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GEOMETRIC ANALYSIS OF THE ACTION FUNCTIONAL OF THE
NONLINEAR SUPERSYMMETRIC SIGMA MODEL

JÜRGEN JOST, LEI LIU, AND MIAOMIAO ZHU

Abstract. The mathematical version of the action functional of the nonlinear supersym-
metric model of quantum field theory couples a map from a Riemann surface into a Rie-
mannian manifold with a spinor field along the map. While a simplified version of the
model, the so-called Dirac-harmonic map functional, has been extensively studied in the
literature in recent years, the full model involves an additional curvature term. Handling
the finer analytic aspects caused by this term requires new methods. These are developed
in this paper. We analyze the blow-up of solutions. In particular, we show that the energy
identities and no neck property hold during the blow-up process. In technical terms, we
derive a new exponential decay estimate of some weighted energy on neck domains for the
spinor field. This is based on some Hardy-type inequality.

1. introduction

The action functionals of quantum field theory provide a rich source for mathematical
inspiration. They possess rather intricate and subtle formal properties which are difficult
to analyze and to utilize, but which ultimately reward us with rich and beautiful structures
that often have profound applications in geometry, like Yang-Mills theory or the Seiberg-
Witten model. One of the simplest such functionals is the action functional of the nonlinear
sigma model [8, 10]. In its simplest form, it leads to harmonic maps from Riemann surfaces
into Riemannian manifolds. The fundamental analysis of the convergence or blow-up of
solutions started with the work of Sacks-Uhlenbeck [16], and it has been an active field of
research ever since. The key to the behavior of the solutions is the conformal invariance of
the action functional. Since the conformal group is not compact, solutions can concentrate
at points, leading to the so-called bubbling or blow-up phenomenon. This, in fact, is one
of the fundamental properties of basically all these variational problems from quantum field
theory, and therefore the work of Sacks-Uhlenbeck turned out to be a model for many other
such problems.

When one moves from the basic sigma model to the supersymmetric one, one encounters an
additional field, a spinor field along the map. The map and the spinor field are coupled by the
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Euler-Lagrange equations. While in the physical model, the spinor field is anticommuting,
there also exists a mathematical version with commuting fields. The solutions of the Euler-
Lagrange equations of such a coupled model have been called Dirac-harmonic maps, and
they were introduced and studied in Chen-Jost-Li-Wang [5, 6]. In particular, although the
analysis turned out to be substantially more difficult and subtle than for standard harmonic
maps, in the end a Sacks-Uhlenbeck type blow-up analysis could be achieved, and the key
technical points like energy identities and the no-neck property could be achieved, see [5, 6, 7,
13, 17, 18, 19, 21, 22]. Nevertheless, the model of [5, 6] contained an important simplification
of the physical action functional, insofar as it did not include an additional curvature term
arising from the geometry of the target manifold.

It is the purpose of the present paper to carry out the geometric analysis of the full model,
including the curvature term, and to provide a state-of-the-art treatment of the solutions.
For simplicity, we call the solutions Dirac-harmonic maps with curvature term. The reason
for this name will become apparent below.

As already mentioned, the full supersymmetric nonlinear sigma model includes a curvature
term in addition to the map and the spinor (see for instance [10], p.162). That curvature
term is needed for supersymmetry. It is of lower order than the other terms and therefore
analytically dominated by those. Therefore, it does not affect the basic properties of the
Dirac-harmonic map theory. Nevertheless, since the blow-up analysis of Dirac-harmonic
maps is very subtle, depending on deep identities and symmetries, for some of the finer
aspects, this curvature term needs to be accounted for. In fact, the methods developed so
far do not all generalize to include such a curvature term. Therefore, in this paper, we
present a new scheme for obtaining the energy identities and no neck property, that is, the
finer aspects of the blow-up behavior. This scheme is able to handle the curvature term.
To achieve this, we apply a Hardy-type inequality to derive the exponential decay of some
weighted energy of a spinor on the neck region. This is the key analytical step of this paper.
Some geometric formulae for Dirac-harmonic maps with curvature term have been derived
by Branding [2], but our formulae are different from his. Likewise, in [3], he has already
carried out some of the easier steps of the analysis. Our analytical results go substantially
beyond those in that paper.

This paper is organized as follows. In section 2, we introduce the model and state the
main theorem. In section 3, we derive the Euler-Lagrange equations for Dirac-harmonic maps
with curvature term where we embed N into RK by the Nash-Moser embedding theorem.
In section 4, we prove some geometric properties of Dirac-harmonic maps with curvature
term. In section 5, we will first study some analytic properties of Dirac-harmonic maps with
curvature term, such as small regularity theorem and gap theorem. Secondly, for reader’s
convenience, we will recall some lemmas in [6, 13] which will be used in this paper. In
section 6, we will prove our main Theorem 2.1. We give a proof of the removable singularity
Theorem 6.1 in the appendix 7.
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2. Dirac-harmonic maps with curvature term and their blow-up behavior

We now proceed to formally introducing the model. We shall first present the standard
Dirac-harmonic model and shall then add the curvature term. Let (M,h) be a compact
Riemann surface and ΣM be the spinor bundle over M . Let (N, g) be another compact
Riemannian manifold. Let φ be a map from M to N , ψ a section of the twisted bundle

ΣM ⊗ φ−1TN with induced metric 〈, 〉 and induced connection ∇̃. We consider the action
functional

(2.1) L(φ, ψ) =

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ−1TN

)
dvolh,

where /D is the Dirac operator along the map φ (see Section 3 for details). Critical points
(φ, ψ) of L are called Dirac-harmonic maps from M to N .

The Euler-Lagrange equations of the functional L are(
∆φi + Γijkh

αβφjαφ
k
β

) ∂

∂yi
(φ(x)) = R(φ, ψ),(2.2)

/Dψ = 0,(2.3)

where R(φ, ψ) is defined by

R(φ, ψ) =
1

2
Rm
lij(φ(x))〈ψi,∇φl · ψj〉 ∂

∂ym
(φ(x)).

Here Rm
lij stands for the Riemann curvature tensor of the target manifold (N, g). One can

refer to [5, 6].
As already mentioned, the supersymmetric nonlinear sigma model of quantum field theory

includes an additional curvature term in addition to (2.1). This leads us to consider the
following functional

(2.4) Lc(φ, ψ) =
1

2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ−1TN

)
− 1

6
Rikjl〈ψi, ψj〉〈ψk, ψl〉dvol.

The critical points (φ, ψ) are called Dirac-harmonic maps with curvature term from M to
N . They were first proposed and studied by Chen-Jost-Wang [4]. They proved a type of
Liouville theorem for Dirac-harmonic maps with curvature term.

In this paper, we will study some analytic aspects of Dirac-harmonic maps with curvature
term including small energy regularity, removability of singularities, energy identity and no
neck property. The main result in this paper is that we prove that the energy identities
and the no neck property hold when the target manifold is a general compact Riemannian
manifold. Here we use ideas of Ding-Tian [9] and Qing-Tian [15]. For the energy identity,
we will choose a special cut-off function and use a Hardy-type inequality on R2 to estimate
the energy of ψ on an annulus first. For the no neck property, more delicate estimates of
the energy of the sequence on the necks are required. Similarly to the cases of approximate
harmonic maps [15] and Dirac-harmonic maps [13], we shall use a type of three circle lemma
to prove the exponential decay of the tangential energy of the map φ. Differently from
Dirac-harmonic maps [13], if we want to get the exponential decay of the whole energy of φ,
we need to first prove the exponential decay of some weighted energy of ψ. This is achieved
in Lemma 6.2 and Lemma 6.4 which are crucial for the proof of our main theorem.
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In order to describe our main theorem, we need some notations first.
Let U be a domain of M , we denote the energy of (φ, ψ) on U as

E(φ, ψ;U) :=

∫
U

(|dφ|2 + |ψ|4),

the energy of φ as

E(φ;U) :=

∫
U

|dφ|2,

the energy of ψ as

E(ψ;U) :=

∫
U

|ψ|4.

Our main result is the following:

Theorem 2.1. For a sequence of smooth Dirac-harmonic maps with curvature term {(φk, ψk)}
with uniformly bounded energy

E(φk, ψk) ≤ Λ <∞,
we define the blow-up set

(2.5) S := ∩r>0

{
x ∈M | lim inf

n→∞

∫
D(x,r)

(|dφn|2 + |ψn|4) ≥ ε0)
}
.

Then S is a finite set {p1, ..., pI}, where ε0 > 0 is as in Theorem 5.1. A subsequence, still
denoted by {(φk, ψk)}, converges in C∞loc(M \ S) to a Dirac-harmonic map with curvature
term (φ, ψ) : M → N and there is a finite set of Dirac-harmonic spheres with curvature
term (σli, ξ

l
i) : S2 → N , i = 1, ..., I; l = 1, ..., Li such that

lim
k→∞

E(φk) = E(φ) +
I∑
i=1

Li∑
l=1

E(σli),(2.6)

lim
k→∞

E(ψk) = E(ψ) +
I∑
i=1

Li∑
l=1

E(ξli),(2.7)

and the image φ(M) ∪Ii=1 ∪
Li
l=1(σli(S

2)) is a connected set.

3. Euler-Lagrange equations

Let (M, g) be a compact Riemann surface with a fixed spin structure, ΣM the spinor bun-
dle over M and 〈·, ·〉ΣM the metric on ΣM . Choosing a local orthonormal basis eα, α = 1, 2
on M , the usual Dirac operator is defined as /∂ := eα ·∇eα , where ∇ is the spin connection on
ΣM and · is the Clifford multiplication. For more details, one can refer to [11]. Let φ be a
smooth map from M to another compact Riemannian manifold (N, h) with dimension n ≥ 2.
If φ−1TN is the pull-back bundle of TN by φ, we get the twisted bundle ΣM⊗φ−1TN . Nat-
urally, there is a metric 〈·, ·〉ΣM⊗φ−1TN on ΣM ⊗ φ−1TN which is induced from the metrics

on ΣM and φ−1TN . Also we have a natural connection ∇̃ on ΣM⊗φ−1TN which is induced
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from the connections on ΣM and φ−1TN . Let ψ be a section of the bundle ΣM ⊗ φ−1TN .
In local coordinates, it can be written as

ψ = ψi ⊗ ∂yi(φ),

where each ψi is a standard spinor on M and ∂yi is the natural local basis on N . Then ∇̃
becomes

∇̃ψ = ∇ψi ⊗ ∂yi(φ) + (Γijk∇φj)ψk ⊗ ∂yi(φ),(3.1)

where Γijk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac operator

along the map φ is defined by /Dψ := eα · ∇̃eαψ.
Here, we want to point out that the usual Dirac operator /∂ on a surface can be seen

as the Cauchy-Riemann operator. Let (R2, dx2 + dy2) be the standard Euclidean space
and e1 = ∂

∂x
and e2 = ∂

∂y
be the standard orthonormal frame. A spinor field is simply a

map ψ : R2 → ∆2 = C2, and the action of e1 and e2 on spinors can be identified with
multiplication with matrices

e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
.

If ψ :=

(
ψ1

ψ2

)
: R2 → C2 is a spinor field, then the Dirac operator is

/∂ψ =

(
0 1
−1 0

)(
∂ψ1

∂x
∂ψ2

∂x

)
+

(
0 i
i 0

)(∂ψ1

∂y
∂ψ2

∂y

)
= 2

(
∂ψ2

∂z

−∂ψ1

∂z

)
,(3.2)

where
∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

For more details on spin geometry and Dirac operators, one can refer to [11].
The functional

Lc(φ, ψ) =
1

2

∫
M

(
|dφ|2 + 〈ψ, /Dψ〉ΣM⊗φ−1TN −

1

6
Rikjl〈ψi, ψj〉〈ψk, ψl〉

)
dvol

is conformally invariant. That is, for any conformal diffeomorphism f : M →M , setting

φ̃ = φ ◦ f and ψ̃ = λ−1/2ψ ◦ f,
we have

Lc(φ̃, ψ̃) = Lc(φ, ψ).

(For the proof, one can refer to [6]). Here λ is the conformal factor of the conformal map f ,
i.e. f ∗g = λ2g.

By [4], the Euler-Lagrange equations of the functional Lc are

τ(φ) =
1

2
Rm
lij(φ)〈ψi,∇φl · ψj〉 ∂

∂ym
(φ)− 1

12
hmpRikjl;p〈ψi, ψj〉〈ψk, ψl〉

∂

∂ym
(φ),(3.3)

/Dψ =
1

3
Rm
jkl〈ψj, ψl〉ψk

∂

∂ym
(φ),(3.4)
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where τ(φ) =
(
−∆φi + Γijkg

αβφjαφ
k
β

)
∂
∂yi

(φ(x)) is the tension field of φ.

By using the Nash-Moser embedding theorem, we embed N into RN , denoted by f : N →
RK . Set

φ′ = f ◦ φ and ψ′ = f∗ψ.

Let A be the second fundamental form of f . It is well-known that the tension fields of φ and
φ′ satisfy the following relation

(3.5) τ ′(φ′) = A(dφ, dφ) + df(τ(φ)).

For simplicity of notation, we identify φ with φ′ and ψ with ψ′. Using the Gauss equation
(cf. [5, 2]), we have

1

2
Rm
lij(φ)〈ψi,∇φl · ψj〉 =

1

2
hmk(AikAjl − AjkAil)〈ψi,∇φl · ψj〉

= hmkAikAjlRe〈ψi,∇φl · ψj〉

and

− 1

12
hmpRikjl;p〈ψi, ψj〉〈ψk, ψl〉

= − 1

12
hmp (Aij;pAkl + AijAkl;p − Ail;pAjk − AilAjk;p) 〈ψi, ψj〉〈ψk, ψl〉

= −1

6
hmpAij;pAkl〈ψi, ψj〉〈ψk, ψl〉+

1

6
hmpAil;pAjkRe(〈ψi, ψj〉〈ψk, ψl〉)

=
1

6
hmp

(
− Aij;pAkl + Ail;pAjk

)
Re(〈ψi, ψj〉〈ψk, ψl〉)

where Re(z) denotes the real part of z ∈ C and the last equality holds since one can easily
verify that −1

6
hmpAij;pAkl〈ψi, ψj〉〈ψk, ψl〉 are real numbers.

Also one can check that the Dirac operators /D and /D′ corresponding to φ and φ′ satisfy

(3.6) /D
′
ψ′ = f∗( /Dψ) +A(dφ(eα), eα · ψ),

where

A(dφ(eα), eα · ψ) = (∇φi · ψj)⊗ A(∂yi , ∂yj).

Using the Gauss equation again, we have

1

3
Rm
jkl〈ψj, ψl〉ψk∂ym(φ)

=
1

3
hmi (AikAjl − AilAjk) 〈ψj, ψl〉ψk∂ym(φ)

=
1

3

(
P (A(∂yj , ∂yl); ∂yk)− P (A(∂yj , ∂yk); ∂yl)

)
〈ψj, ψl〉ψk

where P (·; ·) is the shape operator, i.e.

〈P (ξ;X), Y 〉 = 〈A(X, Y ), ξ〉

for any X, Y ∈ Γ(TN),ξ ∈ Γ(T⊥N).
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Therefore, we have 1

−∆φ = A(dφ, dφ) +Re (P (A(dφ(eα), eα · ψ);ψ))−G(ψ),(3.7)

/∂ψ = A(dφ(eα), eα · ψ) + F (ψ, ψ)ψ(3.8)

where

Re (P (A(dφ(eα), eα · ψ);ψ)) = P (A(∂yj , ∂yl); ∂yi)Re〈ψi,∇φl · ψj〉;

G(ψ) =
1

6

(
〈∇Aij, Akl〉 − 〈∇Ail, Ajk〉

)
Re(〈ψi, ψj〉〈ψk, ψl〉);

F (ψ, ψ)ψ =
1

3

(
P (A(∂yj , ∂yl); ∂yk)− P (A(∂yj , ∂yk); ∂yl)

)
〈ψj, ψl〉ψk.

From the preceding, we can easily get the following proposition (see also [2, Lemma 3.5.]).

Proposition 3.1. A pair (φ, ψ) is a Dirac-harmonic map with curvature term if and only if
(φ, ψ) satisfies (3.7) and (3.8). Here φ : M → N is a map from M to RK with φ(x) ∈ N for
any x ∈ M . The spinor field ψ along the map φ is a K-tuple of usual spinors (ψ1, ..., ψK)
satisfying the condition that for any normal vector ν of N at φ(x), we have 〈ν, ψ〉RK = 0.

4. Geometric aspects

Certain quantities defined in this part were first given in [2], such as the two-tensor (4.1)
and the quadratic differential (4.9). Because of certain subtleties of the computation (for
instance, the factors in (4.2) and (4.9) are different from those in [2]) , we nevertheless need
to go through all the details here. In fact, it is well known that there is an energy-momentum
tensor associated to a harmonic map. For the energy-momentum tensor of Dirac-harmonic
maps, see [5, 6]. For Dirac-harmonic maps with curvature terms, one can define a two-tensor
by 2

(4.1) Tαβ := 2〈dφ(eα), dφ(eβ)〉 − δαβ|dφ|2 +Re〈ψ, eα · ∇̃eβψ〉 −
1

6
δαβ〈R(ψ, ψ)ψ, ψ〉,

where eα is a local orthonormal basis on M and θα the dual basis to eα. Usually, the tensor
Tαβθ

α ⊗ θβ is called energy-momentum tensor for the functional Lc.
From its definition, it is easy to see that Tαβ is traceless, when (φ, ψ) is a Dirac-harmonic

map with curvature term. Secondly, we shall prove that the tensor Tαβ is symmetric. In
fact, from equation (3.4), we have

e1 · ∇̃e2ψ = e2 · ∇̃e1ψ +
1

3
e2 · e1 ·R(ψ, ψ)ψ.

1There are similar formulas in Lemma 3.5 in [2]. Since, however, there is a crucial difference between the
inner products employed here and in [2] (in this paper we are taking the Hermitian inner product for the
spinors), we need to supply the precise formulas and the calculations to identify the terms where we need to
take the real parts.

2see equation (3.1) in [2] for a similar tensor where, however, the real part of the third term 〈ψ, eα · ∇̃eβψ〉
is not taken.
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So, we have

T12 − T21 = Re〈ψ, e1 · ∇̃e2ψ − e2 · ∇̃e1ψ〉

=
1

3
Re
(
Rijkl〈ψj, ψl〉〈ψi, e2 · e1 · ψk〉

)
.(4.2)

But, on the other hand, we have

Rijkl〈ψj, ψl〉〈ψi, e2 · e1 · ψk〉 = Rijkl〈ψl, ψj〉〈e2 · e1 · ψk, ψi〉
= Rklij〈ψj, ψl〉〈e2 · e1 · ψi, ψk〉
= −Rijkl〈ψj, ψl〉〈ψi, e2 · e1 · ψk〉.

From the preceding, we know Rijkl〈ψj, ψl〉〈ψi, e2 · e1 · ψk〉 is purely imaginary and thus
T12 − T21 = 0.

Next, we show that the tensor given in equation (4.1) is conserved (see [2, Proposition
3.2.]) for a similar result for the tensor given there).

Lemma 4.1. Let (φ, ψ) be a smooth Dirac-harmonic map with curvature term from M to
N , then the energy-momentum tensor is conserved, i.e.

(4.3)
∑
α

∇αTαβ = 0.

Proof. Several related computations have already been provided in [2], but since for our
purposes the algebraic details are very important, we need to supply detailed computations
to identify the relevant terms where we need to take the real parts.

Define

Cαβ := 2〈dφ(eα), dφ(eβ)〉 − δαβ|dφ|2, Dαβ := Re〈ψ, eα · ∇̃eβψ〉

and

Eαβ :=
1

6
δαβ〈R(ψ, ψ)ψ, ψ〉.

Computing directly, we have∑
α

∇αCαβ = 2〈τ(φ), dφ(eβ)〉

= hmpR
m
lij(φ)〈ψi,∇φl · ψj〉φpβ −

1

6
Rikjl;m〈ψi, ψj〉〈ψk, ψl〉φmβ(4.4)

and ∑
α

∇αDαβ =
∑
α

∇αRe〈ψ, eα · ∇̃eβψ〉

=
∑
α

Re〈∇αψ, eα · ∇̃eβψ〉+Re〈ψ, /D∇̃eβψ〉

= −Re〈 /Dψ, ·∇̃eβψ〉+Re〈ψ, /D∇̃eβψ〉.(4.5)
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Noting that

/D∇̃eβψ = eα · ∇̃eα∇̃eβψ

= eα ·
(
∇̃eβ∇̃eαψ +RΣM(eα, eβ)ψi ⊗ ∂yi +Rm

lijφ
i
αφ

j
βψ

l ⊗ ∂ym
)

= ∇̃eβ
/Dψ + eα ·RΣM(eα, eβ)ψi ⊗ ∂yi +Rm

lijφ
i
αφ

j
βeα · ψ

l ⊗ ∂ym

= ∇̃eβ
/Dψ +Rm

lijφ
i
αφ

j
βeα · ψ

l ⊗ ∂ym ,
we get

∇αDαβ = −Re〈 /Dψ, ∇̃eβψ〉+Re〈ψ, ∇̃eβ
/Dψ〉+

∑
α

hmpR
m
lijφ

i
αφ

j
β〈ψ

p, eα · ψl〉.(4.6)

Finally, from the equation (3.4), we have∑
α

∇αEαβ =
1

2
∇̃β〈 /Dψ, ψ〉

=
1

2
Re〈∇̃β /Dψ, ψ〉+

1

2
Re〈 /Dψ, ∇̃βψ〉.(4.7)

By equations (4.4), (4.6) and (4.7), we get∑
α

∇αTαβ =
∑
α

∇α(Cαβ +Dαβ − Eαβ)

=
1

2
Re〈∇̃β /Dψ, ψ〉 −

3

2
Re〈 /Dψ, ∇̃βψ〉 −

1

6
Rikjl;m〈ψi, ψj〉〈ψk, ψl〉φmβ .(4.8)

From equation (3.4), we easily know

Re〈∇̃β /Dψ, ψ〉 =
1

3
himR

m
jkl;pφ

p
β〈ψ

j, ψl〉〈ψi, ψk〉+Re(himR
m
jkl〈ψj, ψl〉〈ψi, ∇̃eβψ

k〉)

=
1

3
himR

m
jkl;pφ

p
β〈ψ

j, ψl〉〈ψi, ψk〉+ 3Re〈 /Dψ, ∇̃βψ〉.

Then the lemma follows immediately.
�

As a consequence of the above conservation law, we have the following:

Corollary 4.2. The quadratic differential Tdz2 is holomorphic, where
(4.9)

T (z)dz2 = {|φx|2−|φy|2−2i〈φx, φy〉+Re〈ψ,
∂

∂x
·∇̃ ∂

∂x
ψ〉−iRe〈ψ, ∂

∂x
·∇̃ ∂

∂y
ψ〉−1

6
〈R(ψ, ψ)ψ, ψ〉}dz2.

5. Analytic aspects and some Lemmas

In this section, we shall show some analytic aspects of Dirac-harmonic maps with curvature
term and recall some lemmas which will be useful in subsequent sections.

We start with an ε-regularity theorem for Dirac-harmonic maps with curvature term. This
kind of estimate was first introduced by Sacks-Uhlenbeck [16] which has been extended to
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harmonic maps [9] and Dirac-harmonic maps [6]. We refer to [3, Proposition 3.2.] for a
similar result following the method in [6]. Here we provide a different proof.

Theorem 5.1 (ε0-regularity theorem). There is a small constant ε0 > 0 such that if (φ, ψ)
is a Dirac-harmonic map with curvature term from the unit disc D in R2 to a compact
Riemannian manifold (N, g) and satisfies

E(φ, ψ;D) =

∫
D

(|dφ|2 + |ψ|4) < ε0,(5.1)

then

‖dφ‖L∞(D 1
2

) ≤ C(‖dφ‖L2(D) + ‖ψ‖4
L4(D)), ‖ψ‖L∞(D 1

2
) ≤ C‖ψ‖L4(D),(5.2)

where C > 0 is a constant depending only on N .

Proof. Without loss of generality, we assume 1
π

∫
D
φ = 0. Choosing a cut-off function η ∈

C∞0 (D) satisfying 0 ≤ η ≤ 1, η|D3/4
≡ 1, |∇η|+ |∇2η| ≤ C, we have

|∆(ηφ)| = |η∆φ+ 2∇η∇φ+ φ∆η|
≤ C

(
|φ|+ |dφ|+ |dφ||ηdφ|+ |ψ|2|ηdφ|+ |ψ|4

)
≤ C(|dφ|+ |ψ|2)|d(ηφ)|+ C

(
|φ|+ |dφ|+ |ψ|4

)
.

By the standard second order elliptic estimates, for any 1 < p < 2, we have

‖ηφ‖W 2,p(D) ≤ C‖(|dφ|+ |ψ|2)|d(ηφ)|‖Lp(D) + C(‖dφ‖Lp(D) + ‖|ψ|4‖Lp(D))

≤ C‖d(ηφ)‖
L

2p
2−p (D)

‖|dφ|+ |ψ|2‖L2(D) + C(‖dφ‖Lp(D) + ‖|ψ|4‖Lp(D))

≤ C
√
ε0‖d(ηφ)‖

L
2p
2−p (D)

+ C(‖dφ‖Lp(D) + ‖|ψ|4‖Lp(D)),

where we used the Poincare’s inequality ‖φ‖Lp(D) ≤ C(p)‖dφ‖LP (D).

Taking p = 4
3

and ε0 > 0 sufficiently small, we have

‖ηφ‖W 1,4(D) ≤ ‖ηφ‖W 2,4/3(D)

≤ C(‖dφ‖L4/3(D) + ‖|ψ|4‖L4/3(D)).(5.3)

Again, for any 1 < p < 2, using the elliptic estimates Lemma 5.4, we have

‖ηψ‖W 1,p(D) ≤ C‖/∂(ηψ)‖Lp(D)

≤ C‖∇η · ψ + η/∂ψ‖Lp(D)

≤ C
(
‖ψ‖Lp(D) + ‖|dφ||ηψ|‖Lp(D) + ‖|ψ|2|ηψ|‖Lp(D)

)
≤ C(‖dφ‖L2(D) + ‖|ψ|2‖L2(D))‖ηψ‖

L
2p
2−p (D)

+ C‖ψ‖Lp(D)

≤ C
√
ε0‖ηψ‖

L
2p
2−p (D)

+ C‖ψ‖Lp(D).

Taking p = 3
2

and ε0 > 0 sufficiently small, we have

‖ηψ‖L6(D) ≤ ‖ηψ‖W 1,3/2(D) ≤ C‖ψ‖L4(D).(5.4)
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Thus, combining this with (5.3) and taking a suitable cut-off function η, we get

(5.5) ‖dφ‖L4(D2/3) ≤ C(‖dφ‖L2(D) + ‖ψ‖4
L4(D)).

Then it is easy to see that the conclusion (5.2) follows from the standard higher elliptic
estimates. �

Next, we show a gap theorem for Dirac-harmonic maps with curvature term, which is a
special case of Lemma 4.9 in [2]. The proof we give here is different from that in [2].

Proposition 5.2. Assume that the pair (φ, ψ) is a smooth Dirac-harmonic map with cur-
vature term from a standard sphere S2 to a compact Riemannian manifold N satisfying∫

S2

(|dφ|2 + |ψ|4) < ε0

with ε0 small enough. Then both φ and ψ are trivial.

Proof. Step1. Claim: ‖ψ‖L4/3(S2) ≤ C‖/∂ψ‖L4/3(S2), where ψ is a spinor on S2 and C > 0 is a
universal constant.

In fact, if not, then there exists a sequence of spinors {ψk} on S2 such that

‖ψk‖L4/3(S2) > k‖/∂ψk‖L4/3(S2).

Without loss of generality, we assume ‖ψk‖L4/3(S2) = 1, then we have

(5.6) ‖/∂ψk‖L4/3(S2) <
1

k
.

By standard elliptic estimates, we get

‖ψk‖W 1,4/3(S2) ≤ C.

Thus, there exists a subsequence of {ψk}(we still denote it by {ψk}) and η ∈ W 1,4/3(S2)
satisfying

ψk → η weakly in W 1,4/3(S2) and strongly in L4/3(S2).(5.7)

Combining this with ‖ψk‖L4/3(S2) = 1 and the inequality (5.6), we get ‖η‖L4/3(S2) = 1 and

(5.8) ‖/∂η‖L4/3(S2) = 0.

So, η = 0 since on S2 there is no nontrivial harmonic spinor. This is a contradiction.
Step2. By the standard elliptic estimates, we have

‖ψ‖L4(S2) ≤ C‖ψ‖W 1,4/3(S2)

≤ C(‖/∂ψ‖L4/3(S2) + ‖ψ‖L4/3(S2))

≤ C‖/∂ψ‖L4/3(S2)

≤ C(‖|dφ||ψ|‖L4/3(S2) + ‖|ψ|3‖L4/3(S2))

≤ C(‖dφ‖L2(S2) + ‖ψ‖2
L4(S2))‖ψ‖L4(S2)

≤ Cε0‖ψ‖L4(S2).
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Since ε0 is sufficiently small, we have ψ = 0. So

‖|dφ|‖W 1,4/3(S2) ≤ C‖∆φ‖L4/3(S2)

≤ C‖|dφ|2‖L4/3(S2)

≤ C‖|dφ|‖L2(S2)‖|dφ|‖L4(S2)

≤ C‖|dφ|‖L2(S2)‖|dφ|‖W 1,4/3(S2) ≤ Cε0‖|dφ|‖W 1,4/3(S2).

Thus φ has to be a constant map. �

The following lemma is a Pohozaev type identity for Dirac-harmonic maps with curvature
terms, which is crucial in the subsequent sections, where we will show the singularity re-
movability theorem and estimate the energy of φ on the necks in the bubbling process. (For
a similar but different identity see [3, Lemma 3.11]. That identity is based on a quadratic
differential that is different from ours, and in fact, not holomorphic.)

Lemma 5.3 (Pohozaev identity). Let D ⊂ R2 be the unit disk and (φ, ψ) be a smooth Dirac-
harmonic map with curvature term on D \{0} satisfying ‖dφ‖L2(D) +‖ψ‖L4(D) ≤ C, then for
any 0 < r < 1

2
, we have

(5.9)

∫ 2π

0

(r2|∂φ
∂r
|2 − |∂φ

∂θ
|2)dθ =

∫ 2π

0

Re(〈ψ, ∂θ · ∇̃∂θψ〉)dθ −
r2

6

∫ 2π

0

〈R(ψ, ψ)ψ, ψ〉dθ,

where (r, θ) are polar coordinates in D centered at 0.

Proof. We shall follow the approach developed for harmonic maps in [16], which was extended
to the case of Dirac-harmonic maps in [6, Lemma 4.5].

First, it is easy to check that (φ, ψ) is a weak solution on D and hence, by standard elliptic
estimates, we may assume

‖∇ψ‖L4/3(D 1
2

) ≤ C

since we have ‖dφ‖L2(D) + ‖ψ‖L4(D) ≤ C.
From Corollary 4.2,

(5.10)

T (z) = {|φx|2−|φy|2−2i〈φx, φy〉+Re〈ψ, ∂
∂x
· ∇̃ ∂

∂x
ψ〉− iRe〈ψ, ∂

∂x
· ∇̃ ∂

∂y
ψ〉− 1

6
〈R(ψ, ψ)ψ, ψ〉}

is holomorphic in D \ {0}. Noting that |∇̃ψ| ≤ C(|∇ψ|+ |dφ||ψ|), we have∫
D 1

2

|T | ≤ C

∫
D 1

2

(|dφ|2 + |ψ|4 + |ψ||∇ψ|+ |dφ||ψ|2) ≤ C <∞.

Hence T (z) has a pole of order at most one, which implies that zT (z) is holomorphic on D 1
2

and

0 = Im

∫
|z|=r

zT (z)dz =

∫ 2π

0

Re
(
z2T (z)

)
dθ

by the Cauchy theorem. One can check

Re(z2T (z)) = r2|∂φ
∂r
|2 − |∂φ

∂θ
|2 −Re(〈ψ, ∂θ · ∇̃∂θψ〉) +

r2

6
〈R(ψ, ψ)ψ, ψ〉.
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Then the lemma follows. �

Finally, for convenience, we present some lemmas which will be used in this paper.

Lemma 5.4 (Lemma 4.7 in [6]). Let u be a complex function satisfying{
∂u = f in D,

u|∂D = ϕ,
(5.11)

with ϕ ∈ W 1,p(∂D) and f ∈ Lp(D) for some p > 1, where D is the unit disk in R2 centered
at the origin, then the following estimate holds

‖u‖W 1,p(D) ≤ C(‖f‖Lp(D) + ‖ϕ‖W 1,p(∂D)),(5.12)

where C > 0 is a universal constant.
If instead of (5.11), u satisfies {

∂u = f in D,

u|∂D = ϕ,
(5.13)

then the same estimate as above holds.

Lemma 5.5 (Lemma 3.1 in [13]). Suppose u ∈ C∞([−2, 2] × S1,CK), v ∈ C∞([−2, 2] ×
S1,CK) satisfy

∆u = A1u+ A2∇u+ A3v +
1

2π

∫ 2π

0

A4u+ A5∇u+ A6vdθ,(5.14)

∂v = B1u+B2∇u+B3v +
1

2π

∫ 2π

0

B4u+B5∇u+B6vdθ,(5.15)

where Ai, Bj ∈ C∞([−2, 2] × S1,CK),i = 1, ..., 6 and j = 1, ..., 6. Assume
∑6

i=1 ‖Ai‖L∞ +∑6
j=1 ‖Bj‖L∞ ≤ C <∞, then

‖u‖W 2,2([−1,1]×S1) ≤ C(‖u‖L2([−2,2]×S1) + ‖v‖L2([−2,2]×S1)),(5.16)

‖v‖W 1,2([−1,1]×S1) ≤ C(‖u‖L2([−2,2]×S1) + ‖v‖L2([−2,2]×S1)).(5.17)

Let Σ = [0, K] × S1 for a fixed number K. We assume K = lL for some integer l and a
large fixed universal number L. Let us denote Pi = [(i− 1)L, iL]× S1 and

‖(u, v)‖2
L2(Pi)

=

∫
[(i−1)L,iL]×S1

(|u|2 + |v|2)dtdθ.

Proposition 5.6 (Proposition 3.3 in [13]). Suppose u ∈ C∞(Σ,CK), v ∈ C∞(Σ,CK) satisfy
the equations (5.14) and (5.15) respectively. Assume l and L are given with L large. Then
there exists a positive number δ0 such that, if ‖Aj‖∞ ≤ δ0, ‖Bj‖∞ ≤ δ0 for j = 1, ..., 6 and

|
∫

(i−1)L×S1

udθ|, |
∫

(i−1)L×S1

vdθ|, |
∫
iL×S1

udθ|, |
∫
iL×S1

vdθ| ≤ δ0,(5.18)

then, for 2 ≤ i ≤ l − 1,
(a)‖(u, v)‖L2(Pi+1) ≤ e−

1
2
L‖(u, v)‖L2(Pi) implies ‖(u, v)‖L2(Pi) ≤ e−

1
2
L‖(u, v)‖L2(Pi−1);
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(b)‖(u, v)‖L2(Pi−1) ≤ e−
1
2
L‖(u, v)‖L2(Pi) implies ‖(u, v)‖L2(Pi) ≤ e−

1
2
L‖(u, v)‖L2(Pi+1);

(c)either ‖(u, v)‖L2(Pi) ≤ e−
1
2
L‖(u, v)‖L2(Pi+1) or ‖(u, v)‖L2(Pi) ≤ e−

1
2
L‖(u, v)‖L2(Pi−1).

Remark 5.7. In fact, in Lemma 3.1 and Proposition 3.3 of [13], u, v, Ai, Bi, i = 1, ..., 6 are
real valued functions. However, one can easily check that the proofs are completely the same
for complex valued functions.

6. Removable singularities and blow-up analysis

For the blow-up analysis, we need the following removable singularity theorem:

Theorem 6.1 (Theorem 3.12 in [3]). A smooth Dirac-harmonic map with curvature term
(φ, ψ) on D \ {0} with finite energy can be smoothly extended to D.

Proof. With the help of the Pohozeve identity for Dirac-harmonic maps with curvature term,
one can apply similar arguments as in the case of Dirac-harmonic maps [6, Theorem 4.6] to
prove this theorem. We shall provide a detailed proof in the appendix. �

Now, we begin to prove our main Theorem 2.1.

Proof. Following the same procedure as the case of approximate harmonic maps in Ding-
Tian’s paper [9], it suffices to consider the case that there is only one blow-up point S = {p}
and there is only one bubble. For cases of two or more bubbles, where a bubble tree forms,
one can refer to [12, 14, 20].

By the ε-regularity Theorem 5.1, after taking a subsequence, (φn, ψn) converges strongly
to some limit Dirac-harmonic map with curvature term (φ, ψ) : M → N on M \ Dδ(p) for
any δ > 0. Then what we need to prove is that there exists a Dirac-harmonic sphere with
curvature term (σ, ξ) : S2 → N such that

lim
δ→0

lim
n→∞

E(φn;Dδ) = E(σ),(6.1)

lim
δ→0

lim
n→∞

E(ψn;Dδ) = E(ξ),(6.2)

and φ(Dδ) ∪ σ(S2) is a connected set.
By a standard argument of blow-up analysis, there exist λn → 0 and xn → p as n → ∞

such that, for each (φn, ψn),

E(φn, ψn;Dλn(xn)) = sup
r≤λn,Dr(x)⊂Dδ(p)

E(φn, ψn;Dr(x)) =
ε0
2
> 0.

Denoting

(6.3) φ′n(x) := φn(xn + λnx), ψ′n(x) := λ1/2
n ψn(xn + λnx),

then for any D1(y) ⊂ R2, there holds

E(φ′n, ψ
′
n;D1(y)) ≤ E(φn, ψn;Dλn(xn)) =

ε0
2
,

when n is big enough.
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By the ε-regularity Theorem 5.1, we can take a subsequence, still denoted by (φ′n, ψ
′
n),

that strongly converges to some (σ, ξ) in W 1,2(DR, N)×L4(ΣDR×RK) for any R ≥ 1. Thus
we get a nonconstant Dirac-harmonic map with curvature term (σ, ξ) on R2 with bounded
energy. By conformal invariance and removable singularity, we get a nonconstant Dirac-
harmonic maps with curvature term (σ, ξ) on the whole S2. So we get the first bubble at
the blow-up point p.

We may assume xn = 0. It is well known that under the one bubble assumption, energy
identity and neckless property are equivalent to

lim
δ→0

lim
R→∞

lim
n→∞

E(φn, Dδ \DλnR) + lim
δ→0

lim
R→∞

lim
n→∞

E(ψn, Dδ \DλnR) = 0(6.4)

and

lim
δ→0

lim
R→∞

lim
n→∞

OscDδ\DλnRφn = 0.(6.5)

To prove (6.4) and (6.5), firstly, we introduce a new coordinate system. Let (r, θ) be polar
coordinates centered at 0. Let f : R1 × S1 → R2, f(t, θ) = (e−t, θ) (t, θ) ∈ R1 × S1 where
R1 × S1 is equipped with the metric g = dt2 + dθ2, which is conformal to the standard
Euclidean metric ds2 on R2. In fact,

(f−1)∗g =
1

r2
ds2.

For convenience, we will respectively denote

(6.6) Φn := φn ◦ f and Ψn := e−
t
2ψn ◦ f.

Denoting T0 := − log δ, T1 := − log(rnR), then Dδ \DrnR changes to Σ := [T0, T1]× S1.
Without loss of generality, we assume T1 = T0 + lnL for some integer ln and a fixed number

L (given in Proposition 5.6). For 1 ≤ i ≤ ln, we also denote Pi = [T0 + (i−1)L, T0 + iL]×S1

and

‖(Φ,Ψ)‖2
L2(Pi)

=

∫
Pi

(|Φ|2 + |Ψ|2)dtdθ.

It is easy to see that (6.4) and (6.5) are equivalent to

lim
δ→0

lim
R→∞

lim
n→∞

E(Φn,Σ) + lim
δ→0

lim
R→∞

lim
n→∞

E(Ψn,Σ) = 0(6.7)

and

lim
δ→0

lim
R→∞

lim
n→∞

OscΣΦn = 0.(6.8)

Secondly, we claim: for any ε > 0, we have

‖dΦn‖L∞(Σ) + ‖Ψn‖L∞(Σ) ≤ Cε,(6.9)

when n, R and 1
δ

are sufficiently large.

In fact, by [9], for any ε > 0, we know when n,R and 1
δ

are big enough,

(6.10) ‖dΦn‖L2(Pi−1∪Pi∪Pi+1) + ‖Ψn‖L4(Pi−1∪Pi∪Pi+1) < ε

for the one bubble case. By the ε0-regularity Theorem 5.1, we obtain

(6.11) ‖dΦn‖L∞(Pi) + ‖Ψn‖L∞(Pi) ≤ Cε
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for 1 ≤ i ≤ ln. Then, the inequality (6.9) follows immediately.
Thirdly, we extend the second fundamental form A to a small tubular neighborhood of

the target manifold N , in which A,∇A and ∇2A are uniform bounded depending only on
N . Also, we can do this for A and P .

For simplicity, we will denote Φn, Ψn by Φ and Ψ respectively.
We define Φ∗(t) and Ψ∗(t) as follows:

Φ∗(t) =
1

2π

∫ 2π

0

Φdθ and Ψ∗(t) =
1

2π

∫ 2π

0

Ψdθ.(6.12)

By (6.9), the difference between Φ and Φ∗ is very small. So, Φ∗ must live in a small tubular
neighborhood of N . Then the function A(Φ∗)(dΦ∗, dΦ∗) is well-defined.

Next, we use the same method as in [13] to compute the equation for (Φ − Φ∗,Ψ − Ψ∗).
Here, for reader’s convenience, we repeat this process again.

Since the equations (3.7) and (3.8) for Dirac-harmonic maps with curvature term are
conformally invariant, by equation (3.7), we have

∆Φ∗(t) =
1

2π

∫ 2π

0

−A(Φ)(dΦ, dΦ)−Re(P (Φ) (A(Φ)(dΦ(eα), eα ·Ψ); Ψ))

+
1

6
〈∇Aij, Akl〉〈Ψi,Ψj〉〈Ψk,Ψl〉 − 1

6
〈∇Ail, Ajk〉Re(〈Ψi,Ψj〉〈Ψk,Ψl〉)dθ

= I + II + III + IV.

Computing directly, we have

I =
1

2π

∫ 2π

0

A(Φ)(dΦ, dΦ)− A(Φ∗)(dΦ, dΦ) + A(Φ∗)(dΦ, dΦ)− A(Φ∗)(dΦ∗, dΦ∗)

+A(Φ∗)(dΦ∗, dΦ∗)dθ

= A(Φ∗)(dΦ∗, dΦ∗) +
1

2π

∫ 2π

0

A4(Φ− Φ∗) + A5∇(Φ− Φ∗)dθ,

and

II =
1

2π
Re

∫ 2π

0

P (Φ) (A(Φ)(dΦ(eα), eα ·Ψ); Ψ)− P (Φ∗) (A(Φ)(dΦ(eα), eα ·Ψ); Ψ)

+P (Φ∗) (A(Φ)(dΦ(eα), eα ·Ψ); Ψ)− P (Φ∗) (A(Φ∗)(dΦ(eα), eα ·Ψ); Ψ)

+P (Φ∗) (A(Φ∗)(dΦ(eα), eα ·Ψ); Ψ)− P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ); Ψ)

+P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ); Ψ)− P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ)

+P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ)− P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ∗)

+P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ∗) dθ

= Re(P (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ∗)) +
1

2π

∫ 2π

0

A4(Φ− Φ∗) + A5∇(Φ− Φ∗)

+
1

2π
Re

∫ 2π

0

A8(Ψ−Ψ∗)dθ,
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where Ai may differ from line to line and just stands for a symbol satisfying ‖Ai‖∞ ≤ Cε for
i = 4, 5, 8.

III and VI can be dealt with in the same way, and we get

∆(Φ− Φ∗) = A(Φ)(dΦ, dΦ)− A(Φ∗)(dΦ∗, dΦ∗)

+ReP (Φ) (A(Φ)(dΦ(eα), eα ·Ψ); Ψ)−ReP (Φ∗) (A(Φ∗)(dΦ∗(eα), eα ·Ψ∗); Ψ∗)

+
1

6
〈∇Aij(Φ), Akl(Φ)〉〈Ψi,Ψj〉〈Ψk,Ψl〉 − 1

6
〈∇Aij(Φ∗), Akl(Φ∗)〉〈Ψ∗i,Ψ∗j〉〈Ψ∗k,Ψ∗l〉

−1

6
〈∇Ail(Φ), Ajk(Φ)〉Re(〈Ψi,Ψj〉〈Ψk,Ψl〉)

+
1

6
〈∇Ail(Φ∗), Ajk(Φ∗)〉Re(〈Ψ∗i,Ψ∗j〉〈Ψ∗k,Ψ∗l〉)

− 1

2π

∫ 2π

0

A4(Φ− Φ∗) + A5∇(Φ− Φ∗) + A6(Ψ−Ψ∗)dθ

− 1

2π
Re

∫ 2π

0

A8(Ψ−Ψ∗)dθ.

Using the same method, we get

∆(Φ− Φ∗) = A1(Φ− Φ∗) + A2∇(Φ− Φ∗) + A3(Ψ−Ψ∗) +Re(A7(Ψ−Ψ∗))

+
1

2π

∫ 2π

0

A4(Φ− Φ∗) + A5∇(Φ− Φ∗) + A6(Ψ−Ψ∗)dθ

+
1

2π
Re

∫ 2π

0

A8(Ψ−Ψ∗)dθ,(6.13)

where ‖Ai‖∞ ≤ Cε for i = 1, ..., 8.
Similarly, we have

/∂(Ψ−Ψ∗) = B1(Φ− Φ∗) +B2∇(Φ− Φ∗) +B3(Ψ−Ψ∗)

+
1

2π

∫ 2π

0

B4(Φ− Φ∗) +B5∇(Φ− Φ∗) +B6(Ψ−Ψ∗)dθ,(6.14)

where ‖Bi‖∞ ≤ Cε for i = 1, ..., 6.
Noting that Re(A7(Ψ−Ψ∗)) and 1

2π
Re
∫
A8(Ψ−Ψ∗)dθ are linear terms and ‖Aj‖L∞ ≤ Cε,

j = 7, 8, one can easily find that the proofs of Lemma 5.5 and Proposition 5.6 still hold if
we add these terms in the equation (5.14) and (5.15). So, for simplicity, we will put these
terms into A3(Ψ−Ψ∗) and 1

2π

∫
A6(Ψ−Ψ∗)dθ in the sequel.

By (c) of Proposition 5.6, we obtain

‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi) ≤ e−
1
2
L‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi+1) or

‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi) ≤ e−
1
2
L‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi−1).

Then, using (a) and (b) of Proposition 5.6, by iterating, we have

‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi) ≤ e−
i
2
L‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(P1) or

‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pi) ≤ e−
ln−i

2
L‖(Φ− Φ∗,Ψ−Ψ∗)‖L2(Pln ).



18 JOST, LIU, AND ZHU

So, we can get the decay for ‖Φ− Φ∗‖L2(Pi) and ‖Ψ−Ψ∗‖L2(Pi), that is

‖Φ− Φ∗‖L2(Pi) ≤ (e−
i
2
L + e−

ln−i
2
L)(‖Φ− Φ∗‖L2(P1) + ‖Φ− Φ∗‖L2(Pln )),(6.15)

‖Ψ−Ψ∗‖L2(Pi) ≤ (e−
i
2
L + e−

ln−i
2
L)(‖Ψ−Ψ∗‖L2(P1) + ‖Ψ−Ψ∗‖L2(Pln )).(6.16)

Applying Lemma 5.5 to equation (6.13) and equation (6.14), we obtain the energy decay
in the θ-direction,

‖∂Φ

∂θ
‖L2(Pi) ≤ ‖∇(Φ− Φ∗)‖L2(Pi)

≤ C
(
‖Φ− Φ∗‖L2(Pi∪Pi−1∪Pi+1) + ‖Ψ−Ψ∗‖L2(Pi∪Pi−1∪Pi+1)

)
≤ C

(
e−

i
2
L + e−

ln−i
2
L
) (
‖Φ− Φ∗‖L2(P1∪Pln ) + ‖Ψ−Ψ∗‖L2(P1∪Pln )

)
≤ C

(
e−

i
2
L + e−

ln−i
2
L
)
ε(6.17)

and

‖∂Ψ

∂θ
‖L2(Pi) ≤ ‖∇(Ψ−Ψ∗)‖L2(Pi)

≤ C
(
‖Φ− Φ∗‖L2(Pi∪Pi−1∪Pi+1) + ‖Ψ−Ψ∗‖L2(Pi∪Pi−1∪Pi+1)

)
≤ C

(
e−

i
2
L + e−

ln−i
2
L
) (
‖Φ− Φ∗‖L2(P1∪Pln ) + ‖Ψ−Ψ∗‖L2(P1∪Pln )

)
≤ C

(
e−

i
2
L + e−

ln−i
2
L
)
ε.(6.18)

From Lemma 5.3, we know∫
Pi

|∂Φ

∂t
|2 −

∫
Pi

|∂Φ

∂θ
|2 =

∫
Pi

Re(〈Ψ, ∂θ · ∇̃∂θΨ〉)−
∫
Pi

1

6
〈R(Ψ,Ψ)Ψ,Ψ〉dθdt,

where Pi = [T0 + (i− 1)L, T0 + iL]× S1. Since

∂Ψ

∂θ
= ∇̃∂θΨ +

K∑
i=1

Ψi ⊗ A(dΦ(
∂

∂θ
),

∂

∂zi
),

where ∂Ψ
∂θ

= (∂Ψ1

∂θ
, ..., ∂ΨK

∂θ
), we get∫
Pi

|∂Φ

∂t
|2 ≤ C

(
e−

i
2
L + e−

ln−i
2
L
)
ε+ C

∫
Pi

|Ψ|4,

and then ∫
Pi

|dΦ|2 ≤ C
(
e−

i
2
L + e−

ln−i
2
L
)
ε+ C

∫
Pi

|Ψ|4.(6.19)

We will get the conclusion (6.7) and (6.8) from Corollary 6.3 and Corollary 6.5, which will
be presented later in this section. Then we will finish our proof of Theorem 2.1. �

Lemma 6.2.

lim
δ→0

lim
R→∞

lim
n→∞

∫
Dδ\DλnR

|ψn|2

|x|
dx = 0.(6.20)
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Proof. The key of the proof is the Hardy-type inequality on R2 that for any f ∈ C∞0 (R2\{0}),
there holds

(6.21) ‖ f
|x|
‖L1(R2) ≤ ‖∇f‖L1(R2)

where the constant 1 is the best possible constant (for a simple proof, see [1]).
We choose the cut-off function η ∈ C∞0 (Dδ \ DλnR) such that 0 ≤ η ≤ 1 and η ≡ 1 on

D 1
2
δ \D2λnR and

|∇η| ≤ C

δ
on Dδ \D 1

2
δ and

|∇η| ≤ C

λnR
on D2λnR \DλnR.

Taking f = η|ψn|2 in the inequality (6.21), we get

‖η |ψn|
2

|x|
‖L1(R2) ≤ ‖∇(η|ψn|2)‖L1(R2)

≤ ‖2ηψn∇ψn‖L1(R2) + ‖∇η|ψn|2‖L1(R2)

≤ ‖2ηψn
1

|x|
∂ψn
∂θ
‖L1(R2) + ‖2ηψn

∂ψn
∂r
‖L1(R2) + ‖∇η|ψn|2‖L1(R2).

On the one hand, we know

∂ψn
∂r

=
∂

∂r
· 1

|x|
∂

∂θ
· 1

|x|
∂ψn
∂θ

+
∂

∂r
· (A(dφ(eα), eα · ψ) + F (ψ, ψ)ψ)

from equation (3.8). So, we have

|2ηψn
∂ψn
∂r
| ≤ |2ηψn

1

|x|
∂ψn
∂θ
|+ C|η|dφn||ψn|2|+ C|η|ψn|4|.

On the other hand, by inequality (6.9), we have

(6.22) |x||dφn|+
√
|x||ψn| ≤ ε on Dδ \DλnR.

Combining these, we get

‖η |ψn|
2

|x|
‖L1(R2) ≤ 4‖ηψn

1

|x|
∂ψn
∂θ
‖L1(R2) + C‖η|dφn||ψn|2‖L1(R2) + C‖η|ψn|4‖L1(R2) + ‖∇η|ψn|2‖L1(R2)

≤ 4‖ηψn
1

|x|
∂ψn
∂θ
‖L1(R2) + Cε‖η |ψn|

2

|x|
‖L1(R2) + ‖∇η|ψn|2‖L1(R2).
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Since we can take ε sufficiently small, we then have

‖η |ψn|
2

|x|
‖L1(R2) ≤ C‖ψn

1

|x|
∂ψn
∂θ
‖L1(Dδ\DλnR) + C‖∇η|ψn|2‖L1(Dδ\DλnR)

= C‖Ψn
∂Ψn

∂θ
‖L1(Σ) + C‖∇η|ψn|2‖L1(Dδ\DλnR)

≤ C

ln∑
i=1

‖Ψn
∂Ψn

∂θ
‖L1(Pi) + C‖∇η|ψn|2‖L1(Dδ\DλnR)

≤ C

ln∑
i=1

‖∂Ψn

∂θ
‖L1(Pi) + C‖∇η|ψn|2‖L1(Dδ\DλnR)

≤ C
ln∑
i=1

‖∂Ψn

∂θ
‖L2(Pi) + C‖∇η|ψn|2‖L1(Dδ\DλnR)

≤ Cε
ln∑
i=1

(e−
i
2
L + e−

ln−i
2
L) + C

1

δ
‖|ψn|2‖L1(Dδ\D 1

2 δ
) + C

1

λnR
‖|ψn|2‖L1(D2λnR\DλnR)

≤ Cε+ C‖ψn‖2
L4(Dδ\D 1

2 δ
) + C‖ψn‖2

L4(D2λnR\DλnR)

≤ Cε

where the last inequality is from (6.10).
Thus, ∫

D 1
2 δ
\D2λnR

|ψn|2

|x|
dx ≤ Cε.

Combining this with the assumption (6.10) again, we have∫
Dδ\DλnR

|ψn|2

|x|
dx ≤ Cε.

�

As a corollary of the above lemma, we will immediately get the energy identities.

Corollary 6.3.

lim
δ→0

lim
R→∞

lim
n→∞

E(Φn,Σ) + lim
δ→0

lim
R→∞

lim
n→∞

E(Ψn,Σ) = 0.(6.23)

Proof. Firstly, from Lemma 6.2 and (6.22), we get

E(Ψn,Σ) =

∫
Dδ\DλnR

|ψn|4dx ≤
∫
Dδ\DλnR

|ψn|2

|x|
dx ≤ Cε,

that is

(6.24) lim
δ→0

lim
R→∞

lim
n→∞

E(Ψn,Σ) = 0.
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Next, by inequality (6.19), we have

E(Φn,Σ) =
ln∑
i=1

∫
Pi

|dΦn|2 ≤ Cε+ C

∫
Σ

|Ψn|4 ≤ Cε.

Then we can get the conclusion

(6.25) lim
δ→0

lim
R→∞

lim
n→∞

E(Φn,Σ) + lim
δ→0

lim
R→∞

lim
n→∞

E(Ψn,Σ) = 0.

�

So far, we have proved the energy identities. In order to get the no neck property, we need
the following exponential decay estimates.

Lemma 6.4. For any T0 + 1 ≤ t0 ≤ T1 − 1, we have

(6.26)

∫
D
e−t0+1\De−t0−1

|ψn|2

|x|
dx ≤ Cε

(
e−

1
4

(t0−T0) + e−
1
4

(T1−t0)
)

where T0 = − log δ, T1 = − log(λnR).

Proof. We define

f(t) :=

∫
D
e−t0+t\De−t0−t

|ψn|2

|x|
dx

for any t0 ∈ (T0, T1) and 0 ≤ t ≤ min{|t0 − T0|, |t0 − T1|}.
For any σ > 0, taking the cut-off function η ∈ C∞0 (De−t0+t+σ \ De−t0−t−σ) such that

0 ≤ η ≤ 1 and η ≡ 1 on De−t0+t \ De−t0−t and |∇η| ≤ 2
σ
. Taking f = η|ψn|2 in the Hardy

inequality (6.21) and applying similar arguments as in the proof of Lemma 6.2, we will get

‖η |ψn|
2

|x|
‖L1(R2) ≤ ‖∇(η|ψn|2)‖L1(R2)

≤ ‖2ηψn∇ψn‖L1(R2) + ‖∇η|ψn|2‖L1(R2)

≤ ‖2ηψn
1

|x|
∂ψn
∂θ
‖L1(R2) + ‖2ηψn

∂ψn
∂r
‖L1(R2) + ‖∇η|ψn|2‖L1(R2)

≤ 4‖ηψn
1

|x|
∂ψn
∂θ
‖L1(R2) + C‖η|dφn||ψn|2‖L1(R2) + C‖η|ψn|4‖L1(R2) + ‖∇η|ψn|2‖L1(R2)

≤ 4‖ηψn
1

|x|
∂ψn
∂θ
‖L1(R2) + Cε‖η |ψn|

2

|x|
‖L1(R2) + ‖∇η|ψn|2‖L1(R2).
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Taking ε > 0 sufficiently small such that Cε ≤ 1
2
, we have

‖η |ψn|
2

|x|
‖L1(R2) ≤ 8‖ψn

1

|x|
∂ψn
∂θ
‖L1(D

e−t0+t+σ\De−t0−t−σ) + 2‖∇η|ψn|2‖L1(D
e−t0+t+σ\De−t0−t−σ)

≤ 8‖Ψn
∂Ψn

∂θ
‖L1([t0−t−1,t0+t+1]×S1)) + 2‖∇η|ψn|2‖L1(D

e−t0+t+σ\De−t0−t−σ)

≤ C‖∂Ψn

∂θ
‖L2([t0−t−1,t0+t+1]×S1) +

4

σ
‖|ψn|2‖L1(D

e−t0+t+σ\De−t0+t )

+
4

σ
‖|ψn|2‖L1(D

e−t0−t\De−t0−t−σ)

≤ Cε
(
e−

1
2

(t0−t−T0) + e−
1
2

(T1−t0−t)
)

+
4

σ
‖|ψn|2‖L1(D

e−t0+t+σ\De−t0+t )

+
4

σ
‖|ψn|2‖L1(D

e−t0−t\De−t0−t−σ)

where σ is small and the last inequality is from (6.18).
Letting σ → 0, we get

f(t) =

∫
D
e−t0+t\De−t0−t

|ψn|2

|x|
dx

≤ Cε
(
e−

1
2

(t0−t−T0) + e−
1
2

(T1−t0−t)
)

+ 4e−t0+t

∫
∂D

e−t0+t

|ψn|2

|x|

+ 4e−t0−t
∫
∂D

e−t0−t

|ψn|2

|x|

≤ Cε
(
e−

1
2

(t0−t−T0) + e−
1
2

(T1−t0−t)
)

+ 4f ′(t).

This is

(e−
1
4
tf(t))′ ≥ −Cεe−

1
4
t(e−

1
2

(t0−t−T0) + e−
1
2

(T1−t0−t))

= −Cεe
1
4
t(e−

1
2

(t0−T0) + e−
1
2

(T1−t0)).(6.27)

Without loss of generality, we may assume t0 − T0 ≤ T1 − t0. Then, integrating the above
ODE from 1 to t0 − T0, we get

f(1) ≤ Ce−
1
4

(t0−T0)f(t0 − T0) + Cεe−
1
2

(t0−T0)

∫ t0−T0

1

e
1
4
tdt

≤ Cεe−
1
4

(t0−T0)

where the second inequality follows from Lemma 6.2.
In the case of T1 − t0 ≤ t0 − T0, we can apply similar arguments to get

f(1) ≤ Cεe−
1
4

(T1−t0).

Thus, we get the exponential decay estimate (6.26). �

Corollary 6.5.

(6.28) lim
δ→0

lim
R→∞

lim
n→∞

OSCΣΦn = 0.
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Proof. By Lemma 6.4, we have∫
Pi

|Ψn|4dtdθ =

∫
D
e−(T0+(i−1)L)\De−(T0+iL)

|ψn|4dx

≤ Cε

∫
D
e−(T0+(i−1)L)\De−(T0+iL)

|ψn|2

|x|
dx

≤ Cε
(
e−

i
4
L + e−

ln−i
4
L
)
.

Combining this with (6.19), we get∫
Pi

|dΦn|2 ≤ C
(
e−

i
2
L + e−

ln−i
2
L
)
ε+ C

∫
Pi

|Ψn|4

≤ C
(
e−

i
2
L + e−

ln−i
2
L
)
ε+ C

(
e−

i
4
L + e−

ln−i
4
L
)
ε

≤ C
(
e−

i
4
L + e−

ln−i
4
L
)
ε.(6.29)

So, we have the energy decay

‖∇Φn‖L2(Pi) ≤ C
(
e−

i
8
L + e−

ln−i
8
L
)
ε1/2.(6.30)

Thus, from Theorem 5.1, we have

OscΣΦn ≤ C
ln∑
i=1

(‖dΦn‖L2(Pi) + ‖Ψn‖4
L4(Pi)

)

≤ C
ln∑
i=1

‖dΦn‖L2(Pi) + C‖Ψn‖4
L4(Σ)

≤ Cε1/2.

This finishes the proof. �

7. appendix

Now, we prove the removable singularity Theorem 6.1.

Proof. With the help of Lemma 5.3, the proof is similar to Theorem 4.6 in [6] which uses
the idea of Sacks-Uhlenbeck [16].

Since (φ, ψ) has finite energy, by a rescaling transformation, we may assume∫
D

(|dφ|2 + |ψ|4) < ε2.

According to Theorem 5.1, we have |x||dφ|+ |x| 12 |ψ| ≤ Cε.
Define

φ∗(r) =
1

2π

∫ 2π

0

φ(r, θ)dθ,
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then we have |φ(x)− φ∗(x)| ≤ Cε and (cf. [16])∫
Dr

∇φ∇(φ− φ∗) =

∫
∂Dr

(φ− φ∗)∂φ
∂r
−
∫
Dr

(φ− φ∗)∆φ.

On one hand, we have∫
∂Dr

(φ− φ∗)∂φ
∂r
≤ (

∫
∂Dr

|φ− φ∗|2)
1
2 (

∫
∂Dr

|∂φ
∂r
|2)

1
2

≤ (

∫
∂Dr

|∂φ
∂θ
|2)

1
2 (

∫
∂Dr

|∂φ
∂r
|2)

1
2

≤ r

∫
∂Dr

|dφ|2

and ∫
Dr

(φ− φ∗)∆φ ≤ Cε

∫
Dr

|dφ|2 + Cε

∫
Dr

|dφ||ψ|2 + Cε

∫
Dr

|ψ|4

≤ Cε

∫
Dr

|dφ|2 + Cε

∫
Dr

|ψ|4,

where we used the equation (3.7).
On the other hand, we have∫

Dr

∇φ∇(φ− φ∗) =

∫
Dr

|∇φ|2 −
∫
Dr

∂φ

∂r

∂φ∗

∂r

≥
∫
Dr

|∇φ|2 − (

∫
Dr

|∂φ
∂r
|2)

1
2 (

∫
Dr

|∂φ
∗

∂r
|2)

1
2

≥
∫
Dr

|∇φ|2 −
∫
Dr

|∂φ
∂r
|2

=
1

2

∫
Dr

|∇φ|2 − 1

2

∫
Dr

(|∂φ
∂r
|2 − 1

r2
|∂φ
∂θ
|2).

From the above, we get

1

2

∫
Dr

|∇φ|2 ≤ r

∫
∂Dr

|dφ|2 + Cε

∫
Dr

|dφ|2 + Cε

∫
Dr

|ψ|4 +
1

2

∫
Dr

(|∂φ
∂r
|2 − 1

r2
|∂φ
∂θ
|2)

≤ r

∫
∂Dr

|dφ|2 + Cε

∫
Dr

|dφ|2 + Cε

∫
Dr

|ψ|4

+

∫
Dr

1

2r2
|Re(〈ψ, ∂θ · ∇̃∂θψ〉)|+

1

12

∫
Dr

|〈R(ψ, ψ)ψ, ψ〉|

≤ r

∫
∂Dr

|dφ|2 + Cε

∫
Dr

|dφ|2 + C

∫
Dr

|ψ|4 + C

∫
Dr

|ψ||∇ψ|

≤ r

∫
∂Dr

|dφ|2 + Cε

∫
Dr

|dφ|2 + C

∫
Dr

|ψ|4 + C

∫
Dr

|∇ψ|
4
3 .(7.1)
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Choosing a cut-off function ηρ ∈ C∞0 (D2ρ) such that ηρ ≡ 1 in Dρ and |dηρ| ≤ C
ρ

, by the

equation (3.8), we have

/∂((1− ηρ)ψ) = (1− ηρ)A(dφ(eα), eα · ψ) + (1− ηρ)F (ψ, ψ)ψ −∇ηρ · ψ.

Then, from Lemma 5.4, we get

‖(1− ηρ)ψ‖W 1, 43 (D1)
≤ C‖dφ‖L2(D1)‖ψ‖L4(D1) + C‖ψ‖3

L4(D1)

+ Cr
3
4‖∇ψ‖

L
4
3 (∂D1)

+ Cr
1
4‖ψ‖L4(∂D1) + C‖∇ηρ · ψ‖L 4

3 (D1)
.

Noting that

lim
ρ→0

1

ρ

∫
D2ρ

|ψ|
4
3 = 0

and the smallness of ‖dφ‖L2(D1) + ‖ψ‖L4(D1) and the Sobolev embedding theorem, we obtain∫
D1

|ψ|4 ≤ C(

∫
∂D1

|∇ψ|
4
3 )3 + C

∫
∂D1

|ψ|4.

By rescaling, we have for any 0 ≤ r ≤ 1∫
Dr

|ψ|4 ≤ C(r

∫
∂Dr

|∇ψ|
4
3 )3 + Cr

∫
∂Dr

|ψ|4

≤ Cr

∫
∂Dr

|∇ψ|
4
3 + Cr

∫
∂Dr

|ψ|4.(7.2)

Noting that ψ := 1
2π

∫
∂D1

ψ is a constant, by equation (3.8), we have

/∂(ψ − ψ) = A(dφ(eα), eα · (ψ − ψ)) + F (ψ, ψ)(ψ − ψ) +A(dφ(eα), eα · ψ) + F (ψ, ψ)ψ

in D1 \ {0}.
Using a similar argument as above, we have

‖ψ − ψ‖W 1,4/3(D1) ≤ C(‖dφ‖L2(D1) + ‖ψ‖2
L4(D1))‖ψ − ψ‖L4(D1)

+ C‖|dφ||ψ|+ |ψ|2|ψ|‖L4/3(D1) + C‖ψ − ψ‖W 1,4/3(∂D1)

≤ C(‖dφ‖L2(D1) + ‖ψ‖2
L4(D1))‖ψ − ψ‖W 1,4/3(D1)

+ C‖|dφ||ψ|+ |ψ|2|ψ|‖L4/3(D1) + C‖∇ψ‖L4/3(∂D1),

where the second inequality comes from the Sobolev embedding and Poincare inequality.
Also, by the smallness of ‖dφ‖L2(D1) + ‖ψ‖L4(D1), we have

‖∇ψ‖L4/3(D1) ≤ C‖|dφ||ψ|+ |ψ|2|ψ|‖L4/3(D1) + C‖∇ψ‖L4/3(∂D1)

≤ C|ψ|‖dφ‖L2(D1) + C|ψ|‖ψ‖2
L4(D1) + C‖∇ψ‖L4/3(∂D1)

≤ C‖ψ‖L4(∂D1)‖dφ‖L2(D1) + C‖ψ‖L4(∂D1)‖ψ‖2
L4(D1) + C‖∇ψ‖L4/3(∂D1).
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So we get∫
D1

|∇ψ|
4
3 ≤ C

∫
∂D1

|∇ψ|
4
3 + C(

∫
∂D1

|ψ|4)
1
3 (

∫
D1

|dφ|2)
2
3 + C(

∫
∂D1

|ψ|4)
1
3 (

∫
D1

|ψ|4)
2
3

≤ C

∫
∂D1

|∇ψ|
4
3 + ε1(

∫
D1

|dφ|2 +

∫
D1

|ψ|4) +
C

ε1
(

∫
∂D1

|ψ|4)

where ε1 is a small constant. Hence, for 0 ≤ r ≤ 1,∫
Dr

|∇ψ|
4
3 ≤ Cr

∫
∂Dr

|∇ψ|
4
3 + ε1(

∫
Dr

|dφ|2 +

∫
Dr

|ψ|4) +
Cr

ε1
(

∫
∂Dr

|ψ|4).(7.3)

Combining (7.1),(7.2) with (7.3), we have for any 0 ≤ r ≤ 1∫
Dr

|dφ|2 +

∫
Dr

|ψ|4 +

∫
Dr

|∇ψ|
4
3

≤ Cr(

∫
∂Dr

|dφ|2 +

∫
∂Dr

|ψ|4 +

∫
∂Dr

|∇ψ|
4
3 ).(7.4)

Denoting F (r) :=
∫
Dr
|dφ|2 +

∫
Dr
|ψ|4 +

∫
Dr
|∇ψ| 43 , then this implies

F (r) ≤ CrF ′(r).

Integrating this inequality yields

(7.5) F (r) ≤ F (1)r
1
C .

By Theorem 5.1, we can easily conclude

φ ∈ W 1,2p(D1), ψ ∈ W 1,q(D1)(7.6)

for some p > 1 and q > 4
3
. Higher regularity follows by the standard bootstrap method. One

can refer to [6]. This completes the proof of Theorem 6.1. �
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