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Abstract

We consider a general model of the sensorimotor loop of an agent interacting with the
world. This formalises Uexküll’s notion of a function-circle. Here, we assume a particular
causal structure, mechanistically described in terms of Markov kernels. In this generality, we
define two σ-algebras of events in the world that describe two respective perspectives: (1) the
perspective of an external observer, (2) the intrinsic perspective of the agent. Not all aspects
of the world, seen from the external perspective, are accessible to the agent. This is expressed
by the fact that the second σ-algebra is a subalgebra of the first one. We propose the smaller
one as formalisation of Uexküll’s Umwelt concept. We show that, under continuity and com-
pactness assumptions, the global dynamics of the world can be simplified without changing
the internal process. This simplification can serve as a minimal world model that the system
must have in order to be consistent with the internal process.

Keywords: Umwelt , function-circle, sensorimotor loop, embodied agent, intrinsic per-
spective, external observer, σ-algebra.
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1 Introduction: the intrinsic view of embodied agents

1.1 Uexküll’s function-circle and the sensorimotor loop

A key observation based on many case studies within the field of embodied intelligence implies that
quite simple control mechanisms can lead to very complex behaviours [PB07]. This gap between
simplicity and complexity related to the same thing, the agent’s behaviour, is the result of two dif-
ferent frames of reference in the description. Here, the intrinsic view of the agent, which provides
the basis for its control, can greatly differ from the (extrinsic) view of an external observer. This
important understanding is not new. In the first half of the last century, Uexküll has conceptu-
alised this understanding by his notion of Umwelt , which summarises all aspects of the world that
have an effect on the agent and can be affected by the agent (see [Uex14]). Furthermore, he has
convincingly exemplified this notion in terms of many biological case studies. These case studies
are presented in his book [Uex34], supplemented by insightful illustrations (see in Figure 1, as an
example, the Umwelt of a bee).

(a) (b)

Figure 1: The Umwelt of a bee as illustrated in [Uex34]. (a) The environment of a bee how we
perceive it as an external observer. (b) The same bee perceives only particular aspects of the same
world, which constitute its Umwelt .

Uexküll has developed his Umwelt concept based on the notion of a function-circle (Funktions-
kreis, see Figure 2 (a)). It graphically represents the causal interaction of an animal with its
surroundings. Nowadays this circle is known as the sensorimotor loop and it plays an important
role within the field of embodied cognition (see Figure 2 (b)). However, its interpretation has not
changed, so that Uexküll’s description of the function-circle perfectly applies to the sensorimotor
loop:

“Every animal is a subject, which, in virtue of the structure peculiar to it, selects
stimuli from the general influences of the outer world, and to these it responds in a
certain way. These responses, in their turn, consist of certain effects on the outer
world, and these again influence the stimuli. In this way there arises a self-contained
periodic cycle, which we may call the function-circle of the animal.” ([Uex26], page
128)

In this section, we introduce the sensorimotor loop in terms of a causal diagram [Pea00] of the
involved processes, which describes the interaction of the agent with the world [TP10, ZAD10]. In
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(a) (b)

Figure 2: (a) Uexküll’s function-circle (Funktionskreis) [Uex34], (b) the sensorimotor loop from
the field of embodied cognition [AGZ14].

addition to the causal structure of this interaction, as shown in Figure 3, we need to formalise the
mechanisms that generate the individual processes. A very general way of formalising mechanisms
is provided by the notion of a Markov kernel, which is also used in information theory for a
mathematical description of a channel. As an example, let us consider the sensor mechanism
denoted by β. Given a state w of the world, the sensor assumes a state s, which can be subject
to some noise. Therefore, the sensor output is best described as a probability distribution over
the sensor states, that is β(w; ds). This reads as the probability that the sensor assumes a state s
in the infinitesimal set ds. Equivalently, we can consider the probability β(w;B) that the sensor
assumes a state s in the set B given the world state w. Clearly, we get this probability of B by
integrating the probabilities of the infinitesimal sets ds contained in B: β(w;B) =

∫
B
β(w; ds).

In addition to the sensor mechanism β we have the actuator mechanism π, referred to as the
agent’s policy . Finally, the mechanisms α and ϕ describe the dynamics of the world and the
agent, respectively. Note that the probabilistic description of the mechanisms does not mean that
we exclude deterministic mechanisms. For instance, one might want to assume that the dynamics
of the world is deterministic. Together with an initial distribution of W0, S0, C0, A0, the Markov
kernels α, β, ϕ, and π, the mechanisms of the sensorimotor loop, specify the distribution of the
overall process Wn, Sn, Cn, An, n ∈ N, consisting of the individual processes of the world (W), the
sensors (S), the agent (C), and the actuators (A).

// Wn−1 //

β
��

Wn
//

β
��

Wn+1

β
��

α >>

Sn−1

##

An−1

α
<<

Sn

!!

An

α <<

Sn+1

##

An+1

ϕ
// Cn−1

ϕ
//

π

OO

Cn
ϕ

//

π

OO

Cn+1

π

OO

Figure 3: The causal diagram of the sensorimotor loop. In each instant of time the agent (C)
takes a measurement from the world (W) through its sensors (S) and affects the world through
its actuators (A).

The causal model of the sensorimotor loop will allow us to formalise what we mean by intrinsic
and extrinsic frames of reference in terms of σ-algebras. These are basic mathematical objects
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from measure theory that naturally describe a set of observables which is assigned to an observer.
Already at this very general level, a description of the gap between the intrinsic and extrinsic
perspective is possible.

1.2 Uexküll’s Umwelt in terms of a σ-algebra

With this structure at hand, we can formalise Uexküll’s agent centric Umwelt . Note that the
world considered in the sensorimotor loop is meant to be the world as it can be seen from the
perspective of an external observer, which is also referred to as outer world by Uexküll [Uex26].
This perspective is clearly not accessible to the agent. The agent has its own intrinsic view at this
world, which implies an agent specific world, consisting only of those objects in the world that the
agent can perceive and affect.

Now let us be a bit more precise. Assume that we have two world states w and w′ that are
distinguishable from the perspective of an external observer. The agent’s sensorimotor apparatus,
however, may not be rich enough for this distinction. The agent would then perceive w and w′ as
being the same world state. By this identification, the original set of world states is partitioned
into classes that represent the states of the agent’s world, its Umwelt . This partition is illustrated
in Figure 4.

in
te

rn
al

st
at

es

world states

A1 A2 A3 A4

Figure 4: Clustering of world states.

Let us first assume that we have only finitely many of these classes, say A1, A2, . . . , An, which
represent the internal states of the agent. Given a world state w, the agent will assume one of
these classes as internal state, the one that contains w, which we denote by A(w). Now consider
an arbitrary subset A of world states. We call A a distincion (that the agent can make with its
internals states) if the following holds for all world states w: Knowing the internal state A(w) is
sufficient to decide whether or not w is contained in A. Clearly, the individual classes themselves
are distinctions. But these are not the only ones. For example, A = A1 ∪A2 is also a distinction.
To see this we have to consider three cases: (1) w ∈ A1: then w ∈ A, (2) w ∈ A2: then w ∈ A,
(3) w ∈ Ai for some i > 2: then w /∈ A. Thus, if we know to which class w belongs then we know
whether or not w is contained in A. More generally, we have the following set A of distinctions
that the agent can make with the internal states A1, . . . , An:

A = {Ai1 ∪Ai2 ∪ · · · ∪Aik : 1 ≤ i1 < i2 < · · · < ik ≤ n} . (1)

This set is closed under natural operations. Clearly, if A is a distinction, then the complement Ac of
A is also a distinction. Furthermore, unions and intersections of distinctions are also distinctions.
Having such a set A of distinctions, we can recover the class to which a world state w belongs by

A(w) = [w]A :=
⋂
A∈A
w∈A

A. (2)
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This correspondence between partitions into classes and sets of distinctions is one-to-one in the
finite case. However, if we drop that assumption the correspondence does not hold anymore, and
we have to work with sets of distinctions in the first place, as they encode more information than
the corresponding partitions. Extending our reasoning to possibly infinitely many distinctions, we
have to assume that the set A of distinctions an agent can make with its sensorimotor apparatus
satisfies the conditions of a σ-algebra, that is:

1. ∅ ∈ A,

2. A ∈ A ⇒ Ac ∈ A,

3. A1, A2, · · · ∈ A ⇒
⋃∞
i=1Ai ∈ A.

Clearly, as a special case, the set (1) forms a σ-algebra. Given an arbitrary σ-algebra A, we can
use formula (2) in order to define the classes that it generates. As already mentioned, this set of
classes alone contains less information than the set A of distinctions. This is the reason why we
consider in this article state sets together with σ-algebras on these state sets, leading to the notion
of so-called measurable spaces.

Note that we do not address the problem of how the sensorimotor apparatus of the agent might
instantiate a set of distinctions. In this regard, we want to highlight the following problem of in-
formation integration. Let us associate with a distinction A a sensor of the agent that is active if
the world state w is in A, and inactive if it is not. Then consider two of such sensors corresponding
to the distinctions A1 and A2. In principal, knowing that w is in A1, through the first sensor,
and knowing that w is also in A2, through the second sensor, implies that w ∈ A1 ∩ A2. But
this implication is a purely logical one. It is not clear whether there should be an instance in the
system that actually makes the distinction A1 ∩ A2 through a corresponding third sensor. Note
also, that we do not assume that the agen’s distinctions imply any kind of conscious experiences.

In our motivation of σ-algebras as the right model for describing the intrinsic perspective of an
agent we did not explicitly specify the mapping from the world states to internal states. Clearly,
this has to be done based on the formal model of the sensorimotor loop as shown in Figure 3.
In order to explain how we are going to use σ-algebras in the context of the sensorimotor loop,
consider, for instance, the sensor mechanism β, which generates a sensor state s, given a world
state w (Note that β is meant to incorporate all sensors of the agent, not only one.) In general, s
will contain information about the world state, which will allow the agent to distinguish it from
other world states. One can assign to β a set of distinctions, a σ-algebra, that describes the world
as seen through the immediate response s of the sensor β. This σ-algebra is denoted by σ(β)
and referred to as the σ-algebra generated by β. Note, however, that σ(β) does not contain all
distinctions that the agent can make. There are further distinctions, mediated through the time
evolution, which incorporates the actuator process of the agent. Therefore, the distinctions that
we are going to study are based on both, the sensors and actuators of the agent. The intention
of the article is to define a σ-algebra of distinctions in the world that describe Uexküll’s notion of
an agent centric world, the agent’s Umwelt . In what follows, we address the following two natural
problems:

1. Which structure in the world is used by the mechanisms of the sensorimotor loop?

2. Which structure of the world is visible from the intrinsic perspective of the agent?

We will show that these problems can be appropriately addressed by defining corresponding σ-
algebras. The nature of the main results requires some technical knowledge. We assume basic
knowledge from measure and probability theory and refer to the comprehensive volumes [Bog07a,
Bog07b] on measure theory and to the textbook [Bau96] on probability theory. However, the
technical part will be complemented by an extended summary and conclusions section on the
results and how they relate to Uexküll’s work. The reader interested in the results at a less formal
level might want to first read Section 4.
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2 Minimal σ-algebras of the world

2.1 Minimal separately measurable σ-algebra

We consider measurable spaces W, S, C, and A as state spaces of the sensorimotor process
Wn, Sn, Cn, An, n ∈ N. For technical reasons, we assume that these are Souslin spaces, equipped
with their respective Borel σ-algebras B(W), B(S), B(C), and B(A). In the Appendix A, we
collect a few general results that are used in this article, thereby also highlighting the special
role of Souslin spaces. In order to address the above problems, we fix the Borel σ-algebras on
the “agent part”—S, C, and A—of the system. Based on these internal σ-algebras, we consider
various sub-σ-algebras of the Borel σ-algebra on W that describe agent related events in the world.
In measure-theoretic terms, we study minimal σ-algebras on W that satisfy natural measurability
conditions. The most natural ansatz is given by the distinctions that are possible only through
sensor measurements. They correspond to the σ-algebra generated by the kernel β, that is σ(β).
However, this is not necessarily consistent with the world dynamics given by the Markov kernel
α. Therefore, we consider the following measurability condition. We call a σ-algebra W ⊆ B(W)
(jointly) measurable if both β and α remain measurable when W is equipped withW instead of
B(W). By general assumption, B(W) is jointly measurable. It turns out that joint measurability
is a quite strong condition. Therefore, it is natural to consider the following weaker measurability
condition. We call W separately measurable if, when we equip W with W, β is measurable
and α is separately measurable in the sense that for every a ∈ A, the Markov kernel

αa : (W,W)→ P(W,W), w 7→ α(a,w),

is measurable (“P” denotes the set probability distributions, here on the measurable space (W,W)).
Note that, because α is Borel measurable, the functions a 7→ α(a,w) are measurable for any
W ⊆ B(W).

It is straight-forward to construct the unique minimal (w.r.t. partial ordering by inclusion)
separately measurable sub-σ-algebra Wext of B(W).

Lemma 1. Let W0 := σ(β) and for n ∈ N define Wn recursively by

Wn := σ
(
αa : W→ P(W,Wn−1), a ∈ A

)
= σ

(
αa( · ; B), a ∈ A, B ∈ Wn−1

)
Then Wext := σ

(⋃
n∈NWn

)
is the unique minimal separately measurable σ-algebra, i.e.

Wext =
⋂{
W ⊆ B(W)

∣∣W σ-algebra, β measurable, αa W-W-measurable for all a ∈ A
}

Proof. “⊆”: Clearly, any σ-algebra W from the set on the right-hand side has to contain W0

because β isW-measurable. Further, if it containsWn−1, it also has to containWn, because
αa must be measurable for all a ∈ A. Thus it contains Wext.

“⊇”: We have to show that Wext is separately measurable. β is measurable, because Wext ⊇
W0 = σ(β).

⋃
nWn is an intersection stable generator of Wext, thus for measurability of αa,

it is sufficient that αa( · ; B) is Wext-measurable for B ∈
⋃
nWn. But by definition of Wn,

αa( · ; B) is Wn-measurable for B ∈ Wn−1.

Note that there is no reason why α should be jointly measurable when we equip W with Wext.
When we are working with a separately but not jointly measurable σ-algebra, we are rather working
with a family (αa)a∈A of kernels than with a single kernel α. We do not know if a minimal jointly
measurable σ-algebra exists in general. The above construction does not work well for α instead
of αa, because we want a product σ-algebra on A×W and taking products is not compatible with
intersections in the sense that A⊗ (W ∩W ′) $ (A⊗W) ∩ (A⊗W ′) in general. Of course, every
jointly measurable σ-algebra is separately measurable and thus has to contain Wext. Also note
that Wext need not be countably generated, which might cause technical problems when working
with Wext. Next we show that in the “nice case” where Wext is countably generated, α is jointly
measurable.
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Proposition 2. If Wext is countably generated, then it is jointly measurable, and in particular
the unique minimal jointly measurable σ-algebra.

Proof. Let A := B(A). We have to show that f : A × W → [0, 1], (a,w) 7→ α(a,w; B) is
(A ⊗Wext)-measurable for arbitrary choice of B ∈ Wext. Because Wext is countably generated,
A⊗Wext is a countably generated sub-σ-algebra of the Borel σ-algebra of the Souslin space A×W.
It follows from Blackwell’s theorem (see Appendix A) and the fact that f is Borel measurable that
f is A⊗Wext measurable if and only if it is constant on the atoms of A⊗Wext. The atoms are
obviously of the form { a }×F , where a ∈ A and F is an atom of Wext. Because αa is measurable
w.r.t. Wext, f(a, · ) is constant on the atom F . Thus, f is constant on { a } × F and therefore
jointly measurable.

A simple sufficient condition forWext to be countably generated is that there are only countably
many possible actuator states, i.e. A is countable.

Corollary 3. Let A be countable. Then Wext is countably generated and jointly measurable.

Proof. Because B(S) is countably generated, W0 is countably generated. If Wn−1 is countably
generated, the same holds for σ

(
αa : W → P(W,Wn−1)

)
for any a ∈ A. Because A is countable,

Wn is generated by a countable union of countably generated σ-algebras, thus it is countably
generated, and the same holds for Wext.

2.2 A countably generated, almost jointly measurable σ-algebra in the
memoryless case

In this section, we assume that the agent is memoryless, i.e. Cn is conditionally independent of
Cn−1 given Sn. Then we can concatenate the kernels from W to S, from S to C, and from C to A
to obtain a new kernel γ from W to A. We then have the following situation, where the C and S
components are marginalised (integrated) out.

// Wn−1 //

γ

##

Wn
//

γ

!!

Wn+1
//

γ

##

α >>

An−1

α
<<

An

α <<

An+1

Note that if β is W-measurable, the same holds for γ, but the converse need not be true. We
introduce yet another kernel κ which is the combination of γ and α, i.e. κ : W → P(A × W),
κ(w) = γ(w)⊗α( · , w). The reason to do this is that while kernels mapping from a product space
complicate finding minimal σ-algebras (with product structure), this is not the case for kernels
mapping into a product space. The variables Wn, An, n ∈ N, factorise also according to the
following graphical model.

//

""

Wn−1 //
κ

##

Wn
//

κ

##

Wn+1
//

κ

  An−2 An−1 An

We can define the minimal σ-algebra Wκ such that β and κ are measurable in the same way as
we defined Wext.

Lemma 4. Let W ′0 := σ(β) and

W ′n := σ
(
κ : W→ P(A×W,A⊗W ′n−1)

)
= σ

(
κ( · ; B), B ∈ A⊗W ′n−1

)
.

Then Wκ := σ
(⋃

n∈NW ′n
)

is the unique minimal σ-algebra on W s.t. β and κ are measurable.
Furthermore, Wκ is countably generated.
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Proof. Analogous to the proof of Lemma 1 and Corollary 3.

In the following, consider κ as kernel from (W,Wκ) to (A×W,A⊗Wκ). Note that becauseWκ

is countably generated, the quotient space obtained by identifying atoms of Wκ to points is again
a Souslin space1 (see Appendix A). Thus it is technically nice and, in particular, we can factorise κ
into γ and some kernel α′ from A×W to W by choosing regular versions of conditional probability.
Then α′ is jointly measurable. The draw-back is that α′( · , w) is only defined γ(w)-almost surely
and we cannot guarantee that α′ = α is a valid choice, i.e. that α is A ⊗ Wκ-measurable. We
easily get the following.

Lemma 5. Wκ is the unique minimal σ-algebra on W that satisfies the following condition. β
is measurable and there exists a (jointly measurable) kernel α′ from A ×W to W, s.t., for every
measure µ ∈ P

(
W,B(W)

)
, α = α′ (µ⊗ γ)-almost surely.

Proof. The above discussion shows that Wκ satisfies the condition (note that we can w.l.o.g.
assume that µ is a Dirac measure). If, on the other hand, α′ as above exists, then κ equals the
composition of γ and α′. In particular, κ is measurable and Lemma 4 yields the claim.

The condition α = α′ a.s. w.r.t. every measure of the form µ ⊗ γ means that the difference
between α and α′ is not visible regardless of any changes we might impose on the environment.
The situation, however, may change if the agent changes its policy π, thereby changing the kernel
γ. Then the difference between α and α′ can become important and α′ as well as Wκ would have
to be changed.

We trivially have that every jointly measurable σ-algebra W on W must contain Wκ. In
particular, if Wext is countably generated, Wκ ⊆ Wext. This is probably not true in general.

3 The world from an intrinsic perspective

3.1 Sensory equivalence

In what follows we use equivalence relations to coarse grain the world states and apply the con-
structions described in Appendix A.

Denote by P aNS (w) ∈ P(SN) the distribution of sensor values when the “world” is initially in
the state W1 = w ∈ W and the agent performs the sequence aN ∈ AN, of actuator states, i.e.
An = an. That is, we modify the agent policy π in a time-dependent way such that π is replaced
by (πn)n∈N and πn ignores the memory (and thus the sensors) and outputs (the Dirac measure in)
the value an. The sensor and world update kernels β and α, however, remain unchanged. More
explicitly, for B = B1 × · · · ×Bn × S× · · · ∈ B(SN),

P aNS (w1)(B) =

∫
· · ·

∫
β(w1; B1) · · ·β(wn; Bn) αan−1

(wn−1; dwn) · · · αa1(w1; dw2).

Now we define an equivalence relation ∼s, called sensory equivalence, on W by

w ∼s w
′ :⇔ P aNS (w) = P aNS (w′) ∀aN ∈ AN.

More generally, we obtain the intrinsic σ-algebra

Wint := σ
(
P aNS , aN ∈ AN

)
,

which describes the information about the world that can in principle be obtained by the agent
through its sensors. Obviously, the atoms [·]Wint

of the intrinsic σ-algebra are given precisely by
the sensory equivalence, i.e. [w]Wint

= {w′ ∈W | w′ ∼s w } for all w ∈W.

1More precisely, there exists a Souslin topology such that the Borel σ-algebra coincides with the final σ-algebra
induced by the canonical projection from (W,Wκ) onto the quotient.
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It turns out (Proposition 6 and Example 7) that the intrinsic σ-algebra leads to a coarser
partitioning of the world than the extrinsic perspective formalised byWext. The reason is that the
construction of Wext uses knowledge of the mechanisms of the “world”, more precisely the world
update kernel α, which is required to remain measurable when we replace the Borel σ-algebra
B(W) by Wext. The necessary information about α cannot be constructed from the sensor values
in general, even if infinitely many observations are possible and all probabilities can be estimated
accurately. The difference between the intrinsic and extrinsic point of view is precisely that the
agent does not know the mechanisms of the world encoded in α.

Proposition 6. Wint ⊆ Wext. In particular

[w]Wext
⊆ [w]Wint

= {w′ ∈W | w′ ∼s w } ∀w ∈W.

Furthermore, Wint = Wext if and only if Wint is separately measurable, i.e. αa is Wint-Wint-
measurable for every a ∈ A.

Proof. β and αa are measurable w.r.t. Wext. Because the σ-algebra on P(SN) is generated by the
evaluations, and the cylinder sets form a generator of the σ-algebra on SN, measurability of β and
αa implies measurability of the function P aNS for every aN ∈ AN. HenceWint ⊆ Wext. This directly
implies the corresponding inclusion for the atoms.

If Wint = Wext, Wint is separately measurable by Lemma 1. Conversely, assume that Wint is
separately measurable. Then, again by Lemma 1, Wext ⊆ Wint and hence Wint =Wext.

Equality in the above proposition does not hold in general, as the following example shows.

Example 7. Let W := { 1, . . . , 5 }, S = { 0, 1 } and |A| = 1, i.e. the agent is only observing (a
state-emitting HMM). Let β(1) = β(4) = β(5) = 1

2δ0 + 1
2δ1, β(2) = δ0, and β(3) = δ1. Further let

α(1) = 1
2δ2 + 1

2δ3, α(2) = α(3) = α(4) = δ4, α(5) = δ5. α can be illustrated as

2

��

sensor value 0

1

@@

��

4 qq 5 qq sensor value 0 or 1

3

@@

sensor value 1

Then 1 ∼s 4 ∼s 5 �s 2, 3 and At(W0) =
{
{1, 4, 5}, {2}, {3}

}
, but

At(Wext) = At(W1) =
{
{1}, {2}, {3}, {4, 5}

}
.

Thus 1 and 4 are identified by ∼s because they produce identical sequences of sensor values, but
they are not identified by Wext because they have non-identified successors. The definition of
Wext requires that α remains unchanged, while the same sensor values can be produced with the
partition given by ∼s by modifying α to α′, where α′(1) = α′(4) is an arbitrary convex combination
of α(1) and α(4). ♦

3.2 Sensor-preserving modification of the world

Example 7 suggests that one might be able to interpret the coarser partition given by sensory
equivalence as description of the relevant part of the world, provided one is allowed to modify the
world update kernel α in such a way that the distribution of sensor values is preserved. Intuitively,
one just has to choose one of the values αa takes on a given ∼s-equivalence class.

Of course these selections have to be done in a measurable way, and we need technical re-
strictions to deal with this problem. Namely, we assume that the world W is compact, and the
sensor kernel β as well as the world update kernels αa : W → P(W) for every given action a ∈ A
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are continuous. As usual, P(W) is equipped with the weak topology induced by bounded con-
tinuous functions. Note that compactness and metrisability of W also implies compactness and
metrisability of P(W).

Under these assumptions we can prove that it is possible to modify the world update (and
with it the smallest separately measurable σ-algebra Wext) in such a way that the sensor process
is preserved and equality holds in Proposition 6. Furthermore, the “new Wext” is countably
generated and jointly measurable for the modified system.

Definition 8. Let α′ : A×W→ P(W) be an “alternative” world update kernel.

1. We call α′ equivalent to α if for every w ∈ W and aN ∈ AN the sensor process P aNS (w)
coincides with the sensor process P aNS,α′(w) obtained by replacing α with α′.

2. Denote by Wα′

ext the smallest separately measurable σ-algebra of the system where α is
replaced by α′.

Remark. α′ can be seen as a model for the mechanisms of the world, which the agent might
use. If α′ is equivalent to α, α′ is a perfect model, as far as the agent’s (possible) observations
are concerned. Of course it can still make wrong assumptions about aspects of the world that
cannot be inferred by the agent. In Proposition 10, we show (under a continuity and compactness
assumption) that the agent can always build a perfect model in this sense which is consistent with
his intrinsic σ-algebra.

Lemma 9. Assume that αa is continuous for every a ∈ A and β is continuous. Then P aNS is
continuous for every aN ∈ AN.

Proof. Easy to see directly or a special case of [Kar75, Thm. 1].

Proposition 10. Let W be compact, β and αa continuous for every a ∈ A. Then there is a kernel
α′ : A×W→ P(W), such that α′ is equivalent to α and

Wα′

ext = Wint. (3)

In particular,
[w]Wα′

ext
= {w′ ∈W | w′ ∼s w } ∀w ∈W.

Furthermore, Wα′

ext is countably generated as well as jointly measurable (for the modified system
with α replaced by α′).

Proof. 1. Let X := P(SN)A
N

be the set of mappings from action sequences to distributions of
sensor sequences, equipped with product topology. Given an initial state w of the world,
denote by F (w) the corresponding kernel from action sequences to sensor sequences, i.e.
F : W → X, F (w) =

(
aN 7→ P aNS (w)

)
. Note that F generates Wint, i.e. σ(F ) = Wint.

Because every P aNS is continuous (Lemma 9) and X carries the product topology, F is a
continuous function from the compact metrisable space W into the Hausdorff space X. In
particular, the image F (W) is also compact and metrisable.

2. We can apply a classical selection theorem, e.g. Theorem 6.9.7 in [Bog07b], and obtain a
measurable right-inverse G : F (W)→W with F ◦G = idF (W). Define ς := G ◦ F . Then ς is
measurable, and σ(ς) ⊆ σ(F ). On the other hand, σ(F ) = σ(F ◦G ◦ F ) ⊆ σ(ς). Hence,

σ(ς) = σ(F ) = Wint. (4)

Define α′a := αa ◦ ς for every a ∈ A.

3. A simple induction shows that α′ is indeed equivalent to α: For B = B1×· · ·×Bn×S×· · · ∈
B(SN) and C := B2 × · · · ×Bn × S× · · · , we obtain by induction over n

P aNS,α′(w)(B) =

∫
β(w;B1)P

a{2,3,... }
S,α′ (·)(C) dα′a1(w) = P aNS

(
ς(w)

)
(B) = P aNS (w)(B)
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4. We claim that Wα′

ext = σ(ς). Indeed, α′a is σ(ς)-measurable by definition, and β is σ(ς)-mea-
surable, because β(w) is a marginal of F (w)(aN) for any aN. Therefore, σ(ς) is separately
measurable in the modified system and Wα′

ext ⊆ σ(ς). On the other hand, P aNS = P aNS,α′ is

Wα′

ext-measurable, thus the same holds for F and σ(ς) = σ(F ) ⊆ Wα′

ext. Hence Wint = Wα′

ext

follows from (4).

5. Since ς is a function into a space with countably generated σ-algebra, Wα′

ext = σ(ς) is count-
ably generated. In particular, it is jointly measurable by Proposition 2.

Remark (Non-compact W). For a non-compact world W, we can still obtain an equivalent α′

satisfying (3) if we relax the condition that α′ needs to be Borel measurable. Instead, it is only
universally measurable, i.e. µ-measurable for every µ ∈ P(W). To see this, just replace the
selection theorem used in the proof of Proposition 10 by a selection theorem for Souslin spaces,
e.g. Theorem 6.9.1 in [Bog07b]. The drawback is that the universal σ-algebra is not countably
generated and we do not obtain joint measurability of Wα′

ext.

4 Summary and conclusions

4.1 Summary of our definitions and results

We started with the mathematical description of the agent’s interaction with the world in terms
of a causal diagram. This lead us to the definition of the agent’s sensorimotor loop (see Figure
3), which formalises Uexküll’s fundamental notion of a function-circle. The sensorimotor loop
contains, as part of the description, a reference world, referred to as the outer world by Uexküll.
It is considered to be objective in the sense that it sets constraints on the distinctions that any
observer can make in that world. This is formalised in terms of a “large” σ-algebra which contains
all reasonable distinctions (the Borel σ-algebra of the world). We defined sub-σ-algebras Wext

and Wint that represent two agent specific perspectives. The first one, introduced in Section 2.1,
is based on two requirements:

1. First, we assume that Wext contains the distinctions in the world that the agent can make
based on the immediate response of its sensors. As the corresponding mechanism is encoded
by the Markov kernel β, this means that the σ-algebra generated by β should be contained
inWext, that is σ(β) ⊆ Wext (see Lemma 1). These distinctions seem to be closely related to
Uexküll’s world-as-sensed (translation of the original term enfache Merkwelt [Uex26], page
132). In addition to these aspects of the world, the agent is capable of making also mediated
or distal distinctions. We believe that the mediated distinctions correspond to those aspects
of the world that Uexküll describes as the higher grades of the world-as-sensed (translation
of the original term höhere Stufen der Merkwelt [Uex26], page 140). In order to incorporate
these mediated distinctions, we impose the next condition on Wext.

2. With this second condition we basically assume that the system is closed in the sense that
all mediated distinctions in the world are taken into account. This is formalised by the
iteration formula for Wn in Lemma 1. The main insight of this lemma is that the closedness
is equivalently expressed by the invariance condition

α−1a (W) ⊆ W, a ∈ A. (5)

Stated differently, incorporating all mediated distinctions, based on an initial set of prime
distinctions, is equivalent to enlarging this set until the condition (5) is satisfied. Our σ-
algebraWext is then the smallest σ-algebraW that contains σ(β) and satisfies this invariance.
Condition (5) is related to the closedness of dynamical systems studied in [PA15, PBO+14].

The definition of Wext is quite natural and might appear as the right formalisation of Uexküll’s
Umwelt in terms of a σ-algebra of distinctions. However, the invariance condition requires knowl-
edge about the mechanisms of the world, formalised in terms of the Markov kernel α. Therefore, in

11



Section 3.1 we introduced another σ-algebra, which does not require this knowledge and is defined
in an intrinsic manner. It is based on the following sensory equivalence relation: We identify two
world states w and w′ if they induce the same sensor process, given any sequence a1, a2, . . . of
actuator states. We define Wint to be the σ-algebra associated with this relation. It consists of
those distinctions the agent can make in the world that involve both the sensors and actuators.
In this sense, Wint takes into account Uexküll’s perceptual world (Merkwelt , referred to as world-
as-sensed in [Uex26]) and effector world (Wirkwelt , referred to as world of action in [Uex26]). We
do not, however, separate these two worlds as they are intertwined and define, together, Wint.

“We no longer regard animals as mere machines, but as subjects whose essential activity
consists of perceiving and acting. We thus unlock the gates that lead to other realms,
for all that a subject perceives becomes his perceptual world and all that he does,
his effector world . Perceptual and effector worlds together form a closed unit, the
Umwelt .” ([Uex34], page 320)

In Section 4.2 below, we comment on other ways to combine the perceptual world and the
effector world . But first, let us address the following question: How does Wint relate to Wext?
Their relation is actually quite interesting. First of all, as one would like to have, Wint ⊆ Wext,
which is the main content of Proposition 6. This means that one can attribute more distinctions
to the agent, if the mechanism α of the world is known. Or, stated differently, the agent can
operate on the basis of distinctions that are not internally indentifiable in terms of its sensors and
actuators. Note that there is one apparent limitation ofWint: It is not invariant in the sense of (5),
which means that it does not describe a closed system. On the other hand, making it invariant by
extending it sufficiently already leads to our previous σ-algebra Wext. However, the violation of
(5) can only be seen from outside. The agent has no access to the mechanism α from its intrinsic
perspective, and it simply does not see whether or not (5) is statisfied. It is quite surprising
that, according to our Proposition 10, it is possible for the agent to imagine a mechanism α′ that
is compatible with Wint in the sense that it satisfies (5) where α is replaced by α′. With this
modification of the mechanism, we have Wint = Wα′

ext, where Wα′

ext is defined in the same way
as Wext but with the mechanism α′ instead of α. Even if the agent is actually operating on the
basis of distinctions that are not identifiable from its intrinsic perspective, it is always possible to
imagine different mechanisms that only involve the identifiable distinctions. This is why we think
that Wint is the right object for describing the Umwelt of an agent.

4.2 On decompositions of the Umwelt into Merkwelt and Wirkwelt

Our approach starts with a set of prime distinctions and extends this set by taking into account
mediated distinctions that are generated in terms of the actuators of the agent. This way, the
perceptual world (Merkwelt) and the effector world (Wirkwelt) are incorporated into the Umwelt
in an asymmetric manner. One could also try to define both worlds separately and integrate them
in a symmetric way. Our impression is, however, that this approach has limitations, which we are
going to briefly explain.

As argued above, Wmerk := σ(β) already models the world-as-sensed , which we consider, for
the moment, to be the same as the perceptual world , as both terms are translations of Merkwelt
(note, however, that world-as-sensed denotes its simple form, einfache Merkwelt). Constructing
a corresponding effector world as σ-algebra on W appears less natural. To see this, compare in
Figure 3 the causal link from the world state Wn to the sensor state Sn with the causal causal link
from the actuator state An−1 to the world state Wn. One is directed away from and one toward
Wn. Generally, it is natural to “pull back” distinctions, as we did for the sensor kernel. But
without further assumptions there is no natural way to “push forward” distinctions, which would
be required for the definition of an effector world as σ-algebra on W. Instead of specifying these
assumptions and discussing related technical problems, let us simply assume that we already have
both, the perceptual world Wmerk and the effector world Wwirk. How would one combine them so

12



that they “form a closed unit” as Uexküll describes it in the above quote? There are two natural
ways to combine the two σ-algebras: The intersection W∩ :=Wmerk ∩Wwirk, which consists of all
distinctions, that are contained in both worlds, and the union, W∨ := σ(Wmerk ∪Wwirk), which
is the smallest set of distinctions so that both worlds are contained in it. We argue that both
choices are limited by applying them to two special cases of the senserimotor loop: In case one,
we assume that the agent can only observe but not act, which we refer to as a passive observer .
Any reasonable definition of the σ-algebra Wwirk should lead to a trivial effector world in this
case, that is Wwirk = {∅,W}. In case two, we assume that the agent can act but has no sensors to
perceive the consequences of its actions. We refer to this second agent as a blind actor . For the
blind actor, we obviously have a trivial perceptual world , that is Wmerk = {∅,W}. The following
table summarises the various resulting Umwelten for these two cases:

W∩ W∨ Wint

passive observer no Umwelt equals Merkwelt contains Merkwelt
blind actor no Umwelt equals Wirkwelt no Umwelt

Let us discuss and compare these simple but instructive outcomes. First, we see that for both,
the passive observer and the blind actor, the intersectionW∩ is the trivial σ-algebra {∅,W}, which
we interpret as a trivial or no Umwelt . We argue, however, that one should attribute a non-trivial
Umwelt to a passive observer, if the observed world is rich enough. The reason is that the agent
is capable of making distinctions based on its sensors, without the involvement of its actuators.
How about the union W∨? In this case, we argue that the outcome for the blind actor is not
satisfying. A blind actor generates effects in the outer world which are, in principle, visible from
the perspective of an external observer in terms of his own set of distinctions. But the blind actor
himself has no instantiation of these distinctions made from outside. Would one still attribute
these distinctions to the Umwelt of the blind actor? We think that this should not be the case.
Finally, as already stated, our definition Wint treats the two worlds in an asymmetric way. This
asymmetry is also expressed by the fact that the passive observer has a possibly non-trivial Umwelt
(the distinctions are made by the passive observer himself), whereas the blind actor has a trivial
one (the effects are visible only in terms of distinctions made by an external observer). Our way
of integrating sensing and acting in conceptually different from the way sketched in this section
and can be summarised as follows: The prime object is the perceptual world ! Starting with an
initial perceptual world (world-as-sensed), the agent can generate more and more distinctions by
utilising its actuators. Thereby, the perceptual world is gradually enlarged until it incorporates all
distinctions of the agent’s Umwelt (higher grades of the world-as-sensed).

4.3 How to treat the case of multiple agents

We conclude with a rough description of how one can study multiple agents based on the developed
tools of this article. For this, we have to couple the individual sensorimotor loops, which Uexküll
beautifully describes as follows:

“The function-circles of the various animals connect up with one another in the most
various ways, and together form the function-world of living organisms, within which
plants are included. For each individual animal, however, its function-circles consti-
tute a world by themselves, within which it leads its existence in complete isolation.”
([Uex26], page 126)

We sketch our ideas on this subject by considering the case of only two agents. The diagram
in Figure 5 shows how the sensorimotor loops of two agents are intertwined. Note that each agent
i has its own mechanisms β(i), ϕ(i), π(i), except that there is only one mechanism α which governs
the transitions of the common world given the actuator states of both agents. Let us first take
the perspective of agent one. From this perspective, the outer world includes agent two, that is

the variable W
(1)
n contains Wn, S

(2)
n , C

(2)
n , and A

(2)
n (see Figure 6 (a)). The perspective of agent
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two is symmetric. Here, the outer world W
(2)
n of agent two includes the corresponding variables

Wn, S
(1)
n , C

(1)
n , and A

(1)
n (see Figure 6 (b)). Obviously, in principle the two outer worlds are not

contained in each other and, in particular, they are not identical. Furthermore, they share the
process W which can be considered as a common world of the two agents.
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Figure 5: The sensorimotor loops of two agents.
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Figure 6: Overlapping but distinct outer worlds of two agents. (a) Outer world of agent one which
includes inner world of agent two, and (b) outer world of agent two which includes inner world of
agent one.

We can express the fact that the two outer worlds are different more formally by

B(W(1)) = B(W)⊗B(S(2))⊗B(C(2))⊗B(A(2)) , (6)

B(W(2)) = B(W)⊗B(S(1))⊗B(C(1))⊗B(A(1)) , (7)

and we have W(i)
int ⊆ W

(i)
ext ⊆ B(W(i)), i = 1, 2. The intersections of these sets of distinctions will

be contained in the common world, that is

W(1)
int ∩W

(2)
int ⊆ W

(1)
ext ∩W

(2)
ext ⊆ B(W) . (8)
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This highlights an important point. The two agents can share some distinctions in the world.
However, these have to be contained in the common world. Each agent can make further distinc-
tions in its respective outer world, so that the Umwelten will be in general different. If we consider

a probability measure, however, then we can actually identify distinctions A1 ∈ W(1)
int of agent one

with distinctions A2 ∈ W(2)
int of agent two if their intersection A1 ∩ A2 has full probability. This

way, the two agents can, in principle, synchronise and reach some consensus on their respective
intrinsic worlds. The more generic situation will be, that the intrinsic worlds are similar rather
than perfectly identical with respect to the underlying probability measure. In order to quantify

how close the intrinsic worlds W(i)
int, the Umwelten, of individual agents are, appropriate distance

measures for σ-algebras will be required. Such measures have been studied in the probability
theory and statistics literature [Boy71, Nev72, Rog74], and might be applicable to the present
context. However, it is not within the scope of this article to present and discuss these measures.
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A Appendix: state reduction and quotient construction

Let (X,F) be a measurable space. The atom of F containing x ∈ X and the set of atoms of F
are defined as

[x]F :=
⋂

x∈F∈F
F and At(F) :=

{
[x]F

∣∣ x ∈ X }.
Note that if F is countably generated, [x]F is a measurable set, [x]F ∈ F . In general, however,
[x]F need not be measurable. We recall Blackwell’s theorem.

Blackwell’s theorem. Let X be a Souslin space and F ⊆ B(X) a countably generated sub-
σ-algebra of the Borel σ-algebra. Then

F =
{
F ∈ B(X)

∣∣∣ F =
⋃
x∈F

[x]F
}
.

Corollary 11. Let X be a Souslin space, F ⊆ B(X) a countably generated σ-algebra, and
f : X → R measurable. Then f is F-measurable if and only if it is constant on the atoms of
F .

According to Blackwell’s theorem, a countably generated sub-σ-algebra of a Souslin space X
is uniquely determined by the set of it atoms. At(F) is a partition of X into B(X)-measurable
sets. Note, however, that not every partition of X into measurable sets is the set of atoms of a
countably generated sub-σ-algebra of B(X).

Given any measurable space (X,F), we can define the quotient space XF as the set At(F) of
atoms of F equipped with the final σ-algebra XF of the canonical projection [ · ]F : X → At(F).
Then a set B ⊆ XF of atoms is by definition measurable iff

⋃
B =

⋃
[x]F∈B [x]F ∈ F . Note

that, obviously, B 7→
⋃
B is a complete isomorphism of boolean algebras from XF onto F . The

following lemma follows easily from the standard theory of analytic measurable spaces and is one
of the reasons why Souslin spaces, rather than Polish spaces, are the “right” class of spaces to
work with in our setting.

Lemma 12. Let X be a Souslin space and F ⊆ B(X) a sub-σ-algebra. Then XF is the Borel
σ-algebra of some Souslin topology on XF if and only if F is countably generated.
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