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Abstract We study the one-way local operations and classical communication (LOCC)

problem. In Cd⊗Cd with d ≥ 4, we construct a set of 3⌈
√
d⌉− 1 one-way LOCC indistin-

guishable maximally entangled states which are generalized Bell states. Moreover, we show

that there are four maximally entangled states which cannot be perfectly distinguished by

one-way LOCC measurements for any dimension d ≥ 4.

1 Introduction

In compound quantum systems, many global operators can not be implemented using

only local operations and classical communication (LOCC). This reflects the fundamental

feature of quantum mechanics called nonlocality. Meanwhile, the understanding of the

limitation of quantum operators that can be implemented by LOCC is also one of the sig-

nificant subjects in quantum information theory. And local distinguishability of quantum

states plays an important role in exploring quantum nonlocality [1, 2]. In the bipartite

case, Alice and Bob share a quantum system which is chosen from one of a known set of

mutually orthogonal quantum states. Their goal is to identity the given state using only

LOCC. The nonlocality of quantum information is therefore revealed when a set of or-

thogonal states can not be distinguished by LOCC. Moreover, the local distinguishability

1



has been found practical applications in quantum cryptography primitives such as secret

sharing and data hiding [3, 4].

The question of local discrimination of orthogonal quantum states has received consid-

erable attentions in recent years [5-19]. It is well known that any two orthogonal maximally

entangled states can be perfectly distinguished with LOCC [2]. In Refs.[8, 9], the authors

proved that a set of d + 1 or more maximally entangled states in d ⊗ d systems are not

perfectly locally distinguishable. Hence it is interesting to ask whether there are locally

indistinguishable sets consisting of d or fewer maximally entangled states in d ⊗ d. For

d = 3, Nathanson has shown that any three maximally entangled states can be perfectly

distinguished [6]. Recently, the authors in [15, 17] considered one-way LOCC distinguisha-

bility and presented sets of d and d − 1 indistinguishable maximally entangled states for

d = 5, ..., 10. The problem remains open if there exists fewer than d− 1 indistinguishable

maximally entangled states for arbitrary dimension d. More recently, Nathanson shew

that there exist triples of mutually orthogonal maximally entangled states in Cd ⊗ Cd

which cannot be distinguished with one-way LOCC in any dimension d when d is even

or d mod 3 ≡ 2 [16]. In addition, the authors in [18] gave a set with ⌈d2⌉ + 2 maximally

entangled states in Cd ⊗ Cd which is one-way LOCC indistinguishable, where ⌈a⌉ means

the least integer which is not less than a. And in [19], the authors presented sets with

four and five maximally entangled states in C4m ⊗C4m which is one-way LOCC indistin-

guishable but two-way distinguishable. Whether there are four or three one-way LOCC

indistinguishable maximally entangled states in arbitrary dimension remains unknown.

In this paper, we give a positive answer to this question when the number of states

in the set is four. For any dimension d ≥ 4, we give a set of 3⌈
√
d⌉ − 1 one-way LOCC

indistinguishable maximally entangled states. Moreover, we can find four maximally en-

tangled states which cannot be perfectly distinguished by one-way LOCC measurements

for any dimension d ≥ 4.

2 Preliminaries

We first introduce some basic results that will be used in proving our theorems. Under

the computational base {|ij⟩}d−1
i,j=0 of the tensor space of the d-dimensional Hilbert space
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HA ⊗HB, the generalized Bell states in Cd ⊗ Cd are defined as follows:

|ψnm⟩ = I ⊗ Unm(
1√
d

d−1∑
j=0

|jj⟩), (1)

where Umn = XmZn are generalized Pauli matrices constituting a basis of unitary oper-

ators, and X|j⟩ = |j ⊕d 1⟩, Z|j⟩ = ωj |j⟩, ω = e
2π

√
−1

d . We define Vmn = UT
mn, where T

stands for transpose. It is directly verified that ZX = ωXZ.

Lemma 1. Suppose Umn = XmZn, Um′n′ = Xm′
Zn′

, we have

UmnU
†
m′n′ = ω(m′−m)n′

U(m−m′mod d)(n−n′ mod d).

Proof:

U †
m′n′Umn = (Xm′

Zn′
)†(XmZn)

= (Z†n′
X†m′

)(XmZn)

= (Z(d−1)n′
X(d−1)m′

)(XmZn)

= (Z−n′
X−m′

)(XmZn)

= Z−n′
Xm−m′

Zn

= ω(m′−m)n′
Xm−m′

Zn−n′

= ω(m′−m)n′
U(m−m′mod d)(n−n′ mod d).

For the convenience of citation, we recall the results given in Refs.[16, 17].

Lemma 2. In Cd⊗Cd, N ≤ d number of pairwise orthogonal maximally entangled states

|ψnimi⟩, i = 1, 2, . . . , N , taken from the set given in Eq. (1), can be perfectly distinguished

by one-way LOCC A→ B, if and only if there exists at least one state |α⟩ ∈ HB for which

the states Un1m1 |α⟩, Un2m2 |α⟩, . . . , UnNmN |α⟩ are pairwise orthogonal.

On the other hand, the set is perfectly distinguishable by one-way LOCC in the

B → A, if and only if there exists at least one state |α⟩ ∈ HA for which the states

Vn1m1 |α⟩, Vn2m2 |α⟩, . . . , VnNmN |α⟩ are pairwise orthogonal.

Lemma 3. Given a set of states S = {|ψi⟩ = (I ⊗ Ui)|ϕ⟩} ⊂ Cd ⊗ Cd, with |ϕ⟩ the

standard maximally entangled state. The elements of S can be perfectly distinguished

with one-way LOCC if and only if there exists a set of states {|ϕk⟩} ⊂ Cd and a set of

positive numbers {mk} such that
∑

kmk|ϕk⟩⟨ϕk| = Id and ⟨ϕk|U †
jUi|ϕk⟩ = δij .
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In the following, we concentrated on the set of maximally entangled states. Any

maximally entangled state in Cd ⊗ Cd can be written as |ψ⟩ = (I ⊗ U)|ψ0⟩, where |ψ0⟩ =
1√
d

∑d
i=1 |ii⟩, and U is a unitary matrix. Since there is a one to one correspondence

between a maximally entangled state |ψi⟩ and the unitary matrix Ui, we call the set of

unitary matrices {Ui}di=1 the defining unitary matrices of the set of maximally entangled

states {|ψi⟩}di=1.

3 Sets of one-way LOCC indistinguishable states

The authors in [18] presented a set with ⌈d2⌉+ 2 generalized Bell states in Cd ⊗Cd which

is one-way LOCC indistinguishable. In the following, at first we also consider the one-way

distinguishability of generalized Bell states.

Theorem 1. In Cd⊗Cd (d > 4), there exists an orthogonal set with 3⌈
√
d⌉−1 maximally

entangled states which is one-way LOCC indistinguishable:

{|ψ00⟩, |ψ10⟩, . . . , |ψn−1,0⟩, |ψ2n−1,0⟩, |ψ3n−1,0⟩, |ψ4n−1,0⟩, . . . , |ψ(n−1)n−1,0⟩, |ψd−1,0⟩, |ψn−1,1⟩,

|ψ2n−1,1⟩, |ψ3n−1,1⟩, |ψ4n−1,1⟩, . . . , |ψ(n−1)n−1,1⟩, |ψd−1,1⟩}, where n = ⌈
√
d⌉.

The corresponding unitary matrices are given by

{U00, U10, . . . , Un−1,0, U2n−1,0, U3n−1,0, U4n−1,0, . . . , U(n−1)n−1,0, Ud−1,0, Un−1,1,

U2n−1,1, U3n−1,1, U4n−1,1, . . . , U(n−1)n−1,1, Ud−1,1}.

Proof: If {|ψ00⟩, |ψ10⟩, . . . , |ψn−1,0⟩, |ψ2n−1,0⟩, |ψ3n−1,0⟩, . . . , |ψ(n−1)n−1,0⟩, |ψd−1,0⟩, |ψn−1,1⟩,

|ψ2n−1,1⟩, . . . , |ψ(n−1)n−1,1⟩, |ψd−1,1⟩} can be one-way LOCC distinguished, then by lemma

2, ∃ |α⟩ ̸= 0 ∈ Cd, such that the set {U00|α⟩, U10|α⟩, . . . , Un−1,0|α⟩, U2n−1,0|α⟩, U3n−1,0|α⟩,

. . . , U(n−1)n−1,0|α⟩, Ud−1,0|α⟩, Un−1,1|α⟩, U2n−1,1|α⟩, . . . , U(n−1)n−1,1|α⟩, Ud−1,1|α⟩} are mu-

tually orthogonal.
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From the orthogonality of U00|α⟩ and U10|α⟩, U20|α⟩, . . . , Un−1,0|α⟩, we obtain

⟨α|U10|α⟩ =
d−1∑
j=0

ωjαjαj = 0,

⟨α|U20|α⟩ =
d−1∑
j=0

ω2jαjαj = 0,

...

⟨α|Un−1,0|α⟩ =
d−1∑
j=0

ω(n−1)jαjαj = 0.

Then by the orthogonality of U2n−1,0|α⟩ and Un−1,0|α⟩, . . . , U10|α⟩, U00|α⟩, taking into

account Lemma 1 we get

⟨α|U †
n−1,0U2n−1,0|α⟩ = ⟨α|Un,0|α⟩ =

d−1∑
j=0

ωnjαjαj = 0,

...

⟨α|U †
10U2n−1,0|α⟩ = ⟨α|U2n−2,0|α⟩ =

d−1∑
j=0

ω(2n−2)jαjαj = 0,

⟨α|U †
00U2n−1,0|α⟩ = ⟨α|U2n−1,0|α⟩ =

d−1∑
j=0

ω(2n−1)jαjαj = 0.

Similarly, from the orthogonality of U3n−1,0|α⟩, U4n−1,0|α⟩, . . . , , U(n−1)n−1,0|α⟩, Ud−1,0|α⟩

and Un−1,0|α⟩, . . . , U10|α⟩, U00|α⟩, we have:

d−1∑
j=0

ω(2n)jαjαj =
d−1∑
j=0

ω(2n+1)jαjαj = · · · =
d−1∑
j=0

ω(d−1)jαjαj = 0.

Putting the above d− 1 equations together, we have

d−1∑
j=0

ωjαjαj =

d−1∑
j=0

ω2jαjαj =

d−1∑
j=0

ω3jαjαj = · · · =
d−1∑
j=0

ω(d−1)jαjαj = 0.

Solving these d− 1 equations, we have (α0α0, α1α1, · · · , αd−1αd−1) = λ(1, 1, · · · , 1).

1) If λ = 0, then (α0α0, α1α1, · · · , αd−1αd−1) = (0, 0, · · · , 0), that is, |α⟩ = 0.

2) If λ ̸= 0, then for ∀i, j, we have αiαj ̸= 0. By the orthogonality of Un−1,1|α⟩ and
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Un−1,0|α⟩, . . . , U20|α⟩, U10|α⟩, U00|α⟩ and Lemma 1, we have

⟨α|U †
n−1,0Un−1,1|α⟩ = ⟨α|U01|α⟩ =

d−1∑
j=0

ω0jαjαj⊕d1 = 0,

...

⟨α|U †
10Un−1,1|α⟩ = ⟨α|Un−2,1|α⟩ =

d−1∑
j=0

ω(n−2)jαjαj⊕d1 = 0,

⟨α|U †
00Un−1,1|α⟩ = ⟨α|Un−1,1|α⟩ =

d−1∑
j=0

ω(n−1)jαjαj⊕d1 = 0.

By the orthogonality of U2n−1,1|α⟩, U3n−1,1|α⟩, . . . , U(n−1)n−1,1|α⟩, Ud−1,1|α⟩ and U00|α⟩,

U10|α⟩, U20|α⟩, . . . , Un−1,0|α⟩, we have

d−1∑
j=0

ωnjαjαj⊕d1 =
d−1∑
j=0

ω(n+1)jαjαj⊕d1 = · · · =
d−1∑
j=0

ω(d−1)jαjαj⊕d1 = 0.

From the above equations, (α0α1, α1α2, · · · , αd−1α0) = (0, 0, · · · , 0) and αiαj ̸= 0 are

contradictory. Therefore {|ψ00⟩, |ψ10⟩, . . . , |ψn−1,0⟩, |ψ2n−1,0⟩, |ψ3n−1,0⟩, . . . , |ψ(n−1)n−1,0⟩,

|ψd−1,0⟩, |ψn−1,1⟩, |ψ2n−1,1⟩, . . . , |ψ(n−1)n−1,1⟩, |ψd−1,0⟩} cannot be one-way LOCC distin-

guished.

In the above discussions we restricted ourselves on the one-way LOCC undistinguished

generalized Bell states. In the following we consider general orthogonal maximally entan-

gled states that are indistinguishable under one-way LOCC.

Theorem 2. There exist four states of mutually orthogonal maximally entangled states

in Cd ⊗ Cd which cannot be distinguished under one-way LOCC in any dimension d ≥ 4.

Proof : Set d = 2 + r, r > 2. Let P denote the r × r permutation matrix,

P =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


r×r

.

P r = I is the r × r identity matrix. We prove the theorem by dealing with the following

two cases:
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Case 1: r is odd. Let

U1 =

 ωX

P

 , U2 =

 γZ

P 2

 , U3 =

 σY

P
r+1
2

 ,
where ω, γ and σ are phases satisfying |ω| = |γ| = |σ| = 1, γ ̸= ±iω2, X,Y, Z are the Pauli

matrices:

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 .
Let |ψ0⟩ be the standard maximally entangled state, |ψ0⟩ =

∑d−1
i=0 |ii⟩. We construct four

maximally entangled states as follows:

{|ψ0⟩, (I ⊗ U1)|ψ0⟩, (I ⊗ U2)|ψ0⟩, (I ⊗ U3)|ψ0⟩} ⊆ Cd ⊗ Cd.

One can check that these states are mutually orthogonal and maximally entangled. To

show that these states cannot be distinguished under one-way LOCC, suppose that Alice

performs an initial measurement M on her system and gets the measurement outcome

corresponding to some operator MT ,

M =

 A C†

C B

 > 0,

where A is a 2× 2 matrix and B a r × r matrix. To be a perfect discrimination, we need

Tr(UiMU †
j ) = 0 whenever i ̸= j. The required orthogonal conditions imply that

Tr(MU1) = ωTr(AX) + Tr(BP ) = 0, (2)

Tr(MU2) = γTr(AZ) + Tr(BP 2) = 0, (3)

Tr(MU3) = σTr(AY ) + Tr(BP
r+1
2 ) = 0, (4)

Tr(U2MU †
1) = −iωγTr(AY ) + Tr(BP ) = 0, (5)

Tr(U3MU †
1) = −iωσTr(AZ) + Tr(BP

r−1
2 ) = 0, (6)

Tr(U3MU †
2) = −iγσTr(AX) + Tr(BP

r−3
2 ) = 0. (7)

From equations (2) and (5), we have

ω Tr(AX) + i ω γ Tr(AY ) = 0.
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Since A,B,X, Y, Z are all Hermitian and the product of two Hermitian matrices always has

a real-valued trace, i.e. Tr(AX) and Tr(AY ) are real. Clearly, |Tr(AX)| = |Tr(AY )|.

If Tr(AX) ̸= 0, then we have iω2γ = −Tr(AX)
Tr(AY ) = 1 or − 1. This is contradicted with

γ ̸= ±i ω2. Hence we have Tr(AX) = Tr(AY ) = 0. From equation (4) we obtain

Tr(BP
r+1
2 ) = 0. Due to P r = I and the Hermitian of the matrix B, the equality

Tr(BP
r−1
2 ) = Tr(BP

r+1
2 ) holds, which gives rise to Tr(BP

r−1
2 ) = 0. Then by equa-

tion (6), we obtain Tr(AZ) = 0. Since the Pauli matrices form a basis for 2×2 Hermitian

matrices, we are forced to conclude that A = tI2 for some t ≥ 0.

From lemma 3, to distinguish these states under one-way LOCC, Alice is required to

have a complete measurementM = {Mi} consisting of rank one matrices. If A is a multiple

of the identity matrix, then either A = 0 or else the rank of M is at least two. Thus,

either M contains measurement operators of rank greater than one or else
∑

iMi ̸= I. In

either case, M cannot be the first step towards a perfect one-way LOCC protocol.

Case 2: r is even. We set

U1 =

 ωX

P 2

 , U2 =

 γZ

P 4

 , U3 =

 σY

P
r+3
2

 .
Similarly, one can get that {|ψ0⟩, (I⊗U1)|ψ0⟩, (I⊗U2)|ψ0⟩, (I⊗U3)|ψ0⟩} cannot be perfectly

distinguished by one-way LOCC, which completes the proof of the theorem.

4 Conclusion

we have studied further the one-way LOCC problem and presented a set of 3⌈
√
d⌉−1 one-

way LOCC indistinguishable maximally entangled states which are all generalized Bell

states. It should be noticed that if d is large enough, then the number 3⌈
√
d⌉ − 1 is much

smaller than the number ⌈d2⌉ + 2 in [18]. Moreover, we have also found four maximally

entangled states which cannot be perfectly distinguished by one-way LOCC measurements

for any dimension d ≥ 4. For some particular dimension d, small one-way indistinguishable

sets that contain only three states has been given in [16]. From our approach it would be

desired that the results could be extended to the case of any d ≥ 4.
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