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DIFFEOMORPHISMS TO HAMILTONIAN HOMEOMORPHISMS

JIAN WANG

Abstract. In symplectic geometry, a classical object is the notion of action function,
defined on the set of contractible fixed points of the time-one map of a Hamiltonian
isotopy. On closed surfaces, we give a dynamical interpretation of this function that
permits us to generalize it in the case of a diffeomorphism isotopic to identity that pre-
serves a Borel finite measure of rotation vector zero. We define a boundedness property
on the contractible fixed points set of the time-one map of an identity isotopy, which
includes the case where the time-one map is a diffeomorphism and the simple case where
the set of contractible fixed points of the time-one map is finite. We generalize the
classical function to any homeomorphism, provided that the boundedness condition is
satisfied. Finally, we define the action spectrum which is invariant under conjugation by
an orientation and measure preserving homeomorphism.

0. Introduction

Suppose that (M, ω) is a symplectic manifold with π2(M) = 0. Let I = (Ft)t∈R be a
Hamiltonian flow on M with F0 = IdM and F1 = F . Suppose that H : R×M → R, one-
periodic in time, is the Hamiltonian function generating the flow I. Denote by FixCont,I(F )
the set of contractible fixed points of F , that is, x ∈ FixCont,I(F ) if and only if x is a fixed
point of F and the oriented loop I(x) : t 7→ Ft(x) defined on [0, 1] is contractible on M .
The classical action function is defined, up to an additive constant, on FixCont,I(F ) as
follows (see Section 3.1 for the details)

AH(x) =
∫

Dx

ω −
∫ 1

0
H(t, Ft(x)) dt,

where x ∈ FixCont,I(F ) and Dx ⊂ M is any 2-simplex with ∂Dx = I(x). Since π2(M) = 0
the integral

∫
Dx

ω does not depend on the choice of the disc Dx.
When M is compact, among the properties of F , one may notice the fact that it preserves

the volume form ωn = ω ∧ · · · ∧ ω and that the “rotation vector” ρM,I(µ) ∈ H1(M,R)
(see Section 1.3) of the finite measure µ induced by ωn vanishes. In the case of a closed
symplectic surface, the fact that a diffeomorphism isotopic to identity preserves an area
form ω whose rotation vector is zero characterizes the fact that it is the time-one map of
a 1-periodic Hamiltonian isotopy (see Section 3.1).

Let M be a closed oriented surface with positive genus. In this case, M is an aspherical
closed surface with the property π2(M) = 0. We say that an isotopy I = (Ft)t∈[0,1] on M
is an identity isotopy if F0 = IdM . We extend the identity isotopy I = (Ft)t∈[0,1] to R by
writing Ft+1 = Ft ◦ F1. If we replace the area form ω by a finite Borel measure µ which
is invariant by F , and the Hamiltonian flow I = (Ft)t∈R by an extended identity isotopy
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I ′ = (F ′
t)t∈R with F ′

1 = F (the isotopy I ′ is not necessary smooth and preserving the
measure for every t), which satisfies that ρM,I′(µ) = 0, can we define an “action function”
which generalizes the classical one? In this article we will give a positive answer.

Furthermore, since the rotation vector is defined in the C0-case, one may naturally
ask whether there are similar results when F is only a homeomorphism. In this case, we
define a weak boundedness property, written WB-property, which is a certain boundedness
condition about linking numbers of contractible fixed points, and which includes the case
where F is a diffeomorphism and the simple case where the set FixCont,I(F ) is finite.
Roughly speaking, this property prevents the dynamics to be too wild in a neighborhood
of every contractible fixed point of F (see Section 1.5 for more details). Through the
WB-property, we define a new action function with the following desired properties and
prove that it is a generalization of the classical function. It can be naturally generalized
for

• Any homeomorphism isotopic to the identity that preserves a finite Borel measure
of rotation vector zero with full support and with no atoms on the contractible
fixed points set, provided that the WB-property is satisfied;

• Any homeomorphism isotopic to the identity that preserves a finite ergodic Borel
measure µ of rotation vector zero with no atoms on the contractible fixed points
set, provided that the WB-property is satisfied.

The goal of this article is to give a precise dynamical explanation of the classical action
function that can be extended to more general cases. In addition, we investigate some
elementary properties of the new action function. In further articles, we will give more
properties and give some applications (see, e.g., [Wang11, Chapter 6 and 7]).

The main results of this article are summarized as follows.
Let M be a closed oriented surface with genus g ≥ 1 and F be a homeomorphism on M .

Denote by Homeo(M) (resp. Diff(M), Diff1(M)) the group of all homeomorphisms (resp.
diffeomorphisms, C1-diffeomorphisms) on M and byM(F ) the set of Borel finite measures
on M that are invariant by F . In this paper, we always assume that a measure µ ∈M(F )
has no atoms on FixCont,I(F ). Denote by Homeo∗(M) the subgroup of Homeo(M) whose
elements are isotopic to IdM .

Theorem 0.1. Let F ∈ Homeo∗(M) be the time-one map of an identity isotopy I on M .
Suppose that µ ∈M(F ) and ρM,I(µ) = 0. In each of the following cases

• F ∈ Diff(M) (not necessarily C1);
• I satisfies the WB-property and the measure µ has full support;
• I satisfies the WB-property and the measure µ is ergodic,

an action function Lµ can be defined, which generalizes the classical case.

For any q ≥ 1, we define an identity isotopy Iq on M : Iq(z) =
∏q−1

k=0 I(F k(z)) for
z ∈ M . We get the following iteration formula:

Proposition 0.2. Under the hypotheses of Theorem 0.1, for every two distinct contractible
fixed points a and b of F , we have Iµ(Iq; a, b) = qIµ(I; a, b) for all q ≥ 1, where Iµ(I; a, b) =
Lµ(I; b)− Lµ(I; a).

Under the same hypotheses as Theorem 0.1, we define the action spectrum of I as follows
(up to an additive constant):

σ(I) = {Lµ(z) | z ∈ FixCont,I(F )} ⊂ R.
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Fix a measure ν ∈M(F ). Denote by Homeo+(M, ν) the subgroup of Homeo(M) whose
elements preserve the measure ν and the orientation. We have the following conjugation
invariance property:

Proposition 0.3. The action spectrum is invariant by conjugation in Homeo+(M, µ).

The article is organized as follows. In Section 1, we first introduce some notations and
recall the precise definitions of some important mathematical objects. In particular, we
define the linking number on contractible fixed points and the boundedness properties.
In Section 2, we recall some well known results of plane or annulus homeomorphism, and
extend some results of Franks to serve as the technical preliminaries of this article. In
Section 3, we recall the definition of the classical action function in symplectic geometry
and analyze how to generalize it to a more general situation on closed oriented surfaces.
In the end of this section, our main theorem is stated. In Section 4, we extend the
definition of the linking number defined in Section 1 to positively recurrent points, which
is one of the main ingredients of this article. In Section 5, we first study the boundedness
of the extended linking number when it exists, and then study the existence and the
boundedness of the linking number in the conservative case. In Section 6, based on the
extended linking number and its properties studied in Section 4 and Section 5, we define a
new action function and prove that it is a generalization of the classical one, which is our
main theorem. In Appendix, we construct two examples to further complete our results.

Acknowledgements. I would like to thank Patrice Le Calvez for many helpful discussions
and suggestions. I am grateful to Yiming Long, Lucien Guillou and Bassam Fayad for
careful reading the manuscript and many useful remarks. I also thank Frédéric Le Roux,
Olivier Jaulent and Juliana Xavier for their explanations of their results to me.

1. Notation and Definitions

We denote by | · | the usual Euclidean metric on Rk or Ck and by Sk−1 = {x ∈ Rk |
|x| = 1} the unit sphere.

If A is a set, we write ]A for the cardinality of A. If G is a group and e is its unit element,
we write G ∗ = G \ {e}. If (S, σ, µ) is a measure space and V is any finite dimensional
linear space, denote by L1(S, V, µ) the set of µ-integrable functions from S to V . If X is a
topological space and A is a subset of X, denote by IntX(A) and ClX(A) respectively the
interior and the closure of A. We will omit the subscript X if there is no any confusion.

1.1. Identity isotopies. An identity isotopy I = (Ft)t∈[0,1] on M is a continuous path

[0, 1] → Homeo(M)
t 7→ Ft

such that F0 = IdM , the last set being endowed with the compact-open topology. We
naturally extend this map to R by writing Ft+1 = Ft ◦ F1. We can also define the inverse
isotopy of I as I−1 = (F−t)t∈[0,1] = (F1−t ◦ F−1

1 )t∈[0,1].

A path on a manifold M is a continuous map γ : J → M defined on a nontrivial
interval J (up to an increasing reparametrization). We can talk of a proper path (i.e.
γ−1(K) is compact for any compact set K) or a compact path (i.e. J is compact). When
γ is a compact path, γ(inf J) and γ(supJ) are the ends of γ. We say that a compact
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path γ is a loop if the two ends of γ coincide. The inverse of the path γ is defined by
γ−1 : t 7→ γ(−t), t ∈ −J . If γ1 : J1 → M and γ2 : J2 → M are two paths such that

b1 = sup J1 ∈ J1, a2 = inf J2 ∈ J2 and γ1(b1) = γ2(a2),

then the concatenation γ1 and γ2 is defined on J = J1 ∪ (J2 + (b1 − a2)) in the classical
way, where (J2 + (b1 − a2)) represents the translation of J2 by (b1 − a2):

γ1γ2(t) =

{
γ1(t) if t ∈ J1;
γ2(t + a2 − b1) if t ∈ J2 + (b1 − a2).

Let I be an interval (maybe infinite) of Z. If {γi : Ji → M}i∈I is a family of compact
paths satisfying that γi(sup(Ji)) = γi+1(inf(Ji+1)) for every i ∈ I, then we can define
their concatenation

∏
i∈I γi.

If {γi}i∈I is a family of compact paths where I =
⊔

j∈J Ij and Ij is an interval of Z
such that

∏
i∈Ij

γi is well defined (in the concatenation sense) for every j ∈ J , we define
their product by abusing notations:

∏

i∈I
γi =

∏

j∈J

∏

i∈Ij

γi.

The trajectory of a point z for the isotopy I = (Ft)t∈[0,1] is the oriented path I(z) : t 7→
Ft(z) defined on [0, 1]. Suppose that {Ik}1≤k≤k0 is a family of identity isotopies on M .
Write Ik = (Fk,t)t∈[0,1]. We can define a new identity isotopy Ik0 · · · I2I1 = (Ft)t∈[0,1] by
concatenation as follows

(1.1) Ft(z) = Fk, k0t−(k−1)(Fk−1,1 ◦ Fk−2,1 ◦ · · · ◦ F1,1(z)) if
k − 1
k0

≤ t ≤ k

k0
.

In particular, Ik0(z) =
∏k0−1

k=0 I(F k(z)) when Ik = I for all 1 ≤ k ≤ k0.
We write Fix(F ) for the set of fixed points of F . A fixed point z of F = F1 is contractible

if I(z) is homotopic to zero. We write FixCont,I(F ) for the set of contractible fixed points
of F , which obviously depends on I.

1.2. The algebraic intersection number. The choice of an orientation on M permits
us to define the algebraic intersection number Γ∧Γ′ between two loops. We keep the same
notation Γ ∧ γ for the algebraic intersection number between a loop and a path γ when
it is defined, for example, when γ is proper or when γ is compact path whose extremities
are not in Γ. Similarly, we write γ ∧ γ′ for the algebraic intersection number of two path
γ and γ′ when it is defined, for example, when γ and γ′ are compact paths and the ends
of γ (resp. γ′) are not on γ′ (resp. γ). If Γ is a loop on a smooth manifold M , write
[Γ]M ∈ H1(M,Z) for the homology class of Γ. It is clear that the value Γ ∧ γ does not
depends on the choice of the path γ that fixes its endpoints when [Γ]M = 0.

1.3. Rotation vector.

1.3.1. The definition of rotation vector. Let us introduce the classical notion of rotation
vector which was defined originally in [St57]. Suppose that F ∈ Homeo∗(M) is the time-
one map of an identity isotopy I = (Ft)t∈[0,1]. Let Rec+(F ) be the set of positively
recurrent points of F . If z ∈ Rec+(F ), we fix an open disk U ⊂ M containing z, and write
{Fnk(z)}k≥1 for the subsequence of the positive orbit of z obtained by keeping the points
that are in U . For any k ≥ 0, choose a simple path γF nk (z),z in U joining Fnk(z) to z.
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The homology class [Γk]M ∈ H1(M,Z) of the loop Γk = Ink(z)γF nk (z),z does not depend
on the choice of γF nk (z),z. Say that z has a rotation vector ρM,I(z) ∈ H1(M,R) if

lim
l→+∞

1
nkl

[Γkl
]M = ρM,I(z)

for any subsequence {Fnkl (z)}l≥1 which converges to z. Neither the existence nor the
value of the rotation vector depends on the choice of U .

1.3.2. The existence of rotation number in the compact case. Suppose that M is compact
and that F is the time-one map of an identity isotopy I = (Ft)t∈[0,1] on M . Recall
that M(F ) is the set of Borel finite measures on M whose elements are invariant by F .
If µ ∈ M(F ), we can define the rotation vector ρM,I(z) for µ-almost every positively
recurrent point [Lec05]. Let us explain why.

Let U be an open disk of M that is the interior of a closed topological disk. For every
couple (z′, z′′) ∈ U2, choose a simple path γz′,z′′ in U joining z′ to z′′. We can define
the first return map Φ : Rec+(F ) ∩ U → Rec+(F ) ∩ U and write Φ(z) = F τ(z)(z), where
τ(z) is the first return time, that is, the least number n ≥ 1 such that Fn(z) ∈ U . By
Poincaré Recurrence Theorem, this map is defined µ-almost everywhere on U . For every
z ∈ Rec+(F ) ∩ U and n ≥ 1, define

τn(z) =
n−1∑

i=0

τ(Φi(z)), Γn
z = Iτn(z)(z)γΦn(z),z.

Observe now that

[Γn
z ]M =

n−1∑

i=0

[Γ1
Φi(z)]M .

By the classical Kac’s lemma (see [Kac47]), we have
∫

U
τ dµ = µ

( ⋃

k≥0

F k(U)
)

= µ

( ⋃

k∈Z
F k(U)

)
.

Indeed, we have the following measurable partitions (modulo sets of measure zero):

U =
⊔

i≥1

Ui and
⋃

k≥0

F k(U) =
⊔

i≥1

⊔

0≤j≤i−1

F j(Ui),

where Ui = τ−1({i}), therefore

µ

( ⋃

k≥0

F k(U)
)

=
∑

i≥1

∑

0≤j≤i−1

µ(Ui) =
∑

i≥1

iµ(Ui) =
∫

U
τ dµ.

Hence, we get τ ∈ L1(U,R, µ). In the case where M is compact, let us prove that the
function z 7→ [Γ1

z]M/τ(z) is bounded on Rec+(F ) ∩ U and hence that the map z 7→ [Γ1
z]M

belongs to L1(U,H1(M,R), µ).
Indeed, it is sufficient to prove that for every cohomology class κ ∈ H1(M,R), there

exists a constant Kκ such that |〈κ, [Γ1
z]M 〉| ≤ Kκτ(z). Let λ be a closed form that repre-

sents κ. The function gλ : z 7→ ∫
I(z) λ is well defined, since λ is closed, and continuous.

It is bounded since M is compact. As Cl(U) is a closed disk, we can find an open disk
U ′ containing Cl(U) and a primitive hλ of λ on U ′. This primitive is bounded on Cl(U).
This implies that for every z ∈ Rec+(F ) ∩ U , we have
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|〈[λ], [Γ1
z]M 〉| =

∣∣∣∣∣
∫

Γ1
z

λ

∣∣∣∣∣ =

∣∣∣∣∣∣

τ(z)−1∑

i=0

∫

I(F i(z))
λ +

∫

λΦ(z),z

λ

∣∣∣∣∣∣
≤ τ(z)max

z∈M
|gλ(z)|+ 2 sup

z∈U
|hλ(z)|

≤ τ(z)(max
z∈M

|gλ(z)|+ 2 sup
z∈U

|hλ(z)|).

By Birkhoff Ergodic Theorem, for µ-almost every point on Rec+(F ) ∩ U , the sequence
{τn(z)/n}n≥1 converges to a real number τ∗(z) ≥ 1, and the sequence {[Γn

z ]M/n}n≥1

converges to [Γ∗z]M ∈ H1(M,R). The positively recurrent points of F in U are exactly
the positively recurrent points of Φ because U is open. We deduce that µ-almost every
point z ∈ Rec+(F )∩U has a rotation vector ρM,I(z) = [Γ∗z]M/τ∗(z). Since U is arbitrarily
chosen, we deduce that µ-almost every point z ∈ Rec+(F ) has a rotation vector. The
function z 7→ [Γ1

z]M/τ(z) is bounded on Rec+(F ) ∩ U , so is the function

ρM,I : z 7→ lim
n→+∞

∑n−1
i=0 [Γ1

Φi(z)
]M

∑n−1
i=0 τ(Φi(z))

on Rec+(F ) ∩ U . As M can be covered by finitely many such open disks, we deduce that
ρM,I is uniformly bounded on Rec+(F ). Therefore, we can define the rotation vector of
the measure

ρM,I(µ) =
∫

M
ρM,I dµ ∈ H1(M,R).

1.3.3. The rotation number of an open annulus. Let A = R/Z × R be the open annulus.
Let us denote the covering map

π : R2 → A
(x, y) 7→ (x + Z, y),

and T the generator of the covering transformation group

T : R2 → R2

(x, y) 7→ (x + 1, y).

When F ∈ Homeo∗(A), we have a simple way to define the “rotation vector” given in
Section 1.3.1 if we observe that H1(A,R) = R. We will say that a positively recurrent
point z has a rotation number ρA, eF (z) for a lift F̃ of F to the universal cover R2 of A, if
for every subsequence {Fnk(z)}k≥1 of {Fn(z)}n≥1 which converges to z, we have

lim
k→+∞

p1 ◦ F̃nk(z̃)− p1(z̃)
nk

= ρA, eF (z)

for every z̃ ∈ π−1(z), where p1 : (x, y) 7→ x is the first projection. We denote the set of
rotation numbers of positively recurrent points of F for F̃ as Rot(F̃ ). In particular, the
rotation number ρA, eF (z) always exists when z is a fixed point of F . We denote the set of

rotation numbers of fixed points of F as RotFix(F )(F̃ ).
It is well known that a positively recurrent point of F is also a positively recurrent point

of F q for all q ∈ N (see the appendix of [Wang14]). By the definition of rotation number,
we easily get that Rot(F̃ ) satisfies the following elementary properties.
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1. Rot(T k ◦ F̃ ) = Rot(F̃ ) + k for every k ∈ Z;
2. Rot(F̃ q) = qRot(F̃ ) for every q ≥ 1.

1.4. Linking number of contractible fixed points.

1.4.1. We begin by recalling some results about identity isotopies, which will be often used
in the literature.

Remark 1.1. Suppose that M is an oriented compact surface and that F is the time-
one map of an identity isotopy I = (Ft)t∈[0,1] on M . When z ∈ FixCont,I(F ), there is
another identity isotopy I ′ = (F ′

t)t∈[0,1] homotopic to I with fixed endpoints such that I ′

fixes z (see, for example, [Jau14, Proposition 2.15]), that is, there is a continuous map
H : [0, 1]× [0, 1]×M → M such that

• H(0, t, z) = Ft(z) and H(1, t, z) = F ′
t(z) for all t ∈ [0, 1];

• H(s, 0, z) = IdM (z) and H(s, 1, z) = F (z) for all s ∈ [0, 1];
• F ′

t(z) = z for all t ∈ [0, 1].

Lemma 1.2. Let S2 be the 2-sphere and I = (Ft)t∈[0,1] be an identity isotopy on S2. For
every three different fixed points zi (i = 1, 2, 3) of F1, there exists another identity isotopy
I ′ = (F ′

t)t∈[0,1] from IdS2 to F1 such that I ′ fixes zi (i = 1, 2, 3).

Proof. We identify the sphere S2 to the Riemann sphere C ∪ {∞}. The Möbius transfor-
mation M(z) = az+b

cz+d maps the triple (v1, v2, v3) to the triple (ω1, ω2, ω3) (see Chapter 3
of [Nee97] for a beautifully illustrated introduction to Möbius transformations) where

a = det




v1ω1 ω1 1
v2ω2 ω2 1
v3ω3 ω3 1


 b = det




v1ω1 v1 ω1

v2ω2 v2 ω2

v3ω3 v3 ω3




(1.2) c = det




v1 ω1 1
v2 ω2 1
v3 ω3 1


 d = det




v1ω1 v1 1
v2ω2 v2 1
v3ω3 v3 1


 .

If one of the points vi or wi in Formula 1.2 is ∞, then we first divide all four determinants
by this variable and then take the limit as the variable approaches ∞. Replacing vi, wi

by vi(t) = Ft(zi) and wi(t) = zi (i = 1, 2, 3 and t ∈ [0, 1]) in the matrices above, we get
the matrix functions at, bt, ct and dt.

Let

M(t, z) =
atz + bt

ctz + dt

and
I ′(z)(t) = F ′

t(z) = M(t, Ft(z)).

By the construction, I ′ is an isotopy of S2 from IdS2 to F1 that fixes zi (i = 1, 2, 3). ¤

As a consequence, we have the following corollary.

Corollary 1.3. Let I = (Ft)t∈[0,1] be an identity isotopy on C. For any two different fixed
points z1 and z2 of F1, there exists another identity isotopy I ′ from IdC to F1 such that I ′
fixes z1 and z2.
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Remark 1.4. Let zi ∈ S2 (i = 1, 2, 3) and Homeo∗(S2, z1, z2, z3) be the identity com-
ponent of the space of all homeomorphisms of S2 leaving zi (i = 1, 2, 3) pointwise fixed
(for the compact-open topology). It is well known that π1(Homeo∗(S2, z1, z2, z3)) = 0 (see
[Ham66, Han92]). It implies that any two identity isotopies I, I ′ ⊂ Homeo∗(S2, z1, z2, z3)
with fixed endpoints are homotopic. As a consequence, let Homeo∗(C, z1, z2) be the iden-
tity component of the space of all homeomorphisms of C leaving two different points z1

and z2 of C pointwise fixed, we have π1(Homeo∗(C, z1, z2)) = 0.

1.4.2. Let M be a surface that is homeomorphic to the complex plane C and I = (Ft)t∈[0,1]

be an identity isotopy on M . Let us define the linking number iI(z, z′) ∈ Z for every two
different fixed points z and z′ of F1. It is the degree of the map ξ : S1 → S1 defined by

ξ(e2iπt) =
h ◦ Ft(z′)− h ◦ Ft(z)
|h ◦ Ft(z′)− h ◦ Ft(z)| ,

where h : M → C is a homeomorphism. The linking number does not depend on the
chosen h.

It is well known that U(1) is a strong deformation retract of Homeo∗(C) (see [Kne26]
or [Ler01, Theorem 2.9]). Consider the isotopy R = (rt)t∈[0,1] where rt = e2iπt. If I =
(Ft)t∈[0,1] is an identity isotopy and k ∈ Z, we can define the identity isotopy RkI by
concatenation. If I ′ = (F ′

t)t∈[0,1] is another identity isotopy with F ′
1 = F1, then there

exists a unique integer k such that I ′ is homotopic to RkI.

Therefore, if I = (Ft)t∈[0,1] and I ′ = (F ′
t)t∈[0,1] are two identity isotopies on M with

F ′
1 = F1, then there exist k ∈ Z such that iI′(z, z′) = iI(z, z′) + k for any distinct fixed

points z′ and z′ of F1.

1.4.3. Let F be the time-one map of an identity isotopy I = (Ft)t∈[0,1] on a closed oriented
surface M of genus g ≥ 1 and F̃ be the time-one map of the lifted identity isotopy
Ĩ = (F̃t)t∈[0,1] on the universal cover M̃ of M . When g > 1, it is well known that
π1(Homeo∗(M)) ' 0 (see [Ham66]). It implies that any two identity isotopies I, I ′ ⊂
Homeo∗(M) with fixed endpoints are homotopic. Hence, I is unique up to homotopy, it
implies that F̃ is uniquely defined and does not depend on the choice of the isotopy from
IdM to F . When g = 1, π1(Homeo∗(M)) ' Z2 (see [Ham65]), F̃ depends on the isotopy
I. The universal cover M̃ is homeomorphic to C.

Let π : M̃ → M be the covering map and G be the covering transformation group.
Denote respectively by ∆ and ∆̃ the diagonal of FixCont,I(F ) × FixCont,I(F ) and the
diagonal of Fix(F̃ )×Fix(F̃ ). Endow the surface M with a Riemannian metric and denote
by d the distance induced by the metric. Lift the Riemannian metric to M̃ and write d̃
for the distance induced by the metric.

We define the linking number i(F̃ ; z̃, z̃ ′) for every pair (z̃, z̃ ′) ∈ (Fix(F̃ )× Fix(F̃ )) \ ∆̃
as

(1.3) i(F̃ ; z̃, z̃ ′) = ieI(z̃, z̃ ′).

This is a special case of the linking number that we have defined in Section 1.4.2.

We give some properties of i(F̃ ; z̃, z̃ ′) as follows.

(P1): i(F̃ ; z̃, z̃ ′) is locally constant on (Fix(F̃ )× Fix(F̃ )) \ ∆̃;
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(P2): i(F̃ ; z̃, z̃ ′) is invariant by covering transformation, that is,

i(F̃ ;α(z̃), α(z̃ ′)) = i(F̃ ; z̃, z̃ ′) for every α ∈ G;

(P3): i(F̃ ; z̃, z̃ ′) = 0 if π(z̃) = π(z̃ ′);
(P4): there exists K such that i(F̃ ; z̃, z̃ ′) = 0 if d̃(z̃, z̃ ′) ≥ K.

Indeed, P1 is true by continuity. P2 is true because the linking number does not change
when you replace h by h ◦α (see Section 1.4.2). By Remark 1.1, we can choose an isotopy
I ′ that is homotopic to I and fixes π(z̃), then the lift Ĩ ′ of I ′ fixes z̃ and z̃ ′. Thus P3
holds. Finally, let

K = sup{ d̃(F̃t(z̃), F̃t′(z̃)) | (t, t′, z̃) ∈ [0, 1]2 × Fix(F̃ )}.
The value K is well defined because FixCont,I(F ) = π(Fix(F̃ )) is compact and F̃t◦α = α◦F̃t

for all t ∈ [0, 1] and α ∈ G. Obviously, when d̃(z̃, z̃ ′) ≥ 3K, i(F̃ ; z̃, z̃ ′) = 0. We get P4.

1.4.4. In the rest of the paper, when we take two distinct fixed points ã and b̃ of F̃ , it
does not mean that π(ã) and π(̃b) are distinct.

Fix two distinct fixed points ã and b̃ of F̃ . For any z ∈ FixCont,I(F ) \ π({ã, b̃}), we
define the linking number of z for ã and b̃ as

(1.4) i(F̃ ; ã, b̃, z) =
∑

π(ez)=z

(
i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃)

)
.

We will extend it to the case where z ∈ Rec+(F )\π({ã, b̃}) in Section 4. Note here that
the linking number only depends on π(ã) and π(̃b) in the case where z is a contractible
fixed point of F , but the extension of i(F̃ ; ã, b̃, z) for z ∈ Rec+(F )\FixCont,I(F ) in Section
4 depends on the choices of ã and b̃.

1.5. The weak boundedness property and the boundedness property. We can
compactify M̃ into a sphere by adding a point∞ at infinity and the lift F̃ may be extended
by fixing this point. In all the text, we write S = M̃ t {∞}. If ã and b̃ are distinct fixed
points of F̃ , the restriction of F̃ to the annulus Aea,eb = S \ {ã, b̃} denoted by F̃ea,eb, has a

natural lift F̂ea,eb to the universal cover Âea,eb of Aea,eb that fixes the preimages of ∞ by the

covering projection π̂ea,eb : Âea,eb → Aea,eb. Denote by Tea,eb the generator of H1(Aea,eb,R) defined
by the oriented boundary of a small disk centered at ã.

If π(ã) 6= π(̃b), by Remark 1.1, there exist two identity isotopies I ′ and I ′′ homotopic
to I with fixed endpoints such that I ′ fixes π(ã) and I ′′ fixes π(̃b). However, in general,
there does not exist an identity isotopy I ′′′ homotopic to I with fixed endpoints such that
I ′′′ fixes both π(ã) and π(̃b), which is an obstacle that prevents us to generalize the action
function to a more general cases (see Section 3.3). That is a reason that we introduce the
following lemma.

Lemma 1.5. If z̃ is another fixed point of F̃ which is different from ã, b̃ and ∞, then the
rotation number of z̃ ∈ Aea,eb for the natural lift F̂ea,eb is equal to i(F̃ ; ã, z̃) − i(F̃ ; b̃, z̃), that
is,

ρ
Aea,eb,

bFea,eb
(z̃) = i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃).
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Proof. If J and J ′ are two isotopies of M̃ from IdfM to F̃ , then there exists k ∈ Z such that
iJ = iJ ′ + k (see Section 1.4.2). Therefore, if ã, b̃ and z̃ are distinct fixed points of F̃ , the
quantity iJ(ã, z̃)− iJ (̃b, z̃) is independent of J and hence equals to i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃) if
we choose J = Ĩ where Ĩ is the identity isotopy in Section 1.4.3. Suppose now that J is an
isotopy that fixes ã and b̃. The trajectory J(z̃) defines a loop in the sphere S. If γea,∞ and
γeb,∞ are two paths in S that join respectively ã and b̃ to ∞, we have iJ(ã, z̃) = γea,∞∧J(z̃)

and iJ (̃b, z̃) = γeb,∞ ∧ J(z̃). The loop J(z̃) being homologous to zero in S, we deduce that

i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃) = iJ(ã, z̃)− iJ (̃b, z̃) = γea,eb ∧ J(z̃), where γea,eb is a path in S that joins

ã to b̃. Note that this integer is nothing else but the rotation number of z̃ for the lift F̂ea,eb
defined by Tea,eb. ¤

Remark here that, by the definition i(F̃ ; ã, b̃, z) of Section 1.4.4, we have

i(F̃ ; ã, b̃, z) =
∑

π(ez)=z

i(F̃ ; ã, z̃)− i(F̃ ; b̃, z̃) =
∑

π(ez)=z

ρ
Aea,eb,

bFea,eb
(z̃).

Definition 1.6. We say that I satisfies the weak boundedness property at ã ∈ Fix(F̃ )
(WB-property at ã) if i(F̃ ; ã, b̃) is uniformly bounded for all fixed point b̃ ∈ Fix(F̃ ) \ {ã}.
We say that I satisfies the weak boundedness property (WB-property) if it satisfies the
weak boundedness property at every ã ∈ Fix(F̃ ). We say that I satisfies the boundedness
property (B-property) if the set of i(F̃ ; ã, b̃) where (ã, b̃) ∈ (Fix(F̃ )×Fix(F̃ ))\∆̃ is bounded.

Let us now study the WB-property and B-property. First, we note that the set of all
WB-property points of I is dense in Fix(F̃ ) ([Ler14]).

Lemma 1.7. Let ã and b̃ be two distinct fixed points of F̃ . The following statements are
equivalent

(1) I satisfies the WB-property at ã and b̃;

(2) there exists K ≥ 0 such that
∣∣∣∣ρAea,eb,

bFea,eb
(c̃)

∣∣∣∣ ≤ K for all fixed point c̃ ∈ Fix(F̃ )\{ã, b̃}.

Proof. From Lemma 1.5, we have (1)⇒ (2) immediately. Next we prove (2)⇒ (1) by con-
tradiction. Without loss of generality, we suppose that there exists a sequence {c̃n}n≥1 ⊂
Fix(F̃ ) \ {ã, b̃} such that lim

n→+∞ i(F̃ ; ã, c̃n) = +∞ (the case lim
n→+∞ i(F̃ ; ã, c̃n) = −∞ is

similar). Lemma 1.5 and the hypothesis (2) imply that lim
n→+∞ i(F̃ ; b̃, c̃n) = +∞. The

property P4 implies that the sequence {c̃n}n≥1 is bounded. The property P1 implies that
lim

n→+∞ c̃n = ã and lim
n→+∞ c̃n = b̃, which gives a contradiction. ¤

Lemma 1.8. For any two distinct fixed points ã and b̃ of F̃ , if F and F−1 are differentiable
at π(ã) and π(̃b), then ρ

Aea,eb,
bFea,eb

(z̃) is uniformly bounded for any z̃ ∈ Rec+(F̃ ) \ {ã, b̃} if

it exists. In particular, ρ
Aea,eb,

bFea,eb
(c̃) is uniformly bounded for any fixed point c̃ ∈ Fix(F̃ ) \

{ã, b̃}.
Proof. Let Āea,eb = SeatAea,ebtSeb where Sea and Seb are the tangent unit circles at ã and b̃ such
that Āea,eb is the natural compactification of Aea,eb. The maps F and F−1 are differentiable



11

at π(ã) and π(̃b). Hence the lift F̃ (resp. F̃−1) of F (resp. F−1) to M̃ is differentiable at
ã and b̃. By the method of blowing-up, it induces a homeomorphism f : Āea,eb → Āea,eb,

f(u) =





F̃ea,eb(u) when u ∈ Aea,eb
D eF (ea).u

|D eF (ea).u| when u ∈ Sea
D eF (eb).u
|D eF (eb).u| when u ∈ Seb.

The universal cover of Āea,eb is R × [0, 1]. We suppose that f̂ is the lift of f fixing the

preimages of ∞ by the covering projection π̂ea,eb. For any u ∈ Āea,eb, we have that p1(f̂(û))−
p1(û) is uniformly bounded because Āea,eb is compact, where û is any lift of u. There

exists N , depending on I, such that for every ẑ ∈ Âea,eb, one has
∣∣∣p1(F̂ea,eb(ẑ))− p1(ẑ)

∣∣∣ ≤ N .
Moreover, for every n ≥ 1, we have

(1.5)

∣∣∣∣∣∣
p1 ◦ F̂n

ea,eb(ẑ)− p1(ẑ)

n

∣∣∣∣∣∣
≤ 1

n

n−1∑

i=0

∣∣∣p1 ◦ F̂ i+1

ea,eb (ẑ)− p1 ◦ F̂ i
ea,eb(ẑ)

∣∣∣ ≤ N.

If z̃ ∈ Rec+(F̃ea,eb) and ρ
Aea,eb,

bFea,eb
(z̃) exists, by the definition of rotation number (see

Section 1.3.3), we deduce that
∣∣∣∣ρAea,eb,

bFea,eb
(z̃)

∣∣∣∣ ≤ N . We have completed the proof. ¤

Observe that the proof of Lemma 1.8 gives us an information about how rotate not only
the positively recurrent points of F̃ea,eb but in fact every point in Aea,eb, we will use this fact
in Section 5.

By Lemma 1.7 and Lemma 1.8, we have the following proposition immediately.

Proposition 1.9. The WB-property is satisfied if F ∈ Diff(M).

Obviously, I satisfies the B-property if ]FixCont,I(F ) < +∞. In Example 7.1 of Ap-
pendix, we construct an isotopy I = (Ft)0≤t≤1 such that F = F1 is a diffeomorphism
of M but does not satisfy the B-property. In that example, we show that F is not a
C1-diffeomorphism of M . If F is a C1-diffeomorphism of M , we have the following result

Proposition 1.10. The B-property is satisfied if F ∈ Diff1(M).

Before proving Proposition 1.10, we need the following lemma ([BFLM13, Lemma 5.6]).

Lemma 1.11. Let h be a C1-diffeomorphism of S2 and a ∈ Fix(h). For all point z ∈ S2

different from a and its antipodal point, denote γz the unique great circle that passes
through them and a, and denote γ−z (resp. γ+

z ) the small (resp. large) arc of γz joining a
and z. Then there exists a neighborhood W of a on S2 such that for all z ∈ Fix(h) ∩W ,
we have h(γ−z ) ∩ γ+

z = {z, a}.
Proof of Proposition 1.10. We only need to consider the case where

]FixCont,I(F ) = +∞.

To get a proof by contradiction, according to Definition 1.6, we suppose that there exist a
sequence of pairs {(ãn, b̃n)}n≥1 ⊂ (Fix(F̃ )×Fix(F̃ ))\∆̃ such that lim

n→+∞ i(F̃ ; ãn, b̃n) = +∞
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(the case where lim
n→+∞ i(F̃ ; ãn, b̃n) = −∞ is similar). By the property P2, we can suppose

that the sequence {ãn}n≥1 is bounded by replacing ãn and b̃n with αn(ãn) and αn(̃bn)
where αn ∈ G if necessary. The property P4 implies that the sequence {b̃n}n≥1 is also
bounded. Therefore, by continuity, we can suppose that lim

n→+∞ ãn = ã and lim
n→+∞ b̃n = b̃

where ã ∈ Fix(F̃ ) and b̃ ∈ Fix(F̃ ) by extracting subsequences if necessary. According to
the property P1, we deduce that ã = b̃. Moreover, as F is a diffeomorphism, so I satisfies
the WB-property at ã. That is, there is a number Nea ≥ 0 such that |i(F̃ ; ã, z̃)| ≤ Nea for
all z̃ ∈ Fix(F̃ ) \ {ã}. Hence, we can suppose that ãn 6= ã and b̃n 6= ã for all n by taking n
large enough.

For every n ≥ 1, let Ĩn be an isotopy that fixes ã and ãn (see Corollary 1.3). Then there
exists kn such that

(1.6) ieIn
(z̃, z̃ ′) = i(F̃ ; z̃, z̃ ′) + kn

for every two distinct fixed points z̃ and z̃ ′ of F̃ (see Section 1.4.2). Observing that
ieIn

(ã, ãn) = 0 for every n, Equation 1.6 implies that |kn| ≤ Nea and lim
n→+∞ ieIn

(ãn, b̃n) =

+∞. Moreover, we have ieIn
(ã, b̃n) = i(F̃ ; ã, b̃n) + kn, hence |ieIn

(ã, b̃n)| ≤ 2Nea.
Consider the annulus Aea,ean

= S \ {ã, ãn} and F̃ea,ean
. By the proof of Lemma 1.5, we

know that
ρ

Aea,ean , bFea,ean
(̃bn) = ieIn

(ã, b̃n)− ieIn
(ãn, b̃n).

Therefore,

(1.7) lim
n→+∞ ρ

Aea,ean , bFea,ean
(̃bn) = −∞.

Fix q ≥ 1. We apply Lemma 1.11 to F̃ea,ean
. When n is large enough, there are two arcs

γ̃− and γ̃+ in Aea,ean
joining ã and ãn that are disjoint and F̃ q

ea,ean
(γ̃−)∩ γ̃+ = ∅. Recall that

π̂ea,ean
: Âea,ean

→ Aea,ean
is the universal cover of Aea,ean

, F̂ea,ean
is the lift of F̃ea,ean

that fixes the
preimages of ∞ by π̂ea,ean

and Tea,ean
is the generator of H1(Aea,ean

,R) defined by the oriented
boundary of small disk centered at ã. Choose a connected component γ̂ − of π̂−1

ea,ean
(γ̃−) and

endow γ̂ − with an orientation from the lower end to the upper end. The arc F̂ q
ea,ean

(γ̂ −)
does not meet any connected component of π̂−1

ea,ean
(γ̃+) and thus meets at most a translated

T k
ea,ean

(γ̂ −). As F̂ea,ean
has a fixed point (the lift ∞̂ of ∞), the arc F̂ q

ea,ean
(γ̂ −) can not be on

the right of Tea,ean
(γ̂ −) (otherwise, F̂ q

ea,ean
has no fixed point). Therefore, it is on the left of

the arc T 2
ea,ean

(γ̂ −). For the same reason, it is on the right of the arc T−2
ea,ean

(γ̂ −). As F̂ea,ean

and Tea,ean
commute, it implies that the arc F̂ q

ea,ean
(T (γ̂ −)) is on the left of T 3

ea,ean
(γ̂ −) and

on the right of T−1
ea,ean

(γ̂ −). Consider a point z̃ ∈ Rec+(F̃ ) \ {ã, ãn} such that the rotation
number ρ

Aea,ean , bFea,ean
(z̃) is well defined. There exists a unique lift ẑ of z that is in the region

between γ̂ − and Tea,ean
(γ̂ −). By induction, we deduce that the point F̂ qm

ea,ean
(ẑ) is in the

region between T−2m
ea,ean

(γ̂ −) and T 3m
ea,ean

(γ̂ −) for all m ≥ 1. By the definition of the rotation
number (see Section 1.3.3), we have |ρ

Aea,ean , bFea,ean
(z̃)| ≤ 3/q. As q can be choose arbitrarily

large, we have

(1.8) lim
n→+∞ ρ

Aea,ean , bFea,ean
(z̃) = 0.
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In particular, we have
lim

n→+∞ ρ
Aea,ean , bFea,ean

(̃bn) = 0,

which conflicts with the limit 1.7. We have completed the proof. ¤

2. Disk Chains and Franks’ Lemma

In this section, we will recall some classical results of plane or annulus homeomorphism,
and extend some results of Franks so that we can use them in Section 5.

2.1. Disk Chain. Let M be a surface and h be a homeomorphism of M . A disk chain
C of h is a family {Di}1≤i≤n of embedded open disks of M such that there are positive
integers {mi}1≤i<n satisfying

(1) if i 6= j, then either Di = Dj or Di ∩Dj = ∅;
(2) for 1 ≤ i < n, hmi(Di) ∩Di+1 6= ∅.

We write C = {Di}1≤i≤n or C = ({Di}1≤i≤n, {mi}1≤i≤n) in a more detailed way. We
define the length of the chain C to be the integer l(C) =

∑n−1
i=1 mi. If D1 = Dn we say

that {Di}1≤i≤n is a periodic disk chain.
A free disk of h is a disk in M which does not meet its image by h. A free disk chain

of h is a disk chain C = {Di}1≤i≤n such that every Di is a free disk of h.

2.2. Franks’ Lemma.

Proposition 2.1 (Franks’ Lemma [Fra88]). Let H : R2 → R2 be an orientation preserving
homeomorphism. If H possesses a periodic free disk chain, then H has at least one fixed
point.

Recall that A = R/Z×R is the open annulus and T : (x, y) 7→ (x+1, y) is the generator
of the covering transformation group. Let h ∈ Homeo∗(A) and H be a lift of h to R2. We
say that D̃ ⊂ R2 is a positively returning disk if all the following conditions hold:

• T k(D̃) ∩ D̃ = ∅ for all k ∈ Z \ {0};
• H(D̃) ∩ D̃ = ∅;
• there exist n > 0 and k > 0 such that Hn(D̃) ∩ T k(D̃) 6= ∅.

A negatively returning disk is defined similarly but with k < 0.
If there exists an open disk that is both positively and negatively returning, then it is

easy to construct a periodic free disk chain of H. Hence, by Franks’ Lemma, we have the
following result:

Corollary 2.2 ([Fra88]). If H has an open disk D̃ ⊂ R2 which is both positively and
negatively returning, then there is a fixed point of H.

Suppose that D ⊂ A is a free disk of h. We define the following set:

RotD(H) = Conv{ p/q
∣∣ p ∈ Z and q ∈ N \ {0}, Hq(D̃) ∩ T p(D̃) 6= ∅}

where Conv(A) represents the convex hull of a set A and D̃ is an arbitrary connected
component of π−1(D). Observe that RotD(H) does not depend on the choice of D̃. By
Corollary 2.2, it holds:

Corollary 2.3. For every k ∈ RotD(H) ∩ Z, there exists a point z̃0 such that H(z̃0) =
T k(z̃0).
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Proof. Choose any connected component D̃ of π−1(D). We first suppose that there is an
integer k such that Hq(D̃) ∩ T kq(D̃) 6= ∅. Note that this case covers the case where k
is a boundary point of RotD(H). Denote by H ′ the lift H ′ = T−k ◦ H of h. We have
H ′q(D̃)∩ D̃ 6= ∅ and H ′(D̃)∩ D̃ = ∅ since D is free. According to Proposition 2.1, H ′ has
a fixed point z̃0, that is, H(z̃0) = T k(z̃0).

We now suppose that there are two rational numbers pi/qi (i = 1, 2) and an integer k
such that

• p1/q1 < k < p2/q2 ;
• Hq1(D̃) ∩ T p1(D̃) 6= ∅;
• Hq2(D̃) ∩ T p2(D̃) 6= ∅.

Considering the lift H ′ = T−k ◦H, we have

H ′q1(D̃) ∩ T p1−q1k(D̃) 6= ∅
and

H ′q2(D̃) ∩ T p2−q2k(D̃) 6= ∅.
Therefore, D̃ is a both positively and negatively returning disk of H ′. By Corollary 2.2,
H ′ has a fixed point. We have completed the proof. ¤

Let C = ({Di}1≤i≤n, {mi}1≤i<n) be a periodic disk chain of h in A. A lift of C for H

in R2 is a disk chain C̃ = ({D̃i}1≤i≤n, {mi}1≤i<n) in R2 such that π(D̃i) = Di for every i.
We define the width of the lift C̃ of C to be the integer w(H; C̃) = k such that D̃n =

T k(D̃1). For every p ∈ Z, the disk chain T p(C̃) = ({T p(D̃i)}1≤i≤n, {mi}1≤i<n) is also a
lift of C for H since H commutes with T . The disk chain

T p · C̃ = {D̃1, T
pm1(D̃2), T p(m1+m2)(D̃3), · · · , T p l(C)(D̃n)}

is a lift of C for T p ◦H. Therefore, the width of C̃ satisfies

w(H; C̃) = w(H;T p(C̃))

and
w(T p ◦H;T p · C̃) = p l(C) + w(H; C̃)

for every p ∈ Z.

Using Corollary 2.2 and Corollary 2.3, we have the following lemma.

Lemma 2.4. Let h ∈ Homeo∗(A) and H be a lift of h to R2. Suppose that RotFix(h)(H) ⊂
[−N, N ] for some N ∈ N, and that there is a disk D in A satisfying H(D̃) ∩ T k(D̃) 6= ∅
if and only if k = 0, where D̃ is any connected component of π−1(D), and that a periodic
disk chain C = ({Di}1≤i≤n, {mi}1≤i<n) of h such that

(1) D1 = D;
(2) if Di 6= D then Di is a free disk of h.

Then, we have

• |w(H; C̃)| < (N + 1)l(C) for all lift C̃ of C;
• RotDi(H) ⊂]− (N + 1), N + 1[ if Di 6= D.
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Proof. Obviously, C ′ = ({D, D}, {1}) is a periodic disk chain of h.
Fix a connected component D̃ of π−1(D) and a lift C̃ = {D̃i}1≤i≤n of C for H that

satisfies D̃1 = D̃. Define D as the family of all connected components of π−1(Di), 1 ≤
i ≤ n.

Suppose first that w(H; C̃) ≥ 0, consider the lift H ′ = H ◦ T−(N+1), we have the
following facts

• Fix(H ′) = ∅;
• H ′(D̃) ∩ D̃ = ∅;
• there is a free disk chain C̃ ′ in D of length 1 from D̃ to T−(N+1)(D̃) for H ′ (indeed,

this disk chain is a lift of C ′ for H ′);
• there is a free disk chain C̃ in D of length l(C) from D̃ to T−(N+1)l(C)+w(H; eC)(D̃)

for H ′ (indeed, this disk chain is a lift of C for H ′).
The first item follows from RotFix(h)(H) ⊂ [−N, N ]. The second and third items hold by
the hypothesis of D. The last one follows from the hypothesis (1) and the property of
w(H; C̃).

If −(N + 1)l(C) + w(H; C̃) = 0, then C̃ is a periodic free disk chain for H ′. By
Proposition 2.1, H ′ has a fixed point, which conflicts with the first item. If r = −(N +
1)l(C) + w(H; C̃) > 0, then the disk chain

C̃ ∪ T r(C̃) ∪ · · · ∪ TNr(C̃) ∪ T (N+1)r(C̃ ′) ∪ · · · ∪ TN+1(C̃ ′)

is a periodic free disk chain for H ′. By Proposition 2.1 again, H ′ has a fixed point, which
still conflicts with the first item. Hence w(H; C̃) < (N + 1)l(C).

In the case where w(H; C̃) < 0, replacing H ′ = H◦T−(N+1) by H ′ = H◦TN+1, similarly
to the case w(H; C̃) ≥ 0, we get w(H; C̃) > −(N + 1)l(C). The first conclusion is proven.

Fix a disk Di 6= D and p/q ∈ RotDi(H). For every s ≥ 1, consider the following periodic
disk chain of h

Cs = {D1, · · · , Di, · · · , Di︸ ︷︷ ︸
s+1

, · · · , Dn}

with
{m1, · · · ,mi−1, q, · · · , q︸ ︷︷ ︸

s

,mi, · · · ,mn−1}

and its lift for H

C̃s = {D̃1, · · · , D̃i, T
p(D̃i), · · · , T sp(D̃i), T sp(D̃i+1), · · · , T sp(D̃n)}.

Then we have l(Cs) = l(C) + sq and w(H; C̃s) = w(H; C̃) + sp. By the first conclusion,
we get |w(H; C̃s)| < (N +1)l(Cs). Letting s tend to +∞, we get |p/q| ≤ N +1. Moreover,
if p/q = N + 1 (resp. p/q = −(N + 1)), according to Corollary 2.3, then there exists a
fixed point of h with rotation number N + 1 (resp. −(N + 1)) for H, which conflicts with
the hypothesis RotFix(h)(H) ⊂ [−N, N ]. Therefore |p/q| < N + 1. We have completed the
proof. ¤

The following Theorem is due to Franks [Fra88] when A is a closed annulus and h has
no wandering point, and it was improved by Le Calvez [Lec05] to the case where A is an
open annulus and h satisfies the intersection property (see also [Wang14, Proposition 12]):

Theorem 2.5. Let h ∈ Homeo∗(A) and H be a lift of h to R2. Suppose that there exist
two positively recurrent points of rotation numbers ν− and ν+(eventually equal to ±∞)



16 JIAN WANG

with ν− < ν+, and suppose that h satisfies the following intersection property: any simple
closed curve of A which is not null-homotopic meets its image by h. Then for any rational
number p/q ∈]ν−, ν+[ written in an irreducible way, there exists a periodic point of period
q whose rotation number is p/q.

3. Symplectic Action

The action is a classical object in symplectic geometry. We will first recall it in this
Section. Then, we will explain how to generalize the action to a simple case where the
time-one map F of I is a diffeomorphism, the set FixCont,I(F ) of contractible fixed points
is finite and unlinked (we will define what it means), and ρM,I(µ) = 0 where µ ∈ M(F ).
At the end of the section, our main theorem will be stated.

3.1. The classical action function. Let us recall what is the action function. In this
section, we suppose that (M, ω) is a symplectic manifold (not necessarily closed).

3.1.1. Symplectic and Hamiltonian. A diffeomorphism F : M → M is called symplectic if
it preserves the form ω. Symplectic diffeomorphisms form a group denoted by Symp(M, ω).
Let Symp∗(M, ω) denote the path-connected component of the IdM in Symp(M, ω).

Consider a smooth isotopy I = (Ft)t∈[0,1] in Symp∗(M, ω) with F0 = IdM and F1 = F .
Let ξt be the corresponding time-dependent vector field on M :

d

dt
Ft(x) = ξt(Ft(x)) for all x ∈ M, t ∈ [0, 1].

Since the Lie derivative Lξtω vanishes, we get that the 1-forms λt = −iξtω are closed.
Write [λt] for the cohomology class of λt. The quantity

Flux(I) =
∫ 1

0
[λt] dt ∈ H1(M,R),

is called the flux of the isotopy I. It is well known that Flux(I) does not change under a
homotopy of the path I with fixed end points (see [MS95, Chapter 10]).

An isotopy I is called Hamiltonian if the 1-forms λt are exact for all t. In this case there
exists a smooth function H : [0, 1] × M → R so that λt = dHt, where Ht(x) stands for
H(t, x). The function H is called the Hamiltonian function generating the flow I. Note
that Ht is defined uniquely up to an additive time-dependent constant.

A symplectic diffeomorphism F : M → M is called Hamiltonian if there exists a Hamil-
tonian isotopy I = (Ft)t∈[0,1] with F0 = IdM and F1 = F . Hamiltonian diffeomorphisms
form a group denoted by Ham(M, ω). The following theorem characterizes the relation
between flux and Hamiltonian diffeomorphisms (see [MS95, Theorem 10.12]).

Theorem 3.1. Let F ∈ Symp∗(M, ω). Then F is Hamiltonian if and only if there exists
an isotopy I = (Ft)t∈[0,1] in Symp∗(M, ω) such that F0 = IdM , F1 = F and Flux(I) = 0.
In that case, I is isotopic with fixed endpoints to a Hamiltonian isotopy.

Suppose that (M, ω) is a closed symplectic surface and I = (Ft)t∈[0,1] is a smooth isotopy
in Symp∗(M, ω). Let denote by µ the measure induced by ω. We have the following relation
between the Flux(I) and ρM,I(µ) (see [FH03, Proposition 2.11]): for any smooth loop σ
on M , we have

〈Flux(I), [σ]M 〉 = ρM,I(µ) ∧ [σ]M .

Hence, I is Hamiltonian if and only if ρM,I(µ) = 0.
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3.1.2. Action function and action difference. In this section, we suppose that (M, ω) is a
symplectic manifold with π2(M) = 0 (for example, a closed oriented surface with genus
g ≥ 1).

Let I = (Ft)t∈[0,1] be a Hamiltonian isotopy on M with F0 = IdM and F1 = F . Suppose
that the function H is the Hamiltonian function generating the flow I.

Let x be a contractible fixed point of F . Take any immersed disk Dx ⊂ M with
∂Dx = I(x), and define the action function (or action for short)

AH(x) =
∫

Dx

ω −
∫ 1

0
Ht(Ft(x)) dt.

The definition is well defined, that is AH(x) does not depend on the choice of Dx. It is
sufficient to prove the integral

∫
Dx

ω does not depend on the choice of Dx. Indeed, let D′
x

be another choice, the 2-chain Π = Dx −D′
x represents an immersed 2-sphere in M , and

hence
∫
Π ω = 0 since π2(M) = 0. Hence the claim follows.

Given two contractible fixed points x and y of F , take a path γ : [0, 1] → M with
γ(0) = x and γ(1) = y. Choose two immersed disks Dx and Dy so that ∂Dx = I(x) and
∂Dy = I(y). Let us define ∆ : [0, 1]× [0, 1] → M by ∆(t, s) = Ft(γ(s)) where we assume
that the boundary of the square [0, 1] × [0, 1] is oriented counter-clockwise and observer
that ∂∆ = −γ + Fγ − I(y) + I(x). So Fγ − γ = ∂∆ + ∂Dy − ∂Dx is a 1-cycle and is the
boundary of Σ where Σ is a 2-chain.

Define the action difference for x and y:

(3.1) δ(F ;x, y) =
∫

Σ
ω.

Since π2(M) = 0, it does not depend on the choice of Σ, and hence not on Dx and Dy.
Let us prove that it does not depend on the choice of γ.

Denote by ξt the vector field of the flow Ft. Then

∆∗ω = ω

(
ξt(Ftγ(s)),

∂

∂s
Ftγ(s)

)
dt ∧ ds

= −dHt

(
∂

∂s
Ftγ(s)

)
dt ∧ ds.

Hence,
∫

∆
ω =

∫

[0,1]2
∆∗ω = −

∫ 1

0
dt

∫ 1

0
dHt

(
∂

∂s
Ftγ(s)

)
ds

=
∫ 1

0
Ht(Ft(x)) dt−

∫ 1

0
Ht(Ft(y)) dt.

Finally, we have

(3.2) δ(F ;x, y) =
∫

Σ
ω =

∫

∆
ω +

∫

Dy

ω −
∫

Dx

ω = AH(y)−AH(x).

Equation 3.2 shows that the action difference does not depend on the choice of γ, we
have completed our claim. Moreover, we also give a relation between the action difference
and the action function.
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3.1.3. The action function and action difference on the universal covering space. When
I = (Ft)t∈[0,1] ⊂ Symp∗(M, ω) \ Ham(M, ω), the action function (see Definition 3.1.2) is
not meaningful. However, observing that the universal cover M̃ of M is simply connected,
the lifted identity isotopy Ĩ = (F̃t)t∈[0,1] ⊂ Symp∗(M̃, ω̃) of I to M̃ where ω̃ is the lift
of the symplectic structure ω to M̃ is automatically Hamiltonian since H1(M̃,R) = 0
(see Theorem 3.1). Let H̃ be the Hamiltonian function generating the flow Ĩ. As before,
we can define the action function A eH(x̃) for any fixed point x̃ of F̃ = F̃1 and the action
difference δ(F̃ ; x̃, ỹ) for any two distinct fixed points x̃ and ỹ of F̃ , and we have the relation
δ(F̃ ; x̃, ỹ) = A eH(ỹ)−A eH(x̃).

Let us see what happens in the the particular case where I is Hamiltonian. Suppose
that H is the Hamiltonian function generating the flow I and H̃ is its lift to M̃ . For
any contractible fixed point x of F and its lift x̃, we have A eH(x̃) = AH(x) (see [Pol02,
Theorem 2.1.C] and [FH03, Remark 2.7]). Hence, for any two distinct contractible fixed
points x and y of F , and their lifts x̃ and ỹ, we have

(3.3) δ(F̃ ; x̃, ỹ) = A eH(ỹ)−A eH(x̃) = AH(y)−AH(x).

3.2. A generalization of the action function in a simple case. The action difference
of two contractible fixed points x, y of F equals to the algebraic area of any path γ
connecting x and y along the isotopy I, that is, the area of the path γ along I swept out.
By this observation, we would like to generalize such an object to the case where ω is
replaced by a finite Borel measure µ and the Hamitonian isotopy by an identity isotopy I
with ρM,I(µ) = 0.

There is a case where this can be done easily (see [Lec05]). Suppose that I = (Ft)t∈[0,1] is
an identity isotopy of M , the time-one map F of I is a diffeomorphism, the set FixCont,I(F )
of contractible fixed points is finite and unlinked, that means that there exists an isotopy
I ′ = (F ′

t)t∈[0,1] homotopic to I that fixes every point of FixCont,I(F ), and the measure
µ ∈M(F ) satisfies ρM,I(µ) = 0.

Let N = M \ FixCont,I(F ), by the method of blowing-up, we can naturally get a com-
pactification N of N if we replace each point x ∈ FixCont,I(F ) by Sx, the tangent unit
circle at x. The diffeomorphism F |N can be extended to a homeomorphism F on N which
is isotopic to identity and induces the natural action by the linear map DF (x) on Sx.
As µ does not charge any point of FixCont,I(F ), we can define a measure on N which is
invariant by F , denoted also µ. Therefore, we can define the rotation vector in H1(N,R).
The inclusion ι : N ↪→ N induces an isomorphism ι∗ : H1(N,R) → H1(N,R). We denote
by ρN,I(µ) ∈ H1(N,R) the rotation vector transported by this isomorphism. Let γ be
a simple path in N joining a ∈ FixCont,I(F ) and b ∈ FixCont,I(F ). We can define the
algebraic intersection number γ ∧ ρN,I(µ). Remark here that γ ∧ ρN,I(µ) is independent
on the chosen γ because the rotation vector ρM,I(µ) ∈ H1(M,R) is zero. Moreover, we
can write

γ ∧ ρN,I(µ) = L(b)− L(a),

where L : FixCont,I(F ) → R is a function, defined up to an additive constant. We call that
L is the action function. In the proof of Theorem 0.1, you will find the reason why we call
it as action function.

3.3. Our main theorem. It is natural to ask if we can generalize the action to a more
general case. Let us first analyze what has been done above. The key points of his
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generalization are that F is a diffeomorphism of M and that there is another identity
isotopy I ′ homotopic to I that fixes all contractible fixed points of F . The differentiability
hypothesis prevents the dynamics to be too wild in a neighborhood of a contractible fixed
point so that it provides some boundedness condition, which means one can compactify
the sub-manifold N = M \ FixCont,I(F ) by blowing-up. It seems to us that keeping the
boundedness condition is necessary and that is why we define the boundedness properties
in Section 1.5. However, in general case, there may not exist such an isotopy I ′ that
fixes all contractible fixed points of F . How to deal with this obstacle? The section 3.1.3
reminds us that it will be a good idea if we consider the universal covering space M̃ . A
key point is that we can always find an isotopy Ĩ ′ from IdfM to F̃ that fixes any two fixed
points of F̃ , where F̃ is the time-one map of the lifted identity isotopy Ĩ of I to M̃ (see
Corollary 1.3). It makes us able to define the action difference for every two fixed points
of F̃ and generalize the classical action.

Theorem 0.1 Let M be a closed oriented surface with genus g ≥ 1 and F be the time-one
map of an identity isotopy I on M . Suppose that µ ∈M(F ) and ρM,I(µ) = 0. In each of
the following cases

• F ∈ Diff(M);
• I satisfies the WB-property and the measure µ has full support;
• I satisfies the WB-property and the measure µ is ergodic,

an action function can be defined which generalizes the classical case.

4. Extension of the Linking Number

In this section, we will first extend the notion of linking number defined in Section 1.4.4,
then state some elementary properties about it.

4.1. Extension of the linking number for a positively recurrent point.
Recall that F is the time-one map of an identity isotopy I = (Ft)t∈[0,1] on a closed

oriented surface M of genus g ≥ 1 and F̃ is the time-one map of the lifted identity isotopy
Ĩ = (F̃t)t∈[0,1] on the universal cover M̃ of M . For every distinct fixed points ã and b̃ of
F̃ , by Lemma 1.2, we can choose an isotopy Ĩ1 from IdfM to F̃ that fixes ã and b̃.

Let us fix z ∈ Rec+(F )\π({ã, b̃}) and consider an open disk U ⊂ M\π({ã, b̃}) containing
z. For every pair (z′, z′′) ∈ U2, choose an oriented simple path γz′,z′′ in U from z′ to z′′.
Denote by Φ̃ the lift of the first return map Φ:

Φ̃ : π−1(Rec+(F )) ∩ π−1(U) → π−1(Rec+(F )) ∩ π−1(U)

z̃ 7→ F̃ τ(z)(z̃),

where z = π(z̃) and τ(z) is the first return time in U .
For any z̃ ∈ π−1(U), write Uez the connected component of π−1(U) that contains z̃.

For every j ≥ 1, recall that τj(z) =
j−1∑
i=0

τ(Φi(z)). For every n ≥ 1, consider the following

curves in M̃ :

Γ̃n
eI1,ez = Ĩ

τn(z)
1 (z̃)γ̃eΦn(ez),ezn

,
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where z̃n ∈ π−1({z})∩ŨeΦn(ez)
, and γ̃eΦn(ez),ezn

is the lift of γΦn(z),z that is contained in ŨeΦn(ez)
.

We can define the following infinite product (see Section 1.1):

Γ̃n
eI1,z

=
∏

π(ez)=z

Γ̃n
eI1,ez .

In particular, when z ∈ Fix(F ), Γ̃1
eI1,z

=
∏

π(ez)=z

Ĩ1(z̃).

When ŨeΦn(ez)
= Ũez, the curve Γ̃n

eI1,ez is a loop and hence Γ̃n
eI1,z

is an infinite family of loops,

that will be called a multi-loop. When ŨeΦn(ez)
6= Ũez, the curve Γ̃n

eI1,ez is a compact path and

hence Γ̃n
eI1,z

is an infinite family of paths (it can be seen as a family of proper paths, that
means all of two ends of these paths going to ∞), that will be called a multi-path.

In the both cases, for every neighborhood Ṽ of ∞, there are finitely many loops or paths
Γ̃n
eI1,ez that are not included in Ṽ . By adding the point ∞ at infinity, we get a multi-loop

on the sphere S = M̃ t {∞}.
In fact, Γ̃n

eI1,z
can be seen as a multi-loop in the annulus Aea,eb with a finite homology. As

a consequence, if γ̃ is a path from ã to b̃, the intersection number γ̃ ∧ Γ̃n
eI1,z

is well defined
and does not depend on γ̃. By Remark 1.4 and the properties of intersection number,
the intersection number is also independent of the choice of the identity isotopy Ĩ1 but
depends on U . Moreover, observe that the path (

∏n−1
i=0 γΦn−i(z),Φn−i−1(z))(γΦn(z),z)−1 is a

loop in U , we have

(4.1) γ̃ ∧ Γ̃n
eI1,z

= γ̃ ∧
n−1∏

j=0

Γ̃1
eI1,Φj(z)

=
n−1∑

j=0

γ̃ ∧ Γ̃1
eI1,Φj(z)

.

For n ≥ 1, we can define the function

Ln : ((Fix(F̃ )× Fix(F̃ )) \ ∆̃)× (Rec+(F ) ∩ U) → Z,

Ln(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃n
eI1,z

=
n−1∑

j=0

L1(F̃ ; ã, b̃, Φj(z))

where U ⊂ M \ π({ã, b̃}). The last equation follows from Equation 4.1. The function Ln

depends on U but not on the choice of γΦn(z),z.

Definition 4.1. Fix z ∈ Rec+(F ) \ π({ã, b̃}). Let us say that the linking number
i(F̃ ; ã, b̃, z) ∈ R is defined, if

lim
k→+∞

Lnk
(F̃ ; ã, b̃, z)
τnk

(z)
= i(F̃ ; ã, b̃, z)

for any subsequence {Φnk(z)}k≥1 of {Φn(z)}n≥1 which converges to z.

Note here that the linking number i(F̃ ; ã, b̃, z) does not depend on U since if U and U ′
are open disks containing z, there exists a disk containing z that is contained in U ∩ U ′.
In particular, when z ∈ Fix(F ) \ π({ã, b̃}), the linking number i(F̃ ; ã, b̃, z) always exists
and is equal to L1(F̃ ; ã, b̃, z).
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Remark 4.2. When z ∈ Rec+(F ) \FixCont,I(F ), the linking number i(F̃ ; ã, b̃, z) depends
on the choice of ã and b̃ if it exists. Indeed, consider the following smooth identity isotopy
on R2: Ĩ = (F̃t)t∈[0,1] : (x, y) 7→ (x, y + t sin(2πx)). It induces an identity smooth isotopy
I = (Ft)t∈[0,1] on T2 = R/Z×R/Z. Obviously Fix(F̃ ) = {(x, y) | x = k, x = k + 1/2, k ∈
Z} and z = (1/4, 0) ∈ T2 is a fixed point of F but not a contractible fixed point of F . Let
ãk = (k, 1/2) ∈ R2 where k ∈ Z. It is easy to see that i(F̃ ; ã0, ãk, z) = k and π(ãk) = π(ãk′)
where k, k′ ∈ Z.

4.2. Some elementary properties of the linking number.
For any q ≥ 1, F q is the time-one map of the identity isotopy Iq on M (see Formula

1.1). We know that a positively recurrent point of F is also a positively recurrent point
of F q, so we can define the linking number i(F̃ q, ã, b̃, z).

Proposition 4.3. If i(F̃ ; ã, b̃, z) exists, then i(F̃ q; ã, b̃, z) exists for every q ≥ 1 and
i(F̃ q; ã, b̃, z) = qi(F̃ ; ã, b̃, z).

Proof. Let γ̃ be any simple path from ã to b̃ and Ĩ1 be an isotopy that fixes ã and b̃. We
suppose that i(F̃ ; ã, b̃, z) exists. Let U be an open disk containing z. For every q ≥ 1,
write respectively τ ′(z) and Φ′(z) for the first return time and the first return map of F q

in this proof. Recall that

τ ′n(z) =
n−1∑

i=0

τ ′(Φ′i(z))

and

Γ̃n
eI q
1 ,ez = Ĩ

qτ ′n(z)
1 (z̃)γ̃eΦ′n(ez),ezn

, Γ̃n
eI q
1 ,z

=
∏

π(ez)=z

Γ̃n
eI q
1 ,ez

where Φ̃′ is the lift of Φ′ to π−1(U), z̃n ∈ π−1({z}) ∩ ŨeΦ′n(ez)
and γ̃eΦ′n(ez),ezn

is the lift of

γΦ′n(z),z that is in ŨeΦ′n(ez)
.

We suppose that the subsequence {Φ′nk(z)}k≥1 converges to z. For every k, there is
n′k ∈ N such that τn′k

(z) = qτ ′nk
(z). By Definition 4.1, for any subsequence {Φ′nk(z)}k≥1

which converges to z, we have

lim
k→+∞

Lnk
(F̃ q; ã, b̃, z)
τ ′nk

(z)

= lim
k→+∞

γ̃ ∧ Γ̃nk

eIq ,z

τ ′nk
(z)

= q · lim
k→+∞

γ̃ ∧∏
π(ez)=z Ĩ

qτ ′nk
(z)

1 (z̃)γ̃eΦ′nk (ez),eznk

qτ ′nk
(z)

= q · lim
k→+∞

Ln′k
(F̃ ; ã, b̃, z)

τn′k
(z)

= qi(F̃ ; ã, b̃, z).

¤
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Let H be an orientation preserving homeomorphism of M and H̃ be a lift of H to M̃ .
Consider the time-one map H ◦ F ◦ H−1 of the isotopy I ′ = H ◦ I ◦ H−1 and write the
time-one map of the identity isotopy Ĩ

′
as H̃ ◦ F̃ ◦ H̃ −1, where Ĩ

′
is the lift of I ′ to M̃ .

Proposition 4.4. For every distinct fixed points ã, b̃ of F̃ and every z ∈ Rec+(F ) \
π({ã, b̃}), we have Ln(H̃ ◦ F̃ ◦ H̃ −1; H̃(ã), H̃ (̃b),H(z)) = Ln(F̃ ; ã, b̃, z) for every n. If
i(F̃ ; ã, b̃, z) exists, then i(H̃ ◦ F̃ ◦ H̃ −1; H̃(ã), H̃ (̃b),H(z)) also exists and

i(H̃ ◦ F̃ ◦ H̃ −1; H̃(ã), H̃ (̃b),H(z)) = i(F̃ ; ã, b̃, z).

In particular, i(F̃ ;α(ã), α(̃b), z) = i(F̃ ; ã, b̃, z) for all α ∈ G.

Proof. Let γ̃ be any simple path from ã to b̃. Observe that the isotopy Ĩ ′1 = H̃ ◦ Ĩ1 ◦ H̃−1

fixes H̃(ã) and H̃ (̃b), γ̃ ∧ Γ̃n
eI1,ez = H̃(γ̃) ∧ Γ̃n

eI ′1, eH(ez)
for every n. Hence

Ln(H̃ ◦ F̃ ◦ H̃ −1; H̃(ã), H̃ (̃b),H(z)) = Ln(F̃ ; ã, b̃, z).

The proposition follows from Definition 4.1. ¤
Proposition 4.5. For every distinct fixed points ã, b̃ and c̃ of F̃ , and every z ∈ Rec+(F )\
π({ã, b̃, c̃}), we have Ln(F̃ ; ã, b̃, z) + Ln(F̃ ; b̃, c̃, z) + Ln(F̃ ; c̃, ã, z) = 0 for all n. Moreover,
if two among the three linking numbers i(F̃ ; ã, b̃, z), i(F̃ ; b̃, c̃, z) and i(F̃ ; c̃, ã, z) exist, then
the last one also exists and we have

i(F̃ ; ã, b̃, z) + i(F̃ ; b̃, c̃, z) + i(F̃ ; c̃, ã, z) = 0.

Before proving Proposition 4.5, we introduce some notations and recall some results of
annulus homeomorphism.

If {γi}1≤i≤k and {γ′j}1≤j≤k′ are two finite families of loops or compact paths in S =

M̃ ∪ {∞} such that
∏k

i=1 γi and
∏k′

j=1 γ′j are well defined (in the concatenation sense, see

Section 1.1) and the algebraic intersection number
(∏k

i=1 γi

)
∧

(∏k′
j=1 γ′j

)
is well defined

(see Section 1.2), then we formally write
(

k∏

i=1

γi

)
∧




k′∏

j=1

γ′j


 =

∑

i,j

γi ∧ γ′j .

Recall that A = R/Z×R is the open annulus and T : (x, y) 7→ (x+1, y) is the generator
of the covering transformation group. If I = (ht)t∈[0,1] with h0 = h1 = IdA is a loop
in Homeo∗(A), write [I]1 ∈ π1(Homeo∗(A)) for the homotopy class of I. Recall that
π1(Homeo∗(A)) ' Z. Therefore, we may write π1(Homeo∗(A)) =

⋃
k∈Z Ck where Ck is

the class which satisfies that for every [I]1 ∈ Ck, any lift Ĩ of I to the universal covering
space Ã satisfies h̃1(z̃)− h̃0(z̃) = T k(z̃) for every z̃ ∈ Ã.

Proof of Proposition 4.5. Suppose that γ̃1, γ̃2 and γ̃3 are oriented simple paths from ã to
b̃, b̃ to c̃ and c̃ to ã, respectively. We choose isotopies Ĩj (j = 0, 1, 2, 3) such that Ĩ1 fixes
ã, b̃ and ∞, Ĩ2 fixes b̃, c̃ and ∞, Ĩ3 fixes c̃, ã and ∞, and Ĩ0 fixes ã, b̃ and c̃.

For every z ∈ M \ π({ã, b̃, c̃}), every lift z̃ of z, every j ∈ {1, 2, 3} and every n ≥ 1, the
path Ĩn

0 (z̃)(Ĩn
j (z̃))−1 is a loop where (Ĩn

j (z̃))−1 is the inverse of the path Ĩn
j (z̃). We claim

that

(4.2) γ̃j ∧
(
Ĩn
0 (z̃)(Ĩn

j (z̃))−1
)

= γ̃j ∧ Ĩn
0 (z̃)− γ̃j ∧ Ĩn

j (z̃) = n · (γ̃j ∧ Ĩ0(∞)).
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Indeed, let Aj (j = 1, 2, 3) be respectively S \ {ã, b̃}, S \ {b̃, c̃} and S \ {c̃, ã}. For
every n ∈ N, considering the loops Ĩ−n

j Ĩn
0 ⊂ Homeo∗(Aj) (see Formula 1.1) where Ĩ−1

j

is the inverse of Ĩj , we have [Ĩ−n
j Ĩn

0 ]1 ∈ C j

n·(eγj∧eI0(∞))
(j = 1, 2, 3) where C j

k is a class in

π1(Homeo∗(Aj)). Observing that (Ĩ−n
j Ĩn

0 )(z̃) = Ĩn
0 (z̃)(Ĩn

j (z̃))−1, the claim (4.2) follows.

In the case where z ∈ Fix(F ) \ π({ã, b̃, c̃}), for every lift z̃ of z, we have

γ̃j ∧ Ĩ0(z̃)− γ̃j ∧ Ĩj(z̃) = γ̃j ∧ Ĩ0(∞) (j = 1, 2, 3).

Write Cz for the set of points z̃ ∈ π−1({z}) such that Ĩj(z̃) ∩
3⋃

j′=1

γ̃j′ 6= ∅ for every j.

As all Ĩj fix ∞, we know that Cz is finite.
Recall that

i(F̃ ; ã, b̃, z) = γ̃1 ∧ Γ̃1
eI1,z

, i(F̃ ; b̃, c̃, z) = γ̃2 ∧ Γ̃1
eI2,z

and i(F̃ ; c̃, ã, z) = γ̃3 ∧ Γ̃1
eI3,z

where
Γ̃1
eIj ,z

=
∏

π(ez)=z

Ĩj(z̃) (j = 1, 2, 3).

Observe that
3∑

j=1

∑

ez∈Cz

γ̃j ∧ Ĩ0(z̃) =
∑

ez∈Cz

3∑

j=1

γ̃j ∧ Ĩ0(z̃) = 0,
3∑

j=1

γ̃j ∧ Ĩ0(∞) = 0

and
γ̃j ∧ Γ̃1

eIj ,z
= γ̃j ∧

∏

π(ez)=z

Ĩj(z̃) =
∑

ez∈Cz

γ̃j ∧ Ĩj(z̃) (j = 1, 2, 3).

We get

i(F̃ ; ã, b̃, z) + i(F̃ ; b̃, c̃, z) + i(F̃ ; c̃, ã, z) =
3∑

j=1

(
γ̃j ∧ Γ̃1

eIj ,z

)

= −
3∑

j=1

∑

ez∈Cz

(
γ̃j ∧ Ĩ0(z̃)− γ̃j ∧ Ĩj(z̃)

)

= −
∑

ez∈Cz

3∑

j=1

γ̃j ∧ Ĩ0(∞)

= 0.

Hence we have proved the proposition in this case.
In the case where z ∈ Rec+(F ) \ Fix(F ), recall that

Γ̃n
eIj ,ez = Ĩ

τn(z)
j (z̃)γ̃eΦn(ez),ezn

(0 ≤ j ≤ 3),

where z̃n ∈ π−1({z}) ∩ ŨeΦn(ez)
and γ̃eΦn(ez),ezn

is the lift of γΦn(z),z in ŨeΦn(ez)
. For every

1 ≤ j ≤ 3, we have Γ̃n
eI0,ez(Γ̃

n
eIj ,ez)

−1 is a loop where (Γ̃n
eIj ,ez)

−1 is the inverse of the path Γ̃n
eIj ,ez .

Therefore, for every lift z̃ of z and n ≥ 1, we have

γ̃j ∧
(
Γ̃n
eI0,ez(Γ̃

n
eIj ,ez)

−1
)

= γ̃j ∧ Γ̃n
eI0,ez − γ̃j ∧ Γ̃n

eIj ,ez = τn(z) · (γ̃j ∧ Ĩ0(∞)) (j = 1, 2, 3).
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For every n, write C n
z for the set of points z ∈ π−1({z}) such that Γ̃n

eIj ,ez ∩
3⋃

j=1
γ̃j 6= ∅.

Here again, we know that C n
z is finite.

Recall that

Ln(F̃ ; ã, b̃, z) = γ̃1 ∧ Γ̃n
eI1,z

, Ln(F̃ ; b̃, c̃, z) = γ̃2 ∧ Γ̃n
eI1,z

and Ln(F̃ ; c̃, ã, z) = γ̃3 ∧ Γ̃n
eI1,z

where
Γ̃n
eI1,z

=
∏

π(ez)=z

Γ̃n
eI1,ez .

Similarly to the fixed point case, we have Ln(F̃ ; ã, b̃, z)+Ln(F̃ ; b̃, c̃, z)+Ln(F̃ ; c̃, ã, z) = 0.
Hence for any subsequence {Φnk(z)}k≥1 which converges to z, we get

Lnk
(F̃ ; ã, b̃, z) + Lnk

(F̃ ; b̃, c̃, z) + Lnk
(F̃ ; c̃, ã, z)

τnk
(z)

(4.3)

=
1

τnk
(z)

3∑

j=1

(
γ̃j ∧ Γ̃nk

eIj ,z

)

= − 1
τnk

(z)

3∑

j=1

∑

ez∈C
nk
z

(
γ̃j ∧ Γ̃nk

eI0,ez − γ̃j ∧ Γ̃nk

eIj ,ez

)

= −
∑

ez∈C
nk
z

3∑

j=1

γ̃j ∧ Ĩ0(∞)

= 0 .

Letting k → +∞ in Equation 4.3, we have completed the proposition. ¤

5. Boundedness and Existence of the Linking Number

This Section is divided into two parts. In the first part, we study the boundedness
of the linking number when it exists. In the second part, we study the existence and
boundedness of the linking number if the map F preserves a Borel finite measure on M .

5.1. Boundedness.
In this section, let ã and b̃ be two distinct fixed points of F̃ . We suppose that I satisfies

WB-property at ã and b̃. By Lemma 1.7, there is a positive number Nea,eb such that

Rot
Fix( eFea,eb)

(F̂ea,eb) ⊂ [−Nea,eb, Nea,eb].

Fix an isotopy Ĩ1 from IdfM to F̃ which fixes ã and b̃. Let γ̃ be any oriented path in
M̃ from ã to b̃. Fix an open disk W̃ that contains ∞ and is disjoint from γ̃. We choose
an open disk Ṽ ⊂ W̃ that contains ∞ such that for every z̃ ∈ Ṽ , we have Ĩ1(z̃) ⊂ W̃ .
Observe that if ∞̂ is a given lift of ∞ in Âea,eb, if Ŵ (resp. V̂ ) is the connected component of

π−1(W̃ ) (resp. π−1(Ṽ )) that contains ∞̂, then we have F̂ea,eb(V̂ ) ⊂ Ŵ , which implies that

V̂ is free for every other lift F̂ea,eb ◦ T k
ea,eb, where k ∈ Z \ {0}. Let Ac denote the complement

of a set A. For every z ∈ M \ π({ã, b̃}), write Xz = π−1({z}) ∩ (Ṽ ∩ F̃−1

ea,eb (Ṽ ))c. Observe

that there exists Kea,eb ∈ N such that ]Xz ≤ Kea,eb for every z ∈ M \ π({ã, b̃}).
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In the case where z ∈ Rec+(F ) \ Fix(F ), we choose an open disk U that contains z

and is free for F . As the value i(F̃ ; ã, b̃, z) depends neither on γ̃ nor on U , we can always
suppose that γ̃ ∩ π−1(U) = ∅ by perturbing γ̃ a little and shrinking U if necessary. For
every n ≥ 1, write

Xn
z = π−1({z, F (z), · · · , F τn(z)−1(z)}) ∩ (Ṽ ∩ F̃−1

ea,eb (Ṽ ))c.

Observe that ]Xn
z ≤ τn(z)Kea,eb.

The following result is the main proposition of this section.

Proposition 5.1. The following two statements hold:

• If z ∈ Fix(F ) \ π({ã, b̃}), we have |i(F̃ ; ã, b̃, z)| < Kea,eb(Nea,eb + 1).

• If z ∈ Rec+(F ) \ Fix(F ) and i(F̃ ; ã, b̃, z) is defined, then |i(F̃ ; ã, b̃, z)| ≤ Kea,ebKU ,
where KU ∈ N depends only on U .

In order to prove Proposition 5.1, we consider two cases: the fixed point case and the
non-fixed point case. The first case is more easy to deal with and the second case is a
little more complicated, but the ideas are similar.

The fixed point case.

When z ∈ Fix(F ) \ π({ã, b̃}), then τ(z) = 1 and i(F̃ ; ã, b̃, z) = L1(F̃ ; ã, b̃, z), we have
the following results.

Lemma 5.2. If z ∈ FixCont,I(F ) \ π({ã, b̃}), then |i(F̃ ; ã, b̃, z)| ≤ Kea,ebNea,eb.

Proof. By Definition 4.1 and Lemma 1.5, we have

i(F̃ ; ã, b̃, z) =
∑

π(ez)=z

ρ
Aea,eb,

bFea,eb
(z̃) =

∑

ez∈Xz

ρ
Aea,eb,

bFea,eb
(z̃).

The lemma follows from the fact that ]Xz ≤ Kea,eb and that Rot
Fix( eFea,eb)

(F̂ea,eb) ⊂ [−Nea,eb, Nea,eb].
¤

Lemma 5.3. If z ∈ Fix(F ) \ FixCont,I(F ), then |i(F̃ ; ã, b̃, z)| < Kea,eb(Nea,eb + 1).

Proof. We have
i(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃1

eI1,z
=

∑

ez∈Xz

γ̃ ∧ Ĩ1(z̃).

Observe that if z̃ ∈ Xz, then the trajectory of Ĩ1(z̃) is not included in Ṽ . Therefore we
can write the multi-path

∏
ez∈Xz

Ĩ1(z̃) as finitely many sub-paths:
∏

ez∈Xz

Ĩ1(z̃) =
∏

1≤i≤P (z)

Γ̃i(z),

where
Γ̃i(z) =

∏

0≤j<mi(z)

Ĩ1(F̃
j

ea,eb(z̃i))

is a path with z̃i ∈ Xz ∩ Ṽ , F̃ j

ea,eb(z̃i) ∈ Xz ∩ Ṽ c for 1 ≤ j < mi and F̃mi

ea,eb (z̃i) ∈ Ṽ . For every

i, we get a periodic disk chain Ci = ({Ṽ , Ṽ }, {mi}) whose length l(Ci) is equal to mi (see
Section 2).



26 JIAN WANG

Obviously,
∑

i m
i ≤ Kea,eb. Let ki(z) = γ̃ ∧ Γ̃i. We have i(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃1

eI1,z
=

∑
i k

i.

Therefore, to get the lemma, it is sufficient to prove that |ki| < mi(Nea,eb + 1).

For every i, the path Γ̃i is lifted to a path from a point ẑi ∈ V̂ to F̂mi

ea,eb (ẑi) ∈ T ki

ea,eb(V̂ ) and

hence we get a lift C̃i = ({V̂ , T ki

ea,eb(V̂ )}, {mi}) of Ci for F̂ea,eb with width w(F̂ea,eb ; C̃i) = ki.

By the construction of Ṽ , replacing A by Ãea,eb, h by F̃ea,eb, H by F̂ea,eb, D by Ṽ and C by Ci

in Lemma 2.4, we get |ki| < mi(Nea,eb + 1). We have completed the proof. ¤

The non-fixed point case.
Let z ∈ Rec+(F ) \ Fix(F ) and U be an open free disk for F that contains z. Recall

that, for every lift z̃ of z and every n ≥ 0, there is a unique connected component ŨeΦn(ez)

of π−1(U) such that Φ̃n(z̃) ∈ ŨeΦn(ez)
and a unique αz,n ∈ G such that ŨeΦn(ez)

= αz,n(Ũez).
For convenience, we define

F̃ ∗
ea,eb(z̃

′) =

{
F̃ea,eb(z̃

′) if π(z̃ ′) ∈ {z, · · · , F τn(z)−2(z)};
αz,n(z̃) if π(z̃ ′) = F τn(z)−1(z) and F̃ea,eb(z̃

′) ∈ Ũαz,n(ez).

and

Ĩ∗1 (z̃ ′) =

{
Ĩ1(z̃ ′) if π(z̃ ′) ∈ {z, · · · , F τn(z)−2(z)};
Ĩ1(z̃ ′)γ̃ eFea,eb(ez ′), αz,n(ez)

if π(z̃ ′) = F τn(z)−1(z) and F̃ea,eb(z̃
′) ∈ Ũαz,n(ez),

where γ̃ eFea,eb(ez ′), αz,n(ez)
is the lift of γΦn(z),z that is in Ũαz,n(ez).

We have to consider two cases: αz,n = e and αz,n 6= e. First, we consider the case where
αz,n 6= e. We have the following lemma.

Lemma 5.4. If αz,n 6= e, then |Ln(F̃ ; ã, b̃, z)| < τn(z)Kea,eb(Nea,eb + 1).

Proof. In this case, the curve Γ̃n
eI1,z

is a multi-path in M̃ . By the definition of Ln(F̃ ; ã, b̃, z),
we have

Ln(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃n
eI1,z

=
∑

ez ′∈Xn
z

γ̃ ∧ Ĩ∗1 (z̃ ′).

We can write the multi-path

(5.1)
∏

ez ′∈Xn
z

Ĩ∗1 (z̃ ′) =
∏

1≤i≤Pn(z)

Γ̃n
i (z),

where

(5.2) Γ̃n
i (z) =

∏

0≤j<mi
n(z)

Ĩ∗1 (F̃ ∗j
ea,eb(z̃i))

is a path with z̃i ∈ Xn
z ∩ Ṽ , F̃ ∗j

ea,eb(z̃i) ∈ Xn
z ∩ Ṽ c for 1 ≤ j < mi

n and F̃
∗mi

n

ea,eb (z̃i) ∈ Ṽ . Hence,
for every i, we get a periodic disk chain Ci that satisfies the hypothesis of Lemma 2.4 with
length mi

n. When we lift the path Γ̃n
i , we can get a lift of Ci for F̂ea,eb with width ki

n.

Obviously, we have
∑

i m
i
n < τnKea,eb. Let ki

n(z) = γ̃ ∧ Γ̃n
i . Hence Ln(F̃ ; ã, b̃, z) =

∑
i k

i
n.

It is sufficient to prove that |ki
n| < mi

n(Nea,eb + 1).
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Similarly to the proof of Lemma 5.3, replacing A by Ãea,eb, h by F̃ea,eb, H by F̂ea,eb, D by Ṽ

and C by Ci in Lemma 2.4, we get |ki
n| < mi

n(Nea,eb + 1). This proves the first case. ¤

As a consequence, we have the following proposition.

Proposition 5.5. We suppose that i(F̃ ; ã, b̃, z) and ρM,I(z) exist, then

|i(F̃ ; ã, b̃, z)| ≤ Kea,eb(Nea,eb + 1) if ρM,I(z) 6= 0.

Proof. If z ∈ Fix(F ) and ρM,I(z) 6= 0, then z is not a contractible fixed point and the
conclusion follows from Lemma 5.3. Suppose now that z ∈ Rec+(F ) \ Fix(F ) and U ⊂
M \ Fix(F ) is a free open disk containing z. If ρM,I(z) 6= 0, then there exists a positive
number N such that αz,n 6= e when n ≥ N (refer to Section 1.3.2). In that case, the
conclusion follows from Lemma 5.4. ¤

Let us study the case where αz,n = e.

Lemma 5.6. There exists a positive integer KU which depends on U such that

|Ln(F̃ ; ã, b̃, z)| ≤ τn(z)Kea,ebKU if αz,n = e.

Before proving Lemma 5.6, we require the following lemma.

Lemma 5.7. Let Ũ be any connected component of π−1(U) in Ṽ c. If

RoteU (F̂ea,eb) * ]− (Nea,eb + 1), Nea,eb + 1[,

then we have
(1) αz′,n = e for all z′ ∈ Rec+(F ) ∩ U and all n ≥ 1;
(2)

⋃
k≥1 F̃ k(π−1(Rec+(F )) ∩ Ũ) ⊂ Ṽ c;

(3) RoteU (F̂ea,eb) ⊂]l, l + 1[ for some integer l with l ≥ Nea,eb + 1 or l ≤ −(Nea,eb + 2) where

l depends on Ũ .

Let us prove now Lemma 5.6 supposing Lemma 5.7 whose proof will be given later.

Proof of Lemma 5.6. As αz,n = e, the curve Γ̃n
eI1,z

is a multi-loop in M̃ . Let pn(z̃) =

γ̃ ∧ Γ̃n
eI1,ez where z̃ ∈ π−1(z). Obviously, pn(z̃)/τn(z) ∈ RoteUez(F̂ea,eb).

Let us first analyze the possible cases that need to be considered in the proof. The
set Xn

z maybe contain a “whole orbit” of some lift z̃ of z, that means F̃ j(z̃) ∈ Xn
z for all

0 ≤ j < τn(z), or a “partial orbit” of z̃. In the case where a “partial orbit” of z̃ is contained
in Xn

z , similarly to the proof of Lemma 5.3, we can get a periodic disk chain of F̃ea,eb that
satisfies the hypothesis of Lemma 2.4 and hence we can estimate the intersection number
of γ̃ and the path on which the “partial orbit” of z̃ lies. In the case where the “whole orbit”
of z̃ is contained in Xn

z , we can use Lemma 5.7 to get either |pn(z̃)/τn(z)| < Nea,eb + 1,

or l < pn(z̃)/τn(z) < l + 1 where l ∈ Z depends on Ũ and satisfies l ≥ Nea,eb + 1 or
l ≤ −(Nea,eb + 2). Finally, we only need to sum the intersection numbers of all the cases
above.

Let us begin the rigorous proof. Write

Sn
z = {z̃ ∈ π−1(z) | F̃ j(z̃) ∈ Ṽ c for all 0 ≤ j < τn(z)}

and
Y n

z = {F̃ j(z̃) | z̃ ∈ Sn
z , 0 ≤ j < τn(z)}.
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As before, we write

Ln(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃n
eI1,z

=
∑

ez ′∈Xn
z

γ̃ ∧ Ĩ∗1 (z̃ ′).

We can write the multi-path as follows

(5.3)
∏

ez ′∈Xn
z

Ĩ∗1 (z̃ ′) =
∏

ez ′∈Y n
z

Ĩ∗1 (z̃ ′) ·
∏

ez ′∈Xn
z \Y n

z

Ĩ∗1 (z̃ ′) =
∏

1≤i≤P ′n(z)

Γ̃n
i (z) ·

∏

P ′n(z)<i≤Pn(z)

Γ̃n
i (z),

where

(5.4) Γ̃n
i (z) = Γ̃n

eI1,ezi
=

∏

0≤j<mi
n(z)

Ĩ∗1 (F̃ ∗j
ea,eb(z̃i))

for 1 ≤ i ≤ P ′
n with z̃i ∈ Sn

z and mi
n = τn; and

(5.5) Γ̃n
i (z) =

∏

0≤j<mi
n(z)

Ĩ∗1 (F̃ ∗j
ea,eb(z̃i))

for P ′
n < i ≤ Pn with z̃i ∈ Xn

z ∩ Ṽ , F̃ ∗j
ea,eb(z̃i) ∈ Xn

z ∩ Ṽ c for 1 ≤ j < mi
n and F̃

∗mi
n

ea,eb (z̃i) ∈ Ṽ .

Obviously,
∑

i m
i
n ≤ τn(z)Kea,eb. Let ki

n(z) = γ̃ ∧ Γ̃n
i . Hence Ln(F̃ ; ã, b̃, z) =

∑
i k

i
n. To

prove Lemma 5.6, it is sufficient to prove that there exists a positive integer KU which
depends only on U such that |ki

n| ≤ mi
nKU .

When 1 ≤ i ≤ P ′
n, by Lemma 5.7 and the fact that P ′

n ≤ Kea,eb, there exists a positive

integer r that depends on U such that RoteUezi

(F̂ea,eb) ⊂ [−r, r]. Observing that ki
n = pn(z̃i) =

γ̃ ∧ Γ̃n
eI1,ezi

, mi
n = τn, and ki

n/mi
n = pn(z̃i)/τn(z) ∈ RoteUezi

(F̂ea,eb), we have |ki
n| ≤ mi

nr.

When P ′
n < i ≤ Pn, similarly to the proof of Lemma 5.3, we can get |ki

n| < mi
n(Nea,eb+1).

Let KU = max{Nea,eb + 1, r}. We have |ki
n| ≤ mi

nKU for every 1 ≤ i ≤ Pn and hence

|Ln(F̃ ; ã, b̃, z)| =
∣∣∣∣∣
∑

i

ki
n

∣∣∣∣∣ ≤ τn(z)Kea,ebKU .

¤

Proof of Lemma 5.7. (1). Suppose that there is a point z′ ∈ Rec+(F ) ∩ U and some
n0 ≥ 1 such that αz′,n0 6= e. Let z̃ ′ be the lift of z′ that is in Ũ . Similarly to the proof of
Lemma 5.4, we can find a path

Γ̃n0
i (z′) =

∏

0≤j<mi
n0

(z′)

Ĩ∗1 (F̃ ∗j
ea,eb(z̃i))

which satisfies z̃i ∈ Xn0
z′ ∩ Ṽ , F̃ ∗j

ea,eb(z̃i) ∈ Xn0
z′ ∩ Ṽ c for all 1 ≤ j < mi

n0
, z̃ ′ = F̃ ∗j0

ea,eb (z̃i) for

some 1 ≤ j0 < mi
n0

, and F̃
∗mi

n0

ea,eb (z̃i) ∈ Ṽ . Hence, we get a periodic disk chain C ′ that

contains Ũ as an element and satisfies the hypothesis of Lemma 2.4. Replacing A by Ãea,eb,

h by F̃ea,eb, H by F̂ea,eb, D by Ṽ and C by C ′ in Lemma 2.4 (the second conclusion), we get

RoteU (F̂ea,eb) ⊂ ]− (Nea,eb + 1), Nea,eb + 1[. We have a contradiction.
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(2). Suppose that there is a point z̃ ′ ∈ π−1(z′) ∩ Ũ where z′ ∈ Rec+(F ) and an
integer n0 ≥ 1 such that F̃n0(z̃ ′) ∈ Ṽ . By (1), it is sufficient to consider the case where
αz′,n = e for all n ≥ 1, that means, F̃ τn(z′)(z̃ ′) ∈ Ũ for all n ≥ 1. We choose a positive
integer n1 large enough such that τn1(z

′) > n0. We have F̃ τn1 (z′)−n0(F̃n0(z̃ ′)) ∈ Ũ .
Then we get F̃ τn1 (z′)−n0(Ṽ ) ∩ Ũ 6= ∅ and F̃n0(Ũ) ∩ Ṽ 6= ∅. Therefore, the disk chain
({Ṽ , Ũ , Ṽ }, {τn1(z

′) − n0, n0}) is a periodic disk chain that satisfies the hypothesis of
Lemma 2.4. Applying Lemma 2.4 again, we get RoteU (F̂ea,eb) ⊂ ] − (Nea,eb + 1), Nea,eb + 1[. It
is still a contradiction.

(3). This follows from Corollary 2.3 and the hypothesis Rot
Fix( eFea,eb)

(F̂ea,eb) ⊂ [−Nea,eb, Nea,eb]
immediately. ¤
Proof of Proposition 5.1. This follows from Lemma 5.2, 5.3, 5.4 and 5.6. ¤

At the end of this section, we study the boundedness in the case where the time-one
map F of I satisfies the differential conditions.

Proposition 5.8. For any two distinct fixed points ã and b̃ of F̃ , if F and F−1 are
differentiable at π(ã) and π(̃b), then there exists Nea,eb ∈ R such that |i(F̃ ; ã, b̃, z)| ≤ Nea,eb if

i(F̃ ; ã, b̃, z) exists.

Proof. We make a proof by contradiction. If it is not true, without loss of generality, we
suppose that there is a sequence {zk}k≥1 ⊂ Rec+(F ) such that lim

k→+∞
i(F̃ ; ã, b̃, zk) = +∞.

By the proof of Lemma 5.6 and the conclusion (1) of Lemma 5.7, we have αzk,n = e

for every n ≥ 1 when k is large enough. Hence z̃k ∈ Rec+(F̃ ) \ Fix(F̃ ) when k is large
enough where z̃k ∈ π−1(zk). By the proof of Lemma 5.6 and the conclusion (2) of Lemma
5.7, we only need consider the lifts z̃k of zk whose whole orbit is in Ṽ c when k is large
enough. However, such lifts are finite (at most Kea,eb). This implies that there exists a
sequence {z̃k}k≥1 with z̃k ∈ π−1(zk) such that lim

k→+∞
ρ

Aea,eb,
bFea,eb

(z̃k) = +∞, which conflicts

with Lemma 1.8. ¤
In Example 7.2 of Appendix, we will construct an identity isotopy I of a closed surface

such that I satisfies the B-property but its time-one map is not a diffeomorphism and there
are two different fixed points z̃0 and z̃1 of F̃ such that the linking number i(F̃ ; z̃0, z̃1, z) is
not uniformly bounded for z ∈ Rec+(F ) \ π({z̃0, z̃1}).

5.2. Existence and Boundedness in the conservative case.

Proposition 5.9. Suppose that I satisfies the WB-property at ã and b̃. If µ ∈M(F ), then
µ-almost every point z ∈ Rec+(F ) has a rotation vector ρM,I(z) ∈ H1(M,R) and has a
linking number i(F̃ ; ã, b̃, z) ∈ R. Moreover, for all z ∈ Rec+(F ) satisfying that i(F̃ ; ã, b̃, z),
ρM,I(z) exist and ρM,I(z) 6= 0, there exists C > 0 such that |i(F̃ ; ã, b̃, z)| ≤ C.

Proof. According to Poincaré Recurrence Theorem, we have µ(Rec+(F )) = µ(M).
When z ∈ Fix(F ) \ π({ã, b̃}), by Section 1.3.2 and Section 5.1, ρM,I(z) and i(F̃ ; ã, b̃, z)

exist and are bounded. Thus we only need to consider the non-fixed point case.
Fix a free open disk U ⊂ M \ π({ã, b̃}) with µ(U) > 0. For any z ∈ Rec+(F ) ∩ U , by

Lemma 5.4 and Lemma 5.6, we have |L1(F̃ ; ã, b̃, z)| ≤ τ(z)Kea,eb(Nea,eb + 1) if αz,1 6= e and
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|L1(F̃ ; ã, b̃, z)| ≤ τ(z)Kea,ebKU if αz,1 = e. This implies that L1(F̃ ; ã, b̃, z) ∈ L1(U,R, µ). By

Birkhoff Ergodic Theorem, we deduce that the sequence {Ln(F̃ ; ã, b̃, z)/n}+∞
n=1 converges

to a real number L∗(F̃ ; ã, b̃, z) for µ-almost every point on Rec+(F ) ∩ U . Recall that,
for µ-almost every point on Rec+(F ) ∩ U , the sequence {τn(z)/n}+∞

n=1 converges to a real
number τ∗(z) (see Section 1.3.2).

We can define the linking number on U as follows (modulo sets of measure zero):

(5.6) i(F̃ ; ã, b̃, z) = lim
n→+∞

Ln(F̃ ; ã, b̃, z)
τn(z)

=
L∗(F̃ ; ã, b̃, z)

τ∗(z)
.

By Proposition 5.1, the linking number i(F̃ ; ã, b̃, z) has a bound KU for µ-almost every
point z ∈ Rec+(F ) ∩ U . As U is arbitrarily chosen, this implies that we can define the
function i(F̃ ; ã, b̃, z) for µ-almost every point z ∈ M \ π({ã, b̃}).

Finally, by Proposition 5.5, we can uniformly bound i(F̃ ; ã, b̃, z) if ρM,I(z) 6= 0. ¤

Remark here that, under the hypothesis of Proposition 5.9, i(F̃ ; ã, b̃, z) is bounded on
U , but does not necessarily possess a uniform bound on M \ π({ã, b̃}) (see Example 7.2).
However, when F is a diffeomorphism of M (see Proposition 5.8), we can get a uniform
bound. Moreover, we can get a uniform bound in the case where the support of the
measure is the whole space, as stated in the following proposition.

Proposition 5.10. With the same hypotheses as Proposition 5.9 and if furthermore µ ∈
M(F ) has full support, we have |i(F̃ ; ã, b̃, z)| ≤ Kea,eb(Nea,eb + 1) if it exists.

Proof. The measure µ may naturally be lifted to a (non finite) measure µ̃ on M̃ . Since
µ does not charge π(ã) and π(̃b), µ̃ can be seen as a measure on Aea,eb invariant by F̃ea,eb
satisfying µ̃(Aea,eb) = +∞. As the support of µ̃ is M̃ and F̃ea,eb preserves the measure µ̃, the

homeomorphism F̃ea,eb satisfies the intersection property, that is, any simple closed curve of

Aea,eb which is not null-homotopic meets its image by F̃ea,eb. Indeed, any closed curve which

goes through ∞ will meet its image by F̃ea,eb since F̃ea,eb fixes the point ∞. If the closed

curve does not pass through ∞, we may go back to M̃ and consider a component enclosed
by the closed curve which contains ã or b̃ and which has finite measure, then it will meet
its image since F̃ preserves the measure µ̃.

In the case where z ∈ Fix(F ), it is obvious that i(F̃ ; ã, b̃, z) is uniformly bounded.
Choose any free open disk U ⊂ M \ Fix(F ), according to Lemma 5.4, we only need to

consider the points z ∈ Rec+(F ) ∩ U such that αz,n = e for n large enough. We suppose
that z is a such point and i(F̃ ; ã, b̃, z) exists. We go to the annulus Aea,eb, for any lift z̃ of

z, then we have ρ
Aea,eb,

bFea,eb
(z̃) = lim

n→+∞
eγ∧eΓn

eI1,ez
τn(z) .

We claim that, for any ε > 0, |i(F̃ ; ã, b̃, z)| ≤ (Nea,eb + 1 + ε)Kea,eb. Otherwise, without

loss of generality, we can suppose that i(F̃ ; ã, b̃, z) > (Nea,eb + 1 + ε)Kea,eb. Then there

exists a number N large enough such that for every n ≥ N , there is a lift z̃n of z in Ṽ c

satisfying
eγ∧eΓn

eI1,ezn

τn(z) > Nea,eb + 1 + ε. This implies that there exists a lift z̃ of z in Ṽ c such
that ρ

Aea,eb,
bFea,eb

(z̃) ≥ Nea,eb + 1 + ε > Nea,eb + 1. By the fact ρ
Aea,eb,

bFea,eb
(∞) = 0 and according
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to Theorem 2.5, F̃ea,eb has a fixed point whose rotation number is Nea,eb + 1, which is a
contradiction. This proves the claim.

As ε is arbitrarily chosen, we get |i(F̃ ; ã, b̃, z)| ≤ Kea,eb(Nea,eb + 1). ¤

The function i(F̃ ; ã, b̃, z) is not necessarily µ-integrable (see Example 7.2). But in some
cases, as we have stated above, where the time-one map F is a diffeomorphism of M , or
I satisfies the WB-property at ã and b̃, and µ is ergodic (because it is constant µ-a.e.) or
the support of µ is the whole space, the function iµ(F̃ ; ã, b̃, z) is µ-integrable.

Suppose now the function i(F̃ ; ã, b̃, z) is µ-integrable. We can define the action difference
of ã and b̃ as follows

(5.7) iµ(F̃ ; ã, b̃) =
∫

M\π({ea,eb})
i(F̃ ; ã, b̃, z) dµ.

From Proposition 4.3 and Proposition 4.4, we get the following corollaries immediately:

Corollary 5.11. We have iµ(F̃ q; ã, b̃) = q iµ(F̃ ; ã, b̃) for all q ≥ 1.

Corollary 5.12. Let H be an orientation preserving homeomorphism of M and H̃ be a
lift of H to M̃ . We have iH∗(µ)(H̃ ◦ F̃ ◦ H̃ −1; H̃(ã), H̃ (̃b)) = iµ(F̃ ; ã, b̃). In particular,
iµ(F̃ ;α(ã), α(̃b)) = iµ(F̃ ; ã, b̃) for all α ∈ G.

At the end of this section, we will give the integral (5.7) a geometric description when
F and F−1 are differentiable at π(ã) and π(̃b). Before that, let us introduce a definition.

Let A = T1 × [0, 1] be a closed annulus and let T be the generator of the covering
transformation group π : Ã → A where Ã = R × [0, 1]. Suppose that J = (ht)t∈[0,1] is an
isotopy of A from IdA to h, ν is a Borel measure (ν is admitted to be an infinite measure
here) invariant by h on A. Let γ : [0, 1] → A be a simple oriented path which satisfies
γ(0) ∈ T1 × {0}, γ(1) ∈ T1 × {1} and Int(γ) ⊂ Int(A). Denote by Σ′ : [0, 1]× [0, 1] → A
the 2-chain Σ′(s, t) = h−1

s (γ(t)) and by |Σ′| = {z ∈ A | z = h−1
s (γ(t)), (s, t) ∈ [0, 1]× [0, 1]}

the support of Σ′. When ν(γ) = 0, the intersection number γ ∧ J(z) is well defined for
ν-almost every z on A. Define the algebraic area of the 2-chain Σ′ in A, that is, the
algebraic area (for ν) “swept out” by

⋃
s∈[0,1] h

−1
s (γ), as follows

∫

Σ′
dν =

∫

A
γ ∧ J(z) dν.

When ν(|Σ′|) < +∞, the integral is well defined. Indeed, there exist a number N ≥ 0 such
that |γ ∧ J(z)| ≤ N since A is compact. Obviously, γ ∩ J(z) = ∅ if z /∈ ⋃

s∈[0,1] h
−1
s (γ(t)).

Therefore, ∣∣∣∣
∫

Σ′
dν

∣∣∣∣ ≤
∫

A
|γ ∧ J(z)|dν ≤ ν(|Σ′|)N < +∞.

Let H be the lift of h that is the time-one map of the lifted identity isotopy J̃ of J ,
γ̃ be a connected component of γ in Ã and ν̃ be the lift of ν to Ã. Let D̃′ be the closed
region between H−1(γ̃) and T (H−1(γ̃)) which is a fundamental domain of T . We have

∫

Σ′
dν =

∫

A
γ ∧ J(z) dν =

∫
eD′

γ̃ ∧ J̃(z̃) dν̃,(5.8)

which does not depend on the choice of γ̃.
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Denote by Σ = h∗Σ′ : [0, 1]× [0, 1] → A the 2-chain Σ(s, t) = h−1
s (h(γ(t))) and suppose

that ν(|Σ|) < +∞. Let D̃ = H(D̃′) be the closed region between γ̃ and T (γ̃) which is also
a fundamental domain of T . By Equation 5.8, we have

∫

Σ
dν =

∫

A
h(γ) ∧ J(z) dν =

∫
eD

H(γ̃) ∧ J̃(z̃) dν̃.(5.9)

Equation 5.9 tell us that the value
∫
Σ dν is equal to the algebraic area (for ν̃) of the region

of Ã situated between γ̃ and its image H(γ̃). Furthermore, if we suppose that J fixes a
point ∞ in A, we have

∫

Σ
dν =

∫

A
h(γ) ∧ J(z) dν(5.10)

=
∫

A
γ ∧ (

h−1 ◦ J
)
(z) dν

=
∫

A
γ ∧ (

h−1 ◦ J ◦ h
)
(z) dν

=
∫

A
γ ∧ J(z) dν.

Indeed, write the isotopy J ′ = h−1 ◦ J ◦ h =
(
h−1 ◦ ht ◦ h

)
0≤t≤1

. The third equation
holds because h is a homeomorphism of A and preserves the measure ν. Observing that
the isotopy J−1J ′ is a loop (whose base point is IdA) in Homeo∗(A) and fixes the point
∞, recall that π1(Homeo∗(A)) =

⋃
k∈Z Ck (see the proof of Proposition 4.5), we get

[J−1J ′]1 ∈ C0 . Hence, we get the last equation. It is easy to prove that, by induction and
Equation 5.10,

∫
Σ dν is equal to

∫
hk∗Σ′ dν for every k ∈ Z.

Remark that we can also define the algebraic area of the 2-chain Σ when γ is not simple
if we consider the oriented domain enclosed by γ̃, H(γ̃) and ∂Ã in Ã. However, to prove
Theorem 0.1 in the next section, it is enough to merely consider the case of a simple
oriented path.

Suppose now the measure ν is defined by a symplectic form ω, that is, ν(A) =
∫
A ω for

all measurable sets A ⊂ A. Observe that ω̃ is exact in Ã where ω̃ is the lift of ω to Ã.
Equation 5.9 and Stokes’ theorem imply that

∫
Σ ω (defined by the integral of differential

2-form on 2-chain) is nothing else but the algebraic area of the 2-chain Σ in A,
∫
Σ dν

(defined by Equation 5.9).

We now suppose that the time-one map F of I and its inverse F−1 are differentiable at
π(ã) and π(̃b). Let Ĩ1 = (F̃ ′

t)t∈[0,1] be an isotopy from IdfM to F̃ that fixes ã and b̃, and
µ̃ be the lift of µ to M̃ . Let γ̃ : [0, 1] → M̃ be a simple oriented path from ã to b̃ with
γ̃(0) = ã and γ̃(1) = b̃. Consider the annulus Aea,eb and the annulus map F̃ea,eb. Recall that,
in the proof of Lemma 1.8, Āea,eb = Sea t Aea,eb t Seb is the natural compactification of Aea,eb
where Sea and Seb are the tangent unit circles at ã and b̃. We can identify γ̃ as an oriented
path in Āea,eb and Ĩ1 as an identity isotopy of Āea,eb. As the measure µ̃ is invariant by F̃ and

µ̃(ã) = µ̃(̃b) = 0, it naturally induces a measure on Āea,eb, denoted still by µ̃.

Suppose that Σ̃ is the 2-chain Σ̃ : [0, 1]× [0, 1] → M̃ defined by Σ̃(s, t) = F̃ ′−1
s (F̃ (γ̃(t)))

whose boundary is F̃ (γ̃)γ̃−1 with the boundary of the square [0, 1]× [0, 1] oriented counter-
clockwise. As Ĩ1 fixes ∞, the intersection number γ̃ ∧ Ĩ1(z̃) is zero when z̃ belongs to a
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neighborhood of ∞. Therefore, if µ̃(γ̃) = 0, we can define the algebraic area of the 2-chain
Σ̃ in M̃ \ {ã, b̃} as follows∫

eΣ
dµ̃ =

∫
fM\{ea,eb}

γ̃ ∧ Ĩ1(z̃) dµ̃ =
∫

Āea,eb

γ̃ ∧ Ĩ1(z̃) dµ̃.

Remark here that if the measure µ is defined by a symplectic form ω, then
∫
eΣ ω̃ (see

Equation 3.1 and Equation 3.3) is nothing else but
∫
eΣ dµ̃ where ω̃ is the lift of ω to M̃ .

Moreover, we have the following result which is a key step to prove our generalized action
function defined in the next section.

Lemma 5.13. If µ̃(γ̃) = 0, then we have

iµ(F̃ , ã, b̃) =
∫
eΣ

dµ̃.

Proof. From Proposition 5.8, we know that iµ(F̃ , ã, b̃) is well defined. Let

Z =
+∞⋃

k=0

(F−k(π(γ̃))).

Observe that µ(Rec+(F ) \ Z) = µ(M). For every z ∈ Rec+(F ) \ Z and every n ≥ 1,
consider the following infinite family of paths in M̃ :

Γ̃′neI1,z
=

∏

π(ez)=z

Ĩ n
1 (z̃) .

Define the function
Gn(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃′neI1,z

.

Let us verify that this is well defined. Consider the annulus Aea,eb and the annulus map

F̃ea,eb. For any z ∈ Rec+(F )\Z, let z̃ be any lift of z to M̃ (we also write z̃ in Aea,eb), and ẑ be

any lift of z̃ to Âea,eb. In the proof of Lemma 1.8, we have proved that |p1(F̂ea,eb(ẑ))− p1(ẑ)|
is uniformly bounded for any ẑ ∈ Âea,eb, say N as a bound, and depends on the isotopy I

but not on the choice of ẑ. Fix an open disk W̃ containing ∞ and disjoint from γ̃. As
Ĩ1(∞) = ∞, for every n ≥ 1, we can choose an open disk Ṽn ⊂ W̃ containing ∞ such that
for every z̃ ∈ Ṽn, we have Ĩn

1 (z̃) ∈ W̃ . Write X ′n
z = π−1({z}) ∩ Ṽ c

n . We deduce that there
is a positive integer K ′

n such that ]X ′n
z ≤ K ′

n and

∣∣∣Gn(F̃ ; ã, b̃, z)
∣∣∣ =

∣∣∣γ̃ ∧ Γ̃′neI1,z

∣∣∣ =

∣∣∣∣∣∣
∑

ez∈X′n
z

γ̃ ∧ Ĩ n
1 (z̃)

∣∣∣∣∣∣
≤ K ′

nN.

Hence we complete the claim. As a consequence, G1(F̃ ; ã, b̃, z) ∈ L1(M \ π({ã, b̃}),R, µ).
Moreover, we can write Gn(F̃ ; ã, b̃, z) as a Birkhoff sum:

Gn(F̃ ; ã, b̃, z) = γ̃ ∧ Γ̃′neI1,z
= γ̃ ∧

n−1∏

i=0

Γ̃′ 1eI1,F i(z)
=

n−1∑

j=0

G1(F̃ ; ã, b̃, F j(z)).

According to Birkhoff Ergodic theorem, the limit

lim
n→+∞

Gn(F̃ ; ã, b̃, z)
n

= lim
n→+∞

1
n

n−1∑

j=0

G1(F̃ ; ã, b̃, F j(z))
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exists for µ-almost everywhere on M \ π({ã, b̃}). We know that

i(F̃ ; ã, b̃, z) = lim
n→+∞

Ln(F̃ ; ã, b̃, z)
τn(z)

=
L∗(F̃ ; ã, b̃, z)

τ∗(z)

for µ-almost every point z ∈ M \π({ã, b̃}) exists (see Proposition 5.9). As i(F̃ ; ã, b̃, z) does
not depend on the choice of U (see Definition 4.1), when z /∈ π(γ̃), we can suppose that
the disk U is small enough such that U ∩ π(γ̃) = ∅. Therefore, {Ln(F̃ ; ã, b̃, z)/τn(z)}n≥1

is a subsequence of {Gn(F̃ ; ã, b̃, z)/n}n≥1. We get

i(F̃ ; ã, b̃, z) = lim
n→+∞

Gn(F̃ ; ã, b̃, z)
n

for µ-almost everywhere on M \ π({ã, b̃}).
By Birkhoff Ergodic theorem, we have

iµ(F̃ ; ã, b̃) =
∫

M\π({ea,eb})
i(F̃ ; ã, b̃, z) dµ

=
∫

M\π({ea,eb})
G1(F̃ ; ã, b̃, z) dµ

=
∫
fM\π−1(π({ea,eb}))

γ̃ ∧ Ĩ1(z̃) dµ̃

=
∫
eΣ

dµ̃,

¤

6. Action Function

This section will be divided into three parts. In the first part, we will define a new
action function and prove Theorem 0.1. In the second part, we will define the action
spectrum which is invariant under conjugation by an orientation and measure preserving
homeomorphism.

6.1. Definition of the action function. In this section, we suppose that the action
difference i(F̃ ; ã, b̃, z) is well defined for every two distinct fixed points ã and b̃ of F̃ .

We define the action difference as follows:

iµ : (Fix(F̃ )× Fix(F̃ )) \ ∆̃ → R
(ã, b̃) 7→ iµ(F̃ ; ã, b̃).

From Proposition 4.5, we have the following corollary immediately:

Corollary 6.1. For any distinct fixed points ã, b̃ and c̃ of F̃ , we have

iµ(F̃ ; ã, b̃) + iµ(F̃ ; b̃, c̃) + iµ(F̃ ; c̃, ã) = 0.

That is, iµ is a coboundary on Fix(F̃ ). So there is a function lµ : Fix(F̃ ) → R, defined up
to an additive constant, such that

iµ(F̃ ; ã, b̃) = lµ(F̃ ; b̃)− lµ(F̃ ; ã).



35

We call the function lµ the action function (or action for short) on Fix(F̃ ) defined by
the measure µ.

By Section 1.4.3, the properties of iµ(F̃ ; ã, b̃, z) (see Section 4.1) and Corollary 6.1, we
have the following proposition:

Proposition 6.2. The action difference iµ (hence the action lµ) only depends on the
homotopic class with fixed endpoints of I. Moreover, iµ only depends on the time-one map
F when g > 1 and iµ depends on the homotopic class of I when g = 1. The same property
holds for Iµ (hence Lµ) which defines in the case where ρM,I(µ) = 0 (see Formula 6.1 and
Proposition 6.3 below).

Proposition 6.3. If ρM,I(µ) = 0, then iµ(F̃ ; ã, α(ã)) = 0 for every ã ∈ Fix(F̃ ) and every
α ∈ G ∗. As a consequence, there exists a function Lµ defined on FixCont,I(F ) such that
for every two distinct fixed points ã and b̃ of F̃ , we have

iµ(F̃ ; ã, b̃) = Lµ(F̃ ;π(̃b))− Lµ(F̃ ;π(ã)).

Proof. There exists an isotopy I ′ homotopic to I that fixes π(ã). It is lifted to an isotopy
Ĩ ′ that fixes ã and α(ã). Observe that if γ̃ is an oriented path from ã to α(ã), then the
intersection number γ̃ ∧ Γ̃n

eI ′,z (see Section 4.1) is equal to the intersection between the

loop π(γ̃) and the loop I ′ τn(z)(z)γΦn(z),z (see Section 1.3.2). As ρM,I(µ) = ρM,I′(µ) = 0
and π(ã) ∈ FixCont,I(F ) (or µ(π(ã)) = 0), we have

iµ(F̃ ; ã, α(ã)) =
∫

M\{π(ea)}
i(F̃ ; ã, α(ã), z) dµ

=
∫

M\{π(ea)}
lim

n→+∞
Ln(F̃ ; ã, α(ã), z)

τn(z)
dµ

=
∫

M\{π(ea)}
lim

n→+∞

γ̃ ∧ Γ̃n
eI ′,z

τn(z)
dµ

= π(γ̃) ∧ ρM,I′(µ)
= 0.

The second conclusion follows from Corollary 6.1. ¤
We call the function Lµ the action on FixCont,I(F ) defined by the measure µ. We note

that the results above hold for the set of all such pairs (ã, b̃) ∈ (Fix(F̃ )× F̃) \ ∆̃ which the
action difference can be defined on.

As a consequence, if F is a diffeomorphism of M (by Proposition 5.8 and 5.9), or the
isotopy I satisfies the WB-property and Supp(µ) = M (by Proposition 5.9 and 5.10) or µ
is ergodic (by Proposition 5.9 and Birkhoff Ergodic theorem), then the action function is
well defined on Fix(F̃ ), but the action can be unbounded (See Example 7.1 of Appendix).

Proof of Theorem 0.1. From Corollary 6.1 and Proposition 6.3, we define the action dif-
ference Iµ : (FixCont,I(F ) × FixCont,I(F )) \∆ → R and the action Lµ : FixCont,I(F ) → R
as follows

(6.1) Iµ(F̃ ; a, b) = iµ(F̃ ; ã, b̃) = Lµ(F̃ ; b)− Lµ(F̃ ; a),

where ã and b̃ are any lifts of a and b. We only need to prove that the function Lµ defined
in this section is a generalization of the action difference in Section 3.1.2.
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Observe that, in the classical case, I = (Ft)t∈[0,1] ⊂ Diff∗(M) where Diff∗(M) is the
set of diffeomorphisms that are isotopic to the identity. The measure µ is defined by a
symplectic form ω. Therefore, µ is non-atomic. Comparing Equation 3.3 with Equation
6.1, it sufficient to prove that Iµ(F̃ ; a, b) = iµ(F̃ ; ã, b̃) = δ(F̃ , ã, b̃).

Let γ̃ be any oriented path from ã to b̃. By Lemma 5.13, we have

iµ(F̃ , ã, b̃) =
∫
eΣ

dµ̃

where Σ̃ is the 2-chain whose boundary is F̃ (γ̃) − γ̃ (i.e., identify F̃ (γ̃)γ̃−1 as a 1-chain)
as defined in Lemma 5.13. As δ(F̃ , ã, b̃) does not depend on the choices of γ̃ and Σ̃ (see
Section 3.1.2), we have iµ(F̃ ; ã, b̃) = δ(F̃ , ã, b̃). ¤

From Theorem 0.1 and Corollary 5.11, we get the following iteration formula of the
action function with regard to F̃ immediately:
Proposition 0.2 Under the same hypotheses as Theorem 0.1, for every two distinct con-
tractible fixed points a and b of F , we have Iµ(F̃ q; a, b) = qIµ(F̃ ; a, b) for all q ≥ 1.

6.2. Action spectrum. We suppose that the action lµ is well defined. Write F̃ as the
lift of F obtained by lifting I to an isotopy Ĩ to M̃ starting IdfM .

Define the action spectrum of I as follows (up to an additive constant):

σ(F̃ ) = {lµ(F̃ ; z̃) | z ∈ Fix(F̃ )} ⊂ R.

Moreover, if ρM,I(µ) = 0, we can write the action spectrum of I as (up to an additive
constant):

σ(F̃ ) = {Lµ(F̃ ; z) | z ∈ FixCont,I(F )} ⊂ R.

Recall that Homeo+(M, µ) is the subgroup of Homeo(M) whose elements preserve the
measure µ and the orientation. By Corollary 5.12, we have the following conjugation
invariance property:
Proposition 0.3 The action spectrum is invariant by conjugation in Homeo+(M, µ).

7. Appendix

We fix a closed surface M of genus g ≥ 1 and a topological closed disk D on M all
examples will coincide with the identity outside of D including isotopies. Up to a diffeo-
morphism, we may suppose that D is the closed unit Euclidean disk. We will construct
an identity isotopy I = (Ft)t∈[0,1], we will write F = F1 and F̃ = F̃1 the time-one map
of Ĩ = (F̃t)t∈[0,1] that is the lifted identity isotopy of I on the universal covering space
π : M̃ → M .

Example 7.1. We construct an identity isotopy I of M and a measure µ ∈ M(F ) such
that

• ρM,I(µ) = 0;
• F ∈ Diff(M) (and hence I satisfies the WB-property);
• I does not satisfy the B-property (and hence F /∈ Diff1(M));
• there is a compact set P̃ ⊂ M̃ and {(z̃k, z̃

′
k)}k≥1 ⊂ (Fix(F̃ )×Fix(F̃ ))\∆̃ in P̃ × P̃ ,

such that the linking numbers i(F̃ ; z̃k, z̃
′
k, z) are not uniformly bounded;

• the action Lµ (see Section 6.1) is not bounded.
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Use the Cartesian (x, y)-coordinate system in D and suppose z0 = (0, 0). On the x-axis,
we suppose that Bk (k ≥ 1) is a ball whose center is on zk = 1/(k + 1) + 1/(2k(k + 1))
and whose radius is rk = 1/2(k + 1)2.

Consider a family of smooth functions αk : [0, rk] → R such that αk = 0 on neighbor-
hoods of 0 and rk, αk(rk/2) = 2(−1)k(k + 1)5 and

2π

∫ rk

0
αk(r)r dr = (−1)kk.

Consider the following diffeomorphism F of D which is defined by the formula:

(7.1) F (zk + re2iπθ) =

{
zk + re2iπ(θ+αk(r)) on Bk;
Id on D \⋃

k≥1 Bk.

We construct an isotopy I = (Ft)t∈[0,1] on D by replacing αk(r) with tαk(r) in Formula
7.1.

Obviously, zk and z′k = zk + rk/2 are fixed points of F and we have

i(F̃ ; z̃k, z̃k
′) = 2(−1)k(k + 1)5

and
i(F̃ ; z̃0, z̃k, z

′
k) = ρ

Aez0,ezk
, bFez0,ezk

(z̃k
′) = 2(−1)k+1(k + 1)5

where z̃0, z̃k and z̃k
′ are contained in a connected component D̃ of π−1(D). Hence I does

not satisfy the B-property and there is a compact set Cl(D̃) and {z̃k}k≥1 ⊂ Fix(F ) \ {z̃0}
in Cl(D̃), such that the linking numbers i(F̃ ; z̃0, z̃k, z) are not uniformly bounded.

It is easy to prove that F is a diffeomorphism of M but it is not a C1-diffeomorphism
of M : its differential DF is not continuous at z0.

Consider a finite measure µ on M satisfying that

• µ has full support;
• µ is non-atomic;
• µ restricted on Bk is the Lebesgue measure with µ(Bk) = πr2

k for every k ≥ 1.

Obviously, µ ∈M(F ) and ρM,I(µ) = 0. Furthermore, we have

Iµ(F̃ ; zk+1, zk) = iµ(F̃ ; z̃k+1, z̃k) = (−1)k+1(2k + 1)

and
Iµ(F̃ ; z0, zk) = iµ(F̃ ; z̃0, z̃k) = (−1)k+1k.

Therefore, the action Lµ is not bounded.

Example 7.2. We construct an isotopy I of M and a measure µ ∈M(F ) such that

• F /∈ Diff(M);
• I satisfies the B-property;
• there are two different fixed points z̃0 and z̃1 of F̃ such that the linking number

i(F̃ ; z̃0, z̃1, z) is not bounded;
• there are two different fixed points z̃0 and z̃1 of F̃ such that the linking number

i(F̃ ; z̃0, z̃1, z) is not µ-integrable.
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Now we consider the polar coordinate for D with the center z0 = (0, 0) and suppose
z1 = (4/5, 0). Let Dp/q = {(r, θ) | r ∈]0, p/q[ } where p/q ∈]0, 1[∩Q. Consider a smooth
decreasing function α : [0, 3/4] → R such that α|[0,1/2] ≡ 1 and α = 0 on neighborhood of
3/4. Take a C∞-diffeomorphism ρ(r) of ]0, 3/4[ as follows

• ρ(r) fixes the point 1/k for every k > 1 and ρ(r) = r when r ∈ [1/2, 3/4[;
• ρn(r) → 1/(k + 1) when n → −∞ for every k > 1 and r ∈]1/(k + 1), 1/k[;
• ρn(r) → 1/k when n → +∞ for every k > 1 and r ∈]1/(k + 1), 1/k[.

Consider the following homeomorphism F of D defined on D by the formula:

(7.2) F (re2iπθ) =

{
ρ(r)e2iπ

“
θ+α(r)(2

1
r + 1

2
)
”

on D3/4;
Id on D \D3/4.

We construct an isotopy I = (Ft)t∈[0,1] on D by replacing α(r)(2
1
r + 1

2) with tα(r)(2
1
r + 1

2)
and ρ(r) with (1− t)r + tρ(r) in Formula 7.2. It is easy to see that F is not differentiable
at z0.

Let Bk = {(r, θ) | r ∈]1/(k + 1), 1/k[ } and Ck = {z ∈ D | |z| = 1/k} (k ≥ 2). Consider
a finite measure µ on M that is invariant by F as follows

µ =
∑

k≥2

2−(k−1)µk

where µk is the Lebesgue probability measure on Ck.
Fix one point zk ∈ Ck for every k ≥ 2. Let z̃k (k ≥ 0) be any lift of zk contained in a

connected component of π−1(D). For any point z ∈ Bk, the ω-limit set of z is included in
Ck and the α-limit set of z is included in Ck+1. When z ∈ Ck, the angle of the trajectory of
I(z) rotating around z0 is (2k+1 + 1)π. Hence F has no contractible fixed points on D1/2.
When z ∈ D3/4 \D1/2, the angle of the trajectory of I(z) rotating around z0 is uniformly
bounded. Therefore, I satisfies the B-property. However, i(F̃ ; z̃0, z̃1, zk) = 2k + 1/2 and
i(F̃ ; z̃0, z̃1, z) is not µ-integrable. Remark that the support of µ is not the whole space.
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[BFLM13] F. Béguin; S. Firmo; P. Le Calvez; T. Miernowski : Des points fixes communs pour
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