to
interpret this vector field as a negative gradient field of a (squared) distance
function Dp = D(p ‖ ·), we need a Riemannian metric g on M . Given such
a metric, we can generalise the equation (9) by

X(q, p) = −gradqDp , (12)

where the Riemannian gradient is taken with respect to g. That is, gradqDp

is a contravariant vector given in terms of local coordinates by

gradqDp = gij(ξq) ∂
′
iD(ξp ‖ ξq) ∂′j , (13)

where we put
Dp(q) = D(ξp ‖ ξq) . (14)

Obviously, if such a Dp exists, then it is up to a constant unique, and we
can therefore assume Dp(p) = 0. In order to recover Dp from equation (12)
we consider any curve γ(t) that connects q and p : γ : [0, 1] → M with
γ(0) = q and γ(1) = p. We compose the inner product of the curve velocity
γ̇(t) with the inverse of the exponential map X(γ(t), p) in γ(t) and integrate
this along the curve:∫ 1

0
〈X(γ(t), p), γ̇(t)〉 dt = −

∫ 1

0

〈
gradγ(t)Dp, γ̇(t)

〉
dt

= −
∫ 1

0
(dγ(t)Dp)(γ̇(t)) dt

= −
∫ 1

0

dDp ◦ γ
d t

(t) dt

= Dq(γ(0))−Dp(γ(1))

= Dp(q)−Dp(p) = Dp(q) . (15)

In particular, we can apply this derivation to the geodesic connecting q
and p even when the integrability (12) of X is not guaranteed and obtain
the definition of a general canonical divergence, discussed in more detail in
Section 5. Before we treat the general definition of a canonical divergence,
however, we discuss important special cases of divergence within the cone
of positive measures and probability simplexes included in it. In particular,
we verify that the well-known relative entropy (KL-divergence) and the α-
entropy (α-divergence) can be derived in terms of (15).
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3 Natural connections for positive and probability
measures

3.1 The Fisher metric and its gradients

We represent measures on the set {1, . . . , n} as elements of Rn. In this
representation, the Dirac measures δi, i = 1, . . . , n, form the canonical basis
of Rn. We consider the n-dimensional cone of positive measures on the set
{1, . . . , n}, defined by

Mn := Rn+ =

{
p =

n∑
i=1

pi δi ∈ Rn : pi > 0 for all i

}
,

and the corresponding (n− 1)-dimensional simplex of normalized measures
(probability measures) Sn−1 ⊂Mn:

Sn−1 :=

{
p =

n∑
i=1

pi δi ∈ Rn : pi > 0 for all i, and
∑n

i=1 pi = 1

}
.

There is a natural Riemannian metric on Mn, called the Fisher metric:

gp(X,Y ) :=

n∑
i=1

1

pi
Xi Yi , X, Y ∈ TpMn .

In theoretical biology, the Fisher metric is also known as Shahshahani metric
(see [4], equation (7.48)). Given a point p ∈ Sn−1 and a vector X ∈ TpMn,
its projection onto TpSn−1 with respect to gp is given by

Π>p X =
n∑
i=1

Xi − pi
n∑
j=1

Xj

 δi , (16)

and the corresponding projection onto the orthogonal complement of TpSn−1
is given by

Π⊥p X =
n∑
i=1

pi n∑
j=1

Xj

 δi . (17)

Given a function V : Mn → R, this metric gives us the Riemannian gradient

gradp V =
n∑
i=1

(
pi
∂ V

∂ pi
(p)

)
δi . (18)

Given a vector field

Xp =
n∑
i=1

pi fi(p) δi , p ∈Mn , (19)
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it is the gradient of a function V if and only if it satisfies for all i, j

∂ fi
∂ pj

=
∂ fj
∂ pi

. (20)

If we consider a function that is defined on Sn−1, for instance the restriction
of f : Mn → R to Sn−1, then the vector (18), evaluated in p ∈ Sn−1, will
not necessarily be an element of TpSn−1. Therefore, in order to evaluate
the gradient on Sn−1, we have to project the vector (18) onto TpSn−1 with
respect to the metric g by using (16). This leads to the following gradient
formula for functions on Sn−1:

gradp V =

n∑
i=1

pi

∂ V
∂ pi

(p)−
n∑
j=1

pj
∂ V

∂ pj
(p)

 δi , p ∈ Sn−1 . (21)

This gives rise to consider general vector fields of the form

Xp =
n∑
i=1

pi

fi(p)− n∑
j=1

pj fj(p)

 δi , p ∈ Sn−1 . (22)

Such a vector filed is integrable, in the sense that it is the gradient (21) of
a potential function V , if and only if the following condition holds for all
i, j, k (see [4], equation (19.23)):

∂ fi
∂ pj

+
∂ fj
∂ pk

+
∂ fk
∂ pi

=
∂ fi
∂ pk

+
∂ fk
∂ pj

+
∂ fj
∂ pi

. (23)

3.2 The mixture and the exponential connections

After having introduced the Fisher metric and corresponding gradient fields,
we now define natural notions of straight lines on Mn and Sn−1 respectively,
induced by corresponding affine connections. Let us start with the so-called
mixture connection on Mn. Given a point p ∈ Mn and a direction X ∈
TpMn, the most natural way to define a straight line that starts in p and
has velocity X is given by the the so-called m-geodesic

γ(t) = p+ tX . (24)

If we set t = 1, we obtain the exponential map, which is, in this simple
example, the translation:

exp(m)
p (X) = p+X .

The inverse, therefore, maps a point q to the difference vector that translates
p into q:

X(m)(p, q) :=
(

exp(m)
p

)−1
(q) = q − p .
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If we choose this difference as X in (24), we obtain the geodesics that con-
nects p with q:

γ(t) = p+ t (q − p) . (25)

If we choose a point p ∈ Sn−1 and X ∈ TpSn−1, or two points p, q ∈ Sn−1,
then the corresponding geodesic (24) and (25) will stay in Sn−1. Therefore,
the restriction of the exponential map to TpSn−1 and its inverse are trivial:

exp(m)
p (X) = p+X , X(p, q) :=

(
exp(m)

p

)−1
(q) = q − p ,

where we use a bar over symbols in order to denote the restriction of corre-
sponding objects to Sn−1.

Now let us come to the notion of e-geodesic and the corresponding expo-
nential map. Given a point p ∈Mn and a direction X ∈ TpMn, we consider
the geodesic

γ(t) =
n∑
i=1

pi exp

(
t
Xi

pi

)
δi . (26)

The exponential map is given for t = 1:

exp(e)
p (X) =

n∑
i=1

pi exp

(
Xi

pi

)
δi

with the inverse

X(e)(p, q) :=
(

exp(e)
p

)−1
(q) =

n∑
i=1

pi ln

(
qi
pi

)
δi .

This implies that the e-geodesic connecting p with q is given by

γ(t) =
n∑
i=1

pi

(
qi
pi

)t
δi . (27)

Clearly, if we start in a point p ∈ Sn−1 and go along the e-geodesic (26) in a
direction X that is tangential to Sn−1, we will not stay in Sn−1. Analogously,
if we connect a point p ∈ Sn−1 with a point q ∈ Sn−1 in terms of the e-
geodesic (27), then the intermediate points will in general not be in the set
Sn−1. It turns out that, in order to obtain the right exponential map of
the e-connection defined on Sn−1, we have to normalize the geodesic, which
leads to:

exp(e)
p (X) =

n∑
i=1

pi exp
(
Xi
pi

)
∑n

j=1 pj exp
(
Xj
pj

) δi ,
X

(e)
(p, q) :=

(
exp(e)

p

)−1
(q) =

n∑
i=1

pi

ln

(
qi
pi

)
−

n∑
j=1

pj ln

(
qj
pj

) δi .
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3.3 The α-connections

Given α ∈ [−1, 1], we define the following convex combination of the mixture
connection ∇(m) and the exponential connection ∇(e) on Mn:

∇(α) :=
1− α

2
∇(m) +

1 + α

2
∇(e) = ∇(m) +

1 + α

2

(
∇(e) −∇(m)

)
. (28)

The differential equation for the α-geodesic with initial point p ∈ Mn and
initial velocity X ∈ TpMn is given by

γ̈i −
1 + α

2

γ̇2i
γi

= 0 , γ(0) = p, γ̇(0) = X . (29)

One can show that the geodesics with initial point p ∈Mn and initial velocity
X ∈ TpMn is given by the following curve:

γ(t) =

n∑
i=1

pi

(
1 + t

1− α
2

Xi

pi

) 2
1−α

δi . (30)

By setting t = 1, we can define the corresponding α-exponential map:

exp(α)
p (X) =

n∑
i=1

pi

(
1 +

1− α
2

Xi

pi

) 2
1−α

δi , (31)

and the corresponding inverse

X(α)(p, q) :=
(

exp(α)
p

)−1
(q) =

2

1− α
n∑
i=1

pi

((
qi
pi

) 1−α
2

− 1

)
δi . (32)

Finally, the α-geodesic with initial point p and endpoint q is given by

γ(t) =
n∑
i=1

(
p

1−α
2

i + t

(
q

1−α
2

i − p
1−α
2

i

)) 2
1−α

δi . (33)

The α-connection ∇(α)
on Sn−1 is defined as the projection of ∇(α) with

respect to the Fisher metric g. The corresponding geodesic equation is a
modification of (29):

γ̈i −
1 + α

2

 γ̇2iγi − γi
n∑
j=1

γ̇2j
γj

 = 0, γ(0) = p, γ̇(0) = X . (34)

It is reasonable to make a solution ansatz by normalisation of the un-
constrained geodesics (30) and (33). However, it turns out that, in or-
der to solve the geodesic equation (34), both normalised curves have to be

9



reparametrised. More precisely, it has been shown in [8] (Theorems 14.1.
and 15.1.) that, with appropriate reparametrisations τp,X and τp,q, we have
the following form of the α-geodesic in the simplex Sn−1:

γp,X(t) =

n∑
i=1

pi

(
1 + τp,X(t) 1−α

2
Xi
pi

) 2
1−α

∑n
j=1 pj

(
1 + τp,X(t) 1−α

2
Xj
pj

) 2
1−α

δi , (35)

and

γp,q(t) =
n∑
i=1

(
p

1−α
2

i + τp,q(t)

(
q

1−α
2

i − p
1−α
2

i

)) 2
1−α

∑n
j=1

(
p

1−α
2

j + τp,q(t)

(
q

1−α
2

i − p
1−α
2

i

)) 2
1−α

δi . (36)

Here, the conditions

γp,X(0) = p , γ̇p,X(0) = τ̇p,X(0)X = X , and

γp,q(0) = p , γp,q(1) = q ,

imply

τp,X(0) = 0 , τ̇p,X(0) = 1 , and τp,q(0) = 0 , τp,q(1) = 1 .

Now let us couple X and q by assuming γp,X(1) = q. Together with the
condition

∑
iXi = 1, this implies

X =
1

τp,X(1)

2

1− α
∑
i

pi


(
qi
pi

) 1−α
2

∑
j pj

(
qj
pj

) 1−α
2

− 1

 δi . (37)

Furthermore, if the initial and endpoints of the two curves are identical,
then γp,X(t) = γp,q(t) for all t. In particular,

X = γ̇p,X(0) = γ̇p,q(0)

= τ̇p,q(0)
2

1− α
∑
i

pi

( qi
pi

) 1−α
2

−
∑
j

pj

(
qj
pj

) 1−α
2

 δi . (38)

A comparison of the equations (37) and (38) yields

τ̇p,q(0)
∑
j

pj

(
qj
pj

) 1−α
2

=
1

τp,X(1)
.
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4 Canonical divergences for positive and probabil-
ity measures

4.1 The relative entropy (KL-divergence)

Now we apply the ansatz (12) in order to define divergence functions for
the m- and e-connections on the cone Mn of positive measures. The inverse
maps of the corresponding exponential maps are given by

X(m)(q, p) =

n∑
i=1

(pi − qi) δi ,

X(e)(q, p) =

n∑
i=1

qi ln
pi
qi
δi .

(39)

We can easily verify that the corresponding vector fields

q 7→ X(m)(q, p) , q 7→ X(e)(q, p) (40)

are gradient fields: The functions

fi(q) :=
pi
qi
, and gi(q) := ln

pi
qi

trivially satisfy the integrability condition ∂fi
∂qj

=
∂fj
∂qi

and ∂gi
∂qj

=
∂gj
∂qi

for all

i, j. Therefore, for both connections, there are divergence functions that
solve the corresponding equation (12). We derive the divergence function
first for the m-connection. We consider two positive measures q and p and
the corresponding geodesic connecting them:

γ(t) = q + t (p− q) . (41)

This implies〈
X(m)(γ(t), p), γ̇(t)

〉
=

n∑
i=1

1

γi(t)
(pi − γi(t)) γ̇i(t) , (42)

and

D(m)
p (q) =

∫ 1

0

〈
X(m)(γ(t), p), γ̇(t)

〉
dt

=

n∑
i=1

∫ 1

0

1

γi(t)
(pi − γi(t)) γ̇i(t) dt

=
n∑
i=1

[
pi ln γi(t)− γi(t)

]1
0

=
n∑
i=1

(
pi ln pi − pi − pi ln qi + qi

)
=

n∑
i=1

(
qi − pi + pi ln

pi
qi

)
.
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We now do similar calculation for the e-connection. We consider an e-
geodesic, connecting q and p:

γ(t) =
n∑
i=1

qi

(
pi
qi

)t
δi . (43)

This implies 〈
X(e)(γ(t), p), γ̇(t)

〉
=

n∑
i=1

γ̇i(t) ln
pi
γi(t)

(44)

and

D(e)
p (q) =

∫ 1

0

〈
X(e)(γ(t), p), γ̇(t)

〉
dt

=

n∑
i=1

∫ 1

0
γ̇i(t) ln

pi
γi(t)

dt

=

n∑
i=1

[
γi(t)

(
1 + ln

pi
γi(t)

)]1
0

=
n∑
i=1

(
pi − qi

(
1 + ln

pi
qi

))

=
n∑
i=1

(
pi − qi + qi ln

qi
pi

)
= D(m)

q (p) .

These calculations give rise to the following definition:

Definition 1. The function D : Mn ×Mn → R defined by

D(p ‖ q) :=

n∑
i=1

qi −
n∑
i=1

pi +

n∑
i=1

pi ln
pi
qi

(45)

is called the relative entropy or Kullback-Leibler divergence. Its restriction
to the set of probability distributions is given by

D(p ‖ q) :=
n∑
i=1

pi ln
pi
qi
. (46)

Proposition 1. The following holds:

X(m)(q, p) = −gradqD(p ‖ ·) , X(e)(q, p) = −gradqD(· ‖ p). (47)

Furthermore, D is the only function on Mn×Mn that satisfies the conditions
(47) and D(p ‖ p) = 0 for all p.
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Proof. We first compute the partial derivatives

∂D(p ‖ ·)
∂ qi

(q) = −pi
qi

+ 1 ,
∂D(· ‖ p)
∂ qi

(q) = − ln
pi
qi
.

With the formula (20), we obtain(
gradqD(p ‖ ·)

)
i

= qi

(
−pi
qi

+ 1

)
= −pi + qi ,(

gradqD(· ‖ p)
)
i

= −qi ln
pi
qi
.

A comparison with (39) proves (47). The equations (47) uniquely charac-
terise D(p ‖ ·) as well as D(· ‖ p), up to a constant depending on p. With
the additional assumption D(p ‖ p) = 0 for all p, this constant is fixed.

One can now ask whether the restriction (46) of the Kullback-Leibler
divergence to the manifold Sn−1 is the right divergence function in the
sense that (47) also holds for the exponential maps of the restricted m-
and e-connections. It is easy to verify that this is indeed the case. Let
us elaborate on the geometric reason for this. To this end, we consider
a general Riemannian manifold M and a submanifold N in it. Given an
affine connection ∇ on M , we can define its restriction ∇ to N . More pre-
cisely, denoting the projection of a vector Z in TpM onto TpN by Π>(Z),

we define ∇XY
∣∣
p

:= Π>
(
∇XY |p

)
, where X and Y are vector fields on N .

Furthermore, we denote the exponential map of ∇ by expp and its inverse by

X(p, q). Now, given p ∈ N , we consider a function Dp on M , which satisfies
the equation (12). With the restriction Dp of Dp to the submanifold N , this
directly implies

Π>q (X(q, p)) = −gradqDp .

However, in order to have X(q, p) = −gradqDp, which corresponds to the
equation (12) on the submanifold N , the following equality is required:

X(q, p) = Π>q (X(q, p)) . (48)

This is the case for the m- and e-connections on Mn and its submanifold
Sn−1, which implies the following proposition.

Proposition 2. The following holds:

X
(m)

(q, p) = −gradqD(p ‖ ·) , X
(e)

(q, p) = −gradqD(· ‖ p), (49)

where D is given by Definition 1. Furthermore, D is the only function on
Sn−1 × Sn−1 that satisfies the conditions (49) and D(p ‖ p) = 0 for all p.

The objects and derivations of this section represent a special case of a
general dually flat manifold M , which will be studied in Section 5.
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4.2 The α-divergence

We now extend the method of Section 4.1 to the α-connections, leading to
generalisation of the relative entropy, the so-called α-divergence. From the
definition of the α-exponential map on the manifoldMn of positive measures,
given in (31), we obtain the inverse

X(α)(q, p) :=
(

exp(α)
q

)−1
(p) =

2

1− α
n∑
i=1

qi

((
pi
qi

) 1−α
2

− 1

)
δi . (50)

The geodesic from q to p is given by

γ(t) =
n∑
i=1

(
q

1−α
2

i + t

(
p

1−α
2

i − q
1−α
2

i

)) 2
1−α

δi . (51)

This implies

〈
X(α)(γ(t), p), γ̇(t)

〉
=

2

1− α
n∑
i=1

γ̇i(t)

((
pi
γi(t)

) 1−α
2

− 1

)
(52)

and

D(α)
p (q) =

∫ 1

0

〈
X(α)(γ(t), p), γ̇(t)

〉
dt

=
n∑
i=1

∫ 1

0

2

1− α γ̇i(t)
((

pi
γi(t)

) 1−α
2

− 1

)
dt

=
n∑
i=1

[
4

1− α2
γi(t)

1+α
2 pi

1−α
2 − 2

1− α γi(t)
]1
0

=
n∑
i=1

(
2

1 + α
pi −

(
4

1− α2
q

1+α
2

i p
1−α
2

i − 2

1− α qi
))

=
n∑
i=1

( 2

1− α pi +
2

1 + α
pi −

4

1− α2
q

1+α
2

i p
1−α
2

i

)
.

Obviously, we have
D(−α)
p (q) = D(α)

q (p) . (53)

These calculations give rise to the following definition:

Definition 2. The function D(α) : Mn ×Mn → R defined by

D(α)(p ‖ q) :=
2

1− α
n∑
i=1

qi +
2

1 + α

n∑
i=1

pi −
4

1− α2

n∑
i=1

q
1+α
2

i p
1−α
2

i (54)
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is called the α-divergence. Its restriction to probability measures is given as

D(α)(p ‖ q) =
4

1− α2

(
1−

n∑
i=1

q
1+α
2

i p
1−α
2

i

)
.

Proposition 3. The following holds:

X(α)(q, p) = −gradqD
(α)(p ‖ ·) . (55)

Furthermore, D(α) is the only function on Mn ×Mn that satisfies the con-
dition (47) and D(α)(p ‖ p) = 0 for all p.

Proof. We compute the partial derivative

∂D(α)(p ‖ ·)
∂ qi

(q) =
2

1− α

(
1− q

1+α
2
−1

i p
1−α
2

i

)
.

With the formula (20), we obtain

(
gradqD

(α)(p ‖ ·)
)
i

= qi ·
2

1− α

(
1− q

1+α
2
−1

i p
1−α
2

i

)
=

2

1− α

(
qi − q

1+α
2

i p
1−α
2

i

)
.

A comparison with (50) proves equation (55). This equation uniquely char-
acterise D(α)(p ‖ ·), up to a constant depending on p. With the additional
assumption D(α)(p ‖ p) = 0 for all p, this constant is fixed.

In what follows, we use the notation D(α) also for α ∈ {−1, 1} by setting
D(−1)(p ‖ q) := D(p ‖ q) and D(1)(p ‖ q) := D(q ‖ p). This is consistent with
the definition (28) of the α-connections, where we have the m-connection
for α = −1 and the e-connection for α = 1. Note that D(0) is closely related
to the Hellinger distance

dH(p, q) :=

(
n∑
i=1

(
pi

1
2 − qi

1
2

)2) 1
2

More precisely, we have

D(0)(p ‖ q) = 2
(
dH(p, q)

)2
. (56)

In fact, the derivation of D(α) was based on the idea to associate a distance-
like function to the α-connections through the general equation (12). How-
ever, it turns out that, although being naturally motivated, the functions

15



D(α) do not share all properties of the square of a distance, except for α = 0.
The symmetry and the triangle inequality are obviously not satisfied. On
the other hand, we have D(α)(p ‖ q) ≥ 0, and D(α)(p ‖ q) = 0 if and and only
if p = q.

We now ask whether the restriction of D(α), which is defined for positive
measures, to the simplex Sn−1 of probability distributions is the canonical
divergence for the α-connections on Sn−1. We have seen that this is the case
for the m- and e-connections, that is for α ∈ {−1,+1}. However, for general
α, the situation is more complicated. From (38) we obtain

X
(α)

(q, p) = τ̇q,p(0) Π>q

(
X(α)(q, p)

)
.

This equality deviates from the condition (48) by the factor τ̇q,p(0), which
proves that the restriction of the α-divergence to Sn−1 does not coincide
with the canonical α-divergence on the simplex. As an example, we con-
sider the case α = 0, where the α-connection is the Levi-Civita connection
of the Fisher metric. As we will see in the next section, the canonical di-

vergence in that case equals D
(0)

(p ‖ q) = 1
2

(
dF (p, q)

)2
, where dF denotes

the distance with respect to the Fisher metric (see equation (65)). Obvi-
ously, this divergence is different from the divergence D(0), given by equation
(56), which is based on the distance in the ambient space Mn, the Hellinger
distance.

5 General canonical divergence and its consistency

5.1 Canonical divergence

We have derived a canonical divergence when the vector field of the inverse
exponential map satisfies the integrability condition (12). We now define a
canonical divergence in a general n-dimensional dual manifold (M, g,∇,∇∗).
Consider a ∇-geodesic γq,p : [0, 1] → M connecting q and p. We define a
tangent vector field Xt(p, q) along this geodesic:

Xt(q, p) := X (γq,p(t), p) . (57)

Obviously,

X0 = X(q, p) , (58)

X1(q, p) = 0 . (59)

Definition 3. A canonical divergence from p to q is defined by the path
integral

D(p ‖ q) =

∫ 1

0
〈Xt(q, p), γ̇q,p(t)〉 dt . (60)
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Note that in the case of integrability (12), for each p we have Dp(q) =
D(p ‖ q). Before stating the main result that the canonical divergence de-
fined by (60) induces the same Riemannian metric g and the same pair of
affine connections ∇ and ∇∗, we show some of its properties. Since the
geodesic connecting γq,p(t) and p is a part the geodesic connecting q and p,
corresponding to the interval [t, 1], the inverse exponential map at γq,p(t)
satisfies

Xt (q, p) = (1− t) γ̇q,p(t) . (61)

Hence, we have

D(p ‖ q) =

∫ 1

0
(1− t) ‖γ̇q,p(t)‖2 dt , (62)

where
‖γ̇q,p(t)‖2 = 〈γ̇q,p(t), γ̇q,p(t)〉 . (63)

This already proves D(p ‖ q) ≥ 0, and D(p ‖ q) = 0 if and only if p = q. If
we replace the parameter t by 1− t and use γq,p(t) = γp,q(1− t), we directly
obtain the following representation of the canonical divergence:

Proposition 4. The divergence of Definition 3 is given by

D(p ‖ q) =

∫ 1

0
t ‖γ̇p,q(t)‖2 dt , (64)

where γp,q denotes the geodesic from p to q.

Remark 1. In the special case where M is self-dual, ∇ = ∇∗ is the Levi-
Civita connection with respect to g. In that case the velocity field γ̇p,q is
parallel along the geodesic γp,q, and therefore

‖γ̇p,q(t)‖γ(t) = ‖γ̇p,q(0)‖p = ‖X(p, q)‖p = d(p, q) ,

where d(p, q) denotes the Riemannian distance between p and q. This implies
that the canonical divergence corresponds to the energy of the geodesic γp,q,
that is

D(p ‖ q) =
1

2
d2(p, q) . (65)

In the general case, where ∇ is not necessarily the Levi-Civita connection,
we obtain the energy of the geodesic γp,q as the symmetrized version of the
canonical divergence:

1

2

(
D(p ‖ q) +D(q ‖ p)

)
=

1

2

∫ 1

0
‖γ̇p,q(t)‖2 dt . (66)
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Remark 2. Let us compare the canonical divergence D of the affine con-
nection ∇ with the canonical divergence D∗ of its dual connection ∇∗, both
defined by (64). In the special case of the α-connection ∇ = ∇(α), we have
D∗(p ‖ q) = D(q ‖ p) (see equation (53)). In Section 5.3, we will prove that
this kind of symmetry holds in the general case of a dually flat manifold.
However, our canonical divergence does not necessarily have this property,
when the space is not dually flat. This is contrary to most other approaches
where the symmetry is considered to be a natural property of any diver-
gence. In order to have that property also in our setting, we can consider
the mean canonical divergence

D∇mcd(p ‖ q) :=
1

2

(
D(p ‖ q) +D∗(q ‖ p)

)
, (67)

which obviously satisfies

D
(∇∗)
mcd (p ‖ q) = D∇mcd(q ‖ p) . (68)

As we will prove in the next section, the canonical divergence D induces
the metric g and the connections ∇ and ∇∗. The same holds for the mean
canonical divergence D∇mcd. However, if ∇ is integrable, then it is not gen-
erally true that X(q, p) = −gradqD

∇
mcd(p ‖ ·), which is inconsistent with the

main motivation of our canonical divergence (see equation (12)).

5.2 Main consistency result

Let
D
g,

D

∇ and
D

∇∗ be the geometrical quantities derived from the canonical
divergence D as defined in (60). We recall the corresponding definitions
from Section 1 in terms of a local coordinate system ξ =

(
ξ1, · · · , ξn

)
:

D
gij (p) = ∂′i∂

′
j D(ξp ‖ ξq)

∣∣
q=p

, (69)

D

Γijk (p) = −∂i∂j∂′kD (ξp ‖ ξq)
∣∣
q=p

, (70)

D

Γ∗ijk (p) = −∂′i∂′j∂kD (ξp ‖ ξq)
∣∣
q=p

. (71)

We have defined our canonical divergenceD based on a metric g and an affine
connection ∇. It is natural to require that this divergence is consistent in

the sense that

(
D
g,

D

∇,
D

∇∗
)

coincides with the original geometry (g,∇,∇∗)
of M , where ∇∗ is the dual affine connection of ∇ with respect to g. Since
the geometry is determined by the derivatives of D (ξp ‖ ξq) at p = q, we
consider the case where p and q are close to each other, that is

zi = ξiq − ξip (72)

is small for all i. We evaluate the divergence by Taylor expansion up to
O
(
‖z‖3

)
. Note that X(p, q) is of order ‖z‖.
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Proposition 5. When ‖z‖ = ‖ξq − ξp‖ is small, the canonical divergence
is expanded as

D(p ‖ q) =
1

2
gij(p) z

izj +
1

6
Λijk(p) z

izjzk +O
(
‖z‖4

)
, (73)

where
Λijk = 2 ∂igjk − Γijk . (74)

Proof. We obtain the local coordinates ξ(t) of the geodesic γp,q(t) in Taylor
series as

ξi(t) = ξip + tXi − t2

2
ΓijkX

jXk +O
(
‖tX‖3

)
, (75)

where Xi = Xi(p, q). When z is small, X is of order O(‖z‖). Hence, we
regard (75) as Taylor expansion with respect to X, and t ∈ [0, 1] when z is
small.
When t = 1, we have

zi = Xi − 1

2
ΓijkX

jXk, (76)

where the higher-order terms are neglected. This in turn gives

Xi = zi +
1

2
Γijkz

jzk. (77)

We calculate D(p ‖ q) by using (64). The velocity at t is given as

ξ̇i(t) = Xi − tΓijkX
jXk (78)

= zi +
1

2
(1− 2t) Γijkz

jzk. (79)

We also use
gij (ξ(t)) = gij (ξp) + t ∂kgijz

k. (80)

Collecting these terms, we have

t gij (ξ(t)) ξ̇i(t) ξ̇j(t) = t gij z
izj +

{
t2 ∂igjk +

(
−2t2 + t

)
Γijk

}
zizjzk.

(81)
By integration, we have

D(p ‖ q) =

∫ 1

0
t gij (ξ(t)) ξ̇i(t) ξ̇j(t) dt (82)

=
1

2
gijz

izj +
1

6
Λijk z

izjzk, (83)

where indices of Λijk are symmetrized because of multiplication of zizjzk.
This gives (73).
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Theorem 1. (Main Theorem) The geometric quantities
D
g,

D

∇, and
D

∇∗,
derived from the canonical divergence D(p ‖ q) of Definition 3, coincide with
the original quantities g, ∇, and ∇∗.

Proof. By differentiating (73) with respect to ξp,

∂iD =
1

2
∂igjk z

jzk − gij zj −
1

2
Λijk z

jzk , (84)

∂i∂jD =
1

2
∂i∂jgkl z

kzj − 2 ∂igjk z
k + gij + Λijk z

k , (85)

of which the indexed quantities of the right-hand side need to be sym-
metrized with respect to i, j. By evaluating ∂i∂jD at ξp = ξq, i.e., z = 0,
we have

D
gij = gij , (86)

proving that the Riemannian metric derived from D is the same as the
original one. We further differentiate (85) with respect to ξq and evaluate
it at ξp = ξq. This yields

D

Γijk = −∂i∂j∂′kD = 2 ∂igjk − Λijk (87)

= Γijk . (88)

Hence, the affine connection
D

∇ derived from D is exactly the same as the
original affine connection ∇.

Remark 3. In the special case ∇ = ∇∗, equation (65) can be rewritten as

D(p ‖ q) =
1

2
‖X(p, q)‖2p . (89)

The right-hand side of equation (89) defines a divergence for a general con-
nection, which coincides with the canonical divergence in the self-dual case.
In our previous work [2], we have referred to it as standard divergence. We
have shown that, although this divergence recovers g and has some consis-
tency with the affine connections ∇ and ∇∗, it has serious limitations.

5.3 Canonical divergence in a dually flat manifold M

When M is dually flat, it has an affine coordinate system θ = (θ1, . . . , θn)
and a potential function ψ(θ), where the dual affine coordinates η = (η1, . . . , ηn)
are given by

ηi =
∂ ψ(θ)

∂ θi
, i = 1, . . . , n . (90)

The dual potential is then defined as

ϕ(η) = ψ (θ)− θ · η , (91)
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where θ ·η = θiηi and θ is a function of η by (90). The geodesic connecting
p and q, a generalisation of the e-geodesic of Section 3.2, has the form

θ(t) = θp + t (θq − θp) . (92)

Hence, the velocity is constant

θ̇(t) = z = θq − θp . (93)

The canonical divergence from θp to θq is defined by

D (θp ‖θq) =

∫ 1

0
t gij (θ(t)) zizjdt (94)

Since gij = ∂i∂jψ, we have

D (θp ‖θq) =

∫ 1

0
t ∂i∂jψ (θp + t z) zizjdt (95)

=

∫ 1

0
t ψ̈ (θ(t)) dt (96)

= −
∫ 1

0
ψ̇ (θ(t)) dt+

[
t ψ̇ (θ(t))

]1
0

(97)

= ψ (θp) + ϕ (ηq)− θp · ηq . (98)

This shows that our canonical divergence is the same as the canonical di-
vergence defined in terms of the Bregman divergence of M .

Now we come back to the symmetry property that we already addressed
in Remark 2. We derived D(p ‖ q) by using the primal affine connection ∇
and the related inverse exponential map. We can construct its dual D∗(p ‖ q)
by using the dual affine connection∇∗ and the dual inverse exponential map.
The dual affine coordinates are η and m-geodesic connecting p and q is

η(t) = ηp + t (ηq − ηp) . (99)

Hence, the velocity is constant

η̇(t) = z∗ = ηq − ηp . (100)

The dual canonical divergence D∗ is defined by

D∗(p ‖ q) =

∫ 1

0
t gij (ηt) z

∗
i z
∗
j dt . (101)

Here,
gij(η) = ∂i∂jϕ(η) , (102)
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where

∂i =
∂

∂ηi
. (103)

So we have

D∗(p ‖ q) =

∫ 1

0
t ∂i∂jϕ (ηp + tz∗) z∗i z

∗
j dt . (104)

By similar calculations, we have

D∗(p ‖ q) = D(q ‖ p) . (105)

This proves that ∇ and ∇∗ give the same canonical divergence except that
p and q are interchanged because of the duality. Such a nice property holds
when M is dually flat.

6 Geodesic projections and integrability

Given a divergence D (p ‖ q) in M , we consider the set of points p that satisfy

Dp(q) = D(p ‖ q) = const , (106)

where p is fixed. This set is the surface of the equi-divergence ball centered
at p. When a smooth submanifold S is given, we search for a point p̂ ∈ S
that minimizes D(p ‖ q), q ∈ S. Let us consider a ball centered at p. When
its radius increases from 0, the point that the ball touches S for the first
time gives the point p̂ that minimizes D(p ‖ q), q ∈ S. When the geodesic
connecting p̂ and p is orthogonal to S at p̂, p̂ is called a geodesic projection
of p onto S.

Definition 4. We say that D satisfies the geodesic projection property if
every minimizer p̂ of the divergence is given by the geodesic projection of p
to S.

We know that the geodesic projection property holds when M is dually
flat, but it does not hold in general. The following condition guarantees the
geodesic projection property:

Proposition 6. The geodesic projection property holds when the inverse
exponential map X(q, p) is in proportion to the gradient of D(p ‖ q) with
respect to q,

X(q, p) = c · gradqD(p ‖ ·) . (107)

where c is a constant that may depend on q and p.

Proof. Consider the geodesic connecting q = p̂ and p. Then, the tangent
vector at q is X(q, p). Assume that X(q, p) has the same direction as the
gradient gradqD(p ‖ ·), that is, the vector orthogonal to the surface of the
ball touching S. Then X(q, p) is also orthogonal to the tangent space of S
in p̂, as the tangent space of the ball contains the tangent space of S at this
point. This means that p̂ is a geodesic projection.
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Obviously, when the vector field of the inverse exponential map is inte-
grable in the sense of condition (12), the geodesic projection property holds.
We have shown that this intergrability is satisfied for general dually flat
manifolds. In particular, the integrability is satisfied for the α-connection
∇(α) defined on the cone Mn of positive measures, which leads to the α-
divergence as canonical divergence. The restriction of the α-connection to

the simplex Sn−1 of probability distributions, denoted by ∇(α)
, still satisfies

the integrability condition (12), even though Sn−1 is not (dually) flat with

respect ∇(α)
if α /∈ {−1,+1}. As we have seen, the canonical divergence as-

sociated with ∇(α)
does not coincide with the restriction of the α-divergence

on Mn. However, this restriction is still useful in the context of applications
that require projections onto subfamilies S. The reason is that it satisfies the
geodesic projection property. To be more precise, consider the restriction of
the α-divergence to the simplex Sn−1:

D(α)(p ‖ q) =
4

1− α2

(
1−

n∑
i=1

q
1+α
2

i p
1−α
2

i

)
.

The gradient is given as

gradqD
(α)(p ‖ ·) = − 2

1− α
∑
i

qi

(pi
qi

) 1−α
2

−
∑
j

qj

(
pj
qj

) 1−α
2

 δi .

Comparing this with (38) we see that

X(q, p) = −τ̇q,p(0) gradqD
(α)(p ‖ ·) .

This implies that D(α), although not being the canonical divergence on the
simplex, satisfies the geodesic projection property.
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